1
|
Moloi TP, Ziqubu K, Mazibuko-Mbeje SE, Mabaso NH, Ndlovu Z. Aflatoxin B 1-induced hepatotoxicity through mitochondrial dysfunction, oxidative stress, and inflammation as central pathological mechanisms: A review of experimental evidence. Toxicology 2024; 509:153983. [PMID: 39491743 DOI: 10.1016/j.tox.2024.153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Aflatoxin B1 (AFB1) is a class of mycotoxin known to contaminate agricultural products, animal feed and animal food products, subsequently causing detrimental effects on human and animal health. AFB1 is the most common and potent aflatoxin found in food and contributes significantly to liver injury as well as the development of hepatocellular carcinoma. Although the liver is a primary target organ for AFB1 toxicity and biotransformation, underlying mechanisms implicated in liver injuries induced by these mycotoxins remain to be fully elucidated for therapeutic purposes. This review aims to dissect the complexities of the pathophysiological and molecular mechanisms implicated in hepatotoxicity induced by AFB1, including mitochondrial dysfunction, oxidative stress and hepatic inflammation. Mechanistically, AFB1 disrupt mitochondrial bioenergetics and membrane potential, promotes mitochondrial cholesterol trafficking and induces mitophagy. Moreover, mitochondrial dysfunction may lead to hepatic oxidative stress as a consequence of uncontrolled production of reactive oxygen species and defects in the antioxidant defense system. Retrieved experimental evidence also showed that AFB1 may lead to hepatic inflammation through gut microbiota dysbiosis, the release of DAMPs and cytokines, and immune cell recruitment. Overall, these mechanisms could be utilized as potential targets to extrapolate treatment for liver injury caused by AFB1.
Collapse
Affiliation(s)
- Tsholofelo P Moloi
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Nonduduzo H Mabaso
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Zibele Ndlovu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa.
| |
Collapse
|
2
|
Szabó RT, Kovács-Weber M, Balogh KM, Mézes M, Kovács B. Effect of aflatoxin B1 and sterigmatocystin on DNA repair genes in common carp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107076. [PMID: 39277992 DOI: 10.1016/j.aquatox.2024.107076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
The present study aimed to investigate the short-time (24 h) effect of aflatoxin B1 (AFB1) and sterigmatocystin (STC) on the expression of hsp70, p53, gadd45, and ogg1 genes in common carp hepatopancreas. Our results showed that aflatoxin B1 and sterigmatocystin can stimulate the expression of DNA repair genes, mainly by hour 24. This significant finding contributes to our understanding of the short-term effects of these mycotoxins on ogg1 genes in common carp hepatopancreas. One-year-old common carp juveniles were randomly distributed into five groups (Control, AFB1 0.4 mg kg-1 feed, STC1 1 mg kg-1 feed, STC2 2 mg kg-1 feed, and STC3 3 mg kg-1 feed). Hepatopancreas samples were collected three times (8, 16, and 24 h) in each group. No significant ogg1 and p53 expression changes were observed at 8 and 16 h after exposure. All measured genes were upregulated by the 24th hour in aflatoxin and STC3 groups. An increase in hsp70 gene expression was detected in all groups and all sampling. A significant decrease in gadd45aa gene expression was observed in the aflatoxin B1 group at hour 8. At hour 16, there was no significant change, while at hour 24, all treated groups were significantly different from the control. In summary, our results suggest that aflatoxin B1 and sterigmatocystin can stimulate the expression of DNA repair genes, mainly by hour 24. Further investigations are needed to get information about DNA damage parallel to the DNA repair mechanisms.
Collapse
Affiliation(s)
- Rubina Tünde Szabó
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Mária Kovács-Weber
- Institute of Animal Husbandry, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary.
| | - Krisztián Milán Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Gödöllő Campus, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary
| | - Balázs Kovács
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
3
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
4
|
Jalili C, Ranjbar Shamsi R, Amiri B, Kakebaraie S, Jalili F, Nasta TZ. Genotoxic and cytotoxic effects of aflatoxin on the reproductive system: Focus on cell cycle dynamics and apoptosis in testicular tissue. Toxicology 2024; 504:153773. [PMID: 38484789 DOI: 10.1016/j.tox.2024.153773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Aflatoxins (AFs) are inevitable environmental contaminants that are detrimental to human and animal health. AFs interfere with metabolic processes, metabolizing into different hydroxylated derivatives in the liver, as well as mechanistically induce ROS accumulation, S-phase arrest, DNA damage, and cell apoptosis. Chronic consumption of aflatoxin-contaminated foods can adversely affect the male reproductive system, cause testicular damage, prevent testosterone synthesis, decline sperm quality, and cause infertility. Oxidative stress is the fundamental pathogenesis of aflatoxin-induced reproductive toxicity. The overproduction of reactive oxygen substances can cause testicular failure and disturb the process of spermatogenesis. Mitochondria are susceptible to being impaired by oxidative stress, and its damage is associated with infertility. AFs also disturb the process of spermatogenesis by disrupting the regulation of genes related to the progression of the cell cycle such as cyclins and inducing genes related to apoptosis, thereby weakening fertility and negatively affecting the testicular endocrine potential by suppressing androgen synthesis. Additionally, AFs downregulate ERα expression, potentially negatively impacting spermatogenesis by enhancing the apoptotic mechanism. In this review, we provide new insights into the genotoxic and cytotoxic effects of AFB1 on the male reproductive system with a focus on the cell cycle and apoptosis destruction of testicular tissue.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Rahele Ranjbar Shamsi
- Department of Clinical Biochemistry, Faculty of Veterinary Medicine, Tabriz, Islamic Republic of Iran
| | - Bita Amiri
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, USA
| | - Seyran Kakebaraie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Faramarz Jalili
- School of Health Administration, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| |
Collapse
|
5
|
Lázaro Á, Frangiamone M, Maietti A, Cimbalo A, Vila-Donat P, Manyes L. Allium sativum L. var. Voghiera Reduces Aflatoxin B1 Bioaccessibility and Cytotoxicity In Vitro. Foods 2024; 13:487. [PMID: 38338622 PMCID: PMC10855818 DOI: 10.3390/foods13030487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The present work focuses on the evaluation of AFB1's bioaccessibility and cytotoxicity in vitro using bread (naturally contaminated) enriched or not enriched with fresh Voghiera garlic (2%). Two different experiments were carried out: experiment 1 (E1), with low-AFB1-concentration breads (1.6-1.7 mg/kg); and experiment 2 (E2), with high-AFB1-concentration breads (96.4-102.7 mg/kg). Eight breads were prepared, four for E1 (experiment 1) and another four for E2 (experiment 2), with each experiment having a control group (C), a garlic-enriched group (2%) (G), an AFB1 group (A), and an AFB1 + garlic group (A + G). Simulated digestion was performed on each type of bread, and gastric and intestinal digests were obtained. AFB1 content in flours, baked bread, and gastric and intestinal digests was measured by High-Performance Liquid Chromatography coupled to Fluorescence Detection. The results demonstrate dose-dependent AFB1 bioaccessibility and that the presence of garlic contributed to its reduction in both doses (7-8%). Moreover, garlic's presence in AFB1-contaminated bread increased cell viability (9-18%) in differentiated Caco-2 cells and mitigated the arrest of S and G2/M phases provoked by AFB1 on Jurkat T cells and reduced apoptosis/necrosis, cellular reactive oxygen species (ROS), and mitochondrial ROS by 16%, 71%, and 24% respectively. The inclusion of garlic as a functional ingredient helped relieve the presence and effects of AFB1.
Collapse
Affiliation(s)
- Álvaro Lázaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Pilar Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, University of Valencia, 46100 Burjassot, Spain; (Á.L.); (M.F.); (P.V.-D.); (L.M.)
| |
Collapse
|
6
|
Su C, Li J, Pan L, Zhang M, Chen Z, Lu M. Immunotoxicity and the mechanisms of aflatoxin B1-induced growth retardation in shrimp and alleviating effects of bile acids. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132266. [PMID: 37595470 DOI: 10.1016/j.jhazmat.2023.132266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins prevalent in the environment and food chain, posing severe health risks to humans and animals. Bile acids are natural detergents synthesized from cholesterol and play a key role in the excretion of toxins in vertebrates. Here, pacific white shrimp (Litopenaeus vannamei) served as an animal model to examine the toxicity mechanisms of AFB1 and assess the potential alleviating effects of bile acids against AFB1. Our results revealed that AFB1 exposure significantly inhibited the growth performance and immune response of shrimp, accompanied by AFB1 accumulation and histological damage. Mechanistically, AFB1-induced DNA damage activated DNA repair mechanisms and induced the arrest of cell cycle via the ATR-cyclin B/cdc2 pathway. Additionally, AFB1 directly suppressed the immune response and growth performance of shrimp by inhibiting Toll and IMD pathways and the secretion of digestive enzymes. Notably, dietary bile acids significantly reduced AFB1 accumulation and alleviated AFB1-induced growth retardation and immunotoxicity in shrimp, and CCKAR, ATR, and Relish may be key mediators of the alleviating effects of bile acids. Our study provided new insights into the toxicity mechanisms of AFB1 in invertebrates and highlighted the potential of bile acids to alleviate AFB1 toxicity.
Collapse
Affiliation(s)
- Chen Su
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Jinbao Li
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Luqing Pan
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China.
| | - Mengyu Zhang
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Zhifei Chen
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Mingxiang Lu
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| |
Collapse
|
7
|
Stanic B, Milošević N, Sukur N, Samardzija Nenadov D, Fa Nedeljkovic S, Škrbić S, Andric N. An in silico toxicogenomic approach in constructing the aflatoxin B1-mediated regulatory network of hub genes in hepatocellular carcinoma. Toxicol Mech Methods 2023; 33:552-562. [PMID: 36978281 DOI: 10.1080/15376516.2023.2196686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
Aflatoxin B1 (AFB1) can cause hepatocellular carcinoma (HCC) through a mutagenic mode of action but can also lead to global changes in gene expression; however, the AFB1 network of molecular pathways involved in HCC is not known. Here, we used toxicogenomic data from human liver cells exposed to AFB1 to infer the network of AFB1-responsive molecular pathways involved in HCC. The following computational tools: STRING, MCODE, cytoHubba, iRegulon, kinase enrichment tool KEA3, and DAVID were used to identify protein-protein interaction network, hub genes, transcription factors (TFs), upstream kinases, and biological processes (BPs). Predicted molecular events were validated with an external dataset, whereas the hub genes in HCC were validated using the UALCAN database. The results revealed an association between AFB1 and the hub genes involved in the cell cycle. We identified TFs that regulate the hub genes and linked them with upstream kinases including cyclin-dependent kinases, mitogen-activated protein kinase 1, and AKT. This approach enabled the construction of the AFB1-mediated regulatory network consisting of upstream kinases, TFs, hub genes, and BPs, thus revealing the signaling hierarchy and information flow that may contribute to AFB1-induced HCC. This could be a useful tool in predicting the molecular mechanisms involved in chemical-induced diseases when available toxicogenomic data exist.
Collapse
Affiliation(s)
- Bojana Stanic
- Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Nemanja Milošević
- Department of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Sukur
- Department of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia
| | | | | | - Srđan Škrbić
- Department of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
8
|
Li L, He Z, Shi Y, Sun H, Yuan B, Cai J, Chen J, Long M. Role of epigenetics in mycotoxin toxicity: a review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104154. [PMID: 37209890 DOI: 10.1016/j.etap.2023.104154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Mycotoxins can induce cell cycle disorders, cell proliferation, oxidative stress, and apoptosis through pathways such as those associated with MAPK, JAK2/STAT3, and Bcl-w/caspase-3, and cause reproductive toxicity, immunotoxicity, and genotoxicity. Previous studies have explored the toxicity mechanism of mycotoxins from the levels of DNA, RNA, and proteins, and proved that mycotoxins have epigenetic toxicity. To explore the toxic effects and mechanisms of these changes in mycotoxins, this paper summarizes the changes in DNA methylation, non-coding RNA, RNA and histone modification induced by several common mycotoxins (zearalenone, aflatoxin B1, ochratoxin A, deoxynivalenol, T-2 toxin, etc.) based on epigenetic studies. In addition, the roles of mycotoxin-induced epigenetic toxicity in germ cell maturation, embryonic development, and carcinogenesis are highlighted. In summary, this review provides theoretical support for a better understanding of the regulatory mechanism of mycotoxin epigenotoxicity and the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Liuliu Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Ziqi He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Yang Shi
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Bowei Yuan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jing Cai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China; Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, P.R. China.
| |
Collapse
|
9
|
Li C, Liu X, Wu J, Ji X, Xu Q. Research progress in toxicological effects and mechanism of aflatoxin B 1 toxin. PeerJ 2022; 10:e13850. [PMID: 35945939 PMCID: PMC9357370 DOI: 10.7717/peerj.13850] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Fungal contamination of animal feed can severely affect the health of farm animals, and result in considerable economic losses. Certain filamentous fungi or molds produce toxic secondary metabolites known as mycotoxins, of which aflatoxins (AFTs) are considered the most critical dietary risk factor for both humans and animals. AFTs are ubiquitous in the environment, soil, and food crops, and aflatoxin B1(AFB1) has been identified by the World Health Organization (WHO) as one of the most potent natural group 1A carcinogen. We reviewed the literature on the toxic effects of AFB1 in humans and animals along with its toxicokinetic properties. The damage induced by AFB1 in cells and tissues is mainly achieved through cell cycle arrest and inhibition of cell proliferation, and the induction of apoptosis, oxidative stress, endoplasmic reticulum (ER) stress and autophagy. In addition, numerous coding genes and non-coding RNAs have been identified that regulate AFB1 toxicity. This review is a summary of the current research on the complexity of AFB1 toxicity, and provides insights into the molecular mechanisms as well as the phenotypic characteristics.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangdong Liu
- Huazhong Agricultural University, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xiangbo Ji
- Henan University of Animal Husbandry and Economy, Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Zhao S, Zhang J, Sun X, Yangzom C, Shang P. Mitochondrial calcium uniporter involved in foodborne mycotoxin-induced hepatotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113535. [PMID: 35461028 DOI: 10.1016/j.ecoenv.2022.113535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Foodborne mycotoxins are toxic metabolites that are produced by fungi. The widespread contamination of food and its by-products by mycotoxins is a global food safety problem that potentially threatens public health and other exposed animals. Most foodborne mycotoxins induce hepatotoxicity. However, only few studies have investigated the regulatory mechanisms of mitochondrial calcium transport monomers in mycotoxin-induced hepatotoxicity. Therefore, according to relevant studies and reports, this review suggests that intracellular Ca(2 +) homeostasis and mitochondrial Ca(2 +) uniporter are involved in the regulation of mycotoxin-induced hepatotoxicity. This review provides some ideas for future research involving mitochondrial Ca(2 +) uniporter in the molecular targets of mycotoxin-induced hepatotoxicity, as well as a reference for the research and development of related drugs and the treatment of related diseases.
Collapse
Affiliation(s)
- Shunwang Zhao
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Jian Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Xueqian Sun
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Chamba Yangzom
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, People's Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People's Republic of China.
| |
Collapse
|
11
|
Chen J, Yang S, Li P, Wu A, Nepovimova E, Long M, Wu W, Kuca K. MicroRNA regulates the toxicological mechanism of four mycotoxins in vivo and in vitro. J Anim Sci Biotechnol 2022; 13:37. [PMID: 35197116 PMCID: PMC8867758 DOI: 10.1186/s40104-021-00653-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022] Open
Abstract
Mycotoxins can cause body poisoning and induce carcinogenesis, often with a high mortality rate. Therefore, it is of great significance to seek new targets that indicate mycotoxin activity and to diagnose and intervene in mycotoxin-induced diseases in their early stages. MicroRNAs (miRNAs) are physiological regulators whose dysregulation is closely related to the development of diseases. They are thus important markers for the occurrence and development of diseases. In this review, consideration is given to the toxicological mechanisms associated with four major mycotoxins (ochratoxin A, aflatoxin B1, deoxynivalenol, and zearalenone). The roles that miRNAs play in these mechanisms and the interactions between them and their target genes are explained, and summarize the important role of histone modifications in their toxicity. As a result, the ways that miRNAs are regulated in the pathogenicity signaling pathways are revealed which highlights the roles played by miRNAs in preventing and controlling the harmful effects of the mycotoxins. It is hoped that this review will provide a theoretical basis for the prevention and control of the damage caused by these mycotoxins.
Collapse
Affiliation(s)
- Jia Chen
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuhua Yang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Miao Long
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic. .,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic. .,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| |
Collapse
|
12
|
Ma X, Sun J, Ye Y, Ji J, Sun X. Application of triple co-cultured cell spheroid model for exploring hepatotoxicity and metabolic pathway of AFB1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150840. [PMID: 34627904 DOI: 10.1016/j.scitotenv.2021.150840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The toxicity evaluation suffers from the absence of suitable models capable of replicating in the co-cultured cell microenvironment and the function of specific tissues in vitro. Motivated by this urgent need, this study aimed to describe a novel three-dimensional (3D) liver spheroid model. The model consisted of a triple co-culture of HepG2, EA.hy 926, and LX-2. Subsequently, it was used for the toxicity evaluation of aflatoxin B1 (AFB1), and its advantages over the two-dimensional (2D) model and the mono-type cell spheroid model were assessed. This study examined the effects of AFB1 on cell viability, proliferation, mitochondria, oxidative stress, and cell membranes. The results revealed that AFB1 greatly affected 2D cell membranes and oxidative stress levels (0.01 μg/mL; 24 h), and could also significantly affect 2D cell viability, proliferation, and mitochondria levels (1 μg/mL; 24 h). On the contrary, 3D cells were less susceptible to AFB1. Combined with the analysis of gene expression, both metabolic activation (cytochrome P450; CYP450) and detoxification efficiency (drug-metabolizing enzymes) were found to be higher in 3D cells than in 2D cells. Moreover, 3D cells in triple co-culture outperformed mono-type cell spheroids. Therefore, the advanced 3D co-cultured spheroid model constructed in this study allowed us to more realistically simulate the microenvironment in vitro, and was a valuable and precise model to study mycotoxins.
Collapse
Affiliation(s)
- Xiaoying Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
13
|
Cao W, Yu P, Yang K, Cao D. Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol Mech Methods 2021; 32:395-419. [PMID: 34930097 DOI: 10.1080/15376516.2021.2021339] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxins are a class of carcinogenic mycotoxins produced by Aspergillus fungi, which are widely distributed in nature. Aflatoxin B1 (AFB1) is the most toxic of these compounds and its metabolites have a variety of biological activities, including acute toxicity, teratogenicity, mutagenicity and carcinogenicity, which has been well-characterized to lead to the development of hepatocellular carcinoma (HCC) in humans and animals. This review focuses on the metabolism of AFB1, including epoxidation and DNA adduction, as it concerns the initiation of cancer and the underlying mechanisms. In addition to DNA adduction, inflammation and oxidative stress caused by AFB1 can also participate in the occurrence of cancer. Therefore, the main carcinogenic mechanism of AFB1 related ROS is summarized. This review also describes recent reports of AFB1 exposures in occupational settings. It is hoped that people will pay more attention to occupational health, in order to reduce the incidence of cancer caused by occupational exposure.
Collapse
Affiliation(s)
- Weiya Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Pan Yu
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - KePeng Yang
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| | - Dongli Cao
- Medical school, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|
14
|
Hua Z, Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Li W, Lu C, Liu Y. Contamination of Aflatoxins Induces Severe Hepatotoxicity Through Multiple Mechanisms. Front Pharmacol 2021; 11:605823. [PMID: 33505311 PMCID: PMC7830880 DOI: 10.3389/fphar.2020.605823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Aflatoxins (AFs) are commonly contaminating mycotoxins in foods and medicinal materials. Since they were first discovered to cause “turkey X” disease in the United Kingdom in the early 1960s, the extreme toxicity of AFs in the human liver received serious attention. The liver is the major target organ where AFs are metabolized and converted into extremely toxic forms to engender hepatotoxicity. AFs influence mitochondrial respiratory function and destroy normal mitochondrial structure. AFs initiate damage to mitochondria and subsequent oxidative stress. AFs block cellular survival pathways, such as autophagy that eliminates impaired cellular structures and the antioxidant system that copes with oxidative stress, which may underlie their high toxicities. AFs induce cell death via intrinsic and extrinsic apoptosis pathways and influence the cell cycle and growth via microribonucleic acids (miRNAs). Furthermore, AFs induce the hepatic local inflammatory microenvironment to exacerbate hepatotoxicity via upregulation of NF-κB signaling pathway and inflammasome assembly in the presence of Kupffer cells (liver innate immunocytes). This review addresses the mechanisms of AFs-induced hepatotoxicity from various aspects and provides background knowledge to better understand AFs-related hepatoxic diseases.
Collapse
Affiliation(s)
- Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weifeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
15
|
Li D, Knox B, Gong B, Chen S, Guo L, Liu Z, Tong W, Ning B. Identification of Translational microRNA Biomarker Candidates for Ketoconazole-Induced Liver Injury Using Next-Generation Sequencing. Toxicol Sci 2021; 179:31-43. [PMID: 33078836 PMCID: PMC7855383 DOI: 10.1093/toxsci/kfaa162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Reliable and translational biomarkers are needed for early detection of DILI. microRNAs (miRNAs) have received wide attention as a novel class of potential DILI biomarkers. However, it is unclear how DILI drugs other than acetaminophen may influence miRNA expression or which miRNAs could serve as useful biomarkers in humans. We selected ketoconazole (KCZ), a classic hepatotoxin, to study miRNA biomarkers for DILI as a proof of concept for a workflow that integrated in vivo, in vitro, and bioinformatics analyses. We examined hepatic miRNA expression in KCZ-treated rats at multiple doses and durations using miRNA-sequencing and correlated our results with conventional DILI biomarkers such as liver histology. Significant dysregulation of rno-miR-34a-5p, rno-miR-331-3p, rno-miR-15b-3p, and rno-miR-676 was associated with cytoplasmic vacuolization, a phenotype in rat livers with KCZ-induced injury, which preceded the elevation of serum liver transaminases (ALT and AST). Between rats and humans, miR-34a-5p, miR-331-3p, and miR-15b-3p were evolutionarily conserved with identical sequences, whereas miR-676 showed 73% sequence similarity. Using quantitative PCR, we found that the levels of hsa-miR-34a-5p, hsa-miR-331-3p, and hsa-miR-15b-3p were significantly elevated in the culture media of HepaRG cells treated with 100 µM KCZ (a concentration that induced cytotoxicity). Additionally, we computationally characterized the miRNA candidates for their gene targeting, target functions, and miRNA/target evolutionary conservation. In conclusion, we identified miR-34a-5p, miR-331-3p, and miR-15b-3p as translational biomarker candidates for early detection of KCZ-induced liver injury with a workflow applicable to computational toxicology studies.
Collapse
Affiliation(s)
- Dongying Li
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079
| | - Bridgett Knox
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079
| | - Binsheng Gong
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079
| | - Si Chen
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079
| | - Lei Guo
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079
| | - Zhichao Liu
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079
| | - Baitang Ning
- National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas 72079
| |
Collapse
|
16
|
Huang B, Chen Q, Wang L, Gao X, Zhu W, Mu P, Deng Y. Aflatoxin B1 Induces Neurotoxicity through Reactive Oxygen Species Generation, DNA Damage, Apoptosis, and S-Phase Cell Cycle Arrest. Int J Mol Sci 2020; 21:ijms21186517. [PMID: 32899983 PMCID: PMC7554769 DOI: 10.3390/ijms21186517] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin widely distributed in a variety of food commodities and exhibits strong toxicity toward multiple tissues and organs. However, little is known about its neurotoxicity and the associated mechanism. In this study, we observed that brain integrity was markedly damaged in mice after intragastric administration of AFB1 (300 μg/kg/day for 30 days). The toxicity of AFB1 on neuronal cells and the underlying mechanisms were then investigated in the neuroblastoma cell line IMR-32. A cell viability assay showed that the IC50 values of AFB1 on IMR-32 cells were 6.18 μg/mL and 5.87 μg/mL after treatment for 24 h and 48 h, respectively. ROS levels in IMR-32 cells increased significantly in a time- and AFB1 concentration-dependent manner, which was associated with the upregulation of NOX2, and downregulation of OXR1, SOD1, and SOD2. Substantial DNA damage associated with the downregulation of PARP1, BRCA2, and RAD51 was also observed. Furthermore, AFB1 significantly induced S-phase arrest, which is associated with the upregulation of CDKN1A, CDKN2C, and CDKN2D. Finally, AFB1 induced apoptosis involving CASP3 and BAX. Taken together, AFB1 manifests a wide range of cytotoxicity on neuronal cells including ROS accumulation, DNA damage, S-phase arrest, and apoptosis-all of which are key factors for understanding the neurotoxicology of AFB1.
Collapse
Affiliation(s)
- Boyan Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Qingmei Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Gao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Wenya Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (P.M.); (Y.D.); Tel./Fax: +86-20-3860-4967 (Y.D.)
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (P.M.); (Y.D.); Tel./Fax: +86-20-3860-4967 (Y.D.)
| |
Collapse
|
17
|
Zhang B, Dai Y, Zhu L, He X, Huang K, Xu W. Single-cell sequencing reveals novel mechanisms of Aflatoxin B1-induced hepatotoxicity in S phase-arrested L02 cells. Cell Biol Toxicol 2020; 36:603-608. [PMID: 32607778 DOI: 10.1007/s10565-020-09547-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
Aflatoxin B1 (AFB1) is widely distributed in nature and is confirmed to be the most toxic of all the aflatoxins, whose predominant metabolism site is the liver. As a well-studied and vital mode of epigenetic modifications, aberrant methylation of the promoters in eukaryotic cells may cause the silence of essential genes, affecting their related transcriptional pathways and ultimately leading to the development of disease and cancers. This study investigated the mechanisms of AFB1-induced hepatotoxicity in S phase-arrested L02 cells using single-cell RNA-seq and single-cell reduced representation bisulfite sequencing (RRBS). AFB1 induced apoptosis and cell cycle S phase arrest, reduced mitochondrial membrane potential (ΔΨm), and increased reactive oxygen species (ROS) generation, as well as the DNA methylation level. Hepatotoxicity mechanism patterns induced by AFB1 in S phase-arrested L02 cells were revealed by combining single-cell RNA-seq with single-cell RRBS analysis, in which DNA methylation played a role via regulating the gonadotropin-releasing hormone receptor pathway, the Wnt signaling pathway, and the TGF-beta signaling pathway. Moreover, a novel strategy for precision toxicology exploration was obtained, including the selection of target cells, multi-group non-directional sequencing, and pathway analysis.
Collapse
Affiliation(s)
- Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yaqi Dai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China. .,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.
| |
Collapse
|
18
|
Cimbalo A, Alonso-Garrido M, Font G, Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem Toxicol 2020; 137:111161. [PMID: 32014537 DOI: 10.1016/j.fct.2020.111161] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Mycotoxins are considered to be a major risk factor affecting human and animal health as they are one of the most dangerous contaminants of food and feed. This review aims to compile the research developed up to date on the toxicological effects that mycotoxins can induce on human health, through the examination of a selected number of studies in vivo. AFB1 shows to be currently the most studied mycotoxin in vivo, followed by DON, ZEA and OTA. Scarce data was found for FBs, PAT, CIT, AOH and Fusarium emerging mycotoxins. The majority of them concerned the investigation of immunotoxicity, whereas the rest consisted in the study of genotoxicity, oxidative stress, hepatotoxicity, cytotoxicity, teratogenicity and neurotoxicity. In order to assess the risk, a wide range of different techniques have been employed across the reviewed studies: qPCR, ELISA, IHC, WB, LC-MS/MS, microscopy, enzymatic assays, microarray and RNA-Seq. In the last decade, the attention has been drawn to immunologic and transcriptomic aspects of mycotoxins' action, confirming their toxicity at molecular level. Even though, more in vivo studies are needed to further investigate their mechanism of action on human health.
Collapse
Affiliation(s)
- A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain.
| | - M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| |
Collapse
|
19
|
Roles of microRNAs and prospective view of competing endogenous RNAs in mycotoxicosis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108285. [DOI: 10.1016/j.mrrev.2019.108285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/07/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022]
|
20
|
Fan L, An G, Wang S, Chen X, Liu Y, Liu Z, Ma Q, Wang J. Circular RNA Expression Profiling and Selection of Key Circular RNAs in the Hypothalamus of Heat-Acclimated Rats. Front Physiol 2019; 10:1112. [PMID: 31555146 PMCID: PMC6722210 DOI: 10.3389/fphys.2019.01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs (circRNAs) have vital roles in great variety of biological processes. However, expression levels and functions of circRNAs related to heat acclimation (HA) are poorly understood. This study is the first time an in-depth circRNA expression profiling were used to investigate circRNA–miRNA interactions in HA rats in order to further comprehend the mechanisms underlying HA. CircRNA expression profile was performed in rats’ hypothalamus of HA and control group with microarray assays and their functions were predicted by using Bioinformatics analysis. Differential circRNAs and their regulated downstream miRNAs and mRNAs were quantitatively validated by means of quantitative polymerase chain reaction in real-time (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was then applied to predict the expression of proteins. In total, 53 circRNAs were expressed distinctively between the HA and Control; up- and down-regulation of circRNAs were 28 and 25, respectively, in HA (fold change > 1.5, P < 0.05). Three circRNAs and two miRNAs and three predicted mRNAs were obviously regulated after validated by RT-qPCR in HA rats. Two proteins expression were proportional to their mRNA changes. Further analysis demonstrates that circRNAs closest to HA can be categorized into three signal pathways: including rno_circRNA_014301-vs-rno-miR-3575-vs-Hif-1α, rno_circRNA_014301-vs-rno-miR-3575-vs-Lppr4, and rno_circRNA_010393-vs-rno-miR-20b-3p-vs-Mfap4 in hypoxia response pathways, substance/energy metabolism, and inflammatory response pathways. Our findings implicate that many circRNAs regulate expressions of genes that interact with each other to exert their functions during HA.
Collapse
Affiliation(s)
- Lijun Fan
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Department of Human Movement Science, Tianjin University of Sport, Tianjin, China
| | - Gaihong An
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Liu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhifeng Liu
- Department of Intensive Care Medicine, General Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou, China
| | - Qiang Ma
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
21
|
Livingstone MC, Johnson NM, Roebuck BD, Kensler TW, Groopman JD. Serum miR-182 is a predictive biomarker for dichotomization of risk of hepatocellular carcinoma in rats. Mol Carcinog 2019; 58:2017-2025. [PMID: 31373075 DOI: 10.1002/mc.23093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Exploration of animal models leads to discoveries that can reveal candidate biomarkers for translation to human populations. Herein, a model of hepatocarcinogenesis and protection was used in which rats treated with aflatoxin (AFB1 ) daily for 28 days (200 µg/kg BW) developed tumors compared with rats completely protected from tumors by concurrent administration of the chemoprotective agent, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im). Differential expression of miRNAs in tumors (AFB1 ) and nontumor (AFB1 + CDDO-Im) bearing livers and their levels in sera over the life-course of the animals was determined. miRNA transcriptome analysis identified 17 miRNAs significantly upregulated at greater than five-fold in the tumors. The ten most dysregulated miRNAs judged by fold-change and biological significance were selected for further study, including liver-specific miR-122-5p. Validation of sequencing results by real-time PCR confirmed the upregulation of the majority of these miRNAs in tumors, including miR-182, as well as miR-224-5p as the most dysregulated of these miRNAs (over 400-fold). The longitudinal analysis of levels of miR-182 in sera demonstrated significant and persistent increases (5.13-fold; 95% CI: 4.59-5.70). The increase in miR-182 was detected months before any clinical symptoms were present in the animals. By the terminal time point of the study, in addition to elevated levels of serum miR-182, serum miR-122-5p was also found to be increased (>1.5-fold) in animals that developed hepatocarcinomas. Thus, using the data from an unbiased discovery approach of the tissue findings, serum miR-182 was found to track across the complex, multistage process of hepatocarcinogenesis opening an opportunity for translation to human populations.
Collapse
Affiliation(s)
- Merricka C Livingstone
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M School of Public Health, College Station, Texas
| | - Bill D Roebuck
- Department of Pharmacology and Toxicology, Giesel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Thomas W Kensler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John D Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
22
|
Huang B, Mu P, Chen X, Tang S, Ye W, Zhu W, Deng Y. Aflatoxin B 1 induces S phase arrest by upregulating the expression of p21 via MYC, PLK1 and PLD1. Biochem Pharmacol 2019; 166:108-119. [PMID: 31075264 DOI: 10.1016/j.bcp.2019.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Aflatoxin B1 (AFB1), a member of the aflatoxin family, is a common contaminant in foods and feeds, and AFB1 exposure is associated with various clinical conditions. Thus far, research on the toxicity of AFB1 has mainly focused on its induction of liver cancer, but little research has been reported on renal toxicity, especially with regards to the underlying molecular mechanisms. In this study, we found that AFB1 treatment significantly induced kidney damage and reduced kidney weight. The human kidney cell line HEK293T was used to further study the molecular mechanism of the toxicity of AFB1 to kidney cells. We found that AFB1 significantly and dose-dependently induced S phase arrest and upregulated p21 mRNA and protein expression. Upstream of p21, three negative regulators, PLK1, MYC, and PLD1, were significantly downregulated under AFB1 treatment. Consistently, p21 was upregulated, and PLK1, MYC and PLD1 were downregulated in mouse kidney after AFB1 treatment. Interestingly, AFB1 also decreased the physical interaction between PLK1 and MYC and weakened the stability of the MYC protein. Importantly, overexpression of PLK1, MYC and PLD1 significantly blocked the upregulation of p21 and attenuated the S phase arrest caused by AFB1. In summary, AFB1 markedly induces kidney damage and strongly induces S phase arrest by upregulating the expression of p21 via PLK1, PLD1 and MYC, which represents a noval mechanism of the renal toxicity of AFB1.
Collapse
Affiliation(s)
- Boyan Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Shulin Tang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Wenya Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
23
|
Qiu T, Shen X, Li X, Gong Y, Zou Z, Liu C, Ye F, Mi C, Xu Z, Sun Y, Lin J, Zhang H, Lei H. Egg Yolk Immunoglobulin Supplementation Prevents Rat Liver from Aflatoxin B 1-Induced Oxidative Damage and Genotoxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13260-13267. [PMID: 30449111 DOI: 10.1021/acs.jafc.8b04659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Egg yolk immunoglobulins (IgY), as nutraceutical supplement for therapeutic or prophylactic intervention, have been extensively studied. The effects of IgY on small molecular toxin-induced toxicity in animals are unclear. In the present study, the protection of highly purified and specific anti-AFB1 IgY against AFB1-induced genotoxicity and oxidative damage on the rat liver model were investigated. Our results revealed that AFB1 induced significant oxidative damage markers, as well as AFB1-induced protein expression in antioxidant, pro- and antiapoptosis processes in rat liver. These effects could be significantly inhibited by cogavage with anti-AFB1 IgY in a dose-dependent manner. However, anti-AFB1 IgY did not significantly induce hepatic CAT and SOD1. To explore mechanisms, metabolite experiments were established to evaluate the influence of anti-AFB1 IgY on the absorption of AFB1 in rats. Middle and high doses of anti-AFB1 IgY reduced hepatic AFB1-DNA adducts by 43.3% and 52.9%, AFB1- N7-guanine urinary adducts by 19.6% and 34.4%, and AFB1-albumin adducts by 10.5% and 21.1%, respectively. The feces of high dose anti-AFB1 IgY cogavaged rats contained approximately 2-fold higher AFB1 equivalents at 3-6 h after ingestion than AFB1 group feces, indicating IgY inhibited AFB1 uptake. These results had provided insight that anti-AFB1 IgY could prevent animal organs from damage caused by AFB1 and will be beneficial for the application of detoxification antibody as a supplement in food.
Collapse
Affiliation(s)
- Taotao Qiu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
- Key Laboratory of Environment and Female Reproductive Health/Public Health Laboratory Sciences and Toxicology, West China School of Public Health , Sichuan University , Chengdu , China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Yunyun Gong
- Department of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment , Ministry of Health , Beijing 100021 China
| | - Zhongmin Zou
- Institute of Toxicology, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Chunhong Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Feng Ye
- Institute of Toxicology, College of Preventive Medicine , Third Military Medical University , Chongqing , China
| | - Chenyang Mi
- Key Laboratory of Environment and Female Reproductive Health/Public Health Laboratory Sciences and Toxicology, West China School of Public Health , Sichuan University , Chengdu , China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Jie Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health/Public Health Laboratory Sciences and Toxicology, West China School of Public Health , Sichuan University , Chengdu , China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
24
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|
25
|
Hu P, Zuo Z, Wang F, Peng X, Guan K, Li H, Fang J, Cui H, Su G, Ouyang P, Zhou Y. The Protective Role of Selenium in AFB 1-Induced Tissue Damage and Cell Cycle Arrest in Chicken's Bursa of Fabricius. Biol Trace Elem Res 2018; 185:486-496. [PMID: 29512029 DOI: 10.1007/s12011-018-1273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 01/09/2023]
Abstract
Aflatoxin B1 (AFB1) is a naturally occurring secondary metabolites of Aspergillus flavus and Aspergillus parasiticus, and is the most toxic form of aflatoxins. Selenium (Se) with antioxidant and detoxification functions is one of the essential trace elements for human beings and animals. This study aims to evaluate the protective effects of Se on AFB1-induced tissue damage and cell cycle arrest in bursa of Fabricius (BF) of chickens. The results showed that a dietary supplement of 0.4 mg·kg-1 Se alleviated the histological lesions induced by AFB1, as demonstrated by decreasing vacuoles and nuclear debris, and relieving oxidative stress. Furthermore, flow cytometry studies showed that a Se supplement protected AFB1-induced G2M phase arrest at 7 days and G0G1 phase arrest at 14 and 21 days. Moreover, the mRNA expression results of ATM, Chk2, p53, p21, cdc25, PCNA, cyclin D1, cyclin E1, cyclin B3, CDK6, CDK2, and cdc2 indicated that Se supplement could restore these parameters to be close to those in the control group. It is concluded that a dietary supplement of 0.4 mg kg-1 Se could diminish AFB1-induced immune toxicity in chicken's BF by alleviating oxidative damage and cell cycle arrest through an ATM-Chk2-cdc25 route and the ATM-Chk2-p21 pathway.
Collapse
Affiliation(s)
- Ping Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fengyuan Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Peng
- College of Life Sciences, China West Normal University, Nanchong, 637002, Sichuan, People's Republic of China.
| | - Ke Guan
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Hang Li
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Gang Su
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine Chengdu, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yi Zhou
- Life Science Department, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| |
Collapse
|
26
|
The molecular mechanism of cell cycle arrest in the Bursa of Fabricius in chick exposed to Aflatoxin B 1. Sci Rep 2018; 8:1770. [PMID: 29379099 PMCID: PMC5789014 DOI: 10.1038/s41598-018-20164-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin B1 shows potent hepatotoxic, carcinogenic, genotoxic, immunotoxic potential in humans and many species of animals. The aim of this study was to clarify the underlying mechanism of G0G1 phase and G2M phase arrest of cell cycle in the bursa of Fabricius in broilers exposed to dietary AFB1. 144 one-day-old healthy Cobb broilers were randomly divided into two groups and fed on control diet and 0.6 mg·Kg−1 AFB1 diet for 3 weeks. Histological observation showed that AFB1 induced the increase of nuclear debris and vacuoles in lymphoid follicle of BF. Results of flow cytometry studies showed that bursal cells arrested in G2M phase at 7 days of age and blocked in G0G1 phase at 14 and 21 days of age following exposure to AFB1. The qRT-PCR analysis indicated that cell cycle arrested in G2M phase via ATM-Chk2-cdc25-cyclin B/cdc2 pathway, and blocked in G0G1 phase through ATM-Chk2-cdc25-cyclin D/CDK6 pathway and ATM-Chk2-p21-cyclin D/CDK6 route. In a word, our results provided new insights that AFB1 diet induced G2M and G0G1 phase blockage of BF cells in different periods, and different pathways were activated in different arrested cell cycle phase.
Collapse
|
27
|
Livingstone MC, Johnson NM, Roebuck BD, Kensler TW, Groopman JD. Profound changes in miRNA expression during cancer initiation by aflatoxin B 1 and their abrogation by the chemopreventive triterpenoid CDDO-Im. Mol Carcinog 2017; 56:2382-2390. [PMID: 28218475 DOI: 10.1002/mc.22635] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Aflatoxin B1 (AFB1 ) is a potent human and animal hepatocarcinogen. To investigate the effects of aflatoxin on miRNA expression during the initiation phase of carcinogenesis, next-generation sequencing was used to analyze liver tissues from F344 rats exposed to 200 μg/kg per day AFB1 for 4 week. A panel of miRNAs was identified that was upregulated with AFB1 treatment compared to controls: rno-miR-434-3p, rno-miR-411-5p, rno-miR-221-3p, rno-miR-127-3p, rno-miR-205, rno-miR-429, rno-miR-34a-5p, rno-miR-181c-3p, rno-miR-200b-3p, and rno-miR-541-5p. Analysis of rat livers exposed to AFB1 plus the chemopreventive triterpenoid CDDO-Im revealed a striking abrogation of this upregulation. These changes were validated by real-time PCR. We also explored the temporal variation in expression of the candidate miRNAs during the 4-week dosing period. Most of the candidate miRNAs were upregulated at week 1 and increased for the duration of AFB1 dosing over the 4-week period. Treatment with CDDO-Im ameliorated these effects at all time points. All candidate miRNAs were detectable in serum from aflatoxin treated animals; however, there was no significant difference in expression for 7 of the 11 miRNAs examined. Exposure to AFB1 upregulated miR-122-5p (fivefold), 34a-5p (13-fold), and 181c-3p (170-fold) compared with controls. The findings from this study give insight into epigenetic changes induced by aflatoxin taking place during the initial step of carcinogenesis.
Collapse
Affiliation(s)
| | | | - Bill D Roebuck
- Dartmouth College School of Medicine, Hanover, New Hampshire
| | - Thomas W Kensler
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John D Groopman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
28
|
Abstract
Aflatoxin B1 (AFB1) is widely distributed in nature, especially in a variety of food commodities. It is confirmed to be the most toxic of all the aflatoxins. The toxicity of AFB1 has been well investigated, and it may result in severe health problems including carcinogenesis, mutagenesis, growth retardation, and immune suppression. Epigenetic modifications including DNA methylation, histone modifications and regulation of non-coding RNA play an important role in AFB1-induced disease and carcinogenesis. To better understand the evidence for AFB1-induced epigenetic alterations and the potential mechanisms of the toxicity of AFB1, we conducted a review of published studies of AFB1-induced epigenetic alterations.
Collapse
Affiliation(s)
- Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China.
| |
Collapse
|
29
|
Wang S, He Z, Li D, Zhang B, Li M, Li W, Zhu W, Xing X, Zeng X, Wang Q, Dong G, Xiao Y, Chen W, Chen L. Aberrant methylation of RUNX3 is present in Aflatoxin B 1-induced transformation of the L02R cell line. Toxicology 2017; 385:1-9. [PMID: 28458013 DOI: 10.1016/j.tox.2017.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/22/2017] [Accepted: 04/23/2017] [Indexed: 12/13/2022]
Abstract
Chronic exposure to aflatoxin B1 (AFB1) is linked to the development of hepatocellular carcinoma (HCC). To identify differentially methylated genes involved in AFB1-induced cell transformation, we analyzed DNA methylation patterns in immortal human hepatocyte L02 cells expressing an oncogenic H-Ras allele (L02R cells) and AFB1-transformed L02R (L02RT-AFB1) cells by performing genome-wide methylation profiling. We treated L02R cells with 0.3μM AFB1 weekly and observed a transformed phenotype at the 17th week post-treatment. The transformed cells (L02RT-AFB1) could grow in an anchorage independent fashion and form tumors in immunodeficient mice. qRT-PCR was performed to examine whether gene methylation led to a reduction in gene expression of methylated candidate genes. As a result, the expression of the following seven genes including JUNB, RUNX3, NAV1, CXCR4, RARRES1, INTS1, and POLL was down-regulated in transformed L02RT-AFB1 cells. The reduction of gene expression of these genes could be reversed by treatment of 5-azadeoxycytidine. The methylated CpG sites of RUNX3 genes were verified using bisulfite sequencing PCR (BSP) assay. Furthermore, a dynamic change in RUNX3 methylation was observed over the course of AFB1-induced cell transformation, which was corresponded to the alteration of gene expression and the extent of DNA damage. In vitro study showed that methylation of RUNX3 tended to abate in L02R cells treated with AFB1 for a short-term period of time. Notably, hypermethylation of RUNX3 appeared in 70% (14/20) of human hepatocellular carcinomas. Moreover, LINE-1 hypomethylation and dynamic changes of DNMTs, TETs and MeCP2 expression were also observed during AFB1-induced transformation. Taken together, these observations suggest that aberrant methylation of RUNX3 and LINE-1 might be involved in AFB1-induced carcinogenesis.
Collapse
Affiliation(s)
- Shan Wang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhini He
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo Zhang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Miao Li
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Li
- Departmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Zhu
- Departmant of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Xiumei Xing
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liping Chen
- Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
30
|
Shen J, Siegel AB, Remotti H, Wang Q, Santella RM. Identifying microRNA panels specifically associated with hepatocellular carcinoma and its different etiologies. ACTA ACUST UNITED AC 2016; 2:151-162. [PMID: 28243631 DOI: 10.20517/2394-5079.2015.66] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM Deregulation of microRNAs (miRNAs) expression has been identified in hepatocellular carcinoma (HCC), but few results are consistent. The objective of this study is to investigate "HCC tumor type specific" and "tumor common" miRNA panels. METHODS The authors integrate and analyze clinical, etiologic and miRNA profiles data from 9 types of solid tumors in The Cancer Genome Atlas (TCGA) and HCC data from Columbia University Medical Center (CUMC). RESULTS Levels of 33 miRNAs were significant different between HCC tumor and paired non-tumor tissues (over 2-fold changes) after Bonferroni correction for multiple comparisons, and most (28 miRNAs) were down-regulated in HCC tumors. Using this panel, the authors well classified HCC tumor tissues with 4 misclassifications among 48 paired tissues. Validating this panel in an additional 302 HCC tumor tissues, the authors almost perfectly distinguished tumor from non-tumor tissues with only two misclassifications (99% of HCC tissues correctly classified). Evaluating miRNA profiles in 32 independent HCC paired tissues from CUMC, the authors observed 40 miRNAs significantly deregulated in HCC with over 2-fold changes; 14 overlapped with those identified in TCGA. Subgroup analyses by HCC etiology found that 4 upregulated and 8 downregulated miRNAs were significantly associated with alcohol-related HCC. There were 7 and 4 miRNAs significantly associated with hepatitis B virus- and hepatitis C virus-related HCC, respectively. Data for the first time revealed that miR-24-1, miR-130a and miR-505 were significantly down-regulated only in HCC tumors; miR-142 and miR-455 were significantly down-regulated in HCC, but up-regulated in 5 other solid tumors; suggesting their HCC "tumor type specific" characteristics. A panel of 8 miRNAs was significant in at least 5 tumor types, including HCC, and was identified as "tumor common" marker. CONCLUSION The authors concluded that aberrant miRNA panels have HCC "tumor type specificity" and may be affected by etiologic factors.
Collapse
Affiliation(s)
- Jing Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Abby B Siegel
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Qiao Wang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
31
|
Abstract
MicroRNAs (miRs, miRNAs) are small molecules of 18-22 nucleotides that serve as important regulators of gene expression at the post-transcriptional level. One of the mechanisms through which miRNAs regulate gene expression involves the interaction of their "seed" sequences primarily with 3'-end and more rarely with 5'-end, of mRNA transcribed from target genes. Numerous studies over the past decade have been devoted to quantitative and qualitative assessment of miRNAs expression and have shown remarkable changes in miRNA expression profiles in various diseases. Thus, profiling of miRNA expression can be an important tool for diagnostics and treatment of disease. However, less attention has been paid towards understanding the underlying reasons for changes in miRNA expression, especially in cancer cells. The purpose of this review is to analyze and systematize current data that explains reasons for changes in the expression of miRNAs. The review will cover both transcriptional (changes in gene expression and promoter hypermethylation) and post-transcriptional (changes in miRNA processing) mechanisms of regulation of miRNA expression, as well as effects of endogenous (hormones, cytokines) and exogenous (xenobiotics) compounds on the miRNA expression. The review will summarize the complex multilevel regulation of miRNA expression, in relation to cell type, physiological state of the body and various external factors.
Collapse
Affiliation(s)
- Lyudmila F. Gulyaeva
- />Research Institute of Molecular Biology and Biophysics, Timakov St., 2/12, Novosibirsk, 630117 Russia
- />Novosibirsk State University, Pirogova 2, Novosibirsk, 630090 Russia
| | - Nicolay E. Kushlinskiy
- />The Russian Oncological Scientific Center of N. N. Blochin of Ministry of Health of the Russian Federation, Kashirskoye Highway 24, Moscow, 115478 Russia
| |
Collapse
|
32
|
Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 768:27-45. [PMID: 27234561 PMCID: PMC4884606 DOI: 10.1016/j.mrrev.2016.03.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 01/30/2023]
Abstract
Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments.
Collapse
Affiliation(s)
- Grace Chappell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | | | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|