1
|
Marrez DA, Badr AN, El-Bahrawy A, Naeem MA. Algal extracts evaluation as an Antitoxicity sustainable solution against aflatoxin B 1 toxicity in rat tissues. Toxicon 2024; 250:108098. [PMID: 39284454 DOI: 10.1016/j.toxicon.2024.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Aflatoxin B1 (AFB1) is a pre-carcinogenic molecule produced by toxigenic fungi and is widely harmful to public health. Algae extracts are sub-cellular pilot plants rich in bioactive substances that aid detoxification. This study aimed to reduce AFB1-toxicity in biological tissues of administrated rats using two algae extracts, Spirulina (SPR) and Amphora (AMR). Algae extracts were prepared using an aqueous system, concentrated, and lyophilized before being administrated to rats. The extract contents of total phenolic and flavonoids were determined to indicate their bioactive content and antioxidant potency. The animal experiment was designed in 8 groups as the control negative and control positive (AFB1; 20 μg/kg BW/day); groups 3 and 4 were designed for control positive of algae applied at high doses for toxicity evaluation. Otherwise, four groups were classified as G5 and G6 for rats administrated by AFB1, followed by 50 and 100 mg/kg Spirulina extract, respectively. The G7 and G8 were administrated with an AFB1 dose followed by amphora treatment at 50 and 100 mg extract/kg, respectively. The results showed a significant content of algae extracts of phenolic compounds (27.36 ± 1.75 and 39.55 ± 1.14 mg GAE/g DW for the SPR and AMR, respectively), with a valuable antioxidant activity. For rats treated only with the SPR or AMR extracts, no tissue changes were recorded for the liver, kidney, pancreas, or testis. Again, the biochemical parameters of these groups are recorded without harmful impacts, particularly for the tumor markers of AFP, TNF-α, CEA, and ALP. Once more, a higher extract concentration was more effective in AFB1-toxicity reduction, particularly for the SPR on the liver and kidney tissues. The SPR extract manifested a protective impact in sensitive tissue against the AFB1 effect, particularly in the testis. The results recommend the application of SPR extract at 100 mg/kg bw as an effective treatment for AFB1-toxicity regulation (as pharmaceutical or nutraceutical) involved in daily habits.
Collapse
Affiliation(s)
- Diaa Attia Marrez
- Food Toxicology and Contaminants Dept., National Research Center, Cairo, 12622, Egypt
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Dept., National Research Center, Cairo, 12622, Egypt.
| | - Amanallah El-Bahrawy
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32958, Egypt
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Zhou G, Hu S, Xie L, Huang H, Huang W, Zheng Q, Zhang N. Individual and combined occurrences of the prevalent mycotoxins in commercial feline and canine food. Mycotoxin Res 2024; 40:547-558. [PMID: 38990416 DOI: 10.1007/s12550-024-00545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mycotoxins, such as aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisins (FBs), ochratoxin A (OTA), T-2 toxin (T-2), and zearalenone (ZEN), can contaminate animal feeds and pose risks to animal health and production performance. These mycotoxins are commonly found in cereals and grains, with the increased use of cereals in pet food, there is a rising concern about mycotoxin contamination among pet owners. To address this, we analyzed imported brands of feline and canine food from the Chinese market produced in 2021-2022. Ninety-three samples were analyzed, comprising 45 feline food and 48 canine food samples. Among them, 14 were canned food and 79 were dry food. The results indicate that AFB1, DON, FBs, OTA, T-2, and ZEN occurred in 32.26%, 98.92%, 22.58%, 73.12%, 55.91%, and 7.53% of the samples, respectively. The most prevalent mycotoxin was DON, followed by OTA, T-2, AFB1, and FBs, whereas ZEN was less frequently detected. The mean concentrations of the six mycotoxins in pet feed samples were 3.17 μg/kg for AFB1, 0.65 mg/kg for DON, 2.15 mg/kg for FBs, 6.27 μg/kg for OTA, 20.00 μg/kg for T-2, and 30.00 μg/kg for ZEN. The levels of mycotoxins were generally below the limits of the Pet Feed Hygiene Regulations of China and the EU. Notably, a substantial majority of the pet food samples (88 out of 93) were contaminated by two or more mycotoxins. AFB1, FBs, OTA, and ZEN occurred slightly more often in feline food than in canine food. Except for OTA, the contamination rates for the other five mycotoxins in canned food were lower than those in dry food. Moreover, except for AFB1, the levels of the other five mycotoxins in canned foods were lower than those in dry foods. This study highlights the widespread contamination of pet foods with mycotoxins, which poses a significant risk to pets from continuous exposure to multiple mycotoxins.
Collapse
Affiliation(s)
- Guangteng Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Shen Hu
- Institute of Veterinary Drug of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Hao Huang
- Department of Animal Genetics, Breeding and Reproduction Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenbin Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Qiang Zheng
- Institute of Veterinary Drug of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
3
|
Nazari M, Heidari R, Hami Z, Shiri M, Nassireslami E, Chamanara M. Some relevant mitigating agents of chronic aflatoxin exposure: a treatise. Drug Chem Toxicol 2024; 47:807-816. [PMID: 38058159 DOI: 10.1080/01480545.2023.2281234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 12/08/2023]
Abstract
Aflatoxins, a group of toxic secondary metabolites produced by Aspergillus species, pose significant threats to human health due to their potent carcinogenic, mutagenic, and immunosuppressive properties. Chronic exposure to these contaminants, commonly found in staple foods such as maize and groundnuts, has been linked to an increased risk of liver cancer, growth impairment, and immune dysfunction. Several agents, such as calcium montmorillonite clay and Lactobacillus rhamnosus GG, have shown promise in reducing aflatoxin bioavailability and alleviating its toxic effects. Additionally, dietary supplements such as chlorophyllin, selenium, and N-acetylcysteine have demonstrated potential as adjuvants to counteract aflatoxin-induced oxidative stress and support liver function. In this treatise, some of the most discussed approaches to mitigating aflatoxin effects are explored in terms of their efficacy, safety, and potential mechanisms of action, which include direct aflatoxin binding, detoxification, cellular antioxidative, and hepatocellular protection properties. However, the effectiveness of these strategies can be influenced by various factors, such as dose, duration of exposure, and individual susceptibility. Therefore, further research is needed to optimize these interventions and develop new, targeted therapies for the prevention and treatment of aflatoxin-related diseases. This review aims to provide a comprehensive analysis of 18 pharmaceutical, nutraceutical, supplement, and probiotic strategies currently available for mitigating the deleterious effects of chronic aflatoxin exposure in humans and animal models.
Collapse
Affiliation(s)
- Mohammad Nazari
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran, Iran
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Hami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mahdi Shiri
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yang D, Zhang S, Cao H, Wu H, Liang Y, Teng CB, Yu HF. Detoxification of Aflatoxin B 1 by Phytochemicals in Agriculture and Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14481-14497. [PMID: 38897919 DOI: 10.1021/acs.jafc.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aflatoxin B1 (AFB1), the most toxic and harmful mycotoxin, has a high likelihood of occurring in animal feed and human food, which seriously affects agriculture and food safety and endangers animal and human health. Recently, natural plant products have attracted widespread attention due to their low toxicity, high biocompatibility, and simple composition, indicating significant potential for resisting AFB1. The mechanisms by which these phytochemicals resist toxins mainly involve antioxidative, anti-inflammatory, and antiapoptotic pathways. Moreover, these substances also inhibit the genotoxicity of AFB1 by directly influencing its metabolism in vivo, which contributes to its elimination. Here, we review various phytochemicals that resist AFB1 and their anti-AFB1 mechanisms in different animals, as well as the common characteristics of phytochemicals with anti-AFB1 function. Additionally, the shortcomings of current research and future research directions will be discussed. Overall, this comprehensive summary contributes to the better application of phytochemicals in agriculture and food safety.
Collapse
Affiliation(s)
- Dian Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sihua Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hongda Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Huan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Liang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bo Teng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
5
|
Zhang J, Sun X, Chai X, Jiao Y, Sun J, Wang S, Yu H, Feng X. Curcumin Mitigates Oxidative Damage in Broiler Liver and Ileum Caused by Aflatoxin B1-Contaminated Feed through Nrf2 Signaling Pathway. Animals (Basel) 2024; 14:409. [PMID: 38338051 PMCID: PMC10854683 DOI: 10.3390/ani14030409] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This experiment aimed to investigate the mitigating effect of CUR on the growth performance and liver and intestinal health of broilers fed AFB1-contaminated diets. In this study, 320 one-day-old healthy male Arbor Acres (AA) broilers were randomly divided into four groups, including the Control group (fed the basal diet), the AFB1 group (fed the AFB1-contaminated diet containing 1 mg/kg AFB1), the AFB1+CUR group (fed the AFB1-contaminated diet with 500 mg/kg CUR), and the CUR group (fed the basal diet containing 500 mg/kg CUR), with eight replicates of ten animals per group and a 28 d experimental period. In terms of the growth performance, the addition of 500 mg/kg CUR significantly improved AFB1-induced significant reductions in the final body weight on day 28 and mean daily gain (p < 0.05) and increased the ratio of the mean daily feed intake to mean daily weight gain in broilers (p < 0.05). In terms of liver health, significant improvements in liver histological lesions occurred in broilers in the AFB1+CUR group compared to the AFB1 group, with significantly higher glutathione peroxidase (GSH-Px), catalase (CAT), and total superoxide dismutase (T-SOD) activities (p < 0.05) and significantly higher levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap-1), heme oxygenase 1 (HO-1), and NAD(P)H quinone oxidoreductase 1 (NQO-1) gene expression (p < 0.05). In terms of intestinal health, CUR addition significantly increased the relative length of ileum (p < 0.05), significantly elevated the height of ileal villi (p < 0.05), significantly reduced D-Lactate (D-LA) and diamine oxidase (DAO) activities in broiler serum (p < 0.05), significantly increased GSH, CAT, and T-SOD activities in ileal tissues (p < 0.05), and significantly elevated the expression of Nrf2, HO-1, and NQO-1 genes (p < 0.05) compared to the AFB1 group. In conclusion, CUR showed a protective effect against damage to the liver and intestine caused by AFB1 in broilers through the Nrf2 signaling pathway, thereby improving the growth performance of broilers exposed to AFB1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xingjun Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (J.Z.); (X.S.); (X.C.); (Y.J.); (J.S.); (S.W.); (H.Y.)
| |
Collapse
|
6
|
Aderemi FA, Alabi OM. Turmeric ( Curcuma longa): an alternative to antibiotics in poultry nutrition. Transl Anim Sci 2023; 7:txad133. [PMID: 38111601 PMCID: PMC10727472 DOI: 10.1093/tas/txad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Turmeric, a common spice in many countries has been used for centuries in traditional medicine for its antimicrobial properties. Recent research has shown that turmeric can be a viable alternative to antibiotics in poultry production. Antibiotic overuse in poultry has led to the development of antibiotic-resistant bacteria, which poses a threat to both animal and human health. Turmeric contains curcumin, a compound that has been shown to have antimicrobial activity against a wide range of bacteria, including those resistant to antibiotics. In addition, turmeric has anti-inflammatory and immunomodulatory properties, which can help boost the immune system of poultry and reduce the need for antibiotics. Studies have shown that turmeric can improve growth performance, and gut health, and reduce the incidence of disease in poultry. Therefore, the use of turmeric as an alternative to antibiotics in poultry production has the potential to not only improve animal health and welfare but also contribute to the fight against antibiotic resistance. This review aims to provide an overview of the recent knowledge on the use of these plant extracts in poultry feeds as feed additives and their effects on poultry performance.
Collapse
Affiliation(s)
- Foluke Abimbola Aderemi
- Animal Science and Fisheries Management Unit, Agriculture Programme, Bowen University, Iwo, Nigeria
| | - Olufemi Mobolaji Alabi
- Animal Science and Fisheries Management Unit, Agriculture Programme, Bowen University, Iwo, Nigeria
| |
Collapse
|
7
|
Liu H, He Y, Gao X, Li T, Qiao B, Tang L, Lan J, Su Q, Ruan Z, Tang Z, Hu L. Curcumin alleviates AFB1-induced nephrotoxicity in ducks: regulating mitochondrial oxidative stress, ferritinophagy, and ferroptosis. Mycotoxin Res 2023; 39:437-451. [PMID: 37782431 DOI: 10.1007/s12550-023-00504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Aflatoxin B1 (AFB1), an extremely toxic mycotoxin that extensively contaminates feed and food worldwide, poses a major hazard to poultry and human health. Curcumin, a polyphenol derived from turmeric, has attracted great attention due to its wonderful antioxidant properties. Nevertheless, effects of curcumin on the kidneys of ducks exposed to AFB1 remain unclear. Additionally, the underlying mechanism between AFB1 and ferroptosis (based on excessive lipid peroxidation) has not been sufficiently elucidated. This study aimed to investigate the protective effects and potential mechanisms of curcumin against AFB1-induced nephrotoxicity in ducklings. The results indicated that curcumin alleviated AFB1-induced growth retardation and renal distorted structure in ducklings. Concurrently, curcumin inhibited AFB1-induced mitochondrial-mediated oxidative stress by reducing the expression levels of oxidative damage markers malondialdehyde (MDA) and 8-hydroxy-2 deoxyguanosine (8-OHdG) and improved the expression of mitochondria-related antioxidant enzymes and the Nrf2 pathway. Notably, curcumin attenuated iron accumulation in the kidney, inhibited ferritinophagy via the NCOA4 pathway, and balanced iron homeostasis, thereby alleviating AFB1-induced ferroptosis in the kidney. Collectively, our results suggest that curcumin alleviates AFB1-induced nephrotoxicity in ducks by inhibiting mitochondrial-mediated oxidative stress, ferritinophagy, and ferroptosis and provide new evidence for the mechanism of AFB1-induced nephrotoxicity in ducklings treated with curcumin.
Collapse
Affiliation(s)
- Haiyan Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying He
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Xinglin Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baoxin Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lixuan Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Juan Lan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321, Longdong North Road, Tianhe District, Guangzhou, 510520, Guangdong, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Liu S, Jiang S, Yao Z, Liu M. Aflatoxin detection technologies: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79627-79653. [PMID: 37322403 DOI: 10.1007/s11356-023-28110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.
Collapse
Affiliation(s)
- Shenqi Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| | - Minhua Liu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
9
|
Su D, Jiang W, Yuan Q, Guo L, Liu Q, Zhang M, Kang C, Xiao C, Yang C, Li L, Xu C, Zhou T, Zhang J. Chronic exposure to aflatoxin B1 increases hippocampal microglial pyroptosis and vulnerability to stress in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114991. [PMID: 37172405 DOI: 10.1016/j.ecoenv.2023.114991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Chronic aflatoxin B1 (AFB1) exposure may increase the risk of multiple neuropsychiatric disorders. Stress is considered one of the main contributors to major depressive disorder. Whether and how chronic AFB1 exposure affects vulnerability to stress is unclear. METHODS Mice were exposed for three weeks to AFB1 (100 µg/kg/d) and/or chronic mild stress (CMS). The vulnerability behaviors in response to stress were assessed in the forced swimming test (FST), sucrose preference test (SPT), and tail suspension test (TST). Microglial pyroptosis was investigated using immunofluorescence, enzyme-linked immunosorbent assays, and western blot assay in the hippocampus of mice. Hippocampal neurogenesis and the effects of AFB1-treated microglia on proliferation and differentiation of neural stem/precursor cells (NSPCs) were assessed via immunofluorescence in the hippocampus of mice. RESULTS Mice exposed to CMS in the presence of AFB1 exhibited markedly greater vulnerability to stress than mice treated with CMS or AFB1 alone, as indicated by reduced sucrose preference and longer immobility time in the forced swimming test. Chronic aflatoxin B1 exposure resulted in changes in the microglial morphology and increase in TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. When mice were exposed to both CMS and AFB1, pyroptosis-related molecules (such as NLRP3, caspase-1, GSDMD-N, and interleukin-1β) were significantly upregulated in the hippocampus. These molecules were also significantly enhanced by AFB1 in primary microglial cultures. AFB1-treated mice showed decrease in the numbers of BrdU+, BrdU-DCX+, and BrdU-NeuN+ cells in the hippocampal dentate gyrus, as well as the percentages of BrdU+ cells that were NeuN+ in the presence or absence of CMS when compared with vehicle-treated mice. The combination of AFB1 and CMS exacerbated these effects to an even greater extent. The number of DCX+ cells correlated negatively with the percentage of ameboid microglia, TUNEL+ microglia and GSDMD+ microglia in the hippocampal dentate gyrus. AFB1-treated microglia suppressed the proliferation and neuronal differentiation of NSPCs in vitro. CONCLUSION Chronic AFB1 exposure induces microglial pyroptosis, promoting an adverse neurogenic microenvironment that impairs hippocampal neurogenesis, which may render mice more vulnerable to stress.
Collapse
Affiliation(s)
- Dapeng Su
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Weike Jiang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qingsong Yuan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qin Liu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Mengmeng Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chuangzhi Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenghong Xiao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changgui Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liangyuan Li
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chunyun Xu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
10
|
Zhang B, Li M, Zhou G, Gu X, Xie L, Zhao M, Xu Q, Tan G, Zhang N. ZnO-NPs alleviate aflatoxin B 1-induced hepatoxicity in ducklings by promoting hepatic metallothionein expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114826. [PMID: 36989561 DOI: 10.1016/j.ecoenv.2023.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin widely present in animal feed and human food, posing a serious threat to animal and human health. This study was aim to illustrate the mechanism of the protective role of MT against AFB1-induced hepatotoxicity, as well as to explore the feasibility of enhancing the tolerance of poultry to AFB1 by upregulating the expression of hepatic MT. After being exposed to AFB1 (50 ng/kg) primary duckling hepatocytes, the cell viability, the antioxidant index (SOD and GPx) and the mRNA levels of MT downstream genes (PTGR, p53, TrxR, AR and Bcl-2) significantly (p < 0.05) decreased, while the intracellular formation of (AFBO)-DNA adduct content, apoptosis, and MDA content significantly (p < 0.05) increased. Interestingly, overexpression of MT in primary duckling hepatocytes markedly (p < 0.05) reversed the detrimental impact of AFB1 and increased the expression of MT downstream genes. HepG2 cells were applied to study the mechanism how MT works to relieve the hepatic toxicity of AFB1. The ZnO-NPs (20 μg/mL) + AFB1 (20 μg/mL) group significantly (p < 0.05) increased the cell viability, the expression of NRF2, NQO1 and SOD, and expression of MT and MTF-1, as well as significantly (p < 0.05) decreased LDH, ROS and apoptotic rate, comparing with the AFB1 group. While joint treatment with AFB1 and ZnO-NPs, the hepatic toxicity exerted by AFB1 alone was reversed, along with the translocation of MTF-1 from the cytoplasm to the nucleus and upregulated its expression. Duckling trails were further carried out. A total number of 96 1-day-old healthy Cherry Valley commercial ducklings were randomly allocated according to a 2 by 2 factorial arrangement of treatments with the main factors including oral administration of AFB1 (0 vs. 40 μg/kg) and dietary supplementation of ZnO-NPs (0 vs. 60 mg/kg) for 7 days. It showed that AFB1 exposure caused body weight loss (p < 0.05), impaired liver structure and failure in hepatic function (activity of ALT, AST and concentration of TP and GLU) (p < 0.05), and decreases in antioxidant capacity(activity of SOD, CAT and concentration of GSH) (p < 0.05), along with the decrease in hepatic concentration of Zn, increase in expression of apoptosis-related genes and protein CAS3 and mRNA Bcl-2 expression (p < 0.05), and suppressed mRNA levels of antioxidant-related genes MT, SOD1, NRF2, and NQO1 (p < 0.05). In accordance with the cell test, dietary supplementation with ZnO-NPs mitigated the toxicity exerted by AFB1. In conclusion, ZnO-NPs has the protective effects against AFB1-induced hepatocyte injury by activating the expression of MTF-1 and the ectopic induction of MT expression, providing detailed information on the detoxification ability of MT on AFB1.
Collapse
Affiliation(s)
- Beiyu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiling Li
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangteng Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Gu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaoming Tan
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Shen XL, Guo YN, Lu MH, Ding KN, Liang SS, Mou RW, Yuan S, He YM, Tang LP. Acetaminophen-induced hepatotoxicity predominantly via inhibiting Nrf2 antioxidative pathway and activating TLR4-NF-κB-MAPK inflammatory response in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114590. [PMID: 36738614 DOI: 10.1016/j.ecoenv.2023.114590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/18/2023]
Abstract
To explore the action time and molecular mechanism underlying the effect of acetaminophen (APAP) on liver injury. APAP was used to establish drug-induced liver injury (DILI) model in mice. Mice in the model group were intraperitoneally injected 300 mg/kg APAP for 6, 12, and 24 h respectively, and control group mice were given the same volume of normal saline. The mice were anesthetized through intravenous injection of sodium pentobarbital at 6, 12, and 24 h after APAP poisoning. Analysis of ALT, AST and ALP in serum, liver histopathological observation, oxidative damage and western blot were performed. The livers in APAP exposed mice were pale, smaller, with a rough texture, and poorly arranged cells. Lesions, large areas of hyperemia, inflammation, swelling, poorly cell arrangement, necrosis, and apoptosis of liver cells were obvious in the liver tissue sections. Serum ALT, AST and ALP levels were significantly enhanced at 12 h of APAP adminstration mice than that of in control group mice (P<0.05). The histopathological alterations and proinflammatory cytokines (IL-1β, TNF-α and IL-6) levels were most severe at 12 h of APAP-induced hepatotoxicity. APAP treatment induced oxidative stress by decreasing hepatic activities of superoxide dismutase (SOD) and glutathione (GSH) (P<0.05), and enhancing malondialdehyde (MDA) content (P<0.05). Moreover, APAP inhibited erythroid 2-related factor 2 (Nrf2) antioxidative pathway with decreased of Nrf2 and HO-1 proteins levels. Furthermore, APAP aggravated the activation of NLRP3 inflammasome by increasing of NLRP3, caspase-1, ASC, IL-1β and IL-18 proteins levels. Finally, APAP further significantly activated the toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. This study demonstrated that APAP-induced hepatotoxicity by inhibiting of Nrf2 antioxidative pathway and promoting TLR4-NF-κB-MAPK inflammatory response and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xing-Ling Shen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yan-Na Guo
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Meng-Han Lu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Kang-Ning Ding
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Shao-Shan Liang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui-Wei Mou
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Sheng Yuan
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yong-Ming He
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| | - Lu-Ping Tang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
12
|
Song R, Yao L, Sun C, Yu D, Lin H, Li G, Lian Z, Zhuang S, Zhang D. Electrospun Membranes Anchored with g-C 3N 4/MoS 2 for Highly Efficient Photocatalytic Degradation of Aflatoxin B 1 under Visible Light. Toxins (Basel) 2023; 15:133. [PMID: 36828447 PMCID: PMC9960316 DOI: 10.3390/toxins15020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The degradation of aflatoxin (AF) is a topic that always exists along with the food and feed industry. Photocatalytic degradation as an advanced oxidation technology has many benefits, including complete inorganic degradation, no secondary contamination, ease of activity under moderate conditions, and low cost compared with traditional physical, chemical, and biological strategies. However, photocatalysts are usually dispersed during photocatalytic reactions, resulting in energy and time consumption in the separation process. There is even a potential secondary pollution problem from the perspective of food safety. In this regard, three electrospun membranes anchored with g-C3N4/MoS2 composites were prepared for highly efficient photocatalytic degradation of aflatoxin B1 (AFB1) under visible light. These photocatalytic membranes were characterized by XRD, SEM, TEM, FTIR, and XPS. The factors influencing the degradation efficiency of AFB1, including pH values and initial concentrations, were also probed. The three kinds of photocatalytic membranes all exhibited excellent ability to degrade AFB1. Among them, the photocatalytic degradation efficiency of the photocatalytic membranes prepared by the coaxial methods reached 96.8%. The experiment is with an initial concentration of 0.5 μg/mL (500 PPb) after 60 min under visible light irradiation. The mechanism of degradation of AFB1 was also proposed based on active species trapping experiments. Moreover, the prepared photocatalytic membranes exhibited excellent photocatalytic activity even after five-fold use in the degradation of AFB1. These studies showed that electrospun membranes anchored with g-C3N4/MoS2 composites have a high photocatalytic ability which is easily removed from the reacted medium for reuse. Thereby, our study offers a highly effective, economical, and green solution for AFB1 degradation in the foodstuff for practical application.
Collapse
Affiliation(s)
- Ruixin Song
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Liangtao Yao
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Changpo Sun
- Standards and Quality Center of National Food and Strategic Reserves Administration, No. 25 Yuetan North Street, Xicheng District, Beijing 100834, China
| | - Dechao Yu
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Hui Lin
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Guisheng Li
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Zichao Lian
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
- Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Research Center for Photonics Technology, Quanzhou Normal University, Quanzhou 362046, China
| |
Collapse
|
13
|
Sang R, Ge B, Li H, Zhou H, Yan K, Wang W, Cui Q, Zhang X. Taraxasterol alleviates aflatoxin B 1-induced liver damage in broiler chickens via regulation of oxidative stress, apoptosis and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114546. [PMID: 36646010 DOI: 10.1016/j.ecoenv.2023.114546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is the most dangerous and abundant mycotoxin, which is toxic to almost all animals, and poultry is more sensitive to AFB1 toxicity. Ingesting AFB1-contaminated feed can cause significant liver damage and brings serious harm to poultry, which greatly restricts the development of the poultry industry. The present research was implemented to explore the intervention effect and its mechanism of taraxasterol on liver damage induced by AFB1 in broiler chickens. The liver damage model in broiler chickens was established by feeding 0.5 mg/kg AFB1 feed, and taraxasterol (25, 50 and 100 mg/kg BW, respectively) was given in the drinking water for 21 days. The growth performance, liver function, oxidative stress, apoptosis and autophagy were evaluated. The results showed that taraxasterol increased BW and reduced feed-to-gain ratio of broiler chickens induced by AFB1. Taraxasterol improved the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), total bilirubin (TBIL) and alkaline phosphatase (ALP), and attenuated hepatic histopathological changes induced by AFB1. Meantime, taraxasterol down-regulated cytochrome P450 (CYP450) enzyme system CYP1A1 and CYP2A6 mRNA expression, inhibited the overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA), and enhanced the activities of antioxidant enzymes glutathione (GSH) and catalase (CAT) and the content of antioxidant superoxide dismutase (SOD) of the liver in broiler chickens induced by AFB1. Furthermore, taraxasterol up-regulated the mRNA and protein expression of hepatic nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1), and down-regulated the expression of hepatic kelch like ECH associated protein 1 (Keap1) induced by AFB1 in Keap1/Nrf2 signaling pathway. The ultrastructural observation and RT-qPCR results found that taraxasterol inhibited apoptosis of hepatocytes, up-regulated the expression of B-cell lymphoma-2 (Bcl-2) mRNA and down-regulated the expression of Bax and caspase3 mRNA. Further, taraxasterol restored the autophagy of hepatocytes and down-regulated the mRNA expression of phosphatidylinositol 3-kinase K (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in AFB1-induced liver of broiler chickens. The above results indicate that taraxasterol alleviates liver damage induced by AFB1 in broiler chickens through regulation of Keap1/Nrf2 signaling pathway to exert its antioxidant effect, mitochondrial apoptosis pathway to improve anti-apoptotic ability and PI3K/AKT/mTOR pathway to restore autophagy.
Collapse
Affiliation(s)
- Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Bingjie Ge
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Haifeng Li
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Hongyuan Zhou
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Kexin Yan
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Wei Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Qichao Cui
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
14
|
Compound mycotoxin detoxifier alleviating aflatoxin B 1 toxic effects on broiler growth performance, organ damage and gut microbiota. Poult Sci 2022; 102:102434. [PMID: 36586389 PMCID: PMC9811249 DOI: 10.1016/j.psj.2022.102434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to evaluate the effects of compound mycotoxin detoxifier (CMD) on alleviating the toxic effect of aflatoxin B1 (AFB1) for broiler growth performance. One-kilogram CMD consists of 667 g aflatoxin B1-degrading enzyme (ADE, 1,467 U/g), 200 g montmorillonite and 133 g compound probiotics (CP). The feeding experiment was divided into 2 stages (1-21 d and 22-42 d). In the early stage, a total of 300 one-day-old Ross broilers were randomly divided into 6 groups, 5 replications for each group, 10 broilers (half male and half female) in each replication. In the later feeding stage, about 240 twenty-two-day-old Ross broilers were randomly divided into 6 groups, 8 replications for each group, 5 broilers in each replication. Group A: basal diet; group B: basal diet with 40 μg/kg AFB1; group C: basal diet with 1 g/kg CMD; groups D, E, and F: basal diet with 40 μg/kg AFB1 plus 0.5, 1.0 and 1.5 g/kg CMD, respectively. The results indicated that AFB1 significantly decreased average daily gain (ADG), protein metabolic rate, organ index of thymus, bursa of Fabricius (BF), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) and catalase activities in serum, and increased AFB1 residues in serum and liver (P < 0.05). Hematoxylin-Eosin (HE) staining analysis of jejunum, liver and kidney showed that AFB1 caused the main pathological changes with different degrees of inflammatory cell infiltration. However, CMD additions could alleviate the negative effects of AFB1 on the above parameters. The gut microbiota analysis indicated that AFB1 could significantly increase the abundances of Staphylococcus-xylosu, Esherichia-coli-g-Escherichia-Shigella, and decrease Lactobacillus-aviarius abundance (P < 0.05), but which were adjusted to almost the same levels as the control group by CMD addition. The correlative analysis showed that Lactobacillus-aviarius abundance was positively correlated with ADG, SOD and BF (P < 0.05), whereas Staphylococcus-xylosus abundance was positively correlated with AFB1 residues in serum and liver (P < 0.05). In conclusion, CMD could keep gut microbiota stable, alleviate histological lesions, increase growth performance, and reduce mycotoxin toxicity. The optimal CMD addition should be 1 g/kg in AFB1-contaminated broilers diet.
Collapse
|
15
|
Rajaura S, Chauhan P, Chandra H, Bhardwaj N. Aflatoxin B1 administration induces reactive oxygen species production and apoptosis of erythrocytes in mice. Toxicon 2022; 221:106963. [PMID: 36356707 DOI: 10.1016/j.toxicon.2022.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
16
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Zheng M, Liu H, Ye J, Ni B, Xie Y, Wang S. Target-responsive aptamer-cross-linked hydrogel sensors for the visual quantitative detection of aflatoxin B1 using exonuclease I-Triggered target cyclic amplification. Food Chem X 2022; 15:100395. [PMID: 36211719 PMCID: PMC9532715 DOI: 10.1016/j.fochx.2022.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
An AFB1-responsive aptamer-cross-linked hydrogel sensor was successfully constructed. Dual signal amplification strategy with Encapsulation of enzymesand exonuclease I. This method has great potential for AFB1 detection in peanut oil. The accuracy and consistency repeatability of this method are close to those of UPLC-HRMS.
For the on-site detection of aflatoxin B1 (AFB1), a DNA hydrogel was prepared as a biosensor substrate, while an AFB1 aptamer was used as the recognition element. An AFB1-responsive aptamer-cross-linked hydrogel sensor was constructed using an enzyme-linked signal amplification strategy; AFB1 binds competitively to the aptamer, causing the hydrogel to undergo cleavage and release horseradish peroxidase (HRP). The addition of exonuclease I (ExoI) to the hydrogel causes the release of AFB1 from the aptamer, promoting additional hydrogel cleavage to release more HRP, ultimately catalysing the reaction between 3,3′,5,5′-tetramethylbenzidine and H2O2. The hydrogel sensor exhibited an outstanding sensitivity (limit of detection, 4.93 nM; dynamic range, 0–500 nM), and its selectivity towards seven other mycotoxins was confirmed. The feasibility and reliability were verified by measuring the AFB1 levels in peanut oil (recoveries, 89.59–95.66 %; relative standard deviation, <7%); the obtained results were comparable to those obtained by UPLC-HRMS.
Collapse
|
18
|
Effects of Compound Mycotoxin Detoxifier on Alleviating Aflatoxin B 1-Induced Inflammatory Responses in Intestine, Liver and Kidney of Broilers. Toxins (Basel) 2022; 14:toxins14100665. [PMID: 36287934 PMCID: PMC9609892 DOI: 10.3390/toxins14100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
In order to alleviate the toxic effects of aflatoxins B1 (AFB1) on inflammatory responses in the intestine, liver, and kidney of broilers, the aflatoxin B1-degrading enzyme, montmorillonite, and compound probiotics were selected and combined to make a triple-action compound mycotoxin detoxifier (CMD). The feeding experiment was divided into two stages. In the early feeding stage (1−21 day), a total of 200 one-day-old Ross broilers were randomly divided into four groups; in the later feeding stage (22−42 day), 160 broilers aged at 22 days were assigned to four groups: Group A: basal diet (4.31 μg/kg AFB1); Group B: basal diet with 40 μg/kg AFB1; Group C: Group A plus 1.5 g/kg CMD; Group D: Group B plus 1.5 g/kg CMD. After the feeding experiment, the intestine, liver, and kidney tissues of the broilers were selected to investigate the molecular mechanism for CMD to alleviate the tissue damages. Analyses of mRNA abundances and western blotting (WB) of inflammatory factors, as well as immunohistochemical (IHC) staining of intestine, liver, and kidney tissues showed that AFB1 aggravated the inflammatory responses through NF-κB and TN-α signaling pathways via TLR pattern receptors, while the addition of CMD significantly inhibited the inflammatory responses. Phylogenetic investigation showed that AFB1 significantly increased interleukin-1 receptor-associated kinase (IRAK-1) and mitogen-activated protein kinase (MAPK) activities (p < 0.05), which were restored to normal levels by CMD addition, indicating that CMD could alleviate cell inflammatory damages induced by AFB1.
Collapse
|
19
|
Pei H, Liu S, Zeng J, Liu J, Wu H, Chen W, He Z, Du R. Ros-mediated mitochondrial oxidative stress is involved in the ameliorating effect of ginsenoside GSLS on chlorpyrifos-induced hepatotoxicity in mice. Aging (Albany NY) 2022; 15:675-688. [PMID: 36152060 PMCID: PMC9970306 DOI: 10.18632/aging.204298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022]
Abstract
Chlorpyrifos (CPF), as an extensively used organophosphorus pesticide, often remains on food surfaces or contaminates water sources. CPF can cause many toxic effects on human production and life. As an additional product of non-medicinal parts of ginseng, the pharmacological activity of ginseng stem and leaf total saponin (GSLS) has been verified and applied in recent years. This study aimed to evaluate the protective effect of GSLS on CPF-induced liver damage in mice. Experimental results in vivo demonstrate that GSLS can reduce the accumulation of oxidation product MDA by relieving CPF-induced liver function indicators in mice and enhancing the antioxidant enzyme SOD and CAT activities of mice. With the decrease in mRNA expression of BAX, NF-KB, and TIMP in liver tissues, the mRNA expression of Nrf-2, HO-1, and XIAP increased. Through anti-inflammatory, antioxidant, anti-inflammatory and other effects, cpf-induced hepatotoxicity can be alleviated by GSLS. In vitro experiments have proved that GSLS can show the ability to scavenge DPPH free radicals and hydroxyl radicals. In addition, GSLS can alleviate chlorpyrifos-induced ROS accumulation in L02 cells, alleviating cytokinetic potential reduction. In summary, by fighting oxidative stress, GSLS can alleviate liver damage caused by CPF.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianning Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hong Wu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
20
|
Antagonism of Cyanamide-3-O-glucoside and protocatechuic acid on Aflatoxin B 1-induced toxicity in zebrafish larva (Danio rerio). Toxicon 2022; 216:139-147. [PMID: 35817093 DOI: 10.1016/j.toxicon.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
The zebrafish model was used to evaluate the antioxidant properties of cyanidin-3-O-glucoside (C3G) and its metabolite protocatechuic acid (PCA) against aflatoxin B1 (AFB1)-induced hepatotoxicity and oxidative stress. In this study, zebrafish larvae were cultured for 3 days post fertilization (dpf) and then induced with AFB1. After induced 4 h, 8 h, 12 h, and 24 h, 5 μg/mL C3G/PCA was added and then co-cultured to 5 dpf, respectively. The experiments showed that C3G/PCA suppressed AFB1-induced zebrafish liver atrophy and delayed the absorption of the yolk sac. In addition, reactive oxygen species (ROS) and cell death were also significantly decreased by 5 μg/mL C3G/PCA (P ˂ 0.05). C3G/PCA significantly reduced hepatic biomarkers in the serum contents (P ˂ 0.05). Besides, glutathione (GSH) contents were significantly upregulated, and the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly elevated in zebrafish (P ˂ 0.05). The addition of 5 μg/mL C3G/PCA was capable of reducing the apoptotic levels of caspase-9 and caspase-3 after 100 ng/mL AFB1 intoxication. In conclusion, these results suggested that C3G and its metabolite PCA might antagonize the hepatotoxicity of AFB1, reduce oxidative damage and inhibit cell death.
Collapse
|
21
|
Ye J, Zheng M, Ma H, Xuan Z, Tian W, Liu H, Wang S, Zhang Y. Development and Validation of an Automated Magneto-Controlled Pretreatment for Chromatography-Free Detection of Aflatoxin B1 in Cereals and Oils through Atomic Absorption Spectroscopy. Toxins (Basel) 2022; 14:toxins14070454. [PMID: 35878192 PMCID: PMC9319898 DOI: 10.3390/toxins14070454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/18/2022] Open
Abstract
A chromatography-free detection of aflatoxin B1 (AFB1) in cereals and oils through atomic absorption spectroscopy (AAS) has been developed using quantum dots and immunomagnetic beads. A magneto-controlled pretreatment platform for automatic purification, labeling, and digestion was constructed, and AFB1 detection through AAS was enabled. Under optimal conditions, this immunoassay exhibited high sensitivity for AFB1 detection, with limits of detection as low as 0.04 μg/kg and a linear dynamic range of 2.5–240 μg/kg. The recoveries for four different food matrices ranged from 92.6% to 108.7%, with intra- and inter-day standard deviations of 0.7–6.3% and 0.6–6.9%, respectively. The method was successfully applied to the detection of AFB1 in husked rice, maize, and polished rice samples, and the detection results were not significantly different from those of liquid chromatography-tandem mass spectrometry. The proposed method realized the detection of mycotoxins through AAS for the first time. It provides a new route for AFB1 detection, expands the application scope of AAS, and provides a reference for the simultaneous determination of multiple poisonous compounds (such as mycotoxins and heavy metals).
Collapse
Affiliation(s)
- Jin Ye
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
| | - Mengyao Zheng
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haihua Ma
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (H.M.); (Y.Z.)
| | - Zhihong Xuan
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
| | - Wei Tian
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 102600, China; (M.Z.); (Z.X.); (W.T.); (H.L.); (S.W.)
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing and Control, Henan University of Technology, Ministry of Education, Zhengzhou 450001, China;
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Correspondence: (H.M.); (Y.Z.)
| |
Collapse
|
22
|
Wang Y, Liu F, Liu M, Zhou X, Wang M, Cao K, Jin S, Shan A, Feng X. Curcumin mitigates aflatoxin B1-induced liver injury via regulating the NLRP3 inflammasome and Nrf2 signaling pathway. Food Chem Toxicol 2022; 161:112823. [DOI: 10.1016/j.fct.2022.112823] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
|
23
|
Pickova D, Ostry V, Toman J, Malir F. Aflatoxins: History, Significant Milestones, Recent Data on Their Toxicity and Ways to Mitigation. Toxins (Basel) 2021; 13:399. [PMID: 34205163 PMCID: PMC8227755 DOI: 10.3390/toxins13060399] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
In the early 1960s the discovery of aflatoxins began when a total of 100,000 turkey poults died by hitherto unknown turkey "X" disease in England. The disease was associated with Brazilian groundnut meal affected by Aspergillus flavus. The toxin was named Aspergillus flavus toxin-aflatoxin. From the point of view of agriculture, aflatoxins show the utmost importance. Until now, a total of 20 aflatoxins have been described, with B1, B2, G1, and G2 aflatoxins being the most significant. Contamination by aflatoxins is a global health problem. Aflatoxins pose acutely toxic, teratogenic, immunosuppressive, carcinogenic, and teratogenic effects. Besides food insecurity and human health, aflatoxins affect humanity at different levels, such as social, economical, and political. Great emphasis is placed on aflatoxin mitigation using biocontrol methods. Thus, this review is focused on aflatoxins in terms of historical development, the principal milestones of aflatoxin research, and recent data on their toxicity and different ways of mitigation.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|