1
|
Miranda MCR, Nunes CM, Santos LF, da Silva LB, de Jesus VR, Filho NA, Pedro JAF, Lopes JLS, Oliveira CLP, Fantini MCA, Cardoso JS, Trezena AG, Ribeiro OG, Sant'Anna OA, Tino-De-Franco M, Martins TS. Ordered mesoporous silicas for potential applications in solid vaccine formulations. Vaccine 2024; 42:689-700. [PMID: 38145911 DOI: 10.1016/j.vaccine.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
In an effort to develop efficient vaccine formulations, the use of ordered mesoporous silica (SBA-15) as an antigen carrier has been investigated. SBA-15 has required properties such as high surface area and pore volume, including narrow pore size distribution to protect antigens inside its matrix. This study aimed to examine the impact of solvent removal methods, specifically freeze-drying and evaporation on the intrinsic properties of an immunogenic complex. The immunogenic complexes, synthesized and incorporated with BSA, were characterized by various physicochemical techniques. Small Angle X-ray Scattering measurements revealed the characteristic reflections associated to pure SBA-15, indicating the preservation of the silica mesostructured following BSA incorporation and the formation of BSA aggregates within the macropore region. Nitrogen Adsorption Isotherm measurements demonstrated a decrease in surface area and pore volume for all samples, indicating that the BSA was incorporated into the SBA-15 matrix. Fluorescence spectroscopy evidenced that the tryptophan residues in BSA inside SBA-15 or in solution displayed similar spectra, showing the preservation of the aromatic residues' environment. The Circular Dichroism spectra of BSA in both conditions suggest the preservation of its native secondary structure after the encapsulation process. The immunogenic analysis with the detection of anti-BSA IgG did not give any significant difference between the non-dried, freeze-dried or evaporated groups. However, all groups containing BSA and SBA-15 showed results almost three times higher than the groups with pure BSA (control group). These facts indicate that none of the BSA incorporation methods interfered with the immunogenicity of the complex. In particular, the freeze-dried process is regularly used in the pharmaceutical industry, therefore its adequacy to produce immunogenic complexes was proved Furthermore, the results showed that SBA-15 increased the immunogenic activity of BSA.
Collapse
Affiliation(s)
- Matheus C R Miranda
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Carmen M Nunes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Luana F Santos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo B da Silva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Vinicius R de Jesus
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Newton Andréo Filho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Jéssica A F Pedro
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José L S Lopes
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | - Tereza S Martins
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
2
|
Roncal-Jimenez CA, Rogers KL, Stem A, Wijkstrom J, Wernerson A, Fox J, Garcia Trabanino R, Brindley S, Garcia G, Miyazaki M, Miyazaki-Anzai S, Sasai F, Urra M, Cara-Fuentes G, Sánchez-Lozada LG, Rodriguez-Iturbe B, Butler Dawson J, Madero M, Brown JM, Johnson RJ. Intranasal Administration of Sugarcane Ash Causes Chronic Kidney Disease in Rats. Am J Physiol Renal Physiol 2024; 326:F477-F484. [PMID: 38234297 PMCID: PMC11207544 DOI: 10.1152/ajprenal.00251.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Background. Silica nanoparticles found in sugarcane ash have been postulated to be a toxicant contributing to chronic kidney disease of unknown etiology (CKDu). However, while the administration of manufactured silica nanoparticles is known to cause chronic tubulointerstitial disease in rats, the effect of administering sugarcane ash on kidney pathology remains unknown. Here we investigate whether sugarcane ash can induce CKD in rats. Methods. Sugarcane ash was administered for 13 weeks into the nares of rats (5 mg/day for 5d/week), and blood, urine and kidney tissues were collected at 13 weeks (at the end of ash administration) and in a separate group of rats at 24 weeks (11 weeks after stopping ash administration). Kidney histology was evaluated, and inflammation and fibrosis (collagen deposition) measured. Results. Sugarcane ash exposure led to the accumulation of silica in the kidneys, lungs, liver and spleen of rats. Mild proteinuria developed although renal function was largely maintained. However, biopsies showed focal glomeruli with segmental glomerulosclerosis, and tubulointerstitial inflammation and fibrosis that tended to worsen even after the ash administration had been stopped. Staining for the lysosomal marker, LAMP-1, showed decreased staining in ash administered rats consistent with lysosomal activation. Conclusion. Sugarcane ash containing silica nanoparticles can cause CKD in rats.
Collapse
Affiliation(s)
- Carlos A Roncal-Jimenez
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Keegan L Rogers
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Arthur Stem
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Adams County, United States
| | - Julia Wijkstrom
- CLINTEC, Division of renal medicine, Karolinska Institute, Stockholm, Sweden
| | - Annika Wernerson
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden
| | - Jacob Fox
- Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Stephen Brindley
- Toxicology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gabriela Garcia
- Medicine-Nephrology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Auroa, United States
| | - Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO, United States
| | - Fumihiko Sasai
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Manuel Urra
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Medicine-Nephrology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - L Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de CardiologÃ-a, Mexico City, D.F., Mexico
| | - Bernardo Rodriguez-Iturbe
- Nefrología y MetaboismoMineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Ciudad de Mexico, Mexico
| | - Jaime Butler Dawson
- Center for Work, Health, and Environment, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Magdalena Madero
- Division of Nephrology, Instituto Nacional de Cardiologia Ignacio Chávez, Mexico City, Mexico
| | - Jared M Brown
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Azadi M, David AE. Enhancing Ocular Drug Delivery: The Effect of Physicochemical Properties of Nanoparticles on the Mechanism of Their Uptake by Human Cornea Epithelial Cells. ACS Biomater Sci Eng 2024; 10:429-441. [PMID: 38055935 DOI: 10.1021/acsbiomaterials.3c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
This study investigates the effect of nanoparticle size and surface chemistry on interactions of the nanoparticles with human cornea epithelial cells (HCECs). Poly(lactic-co-glycolic) acid (PLGA) nanoparticles were synthesized using the emulsion-solvent evaporation method and surface modified with mucoadhesive (alginate [ALG] and chitosan [CHS]) and mucopenetrative (polyethylene glycol [PEG]) polymers. Particles were found to be monodisperse (polydispersity index (PDI) below 0.2), spherical, and with size and zeta potential ranging from 100 to 250 nm and from -25 to +15 mV, respectively. Evaluation of cytotoxicity with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay indicated that incubating cells with nanoparticles for 24 h at concentrations up to 100 μg/mL caused only mild toxicity (70-100% cell viability). Cellular uptake studies were conducted using an in vitro model developed with a monolayer of HCECs integrated with simulated mucosal solution. Evaluation of nanoparticle uptake revealed that energy-dependent endocytosis is the primary uptake mechanism. Among the different nanoparticles studied, 100 nm PLGA NPs and PEG-PLGA-150 NPs showed the highest levels of uptake by HCECs. Additionally, uptake studies in the presence of various inhibitors suggested that macropinocytosis and caveolae-mediated endocytosis are the dominant pathways. While clathrin-mediated endocytosis was found to also be partially responsible for nanoparticle uptake, phagocytosis did not play a role within the studied ranges of size and surface chemistries. These important findings could lead to improved nanoparticle-based formulations that could improve therapies for ocular diseases.
Collapse
Affiliation(s)
- Marjan Azadi
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Allan E David
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
4
|
Xu M, Qi Y, Liu G, Song Y, Jiang X, Du B. Size-Dependent In Vivo Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance. ACS NANO 2023; 17:20825-20849. [PMID: 37921488 DOI: 10.1021/acsnano.3c05853] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Understanding the in vivo transport of nanoparticles provides guidelines for designing nanomedicines with higher efficacy and fewer side effects. Among many factors, the size of nanoparticles plays a key role in controlling their in vivo transport behaviors due to the existence of various physiological size thresholds within the body and size-dependent nano-bio interactions. Encouraged by the evolving discoveries of nanoparticle-size-dependent biological effects, we believe that it is necessary to systematically summarize the size-scaling laws of nanoparticle transport in vivo. In this review, we summarized the size effect of nanoparticles on their in vivo transport along their journey in the body: begin with the administration of nanoparticles via different delivery routes, followed by the targeting of nanoparticles to intended tissues including tumors and other organs, and eventually clearance of nanoparticles through the liver or kidneys. We outlined the tools for investigating the in vivo transport of nanoparticles as well. Finally, we discussed how we may leverage the size-dependent transport to tackle some of the key challenges in nanomedicine translation and also raised important size-related questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Mingze Xu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuming Qi
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Gaoshuo Liu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yuanqing Song
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| | - Xingya Jiang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| | - Bujie Du
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P.R. China
| |
Collapse
|
5
|
Yun S, Kim S, Kim K. Cellular Membrane Components-Mediated Cancer Immunotherapeutic Platforms. Macromol Biosci 2023; 23:e2300159. [PMID: 37319369 DOI: 10.1002/mabi.202300159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Immune cell engineering is an active field of ongoing research that can be easily applied to nanoscale biomedicine as an alternative to overcoming limitations of nanoparticles. Cell membrane coating and artificial nanovesicle technology have been reported as representative methods with an advantage of good biocompatibility for biomimetic replication of cell membrane characteristics. Cell membrane-mediated biomimetic technique provides properties of natural cell membrane and enables membrane-associated cellular/molecular signaling. Thus, coated nanoparitlces (NPs) and artificial nanovesicles can achieve effective and extended in vivo circulation, enabling execution of target functions. While coated NPs and artificial nanovesicles provide clear advantages, much work remains before clinical application. In this review, first a comprehensive overview of cell membrane coating techniques and artificial nanovesicles is provided. Next, the function and application of various immune cell membrane types are summarized.
Collapse
Affiliation(s)
- Seojeong Yun
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
6
|
Rashidian G, Mohammadi-Aloucheh R, Hosseinzadeh-Otaghvari F, Chupani L, Stejskal V, Samadikhah H, Zamanlui S, Multisanti CR, Faggio C. Long-term exposure to small-sized silica nanoparticles (SiO 2-NPs) induces oxidative stress and impairs reproductive performance in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109715. [PMID: 37595938 DOI: 10.1016/j.cbpc.2023.109715] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
The widespread use of silica nanoparticles (SiO2-NPs) in various industries, including chemical polishing, cosmetics, varnishes, medical, and food products, has increased the risk of their release into aquatic ecosystems. The toxic effects of small-size SiO2-NPs on the reproductive performance of zebrafish (Danio rerio) have yet to be widely studied. This study aimed to investigate the impact of chronic exposure to small-sized (35 ± 6 nm) SiO2-NPs on adult zebrafish through waterborne exposure to concentrations of 5 (SNP5), 10 (SNP10), 15 (SNP15), and 20 (SNP20) μg/L of SiO2-NPs for 28 days. Our results showed that SiO2-NPs significantly impacted several biochemical parameters, including cholesterol, triglycerides, LDL, HDL, total protein, albumin, urea levels, and alkaline phosphatase and aspartate aminotransferase activity. Cortisol and glucose levels in the SNP20 group significantly differed from the control group. All the exposed groups, apart from SNP5, experienced a significant increase in their total immunoglobulin levels and lysozyme activity. While there was a considerable increase in the activity of catalase and superoxide dismutase in all exposed groups, the expression of antioxidant genes did not appear to be affected. Furthermore, the expression level of il8 was significantly higher in SNP5 and SNP10 than in other treatments. Exposure to SiO2-NPs caused a decrease in gonad weight, absolute fecundity, and larval survival rate, particularly in the SNP20 group. The present study indicates that SiO2-NPs can harm zebrafish and thus further research is necessary to assess their health and environmental risks.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Husova třída 458/102, 370 05 České Budějovice, Czech Republic.
| | | | - Farnaz Hosseinzadeh-Otaghvari
- Department of Cell and molecular biology, Faculty of Basic Science, University of Maragheh, 55181-83111 Maragheh, Iran.
| | - Latifeh Chupani
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Vlastimil Stejskal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Husova třída 458/102, 370 05 České Budějovice, Czech Republic.
| | - Hamidreza Samadikhah
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran.
| | - Soheila Zamanlui
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, P.O. Box 13185-768, Tehran, Iran.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S Agata, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S Agata, Messina, Italy.
| |
Collapse
|
7
|
Rehan T, Tahir A, Sultan A, Alabbosh KF, Waseem S, Ul-Islam M, Khan KA, Ibrahim EH, Ullah MW, Shah N. Mitigation of Benzene-Induced Haematotoxicity in Sprague Dawley Rats through Plant-Extract-Loaded Silica Nanobeads. TOXICS 2023; 11:865. [PMID: 37888715 PMCID: PMC10610980 DOI: 10.3390/toxics11100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Benzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products. This study aimed to enhance the effects of methanolic extracts from Ocimum basilicum, Rosemarinus officinalis, and Thymus vulgaris by loading them onto silica nanobeads (SNBs) for targeted delivery to mitigate the benzene-induced haematotoxic effects. The SNBs, 48 nm in diameter, were prepared using a chemical method and were then loaded with the plant extracts. The plant-extract-loaded SNBs were then coated with carboxymethyl cellulose (CMC). The modified SNBs were characterized using various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The developed plant-extract-loaded and CMC-modified SNBs were administered intravenously to benzene-exposed rats, and haematological and histopathological profiling was conducted. Rats exposed to benzene showed increased liver and spleen weight, which was mitigated by the plant-extract-loaded SNBs. The differential white blood cell (WBC) count was higher in rats with benzene-induced haematotoxicity, but this count decreased significantly in rats treated with plant-extract-loaded SNBs. Additionally, blast cells observed in benzene-exposed rats were not found in rats treated with plant-extract-loaded SNBs. The SNBs facilitated targeted drug delivery of the three selected medicinal herbs at low doses. These results suggest that SNBs have promising potential as targeted drug delivery agents to mitigate haematotoxic effects induced by benzene in rats.
Collapse
Affiliation(s)
- Touseef Rehan
- Department of Biochemistry, Women University Mardan, Mardan 23200, Pakistan
| | - Anum Tahir
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aneesa Sultan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Shahid Waseem
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for
Advanced Materials Science (RCAMS), Applied College, King Khalid University, Abha 61413, Saudi Arabia
| | - Essam H. Ibrahim
- Biology Department, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo 12611, Egypt
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
8
|
Abdelkader Y, Perez-Davalos L, LeDuc R, Zahedi RP, Labouta HI. Omics approaches for the assessment of biological responses to nanoparticles. Adv Drug Deliv Rev 2023; 200:114992. [PMID: 37414362 DOI: 10.1016/j.addr.2023.114992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Nanotechnology has enabled the development of innovative therapeutics, diagnostics, and drug delivery systems. Nanoparticles (NPs) can influence gene expression, protein synthesis, cell cycle, metabolism, and other subcellular processes. While conventional methods have limitations in characterizing responses to NPs, omics approaches can analyze complete sets of molecular entities that change upon exposure to NPs. This review discusses key omics approaches, namely transcriptomics, proteomics, metabolomics, lipidomics and multi-omics, applied to the assessment of biological responses to NPs. Fundamental concepts and analytical methods used for each approach are presented, as well as good practices for omics experiments. Bioinformatics tools are essential to analyze, interpret and visualize large omics data, and to correlate observations in different molecular layers. The authors envision that conducting interdisciplinary multi-omics analyses in future nanomedicine studies will reveal integrated cell responses to NPs at different omics levels, and the incorporation of omics into the evaluation of targeted delivery, efficacy, and safety will improve the development of nanomedicine therapies.
Collapse
Affiliation(s)
- Yasmin Abdelkader
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Cairo 12622, Egypt
| | - Luis Perez-Davalos
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada
| | - Richard LeDuc
- Children's Hospital Research Institute of Manitoba, 513 - 715 McDermot Av. W, Winnipeg, Manitoba R3E 3P4, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada
| | - Rene P Zahedi
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Av., Winnipeg, Manitoba R3E 0J9, Canada; Department of Internal Medicine, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; Manitoba Centre for Proteomics and Systems Biology, 799 JBRC, 715 McDermot Av., Winnipeg, Manitoba R3E 3P4, Canada; CancerCare Manitoba Research Institute, 675 McDermot Av., Manitoba R3E 0V9, Canada
| | - Hagar I Labouta
- Unity Health Toronto - St. Michael's Hospital, University of Toronto, 209 Victoria St., Toronto, Ontario M5B 1T8, Canada; College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Av. W, Winnipeg, Manitoba R3E 0T5, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada; Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt, 21521.
| |
Collapse
|
9
|
Ali MK, Javaid S, Afzal H, Zafar I, Fayyaz K, Ain Q, Rather MA, Hossain MJ, Rashid S, Khan KA, Sharma R. Exploring the multifunctional roles of quantum dots for unlocking the future of biology and medicine. ENVIRONMENTAL RESEARCH 2023; 232:116290. [PMID: 37295589 DOI: 10.1016/j.envres.2023.116290] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
With recent advancements in nanomedicines and their associated research with biological fields, their translation into clinically-applicable products is still below promises. Quantum dots (QDs) have received immense research attention and investment in the four decades since their discovery. We explored the extensive biomedical applications of QDs, viz. Bio-imaging, drug research, drug delivery, immune assays, biosensors, gene therapy, diagnostics, their toxic effects, and bio-compatibility. We unravelled the possibility of using emerging data-driven methodologies (bigdata, artificial intelligence, machine learning, high-throughput experimentation, computational automation) as excellent sources for time, space, and complexity optimization. We also discussed ongoing clinical trials, related challenges, and the technical aspects that should be considered to improve the clinical fate of QDs and promising future research directions.
Collapse
Affiliation(s)
- Muhammad Kashif Ali
- Deparment of Physiology, Rashid Latif Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Saher Javaid
- KAM School of Life Sciences, Forman Christian College (a Chartered University) Lahore, Punjab, Pakistan.
| | - Haseeb Afzal
- Department of ENT, Ameer Ud Din Medical College, Lahore, Punjab, 54700, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad (GCWUF), Punjab, 54700, Pakistan.
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil- Gandarbal (SKAUST-K), India.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
10
|
Theivendran S, Lazarev S, Yu C. Mesoporous silica/organosilica nanoparticles for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2023; 3:20220086. [PMID: 37933387 PMCID: PMC10624378 DOI: 10.1002/exp.20220086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/09/2023] [Indexed: 11/08/2023]
Abstract
Cancer is one of the fatal diseases in the history of humankind. In this regard, cancer immunotherapeutic strategies have revolutionized the traditional mode of cancer treatment. Silica based nano-platforms have been extensively applied in nanomedicine including cancer immunotherapy. Mesoporous silica nanoparticles (MSN) and mesoporous organosilica nanoparticles (MON) are attractive candidates due to the ease in controlling the structural parameters as needed for the targeted immunotherapeutic applications. Especially, the MON provide an additional advantage of controlling the composition and modulating the biological functions to actively synergize with other immunotherapeutic strategies. In this review, the applications of MSN, MON, and metal-doped MSN/MON in the field of cancer immunotherapy and tumor microenvironment regulation are comprehensively summarized by highlighting the structural and compositional attributes of the silica-based nanoplatforms.
Collapse
Affiliation(s)
- Shevanuja Theivendran
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, BrisbaneSt LuciaAustralia
| | - Sergei Lazarev
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, BrisbaneSt LuciaAustralia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland, BrisbaneSt LuciaAustralia
| |
Collapse
|
11
|
Badawy MM, Sayed-Ahmed MZ, Almoshari Y, Alqahtani SS, Alshahrani S, Mabrouk HAA, Abd-Elsalam MM, Alkashif K, Ahmad S, El-Sebaey AM, Hamama MG, Ahmed DAM. Magnesium Supplementation Alleviates the Toxic Effects of Silica Nanoparticles on the Kidneys, Liver, and Adrenal Glands in Rats. TOXICS 2023; 11:381. [PMID: 37112608 PMCID: PMC10141093 DOI: 10.3390/toxics11040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Concerns regarding the possible hazards to human health have been raised by the growing usage of silica nanoparticles (SiNPs) in a variety of applications, including industrial, agricultural, and medical applications. This in vivo subchronic study was conducted to assess the following: (1) the toxicity of orally administered SiNPs on the liver, kidneys, and adrenal glands; (2) the relationship between SiNPs exposure and oxidative stress; and (3) the role of magnesium in mitigating these toxic effects. A total of 24 Sprague Dawley male adult rats were divided equally into four groups, as follows: control group, magnesium (Mg) group (50 mg/kg/d), SiNPs group (100 mg/kg/d), and SiNPs+ Mg group. Rats were treated with SiNPs by oral gavage for 90 days. The liver transaminases, serum creatinine, and cortisol levels were evaluated. The tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels were measured. Additionally, the weight of the organs and the histopathological changes were examined. Our results demonstrated that SiNPs exposure caused increased weight in the kidneys and adrenal glands. Exposure to SiNPs was also associated with significant alterations in liver transaminases, serum creatinine, cortisol, MDA, and GSH. Additionally, histopathological changes were significantly reported in the liver, kidneys, and adrenal glands of SiNPs-treated rats. Notably, when we compared the control group with the treated groups with SiNPs and Mg, the results revealed that magnesium could mitigate SiNPs-induced biochemical and histopathologic changes, confirming its effective role as an antioxidant that reduced the accumulation of SiNPs in tissues, and that it returns the levels of liver transaminases, serum creatinine, cortisol, MDA, and GSH to almost normal values.
Collapse
Affiliation(s)
- Mohamed Moharram Badawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Mohamed Z. Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Heba Allah Ali Mabrouk
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Marwa M. Abd-Elsalam
- Department of Histology, Faculty of Medicine, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt
| | - Khalid Alkashif
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan 45142, Saudi Arabia
| | - Ahmed M. El-Sebaey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed G. Hamama
- Anatomy Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Dalia Alsaied Moustafa Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Ahn GY, Choi I, Ryu TK, Ryu YH, Oh DH, Kang HW, Kang MH, Choi SW. Continuous production of lipid nanoparticles by multiple-splitting in microfluidic devices with chaotic microfibrous channels. Colloids Surf B Biointerfaces 2023; 224:113212. [PMID: 36822116 DOI: 10.1016/j.colsurfb.2023.113212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
Polydimethylsiloxane (PDMS) microfluidic devices with chaotic microfibrous channels were fabricated for the continuous production of lipid nanoparticles (LNPs). Electrospun poly(ε-caprolactone) (PCL) microfibrous matrices with different diameters (3.6 ± 0.3, 6.3 ± 0.4, and 12.2 ± 0.8 µm) were used as a template to develop microfibrous channels. The lipid solution (in ethanol) and water phase were introduced into the microfluidic device as the discontinuous and continuous phases, respectively. The smaller diameter of microfibrous channels and the higher flow rate of the continuous phase resulted in the smaller LNPs with a narrower size distribution. The multiple-splitting of the discontinuous phase and the microscale contact between the two phases in the microfibrous channels were the key features of the LNP production in our approach. The LNPs containing doxorubicin with different average sizes (89.7 ± 35.1 and 190.4 ± 66.4 nm) were prepared using the microfluidic devices for the potential application in tumor therapy. In vitro study revealed higher cellular uptake efficiency and cytotoxicity of the smaller LNPs, especially in the HepG2 cells. The microfluidic devices with microfibrous channels can be widely used as a continuous and high-throughput platform for the production of LNPs containing various active agents.
Collapse
Affiliation(s)
- Guk-Young Ahn
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Inseong Choi
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Tae-Kyung Ryu
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Young-Hyun Ryu
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Do-Hyun Oh
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Hye-Won Kang
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Min-Ho Kang
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Sung-Wook Choi
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea.
| |
Collapse
|
13
|
Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci 2023; 18:100779. [PMID: 36845840 PMCID: PMC9950450 DOI: 10.1016/j.ajps.2023.100779] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Complications of the liver are amongst the world's worst diseases. Liver fibrosis is the first stage of liver problems, while cirrhosis is the last stage, which can lead to death. The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver's metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting. Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis; nevertheless, the working mechanism of anti-fibrotic medications is not fully understood, and there is a need to design delivery systems that are well-understood and can aid in cirrhosis. Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery. As a result, the capability of nanoparticles in hepatic delivery was explored. Another approach is targeted drug delivery, which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells (HSCs). We have addressed numerous delivery strategies that target HSCs, which can eventually aid in fibrosis. Recently genetics have proved to be useful, and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted. To summarize, this review paper sheds light on the most recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Kunj Vyas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| |
Collapse
|
14
|
Ferdous Z, Elzaki O, Beegam S, Zaaba NE, Tariq S, Adeghate E, Nemmar A. Comparative Evaluation of the Effects of Amorphous Silica Nanoparticles on the Erythrocytes of Wistar Normotensive and Spontaneously Hypertensive Rats. Int J Mol Sci 2023; 24:ijms24043784. [PMID: 36835195 PMCID: PMC9967603 DOI: 10.3390/ijms24043784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Silica nanoparticles (SiNPs) are one of the most widely used nanomaterials. SiNPs can encounter erythrocytes and hypertension is strongly linked to abnormalities in the functional and structural characteristics of erythrocytes. As little is known about the combinatorial effect of SiNP-hypertension interactions on erythrocytes, the aim of this work was to study the effects triggered by hypertension on SiNPs induced hemolysis and the pathophysiological mechanism underlying it. We compared the interaction of amorphous 50 nm SiNPs at various concentrations (0.2, 1, 5 and 25 µg/mL) with erythrocytes of normotensive (NT) and hypertensive (HT) rats in vitro. Following incubation of the erythrocytes, SiNPs induced significant and dose-dependent increase in hemolysis. Transmission electron microscopy revealed erythrocyte deformity in addition to SiNPs taken up by erythrocytes. The erythrocyte susceptibility to lipid peroxidation was significantly increased. The concentration of reduced glutathione, and activities of superoxide dismutase, and catalase were significantly increased. SiNPs significantly increased intracellular Ca2+. Likewise, the concentration of the cellular protein annexin V and calpain activity was enhanced by SiNPs. Concerningly, all the tested parameters were significantly enhanced in erythrocytes from HT rats compared to NT rats. Our results collectively demonstrate that hypertension can potentially exacerbate the in vitro effect induced by SiNPs.
Collapse
Affiliation(s)
- Zannatul Ferdous
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence: ; Tel.: +971-3-7137533
| |
Collapse
|
15
|
Johnson L, Aglas L, Punz B, Dang HH, Christ C, Pointner L, Wenger M, Hofstaetter N, Hofer S, Geppert M, Andosch A, Ferreira F, Horejs-Hoeck J, Duschl A, Himly M. Mechanistic insights into silica nanoparticle-allergen interactions on antigen presenting cell function in the context of allergic reactions. NANOSCALE 2023; 15:2262-2275. [PMID: 36630186 PMCID: PMC9893438 DOI: 10.1039/d2nr05181h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.
Collapse
Affiliation(s)
- Litty Johnson
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Benjamin Punz
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Constantin Christ
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Lisa Pointner
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Mario Wenger
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Norbert Hofstaetter
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Sabine Hofer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Mark Geppert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Ancuela Andosch
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Albert Duschl
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| | - Martin Himly
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
16
|
Sivamaruthi BS, Thangaleela S, Kesika P, Suganthy N, Chaiyasut C. Mesoporous Silica-Based Nanoplatforms Are Theranostic Agents for the Treatment of Inflammatory Disorders. Pharmaceutics 2023; 15:pharmaceutics15020439. [PMID: 36839761 PMCID: PMC9960588 DOI: 10.3390/pharmaceutics15020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Complete recovery from infection, sepsis, injury, or trauma requires a vigorous response called inflammation. Inflammatory responses are essential in balancing tissue homeostasis to protect the tissue or resolve harmful stimuli and initiate the healing process. Identifying pathologically important inflammatory stimuli is important for a better understanding of the immune pathways, mechanisms of inflammatory diseases and organ dysfunctions, and inflammatory biomarkers and for developing therapeutic targets for inflammatory diseases. Nanoparticles are an efficient medical tool for diagnosing, preventing, and treating various diseases due to their interactions with biological molecules. Nanoparticles are unique in diagnosis and therapy in that they do not affect the surroundings or show toxicity. Modern medicine has undergone further development with nanoscale materials providing advanced experimentation, clinical use, and applications. Nanoparticle use in imaging, drug delivery, and treatment is growing rapidly owing to their spectacular accuracy, bioavailability, and cellular permeability. Mesoporous silica nanoparticles (MSNs) play a significant role in nano therapy with several advantages such as easy synthesis, loading, controllability, bioavailability over various surfaces, functionalization, and biocompatibility. MSNs can be used as theranostics in immune-modulatory nano systems to diagnose and treat inflammatory diseases. The application of MSNs in the preparation of drug-delivery systems has been steadily increasing in recent decades. Several preclinical studies suggest that an MSN-mediated drug-delivery system could aid in treating inflammatory diseases. This review explains the role of nanoparticles in medicine, synthesis, and functional properties of mesoporous silica nanoparticles and their therapeutic role against various inflammatory diseases.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natarajan Suganthy
- Bionanomaterials Research Laboratory, Department of Nanoscience and Technology, Alagappa University, Karaikudi 630003, India
- Correspondence: (N.S.); (C.C.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.S.); (C.C.)
| |
Collapse
|
17
|
Effect of H 2O 2 @CuONPs in the UV Light-Induced Removal of Organic Pollutant Congo Red Dye: Investigation into Mechanism with Additional Biomedical Study. Molecules 2023; 28:molecules28010410. [PMID: 36615605 PMCID: PMC9823539 DOI: 10.3390/molecules28010410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Hazardous dyes in industrial wastewater are an internationally recognized issue for community health. Nanoparticles synthesized through green protocols are a fascinating research field with numerous applications. The current study mainly aimed to investigate the degradation of Congo red (CR) dye under UV light in the presence of H2O2 and the photocatalytic activity of copper oxide nanoparticles (CuONPs). For CuONP formation, Citrus maxima extract contains a high number of phytochemical constituents. The size of CuONPs ranges between 25 and 90 nm. The photocatalytic activity of CuONPs with the addition of H2O2 was observed and analyzed under UV light to eliminate CR dye. The UV light caused the decomposition of H2O2, which produced ·OH radicals. The results revealed a significant increment in dye degradation during the presence of H2O2. The effect of concentration on the degradation of the CR dye was also studied. The degradation pathway of organic pollutants was reputable from the hydroxy radical medicated degradation of CR. Advanced Oxidation Treatment depends on the in situ production of reactive ·OH species and is presented as the most effective procedure for decontamination. The biological activity of CuONPs was evaluated against Escherichia coli Bacillus subtillis, Staphylococcus aureus, Shigella flexenari, Acinetobacter Klebsiella pneumonia, Salmonella typhi and Micrococcus luteus. The newly synthesised nanomaterials showed strong inhibition activity against Escherichia coli (45%), Bacillus subtilis (42%) and Acinetobacter species (25%). The activity of CuONPs was also investigated against different fungus species such as: Aspergillus flavus, A. niger, Candida glabrata, T. longifusus, M. Canis, C. glabrata and showed a good inhibition zone against Candida glabrata 75%, Aspergillus flavus 68%, T. longifusus 60%. The materials showed good activity against C. glaberata, A. flavus and T. longifusus. Furthermore, CuONPs were tested for antioxidant properties using 2, 2 diphenyl-1-picrylhydrazyl) (DPPH).
Collapse
|
18
|
Xu J, Song M, Fang Z, Zheng L, Huang X, Liu K. Applications and challenges of ultra-small particle size nanoparticles in tumor therapy. J Control Release 2023; 353:699-712. [PMID: 36521689 DOI: 10.1016/j.jconrel.2022.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
With the development of nanotechnology, nanomedicines are widely used in tumor therapy. However, biological barriers in the delivery of nanoparticles still limit their application in tumor therapy. As one of the most fundamental properties of nanoparticles, particle size plays a crucial role in the process of the nanoparticles delivery process. It is difficult for large size nanoparticles with fixed size to achieve satisfactory outcomes in every process. In order to overcome the poor penetration of larger size, nanoparticles with ultra-small particle size are proposed, which are more conducive to deep tumor penetration and uniform drug distribution. In this review, the latest progresses and advantages of ultra-small nanoparticles are systematically summarized, the perspectives and challenges of ultra-small nanoparticles strategy for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Mengdi Song
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Lanxi Zheng
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Xiaoya Huang
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical Science, Shanghai Ocean University, Hucheng Ring Road, Shanghai 201306, China.
| |
Collapse
|
19
|
Trivedi R, Chatterjee B, Kalave S, Pandya M. Role of Fine Silica as Amorphous Solid Dispersion Carriers for Enhancing Drug Load and Preventing Recrystallization- A Comprehensive Review. Curr Drug Deliv 2023; 20:694-707. [PMID: 35899950 DOI: 10.2174/1567201819666220721111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rishab Trivedi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Sana Kalave
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Mrugank Pandya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
20
|
Kassem S, Piletsky SS, Yesilkaya H, Gazioglu O, Habtom M, Canfarotta F, Piletska E, Spivey AC, Aboagye EO, Piletsky SA. Assessing the In Vivo Biocompatibility of Molecularly Imprinted Polymer Nanoparticles. Polymers (Basel) 2022; 14:polym14214582. [PMID: 36365575 PMCID: PMC9655879 DOI: 10.3390/polym14214582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Molecularly imprinted polymer nanoparticles (nanoMIPs) are high affinity synthetic receptors which show promise as imaging and therapeutic agents. Comprehensive analysis of the in vivo behaviour of nanoMIPs must be performed before they can be considered for clinical applications. This work reports the solid-phase synthesis of nanoMIPs and an investigation of their biodistribution, clearance and cytotoxicity in a rat model following both intravenous and oral administration. These nanoMIPs were found in each harvested tissue type, including brain tissue, implying their ability to cross the blood-brain barrier. The nanoMIPs were cleared from the body via both faeces and urine. Furthermore, we describe an immunogenicity study in mice, demonstrating that nanoMIPs specific for a cell surface protein showed moderate adjuvant properties, whilst those imprinted for a scrambled peptide showed no such behaviour. Given their ability to access all tissue types and their relatively low cytotoxicity, these results pave the way for in vivo applications of nanoMIPs.
Collapse
Affiliation(s)
- Samr Kassem
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute, Agricultural Research Centre, Giza 12618, Egypt
| | - Stanislav S. Piletsky
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London W12 0BZ, UK
- Correspondence:
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | | | - Elena Piletska
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Alan C. Spivey
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, London W12 0BZ, UK
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | | |
Collapse
|
21
|
Alsmadi MM, Al-Nemrawi NK, Obaidat R, Abu Alkahsi AE, Korshed KM, Lahlouh IK. Insights into the mapping of green synthesis conditions for ZnO nanoparticles and their toxicokinetics. Nanomedicine (Lond) 2022; 17:1281-1303. [PMID: 36254841 DOI: 10.2217/nnm-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Research on ZnO nanoparticles (NPs) has broad medical applications. However, the green synthesis of ZnO NPs involves a wide range of properties requiring optimization. ZnO NPs show toxicity at lower doses. This toxicity is a function of NP properties and pharmacokinetics. Moreover, NP toxicity and pharmacokinetics are affected by the species type and age of the animals tested. Physiologically based pharmacokinetic (PBPK) modeling offers a mechanistic platform to scrutinize the colligative effect of the interplay between these factors, which reduces the need for in vivo studies. This review provides a guide to choosing green synthesis conditions that result in minimal toxicity using a mechanistic tool, namely PBPK modeling.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Nusaiba K Al-Nemrawi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Anwar E Abu Alkahsi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Khetam M Korshed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Ishraq K Lahlouh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science & Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
22
|
Kotopoulis S, Lam C, Haugse R, Snipstad S, Murvold E, Jouleh T, Berg S, Hansen R, Popa M, Mc Cormack E, Gilja OH, Poortinga A. Formulation and characterisation of drug-loaded antibubbles for image-guided and ultrasound-triggered drug delivery. ULTRASONICS SONOCHEMISTRY 2022; 85:105986. [PMID: 35358937 PMCID: PMC8967728 DOI: 10.1016/j.ultsonch.2022.105986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 06/13/2023]
Abstract
The aim of this study was to develop high load-capacity antibubbles that can be visualized using diagnostic ultrasound and the encapsulated drug can be released and delivered using clinically translatable ultrasound. The antibubbles were developed by optimising a silica nanoparticle stabilised double emulsion template. We produced an emulsion with a mean size diameter of 4.23 ± 1.63 µm where 38.9 ± 3.1% of the droplets contained a one or more cores. Following conversion to antibubbles, the mean size decreased to 2.96 ± 1.94 µm where 99% of antibubbles were <10 µm. The antibubbles had a peak attenuation of 4.8 dB/cm at 3.0 MHz at a concentration of 200 × 103 particles/mL and showed distinct attenuation spikes at frequencies between 5.5 and 13.5 MHz. No increase in subharmonic response was observed for the antibubbles in contrast to SonoVue®. High-speed imaging revealed that antibubbles can release their cores at MIs of 0.6. In vivo imaging indicated that the antibubbles have a long half-life of 68.49 s vs. 40.02 s for SonoVue®. The antibubbles could be visualised using diagnostic ultrasound and could be disrupted at MIs of ≥0.6. The in vitro drug delivery results showed that antibubbles can significantly improve drug delivery (p < 0.0001) and deliver the drug within the antibubbles. In conclusion antibubbles are a viable concept for ultrasound guided drug delivery.
Collapse
Affiliation(s)
- Spiros Kotopoulis
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Neoety AS, Kløfta, Norway.
| | - Christina Lam
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ragnhild Haugse
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Quality and Development, Hospital Pharmacies Enterprise in Western Norway, Bergen, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Elisa Murvold
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway; KinN Therapeutics, Bergen, Norway
| | - Tæraneh Jouleh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Sigrid Berg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Rune Hansen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Mihaela Popa
- Department of Clinical Science, University of Bergen, Bergen, Norway; CCBIO, Department of Clinical Science, University of Bergen, Norway
| | - Emmet Mc Cormack
- Department of Clinical Science, University of Bergen, Bergen, Norway; KinN Therapeutics, Bergen, Norway
| | - Odd Helge Gilja
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Albert Poortinga
- Polymer Technology, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
23
|
Sharma P, Vijaykumar A, Raghavan JV, Rananaware SR, Alakesh A, Bodele J, Rehman JU, Shukla S, Wagde V, Nadig S, Chakrabarti S, Visweswariah SS, Nandi D, Gopal B, Jhunjhunwala S. Particle uptake driven phagocytosis in macrophages and neutrophils enhances bacterial clearance. J Control Release 2022; 343:131-141. [PMID: 35085696 PMCID: PMC7615985 DOI: 10.1016/j.jconrel.2022.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Humans are exposed to numerous synthetic foreign particles in the form of drug delivery systems and diagnostic agents. Specialized immune cells (phagocytes) clear these particles by phagocytosing and attempting to degrade them. The process of recognition and internalization of the particles may trigger changes in the function of phagocytes. Some of these changes, especially the ability of a particle-loaded phagocyte to take up and neutralize pathogens, remains poorly studied. Herein, we demonstrate that the uptake of non-stimulatory cargo-free particles enhances the phagocytic ability of monocytes, macrophages and neutrophils. The enhancement in phagocytic ability was independent of particle properties, such as size or the base material constituting the particle. Additionally, we show that the increased phagocytosis was not a result of cellular activation or cellular heterogeneity but was driven by changes in cell membrane fluidity and cellular compliance. A consequence of the enhanced phagocytic activity was that particulate-laden immune cells neutralize Escherichia coli (E. coli) faster in culture. Moreover, when administered in mice as a prophylactic, particulates enable faster clearance of E. coli and Staphylococcus epidermidis. Together, we demonstrate that the process of uptake induces cellular changes that favor additional phagocytic events. This study provides insights into using non-stimulatory cargo-free particles to engineer immune cell functions for applications involving faster clearance of phagocytosable abiotic and biotic material.
Collapse
Affiliation(s)
- Preeti Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Anjali Vijaykumar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | | | - Alakesh Alakesh
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Janhavi Bodele
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Junaid Ur Rehman
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shivani Shukla
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Virta Wagde
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Savitha Nadig
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Sveta Chakrabarti
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560012, India
| | | | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
24
|
Li J, Sun R, Xu H, Wang G. Integrative Metabolomics, Proteomics and Transcriptomics Analysis Reveals Liver Toxicity of Mesoporous Silica Nanoparticles. Front Pharmacol 2022; 13:835359. [PMID: 35153799 PMCID: PMC8829009 DOI: 10.3389/fphar.2022.835359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
As pharmaceutical excipients, mesoporous silica nanoparticles (MSNs) have attracted considerable concern based on potential risks to the public. The impact of MSNs on biochemical metabolism is poorly understood, and few studies have compared the effects of MSNs administered via different routes. To evaluate the hepatotoxicity of MSNs, metabolomics, proteomics and transcriptomic analyses were performed in mice after intravenous (20 mg/kg/d) or oral ad-ministration (200 mg/kg/d) of MSNs for 10 days. Intravenous injection induced significant hepatic injury based on pathological inspection and increased the levels of AST/ALT and the inflammatory factors IL-6, IL-1β and TNF-a. Omics data suggested intravenous administration of MSNs perturbed the following metabolites: succinate, hypoxanthine, GSSG, NADP+, NADPH and 6-phosphogluconic acid. In addition, increases in GPX, SOD3, G6PD, HK, and PFK at proteomic and transcriptomic levels suggested elevation of glycolysis and pentose phosphate pathway, synthesis of glutathione and nucleotides, and antioxidative pathway activity, whereas oxidative phosphorylation, TCA and mitochondrial energy metabolism were reduced. On the other hand, oral administration of MSNs disturbed inflammatory factors and metabolites of ribose-5-phosphate, 6-phosphogluconate, GSSG, and NADP+ associated with the pentose phosphate pathway, glutathione synthesis and oxidative stress albeit to a lesser extent than intravenous injection despite the administration of a ten-fold greater dose. Overall, systematic biological data suggested that intravenous injection of nanoparticles of pharmaceutical excipients substantially affected hepatic metabolism function and induced oxidative stress and inflammation, whereas oral administration exhibited milder effects compared with intravenous injection.
Collapse
Affiliation(s)
- Jing Li
- Lab of Nano-Biology Technology, School of Physics and Electronics, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Xu
- Lab of Nano-Biology Technology, School of Physics and Electronics, Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha, China.,Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
25
|
Omran B, Baek KH. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021; 26:7031. [PMID: 34834124 PMCID: PMC8624789 DOI: 10.3390/molecules26227031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
- Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Cairo 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
26
|
Application of Non-Viral Vectors in Drug Delivery and Gene Therapy. Polymers (Basel) 2021; 13:polym13193307. [PMID: 34641123 PMCID: PMC8512075 DOI: 10.3390/polym13193307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022] Open
Abstract
Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.
Collapse
|
27
|
A novel murine in vivo model for acute hereditary angioedema attacks. Sci Rep 2021; 11:15924. [PMID: 34354123 PMCID: PMC8342443 DOI: 10.1038/s41598-021-95125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/15/2021] [Indexed: 12/03/2022] Open
Abstract
Hereditary Angioedema (HAE) is a rare genetic disease generally caused by deficiency or mutations in the C1-inhibitor gene, SERPING1, a member of the Serpin family. HAE results in acute attacks of edema, vasodilation, GI pain and hypotension. C1INH is a key inhibitor of enzymes controlling complement activation, fibrinolysis and the contact system. In HAE patients, contact system activation leads to uncontrolled production of bradykinin, the vasodilator responsible for the characteristic symptoms of HAE. In this study, we present the first physiological in vivo model to mimic acute HAE attacks. We evaluate hypotension, one of the many hallmark symptoms of acute HAE attacks using Serping1 deficient mice (serping1−/−) and implanted telemetry. Attacks were induced by IV injection of a silica nanoparticle (SiNP) suspension. Blood pressure was measured in real time, in conscious and untethered mice using implanted telemetry. SiNP injection induced a rapid, reversible decrease in blood pressure, in the presence of angiotensin converting enzyme (ACE) inhibition. We also demonstrate that an HAE therapeutic, ecallantide, can prevent HAE attacks in this model. The in vivo murine model described here can facilitate the understanding of acute HAE attacks, support drug development and ultimately contribute to improved patient care.
Collapse
|
28
|
Jeong SG, Wallace L, Rim D. Contributions of Coagulation, Deposition, and Ventilation to the Removal of Airborne Nanoparticles in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9730-9739. [PMID: 34213881 DOI: 10.1021/acs.est.0c08739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Airborne nanoparticles are frequently released in occupied spaces due to episodic indoor source activities. Once generated, nanoparticles undergo aerosol transformation processes such as coagulation and deposition. These aerosol processes lead to changes in particle concentration and size distribution over time and accordingly affect human exposure to nanoparticles. The present study establishes a framework for an indoor particle dynamic model that can predict time- and size-dependent particle concentrations after episodic indoor emission events. The model was evaluated with six experimental data sets obtained from previous measurement studies in the literature. The indoor particle dynamic model quantified the relative contributions of three particle loss mechanisms (i.e., coagulation, deposition, and ventilation) to the total reduction in number concentration. The results show that particle coagulation and indoor surface deposition are two dominant processes responsible for temporal changes in particle size and concentration following indoor emission events. The first-order equivalent coagulation loss rate notably varies with indoor emission source and accounts for up to 59% of the total particle loss for burning a candle, 42% for broiling a fish, and 10% for burning incense. The results reveal that while the coagulation loss rate changes markedly with the particle concentration and source type, the deposition loss rate is more dependent on particle size. Compared to coagulation and deposition, the effect of ventilation is marginal for most of the nanoparticle emission events indoors; however, ventilation loss becomes pronounced with the decrease of particle concentration below 5 × 104 cm-3, especially for particles larger than 100 nm in aerodynamic diameter.
Collapse
Affiliation(s)
- Su-Gwang Jeong
- Department of Architectural Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Lance Wallace
- Wallace Research, Santa Rosa, California 95409, United States
| | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Park CW, Park DJ. Development of Er 3+, Yb 3+ Co-Doped Y 2O 3 NPs According to Yb 3+ Concentration by LP-PLA Method: Potential Further Biosensor. BIOSENSORS-BASEL 2021; 11:bios11050150. [PMID: 34065000 PMCID: PMC8151213 DOI: 10.3390/bios11050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022]
Abstract
As diagnostic biosensors for analyzing fluids from the human body, the development of inorganic NPs is of increasing concern. For one, nanoceramic phosphors have been studied to meet the increasing requirements for biological, imaging, and diagnostic applications. In this study, Y2O3 NPs co-doped with trivalent rare earths (erbium and ytterbium) were obtained using a liquid phase–pulsed laser ablation (LP–PLA) method after getting high density Er, Yb:Y2O3 ceramic targets by Spark plasma sintering (SPS). Most NPs are under 50 nm in diameter and show high crystallinity of cubic Y2O3 structure, containing (222), (440), and (332) planes via HR–TEM. Excitation under a 980 nm laser to a nanoparticle solution showed 525 and 565 nm green, and 660 nm red emissions. The green emission intensity increased and decreased with increasing Yb3+ additive concentration, when the red spectrum continuously strengthened. Utilizing this study’s outcome, we suggest developing technology to mark invisible biomolecules dissolved in a solvent using UC luminescence of Er3+, Yb3+ co-doped Y2O3 NPs by LP–PLA. The LP–PLA method has a potential ability for the fabrication of UC NPs for biosensors with uniform size distribution by laser parameters.
Collapse
Affiliation(s)
- Cheol-Woo Park
- College of Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA;
- Division of Advanced Materials Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Dong-Jun Park
- Department of Surgery, University of California San Diego 212, Dickinson Street, MC 8236 CTF B R310, San Diego, CA 92103, USA
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea
- Correspondence:
| |
Collapse
|
30
|
Sobska J, Waszkielewicz M, Podleśny-Drabiniok A, Olesiak-Banska J, Krężel W, Matczyszyn K. Gold Nanoclusters Display Low Immunogenic Effect in Microglia Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1066. [PMID: 33919336 PMCID: PMC8143360 DOI: 10.3390/nano11051066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles hold a great promise for both clinical and preclinical applications. The major factors impeding such applications are toxicity of new nanomaterials including e.g., pro-apoptotic activities or inflammatory effects, but also their potential to accumulate in the body or inadequate absorption, distribution, metabolism and excretion (ADME) profiles. Since such adverse effects depend on the size, form and coating of nanomaterials, the search for new, less toxic nanomaterials with low tendency to accumulate is highly active domain of research. Here, we describe optical and biological properties of Au18 gold nanoclusters (NCs), small gold nanoparticles composed of 18 atoms of gold and stabilized with glutathione ligands. These nanoclusters may be suitable for in vivo applications owing to their low toxicity and biodistribution profile. Specifically, using lactate dehydrogenase (LDH) test in P19 cell line we found that Au18 NCs display low toxicity in vitro. Importantly, using primary microglial cells we showed that at low concentrations Au18 NCs display anti-inflammatory signaling on evidence of reduced interleukin 1-β (IL1-β) levels and unchanged levels of tumor necrosis factor (TNF-α) or Ym1/2. Such effect was dose dependent as higher concentrations of Au18 NCs induced expression of pro-inflammatory cytokines and suppression of anti-inflammatory cytokine Ym1/2, pointing, thus, to global inflammatory activity. Finally, we also showed that within 3 days Au18 NCs can be completely eliminated from the liver reported as the major target organ for accumulation of gold nanoparticles. These data point to a potential of gold nanoparticles for further biomedical studies.
Collapse
Affiliation(s)
- Joanna Sobska
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, WybrzezeWyspianskiego 27, 50-370 Wroclaw, Poland; (J.S.); (J.O.-B.)
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Development and Stem Cells, 1 Rue Laurent Fries, 67404 Illkirch, France;
- Institut de la Santé et de la Recherche Médicale, U 1258, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Magdalena Waszkielewicz
- Polish Center for Technology Development—Port Lukasiewicz, Stabłowicka 147, 54-066 Wrocław, Poland;
| | - Anna Podleśny-Drabiniok
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Development and Stem Cells, 1 Rue Laurent Fries, 67404 Illkirch, France;
- Institut de la Santé et de la Recherche Médicale, U 1258, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Joanna Olesiak-Banska
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, WybrzezeWyspianskiego 27, 50-370 Wroclaw, Poland; (J.S.); (J.O.-B.)
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Development and Stem Cells, 1 Rue Laurent Fries, 67404 Illkirch, France;
- Institut de la Santé et de la Recherche Médicale, U 1258, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France
- Université de Strasbourg, 67404 Illkirch, France
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, WybrzezeWyspianskiego 27, 50-370 Wroclaw, Poland; (J.S.); (J.O.-B.)
| |
Collapse
|
31
|
Saladino GM, Vogt C, Li Y, Shaker K, Brodin B, Svenda M, Hertz HM, Toprak MS. Optical and X-ray Fluorescent Nanoparticles for Dual Mode Bioimaging. ACS NANO 2021; 15:5077-5085. [PMID: 33587608 PMCID: PMC8028327 DOI: 10.1021/acsnano.0c10127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 05/07/2023]
Abstract
Nanoparticle (NP) based contrast agents detectable via different imaging modalities (multimodal properties) provide a promising strategy for noninvasive diagnostics. Core-shell NPs combining optical and X-ray fluorescence properties as bioimaging contrast agents are presented. NPs developed earlier for X-ray fluorescence computed tomography (XFCT), based on ceramic molybdenum oxide (MoO2) and metallic rhodium (Rh) and ruthenium (Ru), are coated with a silica (SiO2) shell, using ethanolamine as the catalyst. The SiO2 coating method introduced here is demonstrated to be applicable to both metallic and ceramic NPs. Furthermore, a fluorophore (Cy5.5 dye) was conjugated to the SiO2 layer, without altering the morphological and size characteristics of the hybrid NPs, rendering them with optical fluorescence properties. The improved biocompatibility of the SiO2 coated NPs without and with Cy5.5 is demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the core-shell NPs are confirmed with confocal microscopy, allowing the intracellular localization of these NPs in vitro to be tracked and studied. In situ XFCT successfully showed the possibility of in vivo multiplexed bioimaging for multitargeting studies with minimum radiation dose. Combined optical and X-ray fluorescence properties empower these NPs as effective macroscopic and microscopic imaging tools.
Collapse
Affiliation(s)
- Giovanni M. Saladino
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Carmen Vogt
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Yuyang Li
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Kian Shaker
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Bertha Brodin
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Martin Svenda
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Hans M. Hertz
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| | - Muhammet S. Toprak
- Department of Applied Physics,
Biomedical and X-Ray Physics, KTH Royal
Institute of Technology, SE 10691 Stockholm, Sweden
| |
Collapse
|
32
|
Sanabria R. Nanotechnological Improvement of Veterinary Anthelmintics. Pharm Nanotechnol 2021; 9:5-14. [PMID: 32448112 DOI: 10.2174/2211738508666200524233724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Helminths infections are among the most important problems in animal health and husbandry. Moreover, zoonotic helminths endanger rural communities, particularly in developing countries. Helminthiasis are not only important in relation to the harmful effects of parasites; additional issues like anthelmintic resistance spread became more important over time. As new anthelmintic development takes many years and millions of dollars of investment, some strategies are currently focused on the modification of already available drugs, in order to improve their efficacy and overcome their limitations. In this field, nanotechnology has brought a novel approach, showing advantages like the regulation of the drug's delivery and kinetics, reaching of specific targets, and possibilities to avoid the systemic spread and side effects. Taking this into account, the present review aims to introduce some of the current knowledge in anthelmintic improvement based on nanotechnology, and how researchers could benefit from this technology in order to overcome the drugs limitations. Finally, some insights into potential field applications are discussed, based on the most important concerns of current anthelmintic therapy.
Collapse
Affiliation(s)
- Rodrigo Sanabria
- Instituto Tecnologico Chascomus (INTECH)-CONICET-UNSAM. Av. Marino KM 8.2, (7130), Chascomús, Argentina
| |
Collapse
|
33
|
Abdo GG, Gupta I, Kheraldine H, Rizeq B, Zagho MM, Khalil A, Elzatahry A, Al Moustafa AE. Mesoporous silica coated carbon nanofibers reduce embryotoxicity via ERK and JNK pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111910. [PMID: 33641906 DOI: 10.1016/j.msec.2021.111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
Carbon nanofibers (CNFs) have been implicated in biomedical applications, yet, they are still considered as a potential hazard. Conversely, mesoporous silica is a biocompatible compound that has been used in various biomedical applications. In this regard, we recently reported that CNFs induce significant toxicity on the early stage of embryogenesis in addition to the inhibition of its angiogenesis. Thus, we herein use mesoporous silica coating of CNFs (MCNFs) in order to explore their outcome on normal development and angiogenesis using avian embryos at 3 days and its chorioallantoic membrane (CAM) at 6 days of incubation. Our data show that mesoporous silica coating of CNFs significantly reduces embryotoxicity provoked by CNFs. However, MCNFs exhibit slight increase in angiogenesis inhibition in comparison with CNFs. Further investigation revealed that MCNFs slightly deregulate the expression patterns of key controller genes involved in cell proliferation, survival, angiogenesis, and apoptosis as compared to CNFs. We confirmed these data using avian primary normal embryonic fibroblast cells established in our lab. Regarding the molecular pathways, we found that MCNFs downregulate the expression of ERK1/ERK2, p-ERK1/ERK2 and JNK1/JNK2/JNK3, thus indicating a protective role of MCNFs via ERK and JNK pathways. Our data suggest that coating CNFs with a layer of mesoporous silica can overcome their toxicity making them suitable for use in biomedical applications. Nevertheless, further investigations are required to evaluate the effects of MCNFs and their mechanisms using different in vitro and in vivo models.
Collapse
Affiliation(s)
- Ghada G Abdo
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar; Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ishita Gupta
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hadeel Kheraldine
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Balsam Rizeq
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Moustafa M Zagho
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, United States of America.
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ahmed Elzatahry
- Department of Materials Science and Technology Program, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
34
|
Ahamed A, Liang L, Lee MY, Bobacka J, Lisak G. Too small to matter? Physicochemical transformation and toxicity of engineered nTiO 2, nSiO 2, nZnO, carbon nanotubes, and nAg. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124107. [PMID: 33035908 DOI: 10.1016/j.jhazmat.2020.124107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanomaterials (ENMs) refer to a relatively novel class of materials that are increasingly prevalent in various consumer products and industrial applications - most notably for their superlative physicochemical properties when compared with conventional materials. However, consumer products inevitably degrade over the course of their lifetime, releasing ENMs into the environment. These ENMs undergo physicochemical transformations and subsequently accumulate in the environment, possibly leading to various toxic effects. As a result, a significant number of studies have focused on identifying the possible transformations and environmental risks of ENMs, with the objective of ensuring a safe and responsible application of ENMs in consumer products. This review aims to consolidate the results from previous studies related to each stage of the pathway of ENMs from being embodied in a product to disintegration/transformation in the environment. The scope of this work was defined to include the five most prevalent ENMs based on recent projected production market data, namely: nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. The review focuses on: (i) models developed to estimate environmental concentrations of ENMs; (ii) the possible physicochemical transformations; (iii) cytotoxicity and genotoxicity effects specific to each ENM selected; and (iv) a discussion to identify potential gaps in the studies conducted and recommend areas where further investigation is warranted.
Collapse
Affiliation(s)
- Ashiq Ahamed
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku/Åbo, Finland
| | - Lili Liang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Interdisciplinary Graduate Program, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore
| | - Ming Yang Lee
- Asian School of the Environment, Nanyang Technological University, Singapore 639798, Singapore
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku/Åbo, Finland
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
35
|
AbouAitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics 2021; 13:143. [PMID: 33499150 PMCID: PMC7912645 DOI: 10.3390/pharmaceutics13020143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Natural prodrugs derived from different natural origins (e.g., medicinal plants, microbes, animals) have a long history in traditional medicine. They exhibit a broad range of pharmacological activities, including anticancer effects in vitro and in vivo. They have potential as safe, cost-effective treatments with few side effects, but are lacking in solubility, bioavailability, specific targeting and have short half-lives. These are barriers to clinical application. Nanomedicine has the potential to offer solutions to circumvent these limitations and allow the use of natural pro-drugs in cancer therapy. Mesoporous silica nanoparticles (MSNs) of various morphology have attracted considerable attention in the search for targeted drug delivery systems. MSNs are characterized by chemical stability, easy synthesis and functionalization, large surface area, tunable pore sizes and volumes, good biocompatibility, controlled drug release under different conditions, and high drug-loading capacity, enabling multifunctional purposes. In vivo pre-clinical evaluations, a significant majority of results indicate the safety profile of MSNs if they are synthesized in an optimized way. Here, we present an overview of synthesis methods, possible surface functionalization, cellular uptake, biodistribution, toxicity, loading strategies, delivery designs with controlled release, and cancer targeting and discuss the future of anticancer nanotechnology-based natural prodrug delivery systems.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), 33 El-Behouth St., Dokki 12622, Giza, Egypt
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
36
|
Mody KT, Zhang B, Li X, Fletcher NL, Akhter DT, Jarrett S, Zhang J, Yu C, Thurecht KJ, Mahony TJ, Mitter N. Characterization of the Biodistribution of a Silica Vesicle Nanovaccine Carrying a Rhipicephalus (Boophilus) microplus Protective Antigen With in vivo Live Animal Imaging. Front Bioeng Biotechnol 2021; 8:606652. [PMID: 33537291 PMCID: PMC7848120 DOI: 10.3389/fbioe.2020.606652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Development of veterinary subunit vaccines comes with a spectrum of challenges, such as the choice of adjuvant, antigen delivery vehicle, and optimization of dosing strategy. Over the years, our laboratory has largely focused on investigating silica vesicles (SVs) for developing effective veterinary vaccines for multiple targets. Rhipicephalus microplus (cattle tick) are known to have a high impact on cattle health and the livestock industry in the tropical and subtropical regions. Development of vaccine using Bm86 antigen against R. microplus has emerged as an attractive alternative to control ticks. In this study, we have investigated the biodistribution of SV in a live animal model, as well as further explored the SV ability for vaccine development. Rhodamine-labeled SV-140-C18 (Rho-SV-140-C18) vesicles were used to adsorb the Cy5-labeled R. microplus Bm86 antigen (Cy5-Bm86) to enable detection and characterization of the biodistribution of SV as well as antigen in vivo in a small animal model for up to 28 days using optical fluorescence imaging. We tracked the in vivo biodistribution of SVs and Bm86 antigen at different timepoints (days 3, 8, 13, and 28) in BALB/c mice. The biodistribution analysis by live imaging as well as by measuring the fluorescent intensity of harvested organs over the duration of the experiment (28 days) showed greater accumulation of SVs at the site of injection. The Bm86 antigen biodistribution was traced in lymph nodes, kidney, and liver, contributing to our understanding how this delivery platform successfully elicits antibody responses in the groups administered antigen in combination with SV. Selected tissues (skin, lymph nodes, spleen, kidney, liver, and lungs) were examined for any cellular abnormalities by histological analysis. No adverse effect or any other abnormalities were observed in the tissues.
Collapse
Affiliation(s)
- Karishma T Mody
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bing Zhang
- Animal Science, Queensland Department of Agriculture and Fisheries, St Lucia, QLD, Australia
| | - Xun Li
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD, Australia
| | - Dewan T Akhter
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD, Australia
| | - Sandy Jarrett
- Animal Science, Queensland Department of Agriculture and Fisheries, St Lucia, QLD, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St Lucia, QLD, Australia
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Carvalho GC, Sábio RM, de Cássia Ribeiro T, Monteiro AS, Pereira DV, Ribeiro SJL, Chorilli M. Highlights in Mesoporous Silica Nanoparticles as a Multifunctional Controlled Drug Delivery Nanoplatform for Infectious Diseases Treatment. Pharm Res 2020; 37:191. [PMID: 32895867 PMCID: PMC7476752 DOI: 10.1007/s11095-020-02917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Infectious diseases are a major global concern being responsible for high morbidity and mortality mainly due to the development and enhancement of multidrug-resistant microorganisms exposing the fragility of medicines and vaccines commonly used to these treatments. Taking into account the scarcity of effective formulation to treat infectious diseases, nanotechnology offers a vast possibility of ground-breaking platforms to design new treatment through smart nanostructures for drug delivery purposes. Among the available nanosystems, mesoporous silica nanoparticles (MSNs) stand out due their multifunctionality, biocompatibility and tunable properties make them emerging and actual nanocarriers for specific and controlled drug release. Considering the high demand for diseases prevention and treatment, this review exploits the MSNs fabrication and their behavior in biological media besides highlighting the most of strategies to explore the wide MSNs functionality as engineered, smart and effective controlled drug release nanovehicles for infectious diseases treatment. Graphical Abstract Schematic representation of multifunctional MSNs-based nanoplatforms for infectious diseases treatment.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Rafael Miguel Sábio
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14800-903, Brazil.
| | - Tais de Cássia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Andreia Sofia Monteiro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, 14800-060, Brazil
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
38
|
Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, Yang J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front Bioeng Biotechnol 2020; 8:822. [PMID: 32766232 PMCID: PMC7380248 DOI: 10.3389/fbioe.2020.00822] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thousands of different nanoparticles (NPs) involve in our daily life with various origins from food, cosmetics, drugs, etc. It is believed that decreasing the size of materials up to nanometer levels can facilitate their unfavorable absorption since they can pass the natural barriers of live tissues and organs even, they can go across the relatively impermeable membranes. The interaction of these NPs with the biological environment disturbs the natural functions of cells and its components and cause health issues. In the lack of the detailed and comprehensive standard protocols about the toxicity of NPs materials, their control, and effects, this review study focuses on the current research literature about the related factors in toxicity of NPs such as size, concentration, etc. with an emphasis on metal and metal oxide nanoparticles. The goal of the study is to highlight their potential hazard and the advancement of green non-cytotoxic nanomaterials with safe threshold dose levels to resolve the toxicity issues. This study supports the NPs design along with minimizing the adverse effects of nanoparticles especially those used in biological treatments.
Collapse
Affiliation(s)
- Shokouh Attarilar
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinfan Yang
- Department of Spine Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahmoud Ebrahimi
- National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingge Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, China
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Junlin Yang
- Department of Pediatric Orthopaedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Boey A, Ho HK. All Roads Lead to the Liver: Metal Nanoparticles and Their Implications for Liver Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000153. [PMID: 32163668 DOI: 10.1002/smll.202000153] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 05/20/2023]
Abstract
Metal nanoparticles (NPs) are frequently encountered in daily life, and concerns have been raised about their toxicity and safety. Among which, they naturally accumulate in the liver after introduction into the body, independent of the route of administration. Some NPs exhibit intrinsic pharmaceutical effects that are related to their physical parameters, and their inadvertent accumulation in the liver can exert strong effects on liver function and structure. Even as such physiological consequences are often categorically dismissed as toxic and deleterious, there are cell type-specific and NP-specific biological responses that elicit distinctive pharmacological consequences that can be harnessed for good. By limiting the scope of discussion to metallic NPs, this work attempts to provide a balanced perspective on their safety in the liver, and discusses both possible therapeutic benefits and potential accidental liver damage arising from their interaction with specific parenchymal and nonparenchymal cell types in the liver.
Collapse
Affiliation(s)
- Adrian Boey
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| |
Collapse
|
40
|
Zakaria J, Rizal Abd Shukor S, Abd Razak K. Intermolecular Interaction of Tween 80, Water and Butanol in Micelles Formation via Molecular Dynamics Simulation. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2020; 778:012091. [DOI: 10.1088/1757-899x/778/1/012091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Micelles entrapment approach is one of the methods to synthesize silica nanoparticles as carriers for drug delivery system. This method is useful in enhancing drug solubility, extend the circulation of blood half-life and possesses lower toxicity. The shape and size of the silica nanoparticles could be excellently controlled by manipulating the parameters such as the concentration of surfactants and composition during the synthesis process. In this study, water and butanol have been used as solvent and co-solvent, while Tween 80 has been used as the surfactant. The structural properties of the micellar system from binary (water and Tween 80) and ternary (water, Tween 80 and butanol) were reported in terms of radial distribution function (RDF) and radius of gyration (Rg). The molecular dynamics simulations were performed using Material Studio by applying COMPASS Force Field in the Forcite Module. The simulation box was created by using Amorphous Cell Module. Initially, the simulation for both system was executed under a constant number of moles, volume and energy (NVE) ensemble for 200 ps and followed by a constant number of moles, pressure and temperature (NPT) ensemble for 2000 ps. From RDF analysis, both systems have the same distance of 0.97Å, but different value of g(r) intensity, 12 and 6.35 respectively. Meanwhile, the Rg result shows a higher value in ternary systems compared to the binary system. These findings revealed that the presence of butanol would weaken the intermolecular interaction of hydrogen bond and increase the size of the micelle and consequently will affect the size of nanoparticles.
Collapse
|
41
|
Ferraz FS, López JL, Lacerda SMSN, Procópio MS, Figueiredo AFA, Martins EMN, Guimarães PPG, Ladeira LO, Kitten GT, Dias FF, Domingues RZ, Costa GMJ. Biotechnological approach to induce human fibroblast apoptosis using superparamagnetic iron oxide nanoparticles. J Inorg Biochem 2020; 206:111017. [PMID: 32120160 DOI: 10.1016/j.jinorgbio.2020.111017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/06/2023]
Abstract
Cancer-Associated Fibroblasts (CAFs) contribute to tumour progression and have received significant attention as a therapeutic target. These cells produce growth factors, cytokines and chemokines, stimulating cancer cell proliferation and inhibiting their apoptosis. Recent advances in drug delivery have demonstrated a significant promise of iron oxide nanoparticles in clinics as theranostic agents, mainly due to their magnetic properties. Here, we designed superparamagnetic iron oxide nanoparticles (SPIONs) to induce apoptosis of human fibroblasts. SPIONs were synthesized via co-precipitation method and coated with sodium citrate (SPION_Cit). We assessed the intracellular uptake of SPIONs by human fibroblast cells, as well as their cytotoxicity and ability to induce thermal effects under the magnetic field. The efficiency and time of nanoparticle internalization were assessed by Prussian Blue staining, flow cytometry and transmission electron microscopy. SPIONs_Cit were detected in the cytoplasm of human fibroblasts 15 min after in vitro exposure, entering into cells mainly via endocytosis. Analyses through Cell Titer Blue assay, AnnexinV-fluorescein isothiocyanate (FITC) and propidium iodide (PI) cellular staining demonstrated that concentrations below 8 × 10-2 mg/mL of SPIONs_Cit did not alter cell viability of human fibroblast. Furthermore, it was also demonstrated that SPIONs_Cit associated with alternating current magnetic field were able to induce hyperthermia and human fibroblast cell death in vitro, mainly through apoptosis (83.5%), activating caspase 8 (extrinsic apoptotic via) after a short exposure period. Collectively these findings suggest that our nanoplatform is biocompatible and can be used for therapeutic purposes in human biological systems, such as inducing apoptosis of CAFs.
Collapse
Affiliation(s)
- Fausto S Ferraz
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jorge L López
- Center for Biological and Natural Sciences, Federal University of Acre, Rio Branco, AC, Brazil
| | - Samyra M S N Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcela S Procópio
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - André F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Estefânia M N Martins
- Laboratory of Chemistry of Nanostructures, Nuclear Technology Development Center, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz O Ladeira
- Laboratory of Nanomaterials, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gregory T Kitten
- Microscopy Center, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe F Dias
- Microscopy Center, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosana Z Domingues
- Laboratory of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
42
|
Recent advances in physiologically based pharmacokinetic and pharmacodynamic models for anticancer nanomedicines. Arch Pharm Res 2020; 43:80-99. [PMID: 31975317 DOI: 10.1007/s12272-020-01209-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) have distinct pharmacokinetic (PK) properties and can potentially improve the absorption, distribution, metabolism, and elimination (ADME) of small-molecule drugs loaded therein. Owing to the unwanted toxicities of anticancer agents in healthy organs and tissues, their precise delivery to the tumor is an essential requirement. There have been numerous advancements in the development of nanomedicines for cancer therapy. Physiologically based PK (PBPK) models serve as excellent tools for describing and predicting the ADME properties and the efficacy and toxicity of drugs, in combination with pharmacodynamic (PD) models. The recent preliminary application of these modeling approaches to NPs demonstrated their potential benefits in research and development processes relevant to the ADME and pharmacodynamics of NPs and nanomedicines. Here, we comprehensively review the pharmacokinetics of NPs, the developed PBPK models for anticancer NPs, and the developed PD model for anticancer agents.
Collapse
|
43
|
Zhou H, Li Q, Cheng X, Zhang C, Sun J, Du L, Cao J, Liu Y, Huang P. A Janus upconverting nanoplatform with biodegradability for glutathione depletion, near-infrared light induced photodynamic therapy and accelerated excretion. J Mater Chem B 2020; 8:9251-9257. [PMID: 32929430 DOI: 10.1039/d0tb01357a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The major limitations of photodynamic therapy (PDT) are the poor tissue penetration of excitation light and the neutralization of reactive oxygen species (ROS) generated by overexpressed glutathione (GSH) in cancer cells.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Qunying Li
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Xi Cheng
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Chao Zhang
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Jiawei Sun
- Department of In-patient Ultrasound
- The Second Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Linyao Du
- Department of Ultrasound
- The First Affiliated Hospital of Dalian Medical University
- Dalian 116011
- China
| | - Jing Cao
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Yajing Liu
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Pintong Huang
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| |
Collapse
|
44
|
Alavian F, Shams N. Oral and Intra-nasal Administration of Nanoparticles in the Cerebral Ischemia Treatment in Animal Experiments: Considering its Advantages and Disadvantages. CURRENT CLINICAL PHARMACOLOGY 2020; 15:20-29. [PMID: 31272358 PMCID: PMC7366001 DOI: 10.2174/1574884714666190704115345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/21/2019] [Accepted: 05/17/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Over the past few decades, nanotechnology has dramatically advanced; from the precise strategies of synthesizing modern nanostructures to methods of entry into the body. Using nanotechnology in diagnosis, drug delivery, determining signaling pathways, and tissue engineering is great hope for the treatment of stroke. The drug-carrying nanoparticles are a way to increase drug absorption through the mouth or nose in treating the stroke. OBJECTIVE In this article, in addition to explaining pros and cons of oral and intra-nasal administration of nanoparticles in the brain ischemia treatment of animal models, the researchers introduce some articles in this field and briefly mentioned their work outcomes. METHODS A number of relevant published articles 183 were initially collected from three popular databases including PubMed, Google Scholar, and Scopus. The articles not closely related to the main purpose of the present work were removed from the study process. The present data set finally included 125 published articles. RESULTS Direct delivery of the drug to the animal brain through the mouth and nose has more therapeutic effects than systemic delivery of drugs. The strategy of adding drugs to the nanoparticles complex can potentially improve the direct delivery of drugs to the CNS. CONCLUSION Despite the limitations of oral and intra-nasal routes, the therapeutic potential of oral and intra-nasal administration of nano-medicines is high in cerebral ischemia treatment.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Address correspondence to this author at the Department of biology, Faculty of basic science, Farhangian University, Tehran, Iran;, Tel: +989133217068; E-mails: ;,
| | | |
Collapse
|
45
|
Deng L, Liu H, Ma Y, Miao Y, Fu X, Deng Q. Endocytosis mechanism in physiologically-based pharmacokinetic modeling of nanoparticles. Toxicol Appl Pharmacol 2019; 384:114765. [PMID: 31669777 DOI: 10.1016/j.taap.2019.114765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/14/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The physiologically based pharmacokinetic (PBPK) model is a useful tool to predict the pharmacokinetics of various types of nanoparticles (NPs). The endocytosis mechanism plays a key role in pharmacokinetics of NPs. However, the effect of endocytosis mechanism both in the blood and tissue are seldom considered in PBPK model. OBJECTIVES To investigate the biodistribution of intravenously injected pegylated AuNPs in mice and human using PBPK model considering the endocytosis mechanism both in the blood and tissue. METHODS Taking polyethylene glycol-coated gold nanoparticles (AuNPs) as an example, we developed a PBPK model to explore biodistribution of different size AuNPs. In the model, we considered the role of endocytosis mechanism both in the blood and tissue. In addition, the size-dependent permeability coefficient, excretion rate constant, phagocytic capacity, uptake rate, and release rate were derived from literatures. The mice PBPK model was extrapolated to the human by changing physiology parameters and the number of phagocytic cell (PCs). RESULTS AuNPs were primarily distributed in the blood, liver, and spleen regardless of particle size, and almost all captured by the PCs in the liver and spleen, while few was captured in the blood. There are more organ distribution and longer circulation for smaller NPs. The 24-h accumulation of AuNPs decreased with increasing size in the most organ, while the accumulation of AuNPs showed an inverted U-shaped curve in the liver and slight U-shaped curve in the blood. The human results of model-predicted displayed a similar tendency with those in mice. Size, partition coefficients, and body weight were the key factors influencing the organ distribution of AuNPs. CONCLUSIONS The size played an important role on the distribution and accumulation of AuNPs in various tissues. Our PBPK model was well predicted the NPs distribution in mice and human. A better understanding of these mechanisms could provide effective guides for nanomedine delivery.
Collapse
Affiliation(s)
- Linjing Deng
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hui Liu
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yongsheng Ma
- XiangYa School of Public Health, Central South University, Changsha 410008, China
| | - Yufeng Miao
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoli Fu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qihong Deng
- School of Energy Science and Engineering, Central South University, Changsha 410083, Hunan, China; XiangYa School of Public Health, Central South University, Changsha 410008, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; School of Architecture and Art, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
46
|
Hadipour Moghaddam SP, Mohammadpour R, Ghandehari H. RETRACTED: In vitro and in vivo evaluation of degradation, toxicity, biodistribution, and clearance of silica nanoparticles as a function of size, porosity, density, and composition. J Control Release 2019; 311-312:1-15. [PMID: 31465825 PMCID: PMC6874921 DOI: 10.1016/j.jconrel.2019.08.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/19/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the corresponding author. Subsequent to the publication of the article Journal of Controlled Release 311–312 (2019) 1–15, in follow up studies in 2021, the corresponding author's lab members noticed significant discrepancies in reproducibility of some of the results reported in this manuscript. A detailed investigation in the lab was launched, and by retrieving the raw data available at the core facility pertaining to this manuscript, the following discrepancies were discovered that provide the basis for this retraction. These discrepancies have been reported to the University of Utah Research Integrity and Compliance Office by the corresponding author. The co-authors have been made aware of these discrepancies and of the decision of the corresponding author to retract. The corresponding author believes that the subject matter of this article, detailed analysis of the degradation of silica nanoparticles as a function of their physicochemical properties in relevant biological media in vitro, and in vivo, is significant. For successful utility of these particles in drug delivery applications their detailed biological fate needs to be examined. The significant discrepancies and lack of reproducibility of the reported data however is very unfortunate and the author hopes that this does not cast a doubt on the need for more detailed examination of the biological fate of silica nanoparticles in the future for their successful application in controlled release. In Vitro Data (Fig. 3) • Actual dissolution reaction volume was 2.5mL (confirmed by reviewing the lab notebook of the first author during the investigation) vs 3.5mL reported in the manuscript. • Sample volume was not used in the calculation to convert Inductively Coupled Plasma Mass Spectrometry (ICPMS) data to mg of silicon retrieved which is needed to calculate % degradation (needed to multiply data by 0.1 due to 0.1mL sample volumes). • Our investigation revealed a 20% “matrix effect with fluids” was communicated by ICPMS core facility person to the first author that was not addressed in the manuscript. • All data is different when calculating % degradation, not just by a factor of 10 due to not calculating for the 100ml sample volume. • Raw data during our investigation after publication, obtained from ICPMS facility, and not noted in the lab notebook, for day 28 of simulated lysosomal fluid (SLF) reveals n=1 and no data points for Stober100. In the manuscript however, error bars are shown for all particles at this time point and for the data for Stober100. Intracellular Degradation (Fig. 5) • Extremely high background with control causing negative % degradation for Disulfide Meso 100 from retrieved ICPMS data from core facility after publication, but manuscript shows ~1.25% degradation. • All other calculated % degradation based on retrieved data from ICPMS facility during the investigation after publication, do not match reported data in the paper. • Paper claims n=6, but raw data received from ICPMS facility during investigation (after publication) is clearly n=3. In Vivo Degradation (Fig. 6) ICPMS data retrieved during the investigation after publication for control mice showed extremely high background, and probably were not used in the calculations reported in this manuscript because it would have led to negative silicon contents for a few samples. Urine ICPMS data from the core facility was not available during investigation after publication, and cannot be retrieved from the first author's lab notebook. Hence its validity cannot be ascertained. There may be other discrepancies in the manuscript that have gone unnoticed. However, the Editor-in-Chief agrees that the above is significant enough to warrant retraction of the manuscript.
Collapse
Affiliation(s)
- Seyyed Pouya Hadipour Moghaddam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | - Raziye Mohammadpour
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA; Department of Bioemedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
47
|
Bretin L, Pinon A, Bouramtane S, Ouk C, Richard L, Perrin ML, Chaunavel A, Carrion C, Bregier F, Sol V, Chaleix V, Leger DY, Liagre B. Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11101474. [PMID: 31575052 PMCID: PMC6826978 DOI: 10.3390/cancers11101474] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) using porphyrins has been approved for treatment of several solid tumors due to the generation of cytotoxic reactive oxygen species (ROS). However, low physiological solubility and lack of selectivity towards tumor sites are the main limitations of their clinical use. Nanoparticles are able to spontaneously accumulate in solid tumors through an enhanced permeability and retention (EPR) effect due to leaky vasculature, poor lymphatic drainage, and increased vessel permeability. Herein, we proved the added value of nanoparticle vectorization on anticancer efficacy and tumor-targeting by 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (TPPOH). Using 80 nm silica nanoparticles (SNPs) coated with xylan-TPPOH conjugate (TPPOH-X), we first showed very significant phototoxic effects of TPPOH-X SNPs mediated by post-PDT ROS generation and stronger cell uptake in human colorectal cancer cell lines compared to free TPPOH. Additionally, we demonstrated apoptotic cell death induced by TPPOH-X SNPs-PDT and the interest of autophagy inhibition to increase anticancer efficacy. Finally, we highlighted in vivo, without toxicity, elevated anticancer efficacy of TPPOH-X SNPs through improvement of tumor-targeting compared to a free TPPOH protocol. Our work demonstrated for the first time the strong anticancer efficacy of TPPOH in vitro and in vivo and the merit of SNPs vectorization.
Collapse
Affiliation(s)
- Ludovic Bretin
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Aline Pinon
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Soukaina Bouramtane
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Catherine Ouk
- BISCEm Pôle Cytométrie en flux/Microscopie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Laurence Richard
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire de Limoges 2, Avenue Martin Luther King, 87042 Limoges Cedex, France.
| | - Marie-Laure Perrin
- Laboratoire Bio EM XLIM UMR CNRS 7252, Faculté de Médecine, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Alain Chaunavel
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire de Limoges 2, Avenue Martin Luther King, 87042 Limoges Cedex, France.
| | - Claire Carrion
- BISCEm Pôle Cytométrie en flux/Microscopie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Frédérique Bregier
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Vincent Sol
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Vincent Chaleix
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - David Yannick Leger
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Bertrand Liagre
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| |
Collapse
|
48
|
Kim M, Lee J, Nam J. Plasmonic Photothermal Nanoparticles for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900471. [PMID: 31508273 PMCID: PMC6724476 DOI: 10.1002/advs.201900471] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/19/2019] [Indexed: 05/02/2023]
Abstract
Recent advances of plasmonic nanoparticles include fascinating developments in the fields of energy, catalyst chemistry, optics, biotechnology, and medicine. The plasmonic photothermal properties of metallic nanoparticles are of enormous interest in biomedical fields because of their strong and tunable optical response and the capability to manipulate the photothermal effect by an external light source. To date, most biomedical applications using photothermal nanoparticles have focused on photothermal therapy; however, to fully realize the potential of these particles for clinical and other applications, the fundamental properties of photothermal nanoparticles need to be better understood and controlled, and the photothermal effect-based diagnosis, treatment, and theranostics should be thoroughly explored. This Progress Report summarizes recent advances in the understanding and applications of plasmonic photothermal nanoparticles, particularly for sensing, imaging, therapy, and drug delivery, and discusses the future directions of these fields.
Collapse
Affiliation(s)
- Minho Kim
- Department of ChemistrySeoul National UniversitySeoul08826South Korea
| | - Jung‐Hoon Lee
- Department of ChemistryCity University of Hong KongHong Kong SAR, P. R. China
| | - Jwa‐Min Nam
- Department of ChemistrySeoul National UniversitySeoul08826South Korea
| |
Collapse
|
49
|
Mortensen NP, Johnson LM, Grieger KD, Ambroso JL, Fennell TR. Biological interactions between nanomaterials and placental development and function following oral exposure. Reprod Toxicol 2019; 90:150-165. [PMID: 31476381 DOI: 10.1016/j.reprotox.2019.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
We summarize the literature involving the deposition of nanomaterials within the placenta following oral exposure and the biological interactions between nanomaterials and placental development and function. The review focuses on the oral exposure of metal and metal oxide engineered nanomaterials (ENMs), carbon-based ENMs, and nanoplastics in animal models, with a minor discussion of intravenous injections. Although the literature suggests that the placenta is an efficient barrier in preventing nanomaterials from reaching the fetus, nanomaterials that accumulate in the placenta may interfere with its development and function. Furthermore, some studies have demonstrated a decrease in placental weight and association with adverse fetal health outcomes following oral exposure to nanomaterials. Since nanomaterials are increasingly used in food, food packaging, and have been discovered in drinking water, the risk for adverse impacts on placental development and functions, with secondary effects on embryo-fetal development, following unintentional maternal ingestion of nanomaterials requires further investigation.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA.
| | - Leah M Johnson
- Engineered Systems, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| | - Khara D Grieger
- Health and Environmental Risk Analysis Program, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA; Genetic Engineering and Society Center, North Carolina State University, 1070 Partners Way, Raleigh, NC, 27695, USA
| | - Jeffrey L Ambroso
- Center for Global Health, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| |
Collapse
|
50
|
Schreiver I, Hesse B, Seim C, Castillo-Michel H, Anklamm L, Villanova J, Dreiack N, Lagrange A, Penning R, De Cuyper C, Tucoulou R, Bäumler W, Cotte M, Luch A. Distribution of nickel and chromium containing particles from tattoo needle wear in humans and its possible impact on allergic reactions. Part Fibre Toxicol 2019; 16:33. [PMID: 31451117 PMCID: PMC6710876 DOI: 10.1186/s12989-019-0317-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/09/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Allergic reactions to tattoos are amongst the most common side effects occurring with this permanent deposition of pigments into the dermal skin layer. The characterization of such pigments and their distribution has been investigated in recent decades. The health impact of tattoo equipment on the extensive number of people with inked skin has been the focus of neither research nor medical diagnostics. Although tattoo needles contain high amounts of sensitizing elements like nickel (Ni) and chromium (Cr), their influence on metal deposition in skin has never been investigated. RESULTS Here, we report the deposition of nano- and micrometer sized tattoo needle wear particles in human skin that translocate to lymph nodes. Usually tattoo needles contain nickel (6-8%) and chromium (15-20%) both of which prompt a high rate of sensitization in the general population. As verified in pig skin, wear significantly increased upon tattooing with the suspected abrasive titanium dioxide white when compared to carbon black pigment. Additionally, scanning electron microscopy of the tattoo needle revealed a high wear after tattooing with ink containing titanium dioxide. The investigation of a skin biopsy obtained from a nickel sensitized patient with type IV allergy toward a tattoo showed both wear particles and iron pigments contaminated with nickel. CONCLUSION Previously, the virtually inevitable nickel contamination of iron pigments was suspected to be responsible for nickel-driven tattoo allergies. The evidence from our study clearly points to an additional entry of nickel to both skin and lymph nodes originating from tattoo needle wear with an as yet to be assessed impact on tattoo allergy formation and systemic sensitization.
Collapse
Affiliation(s)
- Ines Schreiver
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Bernhard Hesse
- The European Synchrotron, CS 40220, 38043, Grenoble Cedex 9, France
- Xploraytion GmbH, Bismarckstrasse 10-12, 10625, Berlin, Germany
| | - Christian Seim
- Xploraytion GmbH, Bismarckstrasse 10-12, 10625, Berlin, Germany
- Department of X-ray Spectrometry, Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587, Berlin, Germany
- Institute for Optics and Atomic Physics, Technical University Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | | | - Lars Anklamm
- Helmut Fischer GmbH Institut für Elektronik und Messtechnik, Industriestrasse 21, 71069, Sindelfingen, Germany
| | - Julie Villanova
- The European Synchrotron, CS 40220, 38043, Grenoble Cedex 9, France
| | - Nadine Dreiack
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Adrien Lagrange
- Xploraytion GmbH, Bismarckstrasse 10-12, 10625, Berlin, Germany
- Institute of Materials Science and Technologies, Technical University Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Randolph Penning
- Institute of Forensic Medicine, Ludwig-Maximilians University, Nussbaumstrasse 26, 80336, Munich, Germany
| | | | - Remi Tucoulou
- The European Synchrotron, CS 40220, 38043, Grenoble Cedex 9, France
| | - Wolfgang Bäumler
- Department of Dermatology, University of Regensburg, Franz Josef Strauß Allee 11, 93042, Regensburg, Germany
| | - Marine Cotte
- The European Synchrotron, CS 40220, 38043, Grenoble Cedex 9, France
- Laboratory of Molecular and Structural Archaeology (LAMS), Sorbonne University, CNRS, UMR8220, Paris, France
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|