1
|
Fowler CH, Reuben A, Stapleton HM, Hoffman K, Herkert N, Barakat L, Gaffrey MS. Children's exposure to chemical contaminants: Demographic disparities and associations with the developing basal ganglia. ENVIRONMENTAL RESEARCH 2024; 263:119990. [PMID: 39304016 DOI: 10.1016/j.envres.2024.119990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Children are regularly exposed to chemical contaminants that may influence brain development. However, relatively little is known about how these contaminants impact the developing human brain. Here, we combined silicone wristband exposure assessments with neuroimaging for the first time to examine how chemical contaminant mixtures are associated with the developing basal ganglia-a brain region key for the healthy development of emotion, reward, and motor processing, and which may be particularly susceptible to contaminant harm. Further, we examined demographic disparities in exposures to clarify which children were at highest risk for any contaminant-associated neurobiological changes. Participants included 62 community children (average age 7.00 years, 53% female, 66% White) who underwent structural neuroimaging to provide data on their basal ganglia structure and wore a silicone wristband for seven days to track their chemical contaminant exposure. 45 chemical contaminants-including phthalates and their alternatives, brominated flame retardants, organophosphate esters, pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls-were detected in over 75% of wristbands. Notable demographic disparities in exposure were present, such that Non-White and lower-income children were more exposed to several contaminants. Exposure to chemical contaminant mixtures was not associated with overall basal ganglia volume; however, two organophosphate esters (2IPPDPP and 4IPPDPP) were both associated with a larger globus pallidus, a basal ganglia sub-region. Results highlight demographic disparities in exposure and suggest possible risks to a brain region key for healthy emotional development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lubna Barakat
- University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Michael S Gaffrey
- Duke University, Durham, NC, 27708, USA; Children's Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
2
|
Mogus JP, Marin M, Arowolo O, Salemme V, Suvorov A. Developmental exposures to common environmental pollutants result in long-term Reprogramming of hypothalamic-pituitary axis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124890. [PMID: 39236844 DOI: 10.1016/j.envpol.2024.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Humans are exposed to a range of endocrine disrupting chemicals (EDCs). Many studies demonstrate that exposures to EDCs during critical windows of development can permanently affect endocrine health outcomes. Most experimental studies address changes in secretion of hormones produced by gonads, thyroid gland and adrenals, and little is known about the ability of EDCs to produce long-term changes in the hypothalamic-pituitary (HP) control axes. Here, we examined the long-term effects of three common EDCs on male mouse HP gene expression, following developmental exposures. Pregnant mice were exposed to 0.2 mg/ml solutions of bisphenol S (BPS), 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), or 3,3',5,5'-tetrabromobisphenol A (TBBPA) from pregnancy day 8 through lactation day 21 (weaning day). Male offspring were left untreated until postnatal day 140, where pituitaries and hypothalami were collected. Pituitaries were assed for gene expression via RNA sequencing, while specific genes were assessed for expression in hypothalami via RT-qPCR. Differential expression, as well as gene enrichment and pathway analysis, indicated that all three chemicals induced long-term changes, (mostly suppression) in pituitary genes involved in its endocrine function. BPS and BDE-47 produced effects overlapping significantly at the level of effected genes and pathways. All three chemicals altered pathways of gonad and liver HP axes, while BPS altered HP-adrenal and BDE-47 altered HP-thyroid pathways specifically. All three chemicals reduced expression of immune genes in the pituitaries. Targeted gene expression in the hypothalamus indicates down regulation of hypothalamic endocrine control genes by BPS and BDE-47 groups, concordant with changes in the pituitary, suggesting that these chemicals suppress overall HP endocrine function. Interestingly, all three chemicals altered pituitary genes of GPCR-mediated intracellular signaling molecules, key signalers common to many pituitary responses to hormones. The results of this study show that developmental exposures to common EDCs have long-term impacts on hormonal feedback control at the hypothalamic-pituitary level.
Collapse
Affiliation(s)
- Joshua P Mogus
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Marjorie Marin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Olatunbosun Arowolo
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA; Currently at Department of Pharmacology, Molecular, Cellular and Integrative Physiology Group, University of California - Davis, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
3
|
Lv JJ, Zhang YC, Li XY, Zhang LJ, Yixi ZM, Yang CH, Wang XH. The association between brominated flame retardants exposure with Parkinson's disease in US adults: a cross-sectional study of the National Health and Nutrition Examination Survey 2009-2016. Front Public Health 2024; 12:1451686. [PMID: 39498114 PMCID: PMC11532090 DOI: 10.3389/fpubh.2024.1451686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Background Increasing evidence suggests that environmental factors play a crucial role in the pathogenesis of Parkinson's disease (PD). Humans are simultaneously exposed to multiple brominated flame retardants (BFRs) in the environment. However, the relationship between BFRs and PD remains unclear. This study was designed to investigate the overall association between BFRs and PD in a nationally representative US population and to further identify significant chemicals. Methods This study used data from 7,161 NHANES participants from 2009 through 2016. The serum BFRs registry included PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-153, PBDE-154, PBDE-183, PBDE-209, and PBB-153. A survey-weighted generalized logistic regression model with restricted cubic splines (RCS) was used to evaluate the association between single BFRs exposure and periodontitis. Meanwhile, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to evaluate the overall association of mixed frankincense powder with periodontitis and to identify significant chemicals. Sensitivity analysis was performed to evaluate the robustness of the results. Results Among the 7,161 participants, 65 had PD. PD patients were older (mean age 57.79 vs. 46.57 years) and had a higher proportion of females (70.86%) compared to non-PD participants. Serum levels of PBB-153 were significantly higher in those with PD. Logistic regression analyses revealed a non-linear, inverted U-shaped relationship between serum PBB-153 and PD risk. The risk of PD increased with higher PBB-153 levels up to the 3rd quartile (Q3), beyond which the risk declined (Q3 vs. Q1: OR = 4.98, 95% CI = 1.79-13.86; Q4 vs. Q1: OR = 3.23, 95% CI = 1.03-10.08). PBB-153 (43.40%), PBDE-153 (24.75%), and PBDE-85 (19.51%) contributed most to the weighted quantile sum index associated with PD risk. Bayesian kernel machine regression confirmed the inverted U-shaped dose-response pattern for PBB-153 and the overall BFR mixture. Restricted cubic spline analyses corroborated the non-linear relationship between PBB-153 and PD, which was more pronounced among women and those aged 37-58 years. Sensitivity analyses substantiated these findings. Conclusion This nationally representative cross-sectional study revealed a novel non-linear, inverted U-shaped relationship between serum levels of the brominated flame retardant PBB-153 and Parkinson's disease risk in U.S. adults. The risk increased with higher PBB-153 exposure up to a point, beyond which it declined. This complex dose-response pattern highlights the importance of considering potential hormetic mechanisms and effect modifiers when evaluating environmental exposures and neurodegenerative diseases. Further research is warranted to elucidate the underlying biological pathways and inform risk mitigation strategies.
Collapse
Affiliation(s)
- Jia-jie Lv
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-chi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-yu Li
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin-jie Zhang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo-ma Yixi
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-hao Yang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu-hui Wang
- Department of Vascular Surgery, Shanghai Putuo People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Wager JL, Thompson JA. Development and child health in a world of synthetic chemicals. Pediatr Res 2024:10.1038/s41390-024-03547-z. [PMID: 39277650 DOI: 10.1038/s41390-024-03547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
Chemical pollution is one of today's most significant threats to the developmental potential of children worldwide. Maternal exposure to toxicants can perturb sensitive windows of fetal development, indirectly through promoting antenatal disorders, abnormal placental adaptation, or directly through maternal-fetal transport. Current evidence clearly shows that persistent organic chemicals promote hypertensive disorders of pregnancy, placental abnormalities, and fetal growth restriction, whereas findings are less consistent for phthalates and bisphenols. Prospective birth cohorts strongly support a link between adverse neurodevelopmental outcomes and prenatal exposure to flame retardants and organophosphate pesticides. Emerging evidence reveals a potential association between in utero exposure to bisphenols and childhood behavioral disorders, while childhood metabolic health is more consistently associated with postnatal exposure to phthalates and bisphenols. IMPACT: Synthesizes emerging evidence linking modern forms of chemical pollution to antenatal disorders, fetal growth restriction and childhood disorders. Highlights potential developmental impacts of emerging pollutants of concern now ubiquitous in our environment but without regulatory restrictions.
Collapse
Affiliation(s)
- Jessica L Wager
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Libin Cardiovascular Institute, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada.
| |
Collapse
|
5
|
Pan Y, Chen Q, Yu Y, Yang H, Liu Z, Xie B, Huang Y, He B, Yan F, Chen F, Li Y. Association between brominated flame retardants (BFRs) and periodontitis: Results from a large population-based study. BMC Oral Health 2024; 24:1025. [PMID: 39215278 PMCID: PMC11365261 DOI: 10.1186/s12903-024-04796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Brominated flame retardants (BFRs) are widely utilized to mitigate the flammability of various materials. Previous studies have revealed the impact of BFRs exposure on hormonal disruption and bone metabolism which are closely related to periodontitis. However, it remains unknown the potential relationship between BFRs and periodontitis. This study aimed to explore the association between BFRs exposure and periodontitis in US adults. METHODS The data analyzed in this study were obtained from the National Health and Nutrition Examination Survey (NHANES) 2009-2014. Twelve serum BFRs were quantified using isotope dilution gas chromatography high-resolution mass spectrometry. Univariable and multivariable logistic regression was employed to evaluate the association between serum BFRs and periodontitis. Bayesian kernel machine regression (BKMR) analyses were utilized to assess the association between mixtures of BFRs and periodontitis. RESULTS A total of 3311 eligible participants were included. Serum BFRs (PBDE-47, PBDE-99, and PBDE-154) were significantly associated with periodontitis, and the odds ratios (ORs) and corresponding 95% confidence intervals(CIs) were 1.15(1.01,1.29), 1.10(1.01,1.20), and 1.12(1.01,1.25), respectively. Notably, these three BFRs were also significantly associated with the severity of periodontitis. Additionally, the BKMR model revealed a significant association between the mixture of all twelve BFRs and periodontitis. CONCLUSIONS This preliminary study suggests a significant association between specific serum BFRs (PBDE-47, PBDE-99, and PBDE-154) and periodontitis and its severity. Further prospective and experimental studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Yanhong Pan
- Operating Theatre, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qiansi Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yiming Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Han Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zilin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Bingqin Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yu Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Fa Chen
- Clinical Research Unit, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| | - Yanfen Li
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Wang Y, Li X, Qu T, Huang F, Xu J, Gao H, Zhang S. Defective ferritinophagy and imbalanced iron metabolism in PBDE-47-triggered neuronal ferroptosis and salvage by Canolol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173118. [PMID: 38750757 DOI: 10.1016/j.scitotenv.2024.173118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The brominated flame retardant 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is a ubiquitous environmental pollutant that causes neurotoxicity. However, incomplete understanding of the underlying mechanisms has hampered the development of effective intervention strategies. Oxidative stress and related cell death are the modes of action for PBDE-47 neurotoxicity, which are also the characteristics of ferroptosis. Nonetheless, the role of ferroptosis in PBDE-47-induced neurotoxicity remains unclear. In the present study, we found that PBDE-47 triggered ferroptosis in neuron-like PC12 cells, as evidenced by intracellular iron overload, lipid peroxidation, and mitochondrial damage. This was confirmed by ferroptosis inhibitors including the lipid reactive oxygen species scavenger ferrostatin-1 and iron chelator deferoxamine mesylate. Mechanistically, PBDE-47 impaired ferritinophagy by disrupting nuclear receptor coactivator 4-mediated lysosomal degradation of the iron storage protein ferritin. Moreover, PBDE-47 disturbed iron metabolism by increasing cellular iron import via upregulation of transferrin receptor 1 and decreasing cellular iron export via downregulation of ferroportin 1 (FPN1). Intriguingly, rescuing lysosomal function by overexpressing cathepsin B (CatB) mitigated PBDE-47-induced ferroptosis by partially restoring dysfunctional ferritinophagy and enhancing iron excretion via the upregulation of FPN1. However, FPN1 knockdown reversed the beneficial effects of CatB overexpression on the PBDE-47-induced iron overload. Finally, network pharmacology integrated with experimental validation revealed that Canolol, the main phenolic compound in canola oil, protected against PBDE-47-evoked iron overload, resulting in ferroptosis by restoring defective ferritinophagy and improving abnormal iron metabolism via lowering iron uptake and facilitating iron excretion. Overall, these data suggest that ferroptosis is a novel mechanism of PBDE-47-induced neuronal death and that manipulation of ferritinophagy and iron metabolism via Canolol represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Xiaoning Li
- Department of preventive medicine services, Wuhan Center for Disease Control and Prevention, 288 Machang Road, Wuhan, Hubei, China
| | - Tengjiao Qu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China; Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China.
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Shun Zhang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Cecil KM, Xu Y, Chen A, Khoury J, Altaye M, Braun JM, Sjodin A, Lanphear BP, Newman N, Strawn JR, Vuong AM, Yolton K. Gestational PBDE concentrations, persistent externalizing, and emerging internalizing behaviors in adolescents: The HOME study. ENVIRONMENTAL RESEARCH 2024; 252:118981. [PMID: 38663667 PMCID: PMC11152989 DOI: 10.1016/j.envres.2024.118981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental chemicals used as flame retardants in commercial and consumer products. Gestational PBDE concentrations are associated with adverse behaviors in children; however, the persistence of these associations into adolescence remains understudied. OBJECTIVE We estimated the association of gestational PBDE serum concentrations with early adolescent self- and caregiver-reported behaviors at age 12 years and determined the consistency with previously observed associations in childhood with caregiver-reported behaviors in a prospective pregnancy and birth cohort. METHODS We measured maternal serum concentrations of five individual PBDE congeners and created a summary exposure variable (∑5BDE: 28, -47, -99, -100 and -153) during pregnancy. At age 12 years, we assessed behaviors for 237 adolescents using self- and caregiver-reports with the Behavioral Assessment System for Children-3 (BASC3). We used multivariable linear regression models to estimate covariate-adjusted associations of lipid standardized, log10-transformed gestational PBDE concentrations with BASC3 scores. We obtained estimates and 95% confidence intervals through a bootstrapping approach. We evaluated potential effect measure modification (EMM) of adolescent sex by examining sex-stratified regression models and estimating the EMM p-values. RESULTS Gestational PBDE concentrations were positively associated with adolescent-reported BASC3 composite indices for inattention & hyperactivity (BDE-28, -47, -99, -100, ∑5BDE), internalizing problems (BDE-28, -47, -99), functional impairment (BDE-28, ∑5BDE), and emotional symptoms (BDE-28). Gestational PBDE concentrations were positively associated with caregiver-reported BASC3 composite indices for externalizing problems (BDE-28, -47, -99, -100, -153, ∑5BDE) and behavioral symptoms (BDE-99). For caregiver reported behaviors, we observed stronger associations with gestational BDE concentrations among males, especially for executive functioning (BDE-28, -47, -99, -100, ∑5BDE). DISCUSSION Gestational PBDE serum concentrations were associated with self-reported internalizing and externalizing behavior problems in early adolescence. Caregiver-reported externalizing behaviors recognized during childhood remain associated with gestational PBDE concentrations and persist into early adolescence. Internalizing behaviors were less recognized by caregivers.
Collapse
Affiliation(s)
- Kim M Cecil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jane Khoury
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Andreas Sjodin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bruce P Lanphear
- Department of Health Sciences, Simon Fraser University, Burnaby BC, Canada
| | - Nicholas Newman
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
8
|
Yesildemir O, Celik MN. Association between pre- and postnatal exposure to endocrine-disrupting chemicals and birth and neurodevelopmental outcomes: an extensive review. Clin Exp Pediatr 2024; 67:328-346. [PMID: 37986566 PMCID: PMC11222910 DOI: 10.3345/cep.2023.00941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 11/22/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic chemicals that mimic, block, or interfere with the hormones in the body. The most common and well- studied EDCs are bisphenol A, phthalates, and persistent organic pollutants including polychlorinated biphenyls, polybrominated diphenyl ethers, per- and polyfluoroalkyl substances, other brominated flame retardants, organochlorine pesticides, dioxins, and furans. Starting in embryonic life, humans are constantly exposed to EDCs through air, diet, skin, and water. Fetuses and newborns undergo crucial developmental processes that allow adaptation to the environment throughout life. As developing organisms, they are extremely sensitive to low doses of EDCs. Many EDCs can cross the placental barrier and reach the developing fetal organs. In addition, newborns can be exposed to EDCs through breastfeeding or formula feeding. Pre- and postnatal exposure to EDCs may increase the risk of childhood diseases by disrupting the hormone-mediated processes critical for growth and development during gestation and infancy. This review discusses evidence of the relationship between pre- and postnatal exposure to several EDCs, childbirth, and neurodevelopmental outcomes. Available evidence suggests that pre- and postnatal exposure to certain EDCs causes fetal growth restriction, preterm birth, low birth weight, and neurodevelopmental problems through various mechanisms of action. Given the adverse effects of EDCs on child development, further studies are required to clarify the overall associations.
Collapse
Affiliation(s)
- Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Mensure Nur Celik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
9
|
Tian Z, Li J, Tang H, Liu W, Hou H, Wang C, Li D, Chen G, Xia T, Wang A. ZLN005 alleviates PBDE-47 induced impairment of mitochondrial translation and neurotoxicity through PGC-1α/ERRα axis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134331. [PMID: 38677116 DOI: 10.1016/j.jhazmat.2024.134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Recent studies are identified the mitochondria as critical targets of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) induced neurotoxicity. This study aimed at examining the impact of PBDE-47 exposure on mitochondrial translation, and its subsequent effect on PBDE-47 neurotoxicity. The Sprague-Dawley (SD) rat model and neuroendocrine pheochromocytoma (PC12) cells were adopted for the measurements of mitochondrial ATP levels, mitochondrial translation products, and expressions of important mitochondrial regulators, such as required meiotic nuclear division 1 (RMND1), estrogen-related receptor α (ERRα), and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α). To delve into the role of PGC-1α/ERRα axis in mitochondrial translation, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) was employed. Both cellular and animal model results shown that PBDE-47 impeded PGC-1α/ERRα axis and mitochondrial translation. PBDE-47 suppressed mitochondrial function in rat hippocampus and PC12 cells by decreasing relative mitochondrial DNA (mtDNA) content, mitochondrial translation products, and mitochondrial ATP levels. Particularly, ZLN005 reversed PBDE-47 neurotoxicity by enhancing mitochondrial translation through activation of PGC-1α/ERRα axis, yet suppressing PGC-1α with siRNA attenuates its neuroprotective effect in vitro. In conclusion, this work highlights the importance of mitochondrial translation in PBDE-47 neurotoxicity by presenting results from cellular and animal models and suggests a potential therapeutic approach through activation of PGC-1α/ERRα axis. ENVIRONMENTAL IMPLICATION: PBDEs have attracted extensive attention because of their high lipophilicity, persistence, and detection levels in various environmental media. Increasing evidence has shown that neurodevelopmental disorders in children are associated with PBDE exposure. Several studies have also found that perinatal PBDE exposure can cause long-lasting neurobehavioral abnormalities in experimental animals. Our recent studies have also demonstrated the impact of PBDE-47 exposure on mitochondrial biogenesis and dynamics, leading to memory and neurobehavioral deficits. Therefore, we explore whether the pathological mechanism of PBDE-47-induced neurotoxicity involves the regulation of mitochondrial translation through the PGC-1α/ERRα axis.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huayang Tang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenhui Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Haoqi Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenxi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gaoshuai Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Patnam N, Chevula K, Chennamsetti P, Aleti B, Kotha AK, Manga V. Synthesis, antidiabetic activity and molecular docking studies of novel aryl benzylidenethiazolidine-2,4-dione based 1,2,3-triazoles. Mol Divers 2024; 28:1551-1563. [PMID: 37326778 DOI: 10.1007/s11030-023-10674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
A series of novel aryl benzylidenethiazolidine-2,4-dione based 1,2,3-triazoles synthesized in a straightforward route consisting of benzylidenethiazolidine-2,4-dione and 1,2,3-triazole pharmacophores. The new scaffolds tested for in vitro antidiabetic activity by inhibition of aldose reductase enzyme and its inhibition measured in half of Inhibition Concentration (IC50). The activity results correlated with standard reference Sorbinil (IC50: 3.45 ± 0.25 µM). Among all the titled compounds 8f (1.42 ± 0.21 µM), 8d (1.85 ± 0.39 µM), 13a (1.94 ± 0.27 µM) and 8b (1.98 ± 0.58 µM) shown potent activity. In addition, molecular docking results against the crystal structure of aldose reductase (PDB ID: 1PWM) revealed that the binding affinities shown by all synthesized compounds are higher than the reference compound Sorbinil. The docking scores, H-bond interactions, and hydrophobic interactions well defined inhibition strength of all compounds.
Collapse
Affiliation(s)
- Nagesh Patnam
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Kishan Chevula
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Prasad Chennamsetti
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Balaswamy Aleti
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India
| | - Aruna Kumari Kotha
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, Telangana, 500059, India
| | - Vijjulatha Manga
- Molecular Modelling and Medicinal Chemistry Laboratory, Department of Chemistry, Osmania University, Hyderabad, Telangana, 500007, India.
- Telangana Mahila Viswavidyalayam, Hyderabad, Telangana, 500095, India.
| |
Collapse
|
11
|
Hoehn R, Jahl LG, Herkert NJ, Hoffman K, Soehl A, Diamond ML, Blum A, Stapleton HM. Flame Retardant Exposure in Vehicles Is Influenced by Use in Seat Foam and Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8825-8834. [PMID: 38712863 PMCID: PMC11112730 DOI: 10.1021/acs.est.3c10440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.
Collapse
Affiliation(s)
- Rebecca
M. Hoehn
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Lydia G. Jahl
- Green
Science Policy Institute, Berkeley, California 94709, United States
| | - Nicholas J. Herkert
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Kate Hoffman
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Anna Soehl
- Green
Science Policy Institute, Berkeley, California 94709, United States
| | - Miriam L. Diamond
- Department
of Earth Sciences and School of the Environment, University of Toronto, Toronto, ON M5S 3B1, Canada
| | - Arlene Blum
- Green
Science Policy Institute, Berkeley, California 94709, United States
| | - Heather M. Stapleton
- Nicholas
School of the Environment, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
Collins EMS, Hessel EVS, Hughes S. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity. Neurotoxicology 2024; 102:48-57. [PMID: 38552718 PMCID: PMC11139590 DOI: 10.1016/j.neuro.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.
Collapse
Affiliation(s)
- Eva-Maria S Collins
- Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
13
|
Mao H, Lin T, Huang S, Xie Z, Jin S, Shen X, Jin Y, Ding Y. The impact of brominated flame retardants (BFRs) on pulmonary function in US adults: a cross-sectional study based on NHANES (2007-2012). Sci Rep 2024; 14:6486. [PMID: 38499858 PMCID: PMC10948772 DOI: 10.1038/s41598-024-57302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024] Open
Abstract
Brominated flame retardants (BFRs) are a group of chemicals widely used in various applications to prevent or slow down the spread of fire. However, they have adverse effects on human health. There is a relative scarcity of population-based studies regarding BFRs, particularly their impact on the respiratory system. This study aimed to investigate the influence of BFRs on pulmonary function using data from the National Health and Nutrition Examination Survey. The study found that elevated serum concentrations of certain BFRs were associated with pulmonary ventilatory dysfunction. Adjusted analyses revealed positive correlations between PBDE47, PBDE183, and PBDE209 concentrations and ventilatory dysfunction. The analysis of mixed BFRs showed a positive relationship with pulmonary ventilation dysfunction, with PBDE47 making the most significant contribution. Our study demonstrates that both individual and combined BFRs exposure can lead to impaired pulmonary ventilation function. These findings provide evidence of the adverse effects of BFRs on lung function, emphasizing the importance of further investigating the potential health consequences of these compounds. Further large-scale longitudinal studies are needed to investigate this relationship in the future.
Collapse
Affiliation(s)
- Haiyan Mao
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Tong Lin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Shanshan Huang
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Zhenye Xie
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Shaofeng Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Xingkai Shen
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China
| | - Yuhong Jin
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China.
| | - Yi Ding
- Department of Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, 315100, China.
| |
Collapse
|
14
|
Mou X, Wang D. Additive partially linear model for pooled biomonitoring data. Comput Stat Data Anal 2024; 190:107862. [PMID: 38187953 PMCID: PMC10769007 DOI: 10.1016/j.csda.2023.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Human biomonitoring involves monitoring human health by measuring the accumulation of harmful chemicals, typically in specimens like blood samples. The high cost of chemical analysis has led researchers to adopt a cost-effective approach. This approach physically combines specimens and subsequently analyzes the concentration of toxic substances within the merged pools. Consequently, there arises a need for innovative regression techniques to effectively interpret these aggregated measurements. To address this need, a new regression framework is proposed by extending the additive partially linear model (APLM) to accommodate the pooling context. The APLM is well-known for its versatility in capturing the complex association between outcomes and covariates, which is particularly valuable in assessing the complex interplay between chemical bioaccumulation and potential risk factors. Consistent estimators of the APLM are obtained through an iterative process that disaggregates information from the pooled observations. The performance is evaluated through simulations and an environmental health study focused on brominated flame retardants using data from the National Health and Nutrition Examination Survey.
Collapse
Affiliation(s)
- Xichen Mou
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, U.S.A
| | - Dewei Wang
- Department of Statistics, University of South Carolina, Columbia, SC 29208, U.S.A
| |
Collapse
|
15
|
Lao Q, Yang L, Liu S, Ma X, Tan D, Li J, Liao B, Wei Y, Pang W, Morais CLM, Liu H. Effects of Benzo ( a) Pyrene and 2,2',4,4'-Tetrabromodiphenyl Ether Exposure on the Thyroid Gland in Rats by Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy. ACS OMEGA 2024; 9:4317-4323. [PMID: 38313510 PMCID: PMC10831854 DOI: 10.1021/acsomega.3c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Benzo[a]pyrene (B[a]P) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) are widespread environmental pollutants and can destroy thyroid function. We assessed the biochemical changes in the thyroid tissue of rats exposed to B[a]P and BDE-47 using attenuated total reflection Fourier-transform infrared spectroscopy combined with support vector machine(SVM). After B[a]P and BDE-47 treatment in rats, the structure of thyroid follicles was destroyed and epithelial cells were necrotic, indicating that B[a]P and BDE-47 may lead to changes of the thyroid morphology of the rats. These damages are mainly related to C=O stretch vibrations of lipids (1743 cm-1), as well as the secondary structure of proteins [amide I (1645 cm-1) and amide II (1550 cm-1)], and carbohydrates [C-OH (1138 cm-1), C-O (1106 cm-1, 1049 cm-1, 991 cm-1), C-C (1106 cm-1) stretching] and collagen (phosphodiester stretching at 922 cm-1) vibration modes. When SVM was used for classification, there was a substantial separation between the control and the exposure groups (accuracy = 96%; sensitivity = 98%; specificity = 87%), and there was also a major separation between the exposed groups (accuracy = 93%; sensitivity = 94%; and specificity = 92%).
Collapse
Affiliation(s)
- QiuFeng Lao
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
- Liuzhou
People’s Hospital, Liuzhou, Guangxi 545006, China
| | - LiJun Yang
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - ShuZhen Liu
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - XiaoJun Ma
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - DeChan Tan
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - JinBo Li
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - BaoYi Liao
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - YuanFeng Wei
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| | - WeiYi Pang
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Camilo L. M. Morais
- Center
for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil
| | - Hui Liu
- Guangxi
Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi 541199, China
- School
of Public Health, Guilin Medical University, Guilin, Guangxi 541199, China
| |
Collapse
|
16
|
Su L, Zheng X, Tang J, Wang Q, Zhang L, Wu X. Poly(ionic liquid)s threaded into covalent organic framework for synergistic capture of polybrominated diphenyl ethers. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132657. [PMID: 37788553 DOI: 10.1016/j.jhazmat.2023.132657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The efficient enrichment of trace polybrominated diphenyl ethers (PBDEs) in environmental waters remains challenging for environmental monitoring and analysis. Herein, a covalent organic frameworks-poly(ionic liquid)s hybrid material (COF-γ-PIL) is synthesized by threading poly(1-vinyl-3-methylimidazolium bis ((trifluoromethyl) sulfonyl) imide) into a vinyl-decorated COF via photopolymerization. The resultant hybrid retains the crystallinity and porosity of COF, thus offering adequate adsorption sites for the targets. PIL threaded in COF facilitates the synergistic capture of target molecules within the hybrid through multiple interactions, including Van der Waals forces, weak hydrogen bonding, and hydrophobic interactions. As a proof of concept, COF-γ-PIL was utilized as the fiber coating for SPME of PBDEs in waters prior to their analysis via GC-MS. Excellent analytical results were achieved, with wide linearity (0.01-100 ng L-1), low limits of detection (0.0021-0.014 ng L-1), and satisfactory recoveries (78.6%-103.6%). The outstanding extraction performance can be ascribed to the extraordinary flexibility of the active fraction on linear polymers threaded in COF, which facilitates collaborative capture for target molecules, as revealed by density functional theory (DFT) calculations. This work uncovers the microscopic mechanism for PBDEs capturing and provides new insights into the design of functionalized COF hybrids.
Collapse
Affiliation(s)
- Lishen Su
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, Fuzhou University, Fuzhou 350116, China
| | - Xuan Zheng
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Jingpu Tang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, Fuzhou University, Fuzhou 350116, China
| | - Qingxiang Wang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Lan Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, Fuzhou University, Fuzhou 350116, China
| | - Xiaoping Wu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Key Laboratory for Analytical Science of Food Safety and Biology, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on Food Safety and Environmental Analysis, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
17
|
Sun Y, Xu Y, Wu H, Hou J. A critical review on BDE-209: Source, distribution, influencing factors, toxicity, and degradation. ENVIRONMENT INTERNATIONAL 2024; 183:108410. [PMID: 38160509 DOI: 10.1016/j.envint.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
As the most widely used polybrominated diphenyl ether, BDE-209 is commonly used in polymer-based commercial and household products. Due to its unique physicochemical properties, BDE-209 is ubiquitous in a variety of environmental compartments and can be exposed to organisms in various ways and cause toxic effects. The present review outlines the current state of knowledge on the occurrence of BDE-209 in the environment, influencing factors, toxicity, and degradation. BDE-209 has been detected in various environmental matrices including air, soil, water, and sediment. Additionally, environmental factors such as organic matter, total suspended particulate, hydrodynamic, wind, and temperature affecting BDE-209 are specifically discussed. Toxicity studies suggest BDE-209 may cause systemic toxic effects on living organisms, reproductive toxicity, embryo-fetal toxicity, genetic toxicity, endocrine toxicity, neurotoxicity, immunotoxicity, and developmental toxicity, or even be carcinogenic. BDE-209 has toxic effects on organisms mainly through epigenetic regulation and induction of oxidative stress. Evidence regarding the degradation of BDE-209, including biodegradation, photodegradation, Fenton degradation, zero-valent iron degradation, chemical oxidative degradation, and microwave radiation degradation is summarized. This review may contribute to assessing the environmental risks of BDE-209 to help develop rational management plans.
Collapse
Affiliation(s)
- Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
18
|
Akintunde ME, Lin YP, Krakowiak P, Pessah IN, Hertz-Picciotto I, Puschner B, Ashwood P, Van de Water J. Ex vivo exposure to polybrominated diphenyl ether (PBDE) selectively affects the immune response in autistic children. Brain Behav Immun Health 2023; 34:100697. [PMID: 38020477 PMCID: PMC10654005 DOI: 10.1016/j.bbih.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Children on the autism spectrum have been shown to have immune dysregulation that often correlates with behavioral deficits. The role of the post-natal environment in this dysregulation is an area of active investigation. We examined the association between plasma levels of polybrominated diphenyl ether (PBDE) and immune cell function in age-matched autistic children and non-autistic controls. Plasma from children on the autism spectrum (n = 38) and typically developing controls (TD; n = 60) were analyzed for 14 major PBDE congeners. Cytokine/chemokine production was measured in peripheral blood mononuclear cell (PBMC) supernatants with and without ex vivo BDE-49 exposure. Total plasma concentration (∑PBDE14) and individual congener levels were also correlated with T cell function. ∑PBDE14 did not differ between diagnostic groups but correlated with reduced immune function in children on the autism spectrum. In autistic children, IL-2 and IFN-γ production was reduced in association with several individual BDE congeners, especially BDE-49 (p = 0.001). Furthermore, when PBMCs were exposed ex vivo to BDE-49, cells from autistic children produced elevated levels of IL-6, TNF-α, IL-1β, MIP-1α and MCP-1 (p < 0.05). Therefore, despite similar plasma levels of PBDE, these data suggest that PBMC function was differentially impacted in the context of several PBDE congeners in autistic children relative to TD children where increased body burden of PBDE significantly correlated with a suppressed immune response in autistic children but not TD controls. Further, acute ex vivo exposure of PBMCs to BDE-49 stimulates an elevated cytokine response in AU cases versus a depressed response in TD controls. These data suggest that exposure to the toxicant BDE-49 differentially impacts immune cell function in autistic children relative to TD children providing evidence for an underlying association between susceptibility to PBDE exposure and immune anomalies in children on the autism spectrum.
Collapse
Affiliation(s)
- Marjannie Eloi Akintunde
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Yan-ping Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paula Krakowiak
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Irva Hertz-Picciotto
- The MIND Institute, University of California, Davis, United States
- School of Public Health Sciences, University of California, Davis, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| | - Paul Ashwood
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
- School of Medicine, Department of Microbiology and Immunology, University of California, Davis, United States
| | - Judy Van de Water
- School of Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, United States
- The MIND Institute, University of California, Davis, United States
- NIEHS Center for Children's Environmental Health, University of California, Davis, United States
| |
Collapse
|
19
|
Ding K, Xu Q, Zhang X, Liu S. Metabolomic insights into neurological effects of BDE-47 exposure in the sea cucumber Apostichopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115558. [PMID: 37820477 DOI: 10.1016/j.ecoenv.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The persistent organic pollutant 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a prevalent congener among polybrominated diphenyl ethers (PBDEs), exhibits potent bioaccumulation and toxicity. Despite extensive research into the adverse effects of BDE-47, its neurotoxicity in sea cucumbers remains unexplored. Given the crucial role of the sea cucumber's nervous system in survival and adaptation, evaluating the impacts of BDE-47 is vital for sustainable aquaculture and consumption. In this study, we employed ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS) to analyze metabolomic changes in neuro-related tissues of Apostichopus japonicus exposed to low (0.1 µg/L), medium (1.0 µg/L), and high (10.0 µg/L) BDE-47 concentrations. We identified significantly changed metabolites in each exposure group (87 in low, 79 in medium, and 102 in high), affecting a variety of physiological processes such as steroid hormone balance, nucleotide metabolism, energy metabolism, neurotransmitter levels, and neuroprotection. In addition, we identified concentration-dependent, common, and some other metabolic responses in the neuro-related tissues. Our findings reveal critical insights into the neurotoxic effects of BDE-47 in sea cucumbers and contribute to risk assessment related to BDE-47 exposure in the sea cucumber industry, paving the way for future neurotoxicological research in invertebrates.
Collapse
Affiliation(s)
- Kui Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
20
|
Margolis AE, Greenwood P, Dranovsky A, Rauh V. The Role of Environmental Chemicals in the Etiology of Learning Difficulties: A Novel Theoretical Framework. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:301-311. [PMID: 38389544 PMCID: PMC10881209 DOI: 10.1111/mbe.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 02/24/2024]
Abstract
Children from economically disadvantaged communities have a disproportionate risk of exposure to chemicals, social stress, and learning difficulties. Although animal models and epidemiologic studies link exposures and neurodevelopment, little focus has been paid to academic outcomes in environmental health studies. Similarly, in the educational literature, environmental chemical exposures are overlooked as potential etiologic factors in learning difficulties. We propose a theoretical framework for the etiology of learning difficulties that focuses on these understudied exogenous factors. We discuss findings from animal models and longitudinal, prospective birth cohort studies that support this theoretical framework. Studies reviewed point to the effects of prenatal exposure to polycyclic aromatic hydrocarbons on reading comprehension and math skills via effects on inhibitory control processes. Long term, this work will help close the achievement gap in the United States by identifying behavioral and neural pathways from prenatal exposures to learning difficulties in children from economically disadvantaged families.
Collapse
Affiliation(s)
- Amy E. Margolis
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center
- New York State Psychiatric Institute
| | - Paige Greenwood
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center
| | - Alex Dranovsky
- New York State Psychiatric Institute
- Division of Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center
| | - Virginia Rauh
- Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center
| |
Collapse
|
21
|
Zhang Q, Song W, Wang X, Liu C, Chen S, Li H, Rao Q. Determination of 25 polybrominated diphenyl ethers in Chinese mitten crab ecosystems by gas chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4700-4709. [PMID: 37675465 DOI: 10.1039/d3ay01123b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
A sensitive and reliable method for determining 25 polybrominated diphenyl ethers (PBDEs) in Chinese mitten crabs and their ecosystems ranging from the growing environment to edible feed by gas chromatography coupled to triple quadrupole mass spectrometry with advanced electron ionization (GC-AEI-MS/MS) was developed and validated. Accelerated solvent extraction (ASE) and liquid-liquid extraction were used to extract solid and water samples, respectively. On the basis of a traditional acid-base silica column, deactivated silica was added and n-hexane elution was used to increase the effect of separation and purification. Two oven temperature programs were applied to achieve good separation of low brominated congeners and increase the sensitivity of high brominated congeners. The method provided good linearity (>0.9996). The recoveries of four matrices were in the range of 82-115% and the method quantification limits (MQLs) in crabs, feed, sediment and water ranged from 0.36-6 pg per g wet weight, 0.69-22.29 pg per g dry weight, 1.02-25.26 pg per g dry weight, and 2.43-40.14 pg L-1, respectively. The proposed method was used for ten samples from two aquatic sites and PBDEs were detected in Chinese mitten crabs, commercial feed and sediment, with the highest in crabs. This analytical technique can be used to monitor the content and the accumulation behavior of PBDEs in Chinese mitten crab ecosystems or other aquaculture systems.
Collapse
Affiliation(s)
- Qicai Zhang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Xianli Wang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Chengbin Liu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Shanshan Chen
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Huaxi Li
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| | - Qinxiong Rao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Service Platform of Agro-products Quality and Safety Evaluation Technology, Shanghai, 201106, China
| |
Collapse
|
22
|
Righetti BPH, Mattos JJ, Manaut LR, da Silva J, Lourenço RA, Fruet P, Bainy ACD, Lüchmann KH. How does habitat influence metabolism? Clues from biomarker response and contaminant profile in Tursiops truncatus (Montagu, 1821) subspecies living in parapatry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162900. [PMID: 36933746 DOI: 10.1016/j.scitotenv.2023.162900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
In western South America (WSA) two subspecies of bottlenose dolphin are recognized: Tursiops truncatus gephyreus, predominantly found in estuaries and river mouths, and Tursiops truncatus truncatus, occurring along the continental shelf. Despite a partial spatial overlap, both subspecies are considered to occupy different habitats and ecological niches. In the present study, chemical analyzes as well as biochemical and molecular biomarkers were used to investigate the influence of niche partitioning over metabolic pathways associated with the detoxification of persistent organic pollutants (POPs), antioxidant metabolism, immune activity and lipid metabolism in Tursiops truncatus subspecies living in parapatry. Overall, the profile and levels of bioaccumulated PCBs, pesticides and PBDEs were similar between groups, with a greater variety of pesticides, such as γ-HCHs, heptachlor, oxychlordane and o,p'DDT, detected in T. truncatus gephyreus. Multivariate analysis of variance (MANOVA) and non-metric multidimensional scaling (NMDS) results indicated that glutathione reductase (GR) and superoxide dismutase (SOD) enzymatic activities were higher in coastal dolphins, as were the mRNA levels of metallothionein 2A (MT2A), interleukin-1α (IL-1α), ceramide synthase 3 (CERS3) and fatty acid elongase (ELOVL4). In parallel, mRNA levels of fatty acid synthase complex 1 (FASN 1) were higher in oceanic dolphins. These findings suggest that, due to their occurrence in coastal habitats, T. truncatus gephyreus is more exposed to environmental pollutants and pathogenic microorganisms. Likewise, niche partitioning may influence lipid biosynthesis, possibly due to differences on feeding habits, reflecting in an enhanced long chain ceramides biosynthesis in T. truncatus gephyreus. Collectively, these data reinforce the need to address habitat specificities in conservation efforts, since distinct groups can be facing different anthropogenic pressures in WSA.
Collapse
Affiliation(s)
- Bárbara P H Righetti
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| | - Jacó J Mattos
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luiza R Manaut
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Josilene da Silva
- Laboratório de Química Orgânica, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael A Lourenço
- Laboratório de Química Orgânica, Universidade de São Paulo, São Paulo, Brazil
| | - P Fruet
- Museu Oceanográfico "Prof. Eliézer de C. Rios"/Laboratório de Ecologia e Conservação da Megafauna Marinha - Ecomega, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Afonso C D Bainy
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Karim H Lüchmann
- Departamento de Educação Científica e Tecnológica, Universidade do Estado de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
23
|
Martín-Carrasco I, Carbonero-Aguilar P, Dahiri B, Moreno IM, Hinojosa M. Comparison between pollutants found in breast milk and infant formula in the last decade: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162461. [PMID: 36868281 DOI: 10.1016/j.scitotenv.2023.162461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Since ancient times, breastfeeding has been the fundamental way of nurturing the newborn. The benefits of breast milk are widely known, as it is a source of essential nutrients and provides immunological protection, as well as developmental benefits, among others. However, when breastfeeding is not possible, infant formula is the most appropriate alternative. Its composition meets the nutritional requirements of the infant, and its quality is subject to strict control by the authorities. Nonetheless, the presence of different pollutants has been detected in both matrices. Thus, the aim of the present review is to make a comparison between the findings in both breast milk and infant formula in terms of contaminants in the last decade, in order to choose the most convenient option depending on the environmental conditions. For that, the emerging pollutants including metals, chemical compounds derived from heat treatment, pharmaceutical drugs, mycotoxins, pesticides, packaging materials, and other contaminants were described. While in breast milk the most concerning contaminants found were metals and pesticides, in infant formula pollutants such as metals, mycotoxins, and packaging materials were the most outstanding. In conclusion, the convenience of using a feeding diet based on breast milk or either infant formula depends on the maternal environmental circumstances. However, it is important to take into account the immunological benefits of the breast milk compared to the infant formula, and the possibility of using breast milk in combination with infant formula when the nutritional requirements are not fulfilled only with the intake of breast milk. Therefore, more attention should be paid in terms of analyzing these conditions in each case to be able to make a proper decision, as it will vary depending on the maternal and newborn environment.
Collapse
Affiliation(s)
- I Martín-Carrasco
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - P Carbonero-Aguilar
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - B Dahiri
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain
| | - I M Moreno
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain.
| | - M Hinojosa
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/ Profesor García González 2, 41012 Seville, Spain; Department of Biochemistry and Biophysics, Stockholm University, Institutionen för biokemi och biofysik, 106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Kozlova EV, Chinthirla BD, Bishay AE, Pérez PA, Denys ME, Krum JM, DiPatrizio NV, Currás-Collazo MC. Glucoregulatory disruption in male mice offspring induced by maternal transfer of endocrine disrupting brominated flame retardants in DE-71. Front Endocrinol (Lausanne) 2023; 14:1049708. [PMID: 37008952 PMCID: PMC10063979 DOI: 10.3389/fendo.2023.1049708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/23/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Polybrominated diphenyl ethers (PBDEs) are commercially used flame retardants that bioaccumulate in human tissues, including breast milk. PBDEs produce endocrine and metabolic disruption in experimental animals and have been associated with diabetes and metabolic syndrome (MetS) in humans, however, their sex-specific diabetogenic effects are not completely understood. Our past works show glucolipid dysregulation resulting from perinatal exposure to the commercial penta-mixture of PBDEs, DE-71, in C57BL/6 female mice. Methods As a comparison, in the current study, the effects of DE-71 on glucose homeostasis in male offspring was examined. C57BL/6N dams were exposed to DE-71 at 0.1 mg/kg/d (L-DE-71), 0.4 mg/kg/d (H-DE-71), or received corn oil vehicle (VEH/CON) for a total of 10 wks, including gestation and lactation and their male offspring were examined in adulthood. Results Compared to VEH/CON, DE-71 exposure produced hypoglycemia after a 11 h fast (H-DE-71). An increased fast duration from 9 to 11 h resulted in lower blood glucose in both DE-71 exposure groups. In vivo glucose challenge showed marked glucose intolerance (H-DE-71) and incomplete clearance (L- and H-DE-71). Moreover, L-DE-71-exposed mice showed altered glucose responses to exogenous insulin, including incomplete glucose clearance and/or utilization. In addition, L-DE-71 produced elevated levels of plasma glucagon and the incretin, active glucagon-like peptide-1 (7-36) amide (GLP-1) but no changes were detected in insulin. These alterations, which represent criteria used clinically to diagnose diabetes in humans, were accompanied with reduced hepatic glutamate dehydrogenase enzymatic activity, elevated adrenal epinephrine and decreased thermogenic brown adipose tissue (BAT) mass, indicating involvement of several organ system targets of PBDEs. Liver levels of several endocannabinoid species were not altered. Discussion Our findings demonstrate that chronic, low-level exposure to PBDEs in dams can dysregulate glucose homeostasis and glucoregulatory hormones in their male offspring. Previous findings using female siblings show altered glucose homeostasis that aligned with a contrasting diabetogenic phenotype, while their mothers displayed more subtle glucoregulatory alterations, suggesting that developing organisms are more susceptible to DE-71. We summarize the results of the current work, generated in males, considering previous findings in females. Collectively, these findings offer a comprehensive account of differential effects of environmentally relevant PBDEs on glucose homeostasis and glucoregulatory endocrine dysregulation of developmentally exposed male and female mice.
Collapse
Affiliation(s)
- Elena V. Kozlova
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA, United States
| | - Bhuvaneswari D. Chinthirla
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Anthony E. Bishay
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Pedro A. Pérez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Maximillian E. Denys
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Julia M. Krum
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Margarita C. Currás-Collazo
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, United States
| |
Collapse
|
25
|
Han L, Wang Q. Associations of brominated flame retardants exposure with chronic obstructive pulmonary disease: A US population-based cross-sectional analysis. Front Public Health 2023; 11:1138811. [PMID: 36969665 PMCID: PMC10036799 DOI: 10.3389/fpubh.2023.1138811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundsWhether there existed an association between brominated flame retardants (BFRs) and chronic obstructive pulmonary disease (COPD) prevalence in humans is still a mystery.ObjectiveTo investigate the association between serum single or mixture BFRs and COPD prevalence.MethodsData of 7,591 participants from NHANES 2007–2016 was utilized. Serum BFRs, including PBDE-28, PBDE-47, PBDE-85, PBDE-99, PBDE-100, PBDE-154, PBDE-183, PBDE-209, and PBB-153 were enrolled. The survey-weighted generalized logistic regression model, restricted cubic splines (RCS), weighted quantile sum (WQS) regression, and quantile-based g-computation (QGC) analysis were performed.ResultsAfter adjustment for all confounding factors, log-transformed continuous serum PBDE-28 (OR: 1.43; 95% CI: 1.10–1.85; P = 0.01), PBDE-47 (OR: 1.39; 95% CI: 1.11–1.75; P = 0.005), PBDE-85 (OR: 1.31; 95% CI: 1.09–1.57; P = 0.005), PBDE-99 (OR: 1.27; 95% CI: 1.05–1.54; P = 0.02), PBDE-100 (OR: 1.33; 95% CI: 1.08–1.66; P = 0.01), PBDE-154 (OR: 1.29; 95% CI: 1.07–1.55; P = 0.01), PBDE-183 (OR: 1.31; 95% CI: 1.04–1.66; P = 0.02), and PBB-153 (OR: 1.25; 95% CI: 1.03–1.53; P = 0.03) were positively correlated with the prevalence of COPD. Restricted cubic splines curves displayed that PBDE-209 was significantly associated with CPOD in an inverted U-shape (P = 0.03). A significant interaction between being male and a high prevalence of COPD was observed for PBDE-28 (P for interaction <0.05), PBDE-47 (P for interaction <0.05), PBDE-85 (P for interaction <0.05), PBDE-99 (P for interaction <0.05), PBDE-100 (P for interaction <0.05), and PBB-153 (P for interaction < 0.05). Mixture BFRs exposure was positively associated with COPD prevalence in WQS regression (OR: 1.40; 95% CI: 1.14–1.72, P = 0.002) and in QGC analysis (OR: 1.49; 95% CI: 1.27–1.74, P < 0.001).ConclusionsOur study confirms that individual and mixture BFRs had positive associations with COPD, and further studies are required in larger-scale populations.
Collapse
|
26
|
Li B, Wang J, Hu G, Liu X, Yu Y, Cai D, Ding P, Li X, Zhang L, Xiang C. Bioaccumulation Behavior and Human Health Risk of Polybrominated Diphenyl Ethers in a Freshwater Food Web of Typical Shallow Lake, Yangtze River Delta. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2671. [PMID: 36768037 PMCID: PMC9916311 DOI: 10.3390/ijerph20032671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) have been commonly found in aquatic ecosystems. Many studies have elucidated the bioaccumulation and biomagnification of PBDEs in seas and lakes, yet few have comprehensively evaluated the bioaccumulation, biomagnification, and health risks of PBDEs in shallow lakes, and there is still limited knowledge of the overall effects of biomagnification and the health risks to aquatic organisms. METHODS In this study, a total of 154 samples of wild aquatic organism and environmental samples were collected from typical shallow lakes located in the Yangtze River Delta in January 2020. The concentrations of PBDEs were determined by an Agilent 7890 gas chromatograph coupled and an Agilent 5795 mass spectrometer (GC/MS) and the bioaccumulation behavior of PBDEs was evaluated in 23 aquatic organisms collected from typical shallow lakes of the Yangtze River Delta. Furthermore, their effects on human health were evaluated by the estimated daily intake (EDI), noncarcinogenic risk, and carcinogenic risk. RESULTS The concentrations of ΣPBDE (defined as the sum of BDE-28, -47, -100, -99, -153, -154, -183, and -209) in biota samples ranged from 2.36 to 85.81 ng/g lipid weight. BDE-209, BDE-153 and BDE-47 were the major PBDE congeners. The factors affecting the concentration of PBDEs in aquatic organisms included dietary habits, species, and the metabolic debromination ability of the PBDE congeners. BDE-209 and BDE-47 were the strongest bioaccumulative PBDE congeners in aquatic organisms. Additionally, except for BDE-99, BDE-153 and BDE-154, the trophic magnification factor (TMF) values of PBDE congeners were significantly higher than 1. Moreover, the log Kow played a significant role in the biomagnification ability of PBDE congeners. The noncarcinogenic risk of PBDE congeners and carcinogenic risk of BDE-209 from aquatic products were lower than the thresholds. CONCLUSIONS PBDE congeners were bioaccumulated and biomagnified to varying degrees in aquatic organisms from typical shallow lakes. Both the noncarcinogenic and carcinogenic risks assessment of edible aquatic products indicated that none of the PBDE congeners pose health risks to the localite. This study will provide a basis for a comprehensive assessment of PBDEs in aquatic ecosystems in shallow lakes and for environmental prevention measures for decision-makers.
Collapse
Affiliation(s)
- Bei Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Juanheng Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Guocheng Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xiaolin Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Chongdan Xiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, The Postgraduate Training Base of Jinzhou Medical University, Guangzhou 510530, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| |
Collapse
|
27
|
Zheng K, Zeng Z, Lin Y, Wang Q, Tian Q, Huo X. Current status of indoor dust PBDE pollution and its physical burden and health effects on children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19642-19661. [PMID: 36648715 DOI: 10.1007/s11356-022-24723-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely detected in indoor dust, which has been identified as a more important route of PBDE exposure for children than food intake. The physical burden and health hazards to children of PBDE exposure in house dust have not been adequately summarized; therefore, this article reviews the current status of PBDE pollution in indoor dust associated with children, highlighting the epidemiological evidence for physical burden and health risks in children. We find that PBDEs remain at high levels in indoor dust, including in homes, schools, and cars, especially in cars showing a significant upward trend. There is a trend towards an increase in the proportion of BDE-209 in household dust, which is indicative of recent PBDE contamination. Conversely, PBDE congeners in car and school indoor dust tended to shift from highly brominated to low brominated, suggesting a shift in current pollution patterns. Indoor dust exposure causes significantly higher PBDE burdens in children, especially infants in early life, than in adults. Exposure to dust also affects breast milk, putting infants at high risk of exposure. Although evidence is limited, available epidemiological studies suggest that exposure to indoor dust PBDEs promotes neurobehavioral problems and cancer development in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
| | - Yucong Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, Berkeley, USA
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
28
|
Melatonin alleviates BDE-209-induced cognitive impairment and hippocampal neuroinflammation by modulating microglia polarization via SIRT1-mediated HMGB1/TLR4/NF-κB pathway. Food Chem Toxicol 2023; 172:113561. [PMID: 36566971 DOI: 10.1016/j.fct.2022.113561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants with developmental neurotoxicity, the mechanism of which remains obscure. The present study aimed to evaluate cognitive deficits and microglia-originated neuroinflammation in the hippocampus of offspring rats exposed to BDE-209 (30 and 100 mg/kg) during perinatal period. Compared to the control, BDE-209-treated rats showed significant longer escape latency and less platform crossings in tests of Morris water maze. Besides obvious hippocampal neuron damage, increased microglial activation and pro-inflammatory markers (CD86, TNFα, and IL-1β), meanwhile, decreased anti-inflammatory molecules (CD206, IL-10, and Arg1) were induced by BDE-209. Furthermore, we investigated the neuroprotection of melatonin against BDE-209 and whether through sirtuin 1 (SIRT1). Consistent with restored SIRT1 activity, enhanced deacetylation of HMGB1 and inhibited cytoplasmic translocation of HMGB1, reduced expression of proteins involved in TLR4-NF-κB pathway and nuclear transfer of phosphorylated-NF-κB p65, and ultimately suppressed microglial activation and improved spatial memory were observed in 10 mg/kg melatonin-pretreated rats, compared with BDE-209-exposed alone. These results demonstrated that melatonin ameliorated BDE-209-caused cognitive impairment partially through shifting microglia polarization towards anti-inflammatory phenotype in a SIRT1-dependent manner, suggesting a potential mechanism for prevention.
Collapse
|
29
|
Tian Z, Li J, Song L, Xie L, Li D, Xia T, Wang A. PBDE-47 induces impairment of mitochondrial biogenesis and subsequent neurotoxicity through miR-128-3p/PGC-1α axis. Toxicol Sci 2023; 191:123-134. [PMID: 36269211 DOI: 10.1093/toxsci/kfac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The potential adverse effects of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) on neurons are extensively studied, and mitochondria are identified as critical targets. This study aimed to investigate whether PBDE-47 impairs mitochondrial biogenesis via the miR-128-3p/PGC-1α axis to trigger mitochondrial dysfunction-related neuronal damage. In vitro neuroendocrine pheochromocytoma (PC12) cells and in vivo Sprague Dawley rat model were adopted. In this study, biochemical methods were used to examine mitochondrial ATP content, cell viability, and expressions of key mitochondrial biogenesis regulators, including peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). Mimics and inhibitors of miR-128-3p were employed to explore its role in PBDE-47-induced neurotoxicity. Both in vivo and in vitro evidences suggested that PBDE-47 suppressed PGC-1α/NRF1/TFAM signaling pathways and mitochondrial DNA (mtDNA) encoding proteins synthesis. PBDE-47 also suppressed the relative mtDNA content, mRNA levels of mtDNA-encoded subunits, and mitochondrial ATP levels in vitro. Specifically, 2-(4-tert-butylphenyl) benzimidazole (ZLN005) alleviated PBDE-47-induced neuronal death through the improvement of mitochondrial function by activating PGC-1α/NRF1/TFAM signaling pathways. Mechanistically, PBDE-47 dramatically upregulated miR-128-3p expression. Furthermore, miR-128-3p inhibition enhanced PGC-1α/NRF1/TFAM signaling and abolished PBDE-47-induced impairment of mitochondrial biogenesis. In summary, this study provides in vitro evidence to reveal the role of mitochondrial biogenesis in PBDE-47-induced mitochondrial dysfunction and related neurotoxicity and suggests that miR-128-3p/PGC-1α axis may be a therapeutic target for PBDE-47 neurotoxicity.
Collapse
Affiliation(s)
- Zhiyuan Tian
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jing Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Song
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Dongjie Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| |
Collapse
|
30
|
Shockley KR, Dunnick JK. Gene expression profiling after exposure to a chemical carcinogen, Pentabrominated Diphenyl Ether, at different life stages. FRONTIERS IN TOXICOLOGY 2023; 4:1028309. [PMID: 36687508 PMCID: PMC9847571 DOI: 10.3389/ftox.2022.1028309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to environmental hazards occurs at different stages of our lifetime-infant, child, adult. This study integrates recently published toxicogenomics data to examine how exposure to a known rat chemical carcinogen (pentabrominated diphenyl ether (PBDE)) upregulated liver transcriptomic changes at different life cycle stages (PND 4, PND 22, adult). We found that at all three life cycle stages PBDE exposure induced hepatocellular transcriptomic changes in disease pathways including cancer, metabolic, membrane function, and Nrf2 antioxidant pathways, pathways all characteristics of chemical carcinogens. In addition, in the adult rat after a 5-day exposure to the chemical carcinogen, there was upregulation of members of the Ras oncogenic pathway, a specific pathway found to be activated in the PBDE-induced tumors in rats in a previous hazard identification cancer study. The findings of liver transcript changes characteristic of carcinogenic activity after early life exposures and after short-term adult exposures provides data to support the use of transcriptomic data to predict the apical cancer endpoints in model studies. Using data from gene expression profiling studies after neonatal, young, or adult short-term chemical exposure helps to meet the 21st century toxicology goal of developing study designs to reduce, refine, and replace the use of traditional 2-year rodent cancer studies to provide hazard identification information. The studies reported here find that key transcripts associated with carcinogenesis were elevated in neonate (PND 4), young (PND 22) and adult animals after short-term exposure to PBDE, a known experimental chemical carcinogen in model systems.
Collapse
Affiliation(s)
- Keith R. Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - June K. Dunnick
- Systems Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| |
Collapse
|
31
|
Braun G, Escher BI. Prioritization of mixtures of neurotoxic chemicals for biomonitoring using high-throughput toxicokinetics and mixture toxicity modeling. ENVIRONMENT INTERNATIONAL 2023; 171:107680. [PMID: 36502700 DOI: 10.1016/j.envint.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Modern society continues to pollute the environment with larger quantities of chemicals that have also become more structurally and functionally diverse. Risk assessment of chemicals can hardly keep up with the sheer numbers that lead to complex mixtures of increasing chemical diversity including new chemicals, substitution products on top of still abundant legacy compounds. Fortunately, over the last years computational tools have helped us to identify and prioritize chemicals of concern. These include toxicokinetic models to predict exposure to chemicals as well as new approach methodologies such as in-vitro bioassays to address toxicodynamic effects. Combined, they allow for a prediction of mixtures and their respective effects and help overcome the lack of data we face for many chemicals. In this study we propose a high-throughput approach using experimental and predicted exposure, toxicokinetic and toxicodynamic data to simulate mixtures, to which a virtual population is exposed to and predict their mixture effects. The general workflow is adaptable for any type of toxicity, but we demonstrated its applicability with a case study on neurotoxicity. If no experimental data for neurotoxicity were available, we used baseline toxicity predictions as a surrogate. Baseline toxicity is the minimal toxicity any chemical has and might underestimate the true contribution to the mixture effect but many neurotoxicants are not by orders of magnitude more potent than baseline toxicity. Therefore, including baseline-toxic effects in mixture simulations yields a more realistic picture than excluding them in mixture simulations. This workflow did not only correctly identify and prioritize known chemicals of concern like benzothiazoles, organochlorine pesticides and plasticizers but we were also able to identify new potential neurotoxicants that we recommend to include in future biomonitoring studies and if found in humans, to also include in neurotoxicity screening.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Fowler CH, Bagdasarov A, Camacho NL, Reuben A, Gaffrey MS. Toxicant exposure and the developing brain: A systematic review of the structural and functional MRI literature. Neurosci Biobehav Rev 2023; 144:105006. [PMID: 36535373 PMCID: PMC9922521 DOI: 10.1016/j.neubiorev.2022.105006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Youth worldwide are regularly exposed to pollutants and chemicals (i.e., toxicants) that may interfere with healthy brain development, and a surge in MRI research has begun to characterize the neurobiological consequences of these exposures. Here, a systematic review following PRISMA guidelines was conducted on developmental MRI studies of toxicants with known or suspected neurobiological impact. Associations were reviewed for 9 toxicant classes, including metals, air pollution, and flame retardants. Of 1264 identified studies, 46 met inclusion criteria. Qualitative synthesis revealed that most studies: (1) investigated air pollutants or metals, (2) assessed exposures prenatally, (3) assessed the brain in late middle childhood, (4) took place in North America or Western Europe, (5) drew samples from existing cohort studies, and (6) have been published since 2017. Given substantial heterogeneity in MRI measures, toxicant measures, and age groups assessed, more research is needed on all toxicants reviewed here. Future studies should also include larger samples, employ personal exposure monitoring, study independent samples in diverse world regions, and assess toxicant mixtures.
Collapse
Affiliation(s)
| | | | | | - Aaron Reuben
- Duke University, 417 Chapel Drive, Durham, NC 27708, USA
| | | |
Collapse
|
33
|
Reddam A, Sjödin A, Cowell W, Jones R, Wang S, Perera F, Herbstman JB, Kupsco A. Prenatal exposure to polybrominated diphenyl ethers and birth outcomes. ENVIRONMENTAL RESEARCH 2023; 216:114830. [PMID: 36400221 PMCID: PMC9729424 DOI: 10.1016/j.envres.2022.114830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) were used as flame retardants and from their end-use products they can be released to accumulate within indoor environments. This may result in exposures to pregnant women with potential adverse effects on the developing fetus. While studies have shown associations between prenatal PBDE exposure and poor birth outcomes, research has mainly focused on birth weight and gestational age and may miss important indicators of newborn size. METHODS The sample included a cohort of Dominican and African American mother-child pairs from New York City recruited from 1998 to 2006. PBDE congeners (BDE-47, BDE-99, BDE-100, and BDE-153) were measured in cord serum at birth and dichotomized into low (<80th percentile) and high (>80th percentile) categories. Weight, length, head circumference, and gestational age were measured at birth and the ponderal index (birth weight/length x 100), size for gestational age, and population-based z-scores were calculated (n = 305). Separate regression analyses were conducted to estimate associations between PBDEs or PBDE sum (ng/g lipid) and birth outcomes. Quantile g-computation was performed to estimate the effect of total PBDE mixture. We also assessed effect modification by sex and ethnicity. RESULTS Adjusting for relevant covariates, the high exposure category of BDE-153 was associated with lower birth weight z-score (-0.25, 95% CI: -0.5, 0.0) and longer gestation (0.43 weeks, 95% CI: 0.07, 0.79). The high exposure category of BDE-99 was associated with lower birth length z-score (-0.55, 95% CI: -0.98, -0.12). There was a negative association between the overall PBDE mixture and birth length z-score (-0.10, 95% CI: -0.21, 0.00) per 1 quintile increase in PBDEs. There was no effect modification by sex or ethnicity. CONCLUSIONS These results suggest that prenatal exposures to BDE-153, BDE-99, and total PBDE mixture are associated with birth outcomes in a cohort of Dominican and African American newborns.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Whitney Cowell
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Richard Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Martin L, Zhang Y, First O, Mustieles V, Dodson R, Rosa G, Coburn-Sanderson A, Adams CD, Messerlian C. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: A review and future steps. ENVIRONMENT INTERNATIONAL 2022; 170:107576. [PMID: 36283156 PMCID: PMC9890927 DOI: 10.1016/j.envint.2022.107576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 10/08/2022] [Indexed: 05/04/2023]
Abstract
Non-persistent endocrine-disrupting chemicals (EDCs), including phthalates and phenols, are ubiquitous in both the environment and human body. A growing body of epidemiologic studies have identified concerning links between EDCs and adverse reproductive and developmental health effects. Despite consistent evidence, risk assessments and policy interventions often arrive late. This presents an urgent need to identify evidence-based interventions for implementation at both clinical and community levels to reduce EDC exposure, especially in susceptible populations. The reproductive life cycle (menarche to menopause for females and after pubertal onset for males) includes some of the most vulnerable periods to environmental exposures, such as the preconception and perinatal stages, representing a key window of opportunity to intervene and prevent unfavorable health outcomes. This review aims to synthesize and assess behavioral, dietary, and residential EDC-driven interventions to develop recommendations for subsequent, larger-scale studies that address knowledge-gaps in current interventions during the reproductive life cycle. We selected 21 primary interventions for evaluation, in addition to four supplemental interventions. Among these, accessible (web-based) educational resources, targeted replacement of (known) toxic products, and personalization of the intervention through meetings and support groups, were the most promising strategies for reducing EDC concentrations. However, we document a paucity of interventions to prevent phthalate and phenol exposures during the reproductive years, especially among men. Accordingly, we recommend additional, larger clinical and community-based intervention studies to reduce EDC exposure. Specifically, future intervention studies should focus on short-term, mid-, and long-term exposure reduction to phthalates and phenols. The latter, especially, is required for the development of clinical and public health guidelines to promote reproductive and developmental health globally.
Collapse
Affiliation(s)
- Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Gabriela Rosa
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Charleen D Adams
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA.
| |
Collapse
|
35
|
Kupsco A, Sjödin A, Cowell W, Jones R, Oberfield S, Wang S, Hoepner LA, Gallagher D, Baccarelli AA, Goldsmith J, Rundle AG, Herbstman JB. Prenatal exposure to polybrominated diphenyl ethers and BMI Z-scores from 5 to 14 years. Environ Health 2022; 21:82. [PMID: 36076289 PMCID: PMC9454187 DOI: 10.1186/s12940-022-00893-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/27/2022] [Indexed: 05/18/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are flame-retardant compounds widely used in household products until phase out in 2004. PBDEs are endocrine disruptors and are suggested to influence signaling related to weight control. Prenatal exposures to PBDEs may alter childhood adiposity, yet few studies have examined these associations in human populations. METHODS Data were collected from a birth cohort of Dominican and African American mother-child pairs from New York City recruited from 1998 to 2006. PBDE congeners BDE-47, - 99, - 100, and - 153 were measured in cord plasma (ng/μL) and dichotomized into low (< 80th percentile) and high (>80th percentile) exposure categories. Height and weight were collected at ages 5, 7, 9, 11, and an ancillary visit from 8 to 14 years (n = 289). Mixed-effects models with random intercepts for participant were used to assess associations between concentrations of individual PBDE congeners or the PBDE sum and child BMI z-scores (BMIz). To assess associations between PBDEs and the change in BMIz over time, models including interactions between PBDE categories and child age and (child age)2 were fit. Quantile g-computation was used to investigate associations between BMIz and the total PBDE mixture. Models were adjusted for baseline maternal covariates: ethnicity, age, education, parity, partnership status, and receipt of public assistance, and child covariates: child sex and cord cholesterol and triglycerides. RESULTS The prevalence of children with obesity at age 5 was 24.2% and increased to 30% at age 11. Neither cord levels of individual PBDEs nor the total PBDE mixture were associated with overall BMIz in childhood. The changes in BMIz across childhood were not different between children with low or high PBDEs. Results were similar when adjusting for postnatal PBDE exposures. CONCLUSIONS Prenatal PBDE exposures were not associated with child growth trajectories in a cohort of Dominican and African American children.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St. Room 1105, New York, NY, 10032, USA.
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sharon Oberfield
- Division of Pediatric Endocrinology, Diabetes and Metabolism, Department of Pediatrics, New York-Presbyterian Morgan Stanley Children's Hospital, New York, NY, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori A Hoepner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St. Room 1105, New York, NY, 10032, USA
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Dympna Gallagher
- Nutrition Obesity Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St. Room 1105, New York, NY, 10032, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St. Room 1105, New York, NY, 10032, USA
| |
Collapse
|
36
|
Witchey SK, Doyle MG, Fredenburg JD, St Armour G, Horman B, Odenkirk MT, Aylor DL, Baker ES, Patisaul HB. Impacts of Gestational FireMaster 550 Exposure on the Neonatal Cortex Are Sex Specific and Largely Attributable to the Organophosphate Esters. Neuroendocrinology 2022; 113:1262-1282. [PMID: 36075192 PMCID: PMC9992460 DOI: 10.1159/000526959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Flame retardants (FRs) are common bodily and environmental pollutants, creating concern about their potential toxicity. We and others have found that the commercial mixture FireMaster® 550 (FM 550) or its individual brominated (BFR) and organophosphate ester (OPFR) components are potential developmental neurotoxicants. Using Wistar rats, we previously reported that developmental exposure to FM 550 or its component classes produced sex- and compound-specific effects on adult socioemotional behaviors. The underlying mechanisms driving the behavioral phenotypes are unknown. METHODS To further mechanistic understanding, here we conducted transcriptomics in parallel with a novel lipidomics approach using cortical tissues from newborn siblings of the rats in the published behavioral study. Inclusion of lipid composition is significant because it is rarely examined in developmental neurotoxicity studies. Pups were gestationally exposed via oral dosing to the dam to FM 550 or the BFR or OPFR components at environmentally relevant doses. RESULTS The neonatal cortex was highly sexually dimorphic in lipid and transcriptome composition, and males were more significantly impacted by FR exposure. Multiple adverse modes of action for the BFRs and OPFRs on neurodevelopment were identified, with the OPFRs being more disruptive than the BFRs via multiple mechanisms including dysregulation of mitochondrial function and disruption of cholinergic and glutamatergic systems. Disrupted mitochondrial function by environmental factors has been linked to a higher risk of autism spectrum disorders and neurodegenerative disorders. Impacted lipid classes included ceramides, sphingomyelins, and triacylglycerides. Robust ceramide upregulation in the OPFR females could suggest a heightened risk of brain metabolic disease. CONCLUSIONS This study reveals multiple mechanisms by which the components of a common FR mixture are developmentally neurotoxic and that the OPFRs may be the compounds of greatest concern.
Collapse
Affiliation(s)
- Shannah K Witchey
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Michael G Doyle
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Jacob D Fredenburg
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
| | - Melanie T Odenkirk
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - David L Aylor
- Department of Biological Sciences, NC State University, Raleigh, North Carolina, USA
- Center for Human Health and the Environment, NC State University, Raleigh, North Carolina, USA
| | - Erin S Baker
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Heather B Patisaul
- Center for Human Health and the Environment, NC State University, Raleigh, North Carolina, USA
| |
Collapse
|
37
|
Souza MCO, Devóz PP, Ximenez JPB, Bocato MZ, Rocha BA, Barbosa F. Potential Health Risk to Brazilian Infants by Polybrominated Diphenyl Ethers Exposure via Breast Milk Intake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711138. [PMID: 36078850 PMCID: PMC9517810 DOI: 10.3390/ijerph191711138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 05/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous flame retardants and are environmentally persistent. PBDEs show endocrine disruption, neurotoxicity, and lower birth weight in infants, and their human body burden has become a public health concern. The infants' exposure begins in the prenatal period and continues via breast milk ingestion, although, little is known about the factors that may influence this exposure. In this study, PBDE levels in Brazilian breast milk were assessed in 200 lactating women. The risk assessment of infants' exposure to PBDE was performed through the estimated daily intake (EDI) calculation. The geometric mean (GM) of ∑PBDEs levels was 2.33 (0.14-6.05) ng/g wet weight. At least one PBDE congener was detected in the samples, and the 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) showed a 100% of detection rate (GM of 1.05 ng/g). Location of residence, maternal level education, monthly salary, and race were positively associated with PBDE levels (p < 0.05). The EDI of BDE-47 was higher in Belo Horizonte (8.29 ng/kg/day) than in Viçosa (6.36 ng/kg/day), as well as for the ∑PBDEs (19.77 versus 12.78 ng/kg/day) (p < 0.05). Taking the high detection rate of PBDEs in breast milk and their toxicity, continuous studies on infant exposure, fetal growth, and child neurodevelopment are requested.
Collapse
|
38
|
Hu Y, Lu Q, Huang C, Gao Y, Tian Y, Fan L, Liu S. Associations between prenatal exposure to polybrominated diphenyl ethers and physical growth in a seven year cohort study. CHEMOSPHERE 2022; 303:135049. [PMID: 35618052 DOI: 10.1016/j.chemosphere.2022.135049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Although evidence suggests that prenatal exposure to polybrominated diphenyl ethers (PBDEs) alter offspring's physical growth, most studies rely upon physical growth at a single timepoint, and little is known regarding their longitudinal effects over time. In the current study, we determined the associations between prenatal PBDEs exposure and child physical growth by following up 207 mother-child pairs from the Laizhou Wan Birth Cohort (LWBC) from pregnancy until the children were seven years old. Child physical growth including weight, height, and body mass index (BMI) was assessed at birth, and at one, two and seven years of age. Prenatal exposure to PBDEs was quantified by measuring eight PBDE congeners (BDE-28, BDE-47, BDE-85, BDE-99, BDE-100, BDE-153, BDE-154, and BDE-183) in maternal serum samples collected upon hospital admission for delivery. Linear mixed models were applied to examine the associations between prenatal PBDEs exposure and repeated measures of child physical growth, and to determine whether these associations were modified by child's sex. Our findings indicated that BDE-28, BDE-85, BDE-153, BDE-183, and Σ7PBDEs were positively associated with child weight z-score; and that BDE-28, BDE-47, BDE-85, BDE-99, BDE-153, and Σ7PBDEs were positively associated with child height z-score. In addition, these associations were modified by the child's sex as reflected by pronounced positive associations among boys, while negative associations were noted among girls. In conclusion, our findings indicated the sex-specific associations between prenatal PBDE exposures and child physical growth during the first seven years of life.
Collapse
Affiliation(s)
- Yi Hu
- Department of Pediatrics, Hainan Women and Children's Medical Center, Haikou, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuican Huang
- Department of Child Health Care, Hainan Women and Children's Medical Center, Haikou, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hainan Women and Children's Medical Center, Haikou, China.
| | - Lichun Fan
- Department of Child Health Care, Hainan Women and Children's Medical Center, Haikou, China.
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Baumert BO, Goodrich JA, Hu X, Walker DI, Alderete TL, Chen Z, Valvi D, Rock S, Berhane K, Gilliland FD, Goran MI, Jones DP, Conti DV, Chatzi L. Plasma concentrations of lipophilic persistent organic pollutants and glucose homeostasis in youth populations. ENVIRONMENTAL RESEARCH 2022; 212:113296. [PMID: 35447156 PMCID: PMC9831292 DOI: 10.1016/j.envres.2022.113296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 04/09/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to lipophilic persistent organic pollutants (POPs) is ubiquitous. POPs are metabolic disrupting chemicals and are potentially diabetogenic. METHODS Using a multi-cohort study including overweight adolescents from the Study of Latino Adolescents at Risk (SOLAR, N = 301, 2001-2012) and young adults from the Southern California Children's Health Study (CHS, N = 135, 2014-2018), we examined associations of POPs and risk factors for type 2 diabetes. SOLAR participants underwent annual visits for a median of 2.2 years and CHS participants performed a single visit, during which a 2-h oral glucose tolerance test was performed. Linear mixed models were used to examine associations between plasma concentrations of POPs [4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE), hexachlorobenzene (HCB), PCBs-153, 138, 118, 180 and PBDEs-154, 153, 100, 85, 47] and changes in glucose homeostasis across age and pubertal stage. RESULTS In SOLAR, exposure to HCB, PCB-118, and PBDE-153 was associated with dysregulated glucose metabolism. For example, each two-fold increase in HCB was associated with approximately 2 mg/dL higher glucose concentrations at 30 min (p = 0.001), 45 min (p = 0.0006), and 60 min (p = 0.03) post glucose challenge. Compared to individuals with low levels of PCB-118, individuals with high levels exhibited a 4.7 mg/dL (p = 0.02) higher glucose concentration at 15 min and a 3.6 mg/dL (p = 0.01) higher glucose concentration at 30 min. The effects observed with exposure to organochlorine compounds were independent of pubertal stages. PBDE-153 was associated with the development of dysregulated glucose metabolism beginning in late puberty. At Tanner stage 4, exposure to PBDE-153 was associated with a 12.7 mg/dL higher 60-min glucose concentration (p = 0.009) and a 16.1 mg*dl-1*hr-1 higher glucose AUC (p = 0.01). These associations persisted at Tanner 5. In CHS, PBDE-153 and total PBDE were associated with similar increases in glucose concentrations. CONCLUSION Our results suggest that childhood exposure to lipophilic POPs is associated with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Brittney O Baumert
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Jesse A Goodrich
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xin Hu
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Zhanghua Chen
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Rock
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Frank D Gilliland
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael I Goran
- Department of Pediatrics, Children's Hospital of Los Angeles, The Saban Research Institute, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - David V Conti
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Leda Chatzi
- Department of Preventative Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
40
|
Li X, Zhang H, Qiao S, Ma W, Cai J, Zhang X, Zhang Z. Melatonin administration alleviates 2,2,4,4-tetra-brominated diphenyl ether (PBDE-47)-induced necroptosis and secretion of inflammatory factors via miR-140-5p/TLR4/NF-κB axis in fish kidney cells. FISH & SHELLFISH IMMUNOLOGY 2022; 128:228-237. [PMID: 35940536 DOI: 10.1016/j.fsi.2022.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
2,2,4,4-tetra-brominated diphenyl ether (PBDE-47)-the dominant homologue of polybrominated diphenyl ethers-is a toxic environmental pollutant in the aquatic environment that continuously exists and bioaccumulates in the aquatic food chain. In experimental disease models, melatonin (MEL) has been reported to attenuate necroptosis and inflammatory responses. To further explore the mechanism underlying PBDE-47 toxicity and the mitigative impact of MEL detoxification, in this study, fish kidney cell models of PBDE-47 poisoning and/or MEL treatment were developed. The Ctenopharyngodon idellus kidney (CIK) cell line was treated with PBDE-47 (100 μM) and/or MEL (60 μM) for 24 h. Experimental data suggest that PBDE-47 exposure resulted in the enhancement of cytoplasmic Ca2+ concentration, induction of calcium dysmetabolism, decrease in the miR-140-5p miRNA level, upregulation of Toll-like Receptor 4 (TLR4) and nuclear factor-kappaB (NF-κB), triggering of receptor interacting serine/threonine kinase-induced necroptosis, and NF-κB pathway mediated secretion of inflammatory factors in CIK cells. PBDE-47-induced CIK cell damage could be mitigated by MEL through the regulation of calcium channels and the restoration of disorders of the miR-140-5p/TLR4/NF-κB axis. Overall, MEL relieved PBDE-47-induced necroptosis and the secretion of inflammatory factors through the miR-140-5p/TLR4/NF-κB axis. These findings enrich the current understanding of the toxicological molecular mechanisms of the PBDE-47 as well as the detoxification mechanisms of the MEL.
Collapse
Affiliation(s)
- Xueyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Senqiu Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
41
|
Wang X, Zhao L, Shi Q, Guo Y, Hua J, Han J, Yang L. DE-71 affected the cholinergic system and locomotor activity via disrupting calcium homeostasis in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106237. [PMID: 35870252 DOI: 10.1016/j.aquatox.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) can induce neurotoxicity, but the mechanism of their toxicity on the cholinergic system and locomotion behavior remains unclear. In this paper, zebrafish embryos were exposed to DE-71 (0, 1, 3, 10, 30, and 100 µg/L) until 120 h post fertilization, and its effects on the behavior and cholinergic system of zebrafish larvae and its possible mechanism were investigated. Results indicated a general locomotor activity impairment in the light-dark transition stimulation without affecting the secondary motoneurons. However, with the extension of test time in the dark or light, the decreased locomotor activity was diminished, a significant decrease only observed in the 100 µg/L DE-71 exposure groups in the last 10 min. Furthermore, whole-body acetylcholine (ACh) contents decreased after DE-71 exposure, whereas no changes in NO contents and inducible nitric oxide synthase activity were found. The expression of certain genes encoding calcium homeostasis proteins (e.g., grin1a, camk2a, and crebbpb) and the concentrations of calcium in zebrafish larvae were significantly decreased after DE-71 exposure. After co-exposure with calcium channel agonist (±)-BAY K8644, calcium concentrations, ACh contents, and locomotor activity in the light-dark transition stimulation was significantly increased compared with the same concentrations of DE-71 exposure alone, whereas no significant difference was observed compared with the control, indicating that calcium homeostasis is involved in the impairment of cholinergic neurotransmission and locomotor activity. Overall, our results suggested that DE-71 can impair the cholinergic system and locomotor activity by impairing calcium homeostasis. Our paper provides a better understanding of the neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lifeng Zhao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Qipeng Shi
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
42
|
Chang WH, Lu QO, Chen HL, Hsu NS, Lee CC. Insights into the long-term fates and impacts of polybrominated diphenyl ethers in sediment samples in Taiwan: The national project for background monitoring of the environmental distribution of chemical substances (BMECs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119417. [PMID: 35526644 DOI: 10.1016/j.envpol.2022.119417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/17/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the impact factors and effectiveness of management policies on the presence of polybrominated diphenyl ethers (PBDEs) in sediment samples in Taiwan from the last 10 years. Twenty-four PBDE congeners were detected in 838 sediment samples collected from 4 stages (2006-2019) in 30 principal rivers, based on the national project for background monitoring of the environmental distribution of chemical substances. The ΣPBDE concentrations in the 4 stages ranged from 30.00 to 147.10 ng/g dw, 6.03-15.30 ng/g dw, 4.99-7.00 ng/g dw, and 1.20-2.10 ng/g dw in the northern, southern, central, and eastern areas, respectively. The concentrations of PBDEs (e.g., penta-BDE and octa-BDE) in sediment samples notably decreased (-6 to -73%) as the Taiwan Environmental Protection Administration implemented policies banning PBDEs (except deca-BDE). The PBDEs levels of the sediment samples collected in the dry season were higher than those collected in the wet season. The levels of ΣPBDEs in sediment samples were affected by season, the amount of general waste present, and nearby PBDE-related factories and e-waste recycling facilities. Reducing the release of PBDEs, especially deca-BDE, through sound waste management and recycling practices is still needed to improve environmental sustainability in Taiwan.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Quang-Oai Lu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Ning-Syuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Ching-Chang Lee
- Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
43
|
Omichessan H, Perduca V, Polidoro S, Kvaskoff M, Truong T, Cano-Sancho G, Antignac JP, Baglietto L, Mancini FR, Severi G. Associations between plasma levels of brominated flame retardants and methylation of DNA from peripheral blood: A cross-sectional study in a cohort of French women. ENVIRONMENTAL RESEARCH 2022; 210:112788. [PMID: 35123963 DOI: 10.1016/j.envres.2022.112788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Brominated flame retardants (BFRs) are organic compounds that are widespread in the environment. Because of their persistence, they are able to bioaccumulate with major impacts on human health. It has been hypothesized that the effect of BFRs on human health is mediated by alterations of DNA methylation. OBJECTIVE The aim of this study was to examine the association between methylation of DNA extracted from peripheral blood and circulating levels of BFRs measured in plasma. METHODS We conducted a methylation wide association study on 336 blood samples from a study within the E3N (Etude Epidémiologique auprès de femmes de l'Education Nationale) cohort, a long-term longitudinal cohort of French women. DNA methylation at more than 850 000 cytosine-guanine dinucleotide (CpG) sites was measured with the Illumina Infinium HumanMethylation - EPIC BeadChip. Circulating levels of seven BFRs (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154 and PBB-153) were measured by gas chromatography coupled to high-resolution mass spectrometry in plasma samples. The association between DNA methylation and BFRs plasma levels was assessed through linear mixed-effects models followed by gene-set enrichment analyses (GSEA). RESULTS We identified 253 CpG sites whose methylation levels were significantly associated with exposure to BFRs after Bonferroni correction. For 50 of these CpGs the p-values were less than 2.2x10-9 with the strongest association being between BDE-154 and cg23619365 (4.32x10-13). GSEA of CpG sites associated with exposure to BFRs identified significant enrichment of genes involved in hypoxia, glycolysis and adipogenesis. CONCLUSIONS Exposure to BFRs appears to be related to numerous alterations in DNA methylation. These findings, if replicated in independent studies, provide insights into the biological and health effects of BFRs.
Collapse
Affiliation(s)
- Hanane Omichessan
- Université Paris-Saclay, UVSQ, INSERM, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Gustave Roussy, Villejuif, France
| | - Vittorio Perduca
- Université Paris-Saclay, UVSQ, INSERM, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Gustave Roussy, Villejuif, France; Laboratoire MAP5 (UMR CNRS 8145), Université de Paris, Paris, France
| | - Silvia Polidoro
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Marina Kvaskoff
- Université Paris-Saclay, UVSQ, INSERM, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Gustave Roussy, Villejuif, France
| | - Thérèse Truong
- Université Paris-Saclay, UVSQ, INSERM, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Gustave Roussy, Villejuif, France
| | | | | | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Francesca Romana Mancini
- Université Paris-Saclay, UVSQ, INSERM, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, INSERM, CESP U1018, "Exposome, Heredity, Cancer and Health" Team, Gustave Roussy, Villejuif, France; Department of Statistics, Computer Science, University of Florence, Applications G. Parenti, Italy.
| |
Collapse
|
44
|
Guarnotta V, Amodei R, Frasca F, Aversa A, Giordano C. Impact of Chemical Endocrine Disruptors and Hormone Modulators on the Endocrine System. Int J Mol Sci 2022; 23:ijms23105710. [PMID: 35628520 PMCID: PMC9145289 DOI: 10.3390/ijms23105710] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
There is growing concern regarding the health and safety issues of endocrine-disrupting chemicals (EDCs). Long-term exposure to EDCs has alarming adverse health effects through both hormone-direct and hormone-indirect pathways. Non-chemical agents, including physical agents such as artificial light, radiation, temperature, and stress exposure, are currently poorly investigated, even though they can seriously affect the endocrine system, by modulation of hormonal action. Several mechanisms have been suggested to explain the interference of EDCs with hormonal activity. However, difficulty in quantifying the exposure, low standardization of studies, and the presence of confounding factors do not allow the establishment of a causal relationship between endocrine disorders and exposure to specific toxic agents. In this review, we focus on recent findings on the effects of EDCs and hormone system modulators on the endocrine system, including the thyroid, parathyroid glands, adrenal steroidogenesis, beta-cell function, and male and female reproductive function.
Collapse
Affiliation(s)
- Valentina Guarnotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
| | - Roberta Amodei
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
| | - Francesco Frasca
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, 95122 Catania, Italy;
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Section of Endocrinology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Carla Giordano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (V.G.); (R.A.)
- Correspondence: ; Tel.: +39-0916552110
| |
Collapse
|
45
|
Liu YJ, Xie Y, Tian YK, Liu H, He CD, An SL, Chen W, Zhou YZ, Zhong XN. Associations Between Polybrominated Diphenyl Ethers Concentrations in Human Placenta and Small for Gestational Age in Southwest China. Front Public Health 2022; 10:812268. [PMID: 35211445 PMCID: PMC8863045 DOI: 10.3389/fpubh.2022.812268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prenatal exposures to polybrominated diphenyl ethers (PBDEs) may affect fetal growth. Small for gestational age (SGA) is a measure based on birth weight and gestational age at birth and represents a good indicator of fetal growth but it has been used only in a small number of studies. The present study aimed to examine the associations between PBDEs exposure and the risk of SGA among participants from a birth cohort in Southwest China. METHODS The concentrations of eight common PBDE congeners (BDE-28, BDE47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, and BDE-209) in 996 human placental samples collected between May to October 2020 were determined. A questionnaire survey was administered regarding maternal characteristics. The outcome data of the newborns were obtained from the medical record. The Mann-Whitney U test and binomial logistic regression analysis were used to assess associations between PBDEs concentrations (as a continuous or categorical variable) and SGA. RESULTS All PBDE congeners were detected in more than 73% of samples. The median concentrations of ΣPBDEs were 10.08 ng/g lipid weight (lw). BDE-209 was the most abundant PBDE congener, contributed 28% to ΣPBDEs. There were 114 (11.4%) SGA infants. The levels of BDE-99, BDE-100, BDE-209, and the total levels of ΣPBDEs in the SGA group were significantly higher than those in the controls. When classifying the PBDEs concentrations as two categories: low and high, high level of ΣPBDEs was associated with increased risk of SGA [odds ratio (OR): 2.203, 95% confidence interval (CI): 1.453-3.340] after adjusting for potential covariates. The association remained significant when stratifying the data by gender of the newborn (OR: 2.572, 95% CI: 1.337-4.947 for boys; OR: 2.385, 95% CI: 1.315-4.325 for girls). CONCLUSION The present study adds to the literature by using placenta to measure PBDEs exposure during pregnancy, and provides evidence that prenatal exposure to PBDEs may be associated with the risk of SGA, at least at the levels of exposure in our population.
Collapse
Affiliation(s)
- Yi-Jun Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China.,School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yan Xie
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Ying-Kuan Tian
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Hui Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Cai-Die He
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Song-Lin An
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xiao-Ni Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Photodegradation of Decabrominated Diphenyl Ether in Soil Suspensions: Kinetics, Mechanisms and Intermediates. Processes (Basel) 2022. [DOI: 10.3390/pr10040718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Pollution by polybrominated diphenyl ethers (PBDEs) is a major concern due to their bioaccumulation, persistence, and carcinogenicity. This study aimed to investigate the decabrominated diphenyl ether (BDE-209) photodegradation in soil suspensions. The results indicate BDE-209 can degrade in soil suspensions and its degradation follows pseudo-first-order kinetics. The light sources and intensity effects were studied and the photodegradation rates were 500 W Mercury Lamp > 300 W Mercury Lamp > 500 W Xenon Lamp > 300 W Xenon Lamp, which indicates UV light is the main reason for BDE-209 degradation. Soil particle inhibits BDE-209 photodegradation due to the light-shielding effect. BDE-209 photodegradation rates increased from 0.055 to 0.071 h−1 with pH value increasing from 3.5 to 9.5. This may be because the products are more easily produced in higher pH soil suspensions. The presence of humic acid (HA) may inhibit BDE-209 photodegradation by photo-shielding. Fe3+ and Cu2+ have an adverse effect on BDE-209 photodegradation due to the photo competition. The •OH and 1O2 were detected in soil solutions. Analysis of the photoproducts of BDE-209 by gas chromatography mass spectrometry (GC-MS) and liquid chromatography time of flight mass spectrometry (LC-TOF-MS) showed that BDE-209 was mainly debrominated to the lower-brominated BDEs and the reactive oxygen radicals may not lead to BDE-209 degradation.
Collapse
|
47
|
Sprowles JL, Monaikul S, Aguiar A, Gardiner J, Monaikul N, Kostyniak P, Schantz SL. Associations of concurrent PCB and PBDE serum concentrations with executive functioning in adolescents. Neurotoxicol Teratol 2022; 92:107092. [DOI: 10.1016/j.ntt.2022.107092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
|
48
|
Wen Q, Xie X, Ren Q, Du Y. Polybrominated diphenyl ether congener 99 (PBDE 99) promotes adipocyte lineage commitment of C3H10T1/2 mesenchymal stem cells. CHEMOSPHERE 2022; 290:133312. [PMID: 34919914 DOI: 10.1016/j.chemosphere.2021.133312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Obesogens are defined as chemicals that trigger obesity partially by stimulating adipogenesis. Adipogenesis consists of two successive processes: the adipocyte lineage commitment of pluripotent stem cells and the differentiation of preadipocytes. Compared with the differentiation of preadipocytes, the effects of most environmental obesogens on adipocyte lineage commitment remain largely unknown. In this study, investigations are performed to explore the influences of PBDE 99 on the adipocyte lineage commitment based on C3H10T1/2, which has been widely used as a mesenchymal stem cell (MSC) model. Our results indicated that exposure to PBDE 99 during commitment stage resulted in significant up-regulation of subsequent adipogenesis in C3H10T1/2 MSCs. Interestingly, PBDE 99 did not affect the osteogenesis of C3H10T1/2 MSCs, although the adipogenesis and osteogenesis of MSCs are typically reciprocal. PBDE 99 was further demonstrated to significantly decrease the expression of Pref1, the marker of very early adipose mesenchymal precursor, and its downstream effector, Sox9. This result strongly suggested that PBDE 99 facilitated adipocyte commitment to exert adipogenic effect on C3H10T1/2 MSCs. Mechanistic studies revealed that PBDE 99 efficiently inhibited Hedgehog signaling transduction, a conserved negative regulator of the adipocyte lineage commitment. Furthermore, the effects of PBDE 99 on adipogenesis were abrogated by the co-treatment with SAG, a specific Hedgehog signaling activator, suggesting inhibition of Hedgehog signaling is responsible for the effect of PBDE 99 on adipocyte commitment. Taking together, these results strongly suggested enhanced adipocyte lineage commitment was involved in potential obesogenic effect of PBDE 99, presumably through repressing Hedgehog signalling during commitment stage. Moreover, the results of this study indicated that C3H10T1/2 can be used as a feasible MSCs cell model to evaluate the capabilities of potential obesogens on adipocyte commitment.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
49
|
Luan P, Zhang H, Chen X, Zhu Y, Hu G, Cai J, Zhang Z. Melatonin relieves 2,2,4,4-tetrabromodiphenyl ether (BDE-47)-induced apoptosis and mitochondrial dysfunction through the AMPK-Sirt1-PGC-1α axis in fish kidney cells (CIK). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113276. [PMID: 35123185 DOI: 10.1016/j.ecoenv.2022.113276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) exist in aquatic environments with nephrotoxicity to non-target aquatic species. Melatonin (MT) exhibits an inhibitory effect of oxidative stress and apoptosis in various diseases. 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is the main homolog of PBDE samples. Therefore, we investigated the toxic mechanism of BDE-47 and the alleviation effect of MT, the ctenopharyngodon idellus kidney (CIK) cells were treated with BDE-47 (100 μM) and/or MT (60 μM) for 24 h. Firstly, BDE-47 exposure could inhibit oxidative stress-related antioxidant enzymes (T-AOC, SOD, CAT and GPx) and increase the content of malondialdehyde (MDA) to cause oxidative stress. Secondly, BDE-47 enhanced mitochondrial division and inhibited fusion to induce mitochondrial membrane potential in CIK cells. BDE-47 enhanced the mRNA and protein levels of mitochondrial-pathway apoptosis related genes (Cas 3, Cyt-c, and BAX). Thirdly, BDE-47 treatment decreased the expression levels of mitochondrial-related regulatory factors AMPK-Sirt1-PGC-1α signal pathway. Intriguingly, BDE-47-induced oxidative stress, mitochondrial pathway apoptosis and mitochondrial dynamics disorder could be alleviated by MT treatment. Overall, we concluded that MT could relieve BDE-47-induced oxidative stress, mitochondrial dysfunction and apoptosis through the AMPK-Sirt1-PGC-1α axis. These results enrich the mechanisms of BDE-47 poisoning and reveal that MT treatment may be a potential strategy for solving BDE-47 poisoning.
Collapse
Affiliation(s)
- Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Guo Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 0150070, PR China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150070, PR China.
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
50
|
Chen H, Carty RK, Bautista AC, Hayakawa KA, Lein PJ. Triiodothyronine or Antioxidants Block the Inhibitory Effects of BDE-47 and BDE-49 on Axonal Growth in Rat Hippocampal Neuron-Glia Co-Cultures. TOXICS 2022; 10:92. [PMID: 35202279 PMCID: PMC8879960 DOI: 10.3390/toxics10020092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/31/2022]
Abstract
We previously demonstrated that polybrominated diphenyl ethers (PBDEs) inhibit the growth of axons in primary rat hippocampal neurons. Here, we test the hypothesis that PBDE effects on axonal morphogenesis are mediated by thyroid hormone and/or reactive oxygen species (ROS)-dependent mechanisms. Axonal growth and ROS were quantified in primary neuronal-glial co-cultures dissociated from neonatal rat hippocampi exposed to nM concentrations of BDE-47 or BDE-49 in the absence or presence of triiodothyronine (T3; 3-30 nM), N-acetyl-cysteine (NAC; 100 µM), or α-tocopherol (100 µM). Co-exposure to T3 or either antioxidant prevented inhibition of axonal growth in hippocampal cultures exposed to BDE-47 or BDE-49. T3 supplementation in cultures not exposed to PBDEs did not alter axonal growth. T3 did, however, prevent PBDE-induced ROS generation and alterations in mitochondrial metabolism. Collectively, our data indicate that PBDEs inhibit axonal growth via ROS-dependent mechanisms, and that T3 protects axonal growth by inhibiting PBDE-induced ROS. These observations suggest that co-exposure to endocrine disruptors that decrease TH signaling in the brain may increase vulnerability to the adverse effects of developmental PBDE exposure on axonal morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Pamela J. Lein
- Department of Molecular Biosciences, University of California, Davis, CA 95616, USA; (H.C.); (R.K.C.); (A.C.B.); (K.A.H.)
| |
Collapse
|