1
|
Italia S, Vivarelli S, Teodoro M, Costa C, Fenga C, Giambò F. Effects of pesticide exposure on the expression of selected genes in normal and cancer samples: Identification of predictive biomarkers for risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104524. [PMID: 39098443 DOI: 10.1016/j.etap.2024.104524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Pesticides pivotal in controlling pests, can represent a threat for human health. Regulatory agencies constantly monitor their harmful effects, regulating their use. Several studies support a positive association between long-term exposure to pesticides and chronic pathologies, such as cancer. Geno-toxicological biomonitoring has proven to be valuable to assess genetic risks associated with exposure to pesticides, representing a promising tool to improve preventive measures and identify workers at higher risk. In this study, a differential gene expression analysis of 70 candidate genes deregulated upon pesticide exposure, was performed in 10 GEO human gene expression DataSets. It was found that six genes (PMAIP1, GCLM, CD36, SQSTM1, ABCC3, NR4A2) had significant AUC predictive values. Also, CD36 was upregulated in non-transformed cell samples and healthy workers, but downregulated in cancer cells. Further validation in larger groups of workers will corroborate the importance of the identified candidates as biomarkers of exposure/effect.
Collapse
Affiliation(s)
- Sebastiano Italia
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy.
| | - Federica Giambò
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina 98125, Italy
| |
Collapse
|
2
|
Fath EM, Bakery HH, El-Shawarby RM, Abosalem MES, Ibrahim SS, Ebrahim N, Hegazy AM. Silymarin ameliorates diazinon-induced subacute nephrotoxicity in rats via the Keap1-Nrf2/heme oxygenase-1 signaling pathway. Forensic Toxicol 2024:10.1007/s11419-024-00697-x. [PMID: 39117988 DOI: 10.1007/s11419-024-00697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE The goal of the current study was to clarify the potential molecular mechanism underlying the protective effects of silymarin (SIL) administration against diazinon-induced subacute nephrotoxicity, with a special emphasis on the role of the Kelch-like-associated protein-1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase-1 (HO-1) signaling pathway in minimizing the oxidative stress induced by diazinon (DZN). METHODS Five equal groups of thirty adult male Wistar rats were created at random. Group 1 (G1) was maintained under typical control conditions and administered saline intragastrically (I/G) once daily for 4 weeks; G2 was administered olive oil I/G for 4 weeks; G3 was I/G administered silymarin daily for 4 weeks; G4 was I/G administered diazinon daily for 4 weeks. G5 was I/G administered silymarin daily 1 h before the I/G administration of the diazinon for 4 weeks. Blood samples were collected at the end of the experiment for the determination of complete blood cell count, and kidney function tests. Kidney specimens were collected for the evaluation of the oxidative markers, mRNA gene expression, protein markers, and histopathological examination. RESULTS SIL reduced the renal dysfunction caused by DZN by restoring urea and creatinine levels, as well as oxidative indicators. Although the expression of Keap-1 was also elevated, overexpression of Nrf2 also enhanced the expression of HO-1, a crucial target enzyme of Nrf2. CONCLUSIONS SIL is hypothesized to potentially aid in the prevention and management of nephrotoxicity caused by DZN.
Collapse
Affiliation(s)
- Eman Mohamed Fath
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Hatem H Bakery
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Ragab M El-Shawarby
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Mohamed E S Abosalem
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Samar S Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, 13511, Egypt
- Faculty of Medicine, Benha National University, Obour City, Egypt
| | - Ahmed Medhat Hegazy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qalyubia, Egypt.
| |
Collapse
|
3
|
Yadav B, Kaur S, Yadav A, Verma H, Kar S, Sahu BK, Pati KR, Sarkar B, Dhiman M, Mantha AK. Implications of organophosphate pesticides on brain cells and their contribution toward progression of Alzheimer's disease. J Biochem Mol Toxicol 2024; 38:e23660. [PMID: 38356323 DOI: 10.1002/jbt.23660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
The most widespread neurodegenerative disorder, Alzheimer's disease (AD) is marked by severe behavioral abnormalities, cognitive and functional impairments. It is inextricably linked with the deposition of amyloid β (Aβ) plaques and tau protein in the brain. Loss of white matter, neurons, synapses, and reactive microgliosis are also frequently observed in patients of AD. Although the causative mechanisms behind the neuropathological alterations in AD are not fully understood, they are likely influenced by hereditary and environmental factors. The etiology and pathogenesis of AD are significantly influenced by the cells of the central nervous system, namely, glial cells and neurons, which are directly engaged in the transmission of electrical signals and the processing of information. Emerging evidence suggests that exposure to organophosphate pesticides (OPPs) can trigger inflammatory responses in glial cells, leading to various cascades of events that contribute to neuroinflammation, neuronal damage, and ultimately, AD pathogenesis. Furthermore, there are striking similarities between the biomarkers associated with AD and OPPs, including neuroinflammation, oxidative stress, dysregulation of microRNA, and accumulation of toxic protein aggregates, such as amyloid β. These shared markers suggest a potential mechanistic link between OPP exposure and AD pathology. In this review, we attempt to address the role of OPPs on altered cell physiology of the brain cells leading to neuroinflammation, mitochondrial dysfunction, and oxidative stress linked with AD pathogenesis.
Collapse
Affiliation(s)
- Bharti Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Swastitapa Kar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Binit Kumar Sahu
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kumari Riya Pati
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibekanada Sarkar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
4
|
Sevim C, Tsatsakis A, Taghizadehghalehjoughi A, Ozkaraca M, Kara M, Genc S, Mendil AS, Yeni Y, Nikolouzakis TK, Ozcagli E. Investigation of the miRNA levels changes to acceptable daily intake dose pesticide mixture exposure on rat mesentery and pancreas. CHEMOSPHERE 2024; 349:140712. [PMID: 38036224 DOI: 10.1016/j.chemosphere.2023.140712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023]
Abstract
Consumers are constantly exposed to a variety of chemical mixtures as part of their everyday activities and lifestyle. Food, water and commercial products are only some examples of the possible ways people get exposed to these mixtures. However, following federal and local guidelines for risk assessment related to chemical exposure, risk analysis focuses on a single substance exposure scenario and not on a mixture, as in real life. Realizing the pronounced gap of this methodology, the real-life risk simulation scenario approach tries to address this problem by investigating the possible effect of long-term exposure to chemical mixtures closely resembling the actual circumstances of modern life. As part of this effort, this study aimed to identify the cumulative effects of pesticides belonging to different classes and commonly used commercial products on long-term exposure with realistic doses. Sprague Dawley rats were given a pesticide mix of active ingredients and formulation chemicals in a daily acceptable dose (ADI) and 10xADI for 90 days. Following thorough everyday documentation of possible side-effects, after 90 days all animals were sacrificed and their organs were examined. Exposure to pesticides particularly affects the miRNA levels at that point will provide us with more information about whether they can be potential biomarkers.
Collapse
Affiliation(s)
- Cigdem Sevim
- Deparment of Medical Pharmacology, Faculty of Medicine, Kastamonu University , 37200, Kastamonu, Turkey.
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, Crete University, 71003, Heraklion, Greece.
| | - Ali Taghizadehghalehjoughi
- Deparment of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Mustafa Ozkaraca
- Deparment of Pathology, Faculty of Veterinary, Cumhuriyet University , 58070, Sivas, Turkey.
| | - Mehtap Kara
- Deparment of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , 34116, Istanbul, Turkey.
| | - Sidika Genc
- Deparment of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Ali Sefa Mendil
- Deparment of Pathology, Faculty of Veterinary, Erciyes University , 38280, Kayseri, Turkey.
| | - Yesim Yeni
- Deparment of Medical Pharmacology, Faculty of Medicine, Turgut Özal University, 44210, Malatya, Turkey.
| | | | - Eren Ozcagli
- Deparment of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , 34116, Istanbul, Turkey.
| |
Collapse
|
5
|
Kaur S, Verma H, Kaur S, Gangwar P, Yadav A, Yadav B, Rao R, Dhiman M, Mantha AK. Understanding the multifaceted role of miRNAs in Alzheimer's disease pathology. Metab Brain Dis 2024; 39:217-237. [PMID: 37505443 DOI: 10.1007/s11011-023-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aβ and tau is known to be associated with miRNA dysregulation. In addition, the β-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aβ, is also found to be regulated by miRNAs, thus directly affecting Aβ accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
6
|
Sánchez-Alarcón J, Milić M, Bonassi S, Gómez-Arroyo S, Cortés-Eslava J, Flores-Márquez AR, Valencia-Sánchez RA, Valencia-Quintana R. Occupational exposure to pesticides: DNA damage in horticulturist from Nativitas, Tlaxcala in Mexico. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104141. [PMID: 37146670 DOI: 10.1016/j.etap.2023.104141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Mexico is a country where agricultural activity is of great importance, but biomonitoring data are still scarce. With more intensive pesticides use per unit area/surface in horticultural productivity, there is a higher impact on environmental contamination and workers' health. Considering that exposure to various pesticide and pesticide mixtures represents an additional genotoxic risk, the appropriate characterization of exposure, confounding factors and the risk itself are very much needed. We compared genetic damage in 42 horticulturists and 46 unexposed controls (Nativitas, Tlaxcala) using alkaline comet (whole blood) and micronucleus (MN) test with nuclear abnormalities (NA) (buccal epithelial cells). Workers demonstrated significantly higher levels of damage (TI%=14.02 ± 2.49 vs. 5.37 ± 0.46; MN=10.14 ± 5.15 vs. 2.40 ± 0.20), with more than 90% of them not using protective clothing nor gloves during application. Combined DNA damage techniques and periodic monitoring together with educational programs for safe pesticide application is the best strategy to assess and prevent workers' health risks.
Collapse
Affiliation(s)
- Juana Sánchez-Alarcón
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10 000 Zagreb, Croatia.
| | - Stefano Bonassi
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | - Josefina Cortés-Eslava
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510 Ciudad de Mexico, Mexico
| | | | - Rafael Valencia-Quintana
- Laboratorio "Rafael Villalobos-Pietrini" de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, CA Genética y Ambiente UATLX-CA 223, Red Temática de Toxicología de Plaguicidas, Tlaxcala 90120, Mexico.
| |
Collapse
|
7
|
Neuroprotective Effect of Vitamin D on Behavioral and Oxidative Parameters of Male and Female Adult Wistar Rats Exposed to Mancozeb (manganese/zinc ethylene bis-dithiocarbamate). Mol Neurobiol 2023; 60:3724-3740. [PMID: 36940076 DOI: 10.1007/s12035-023-03298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
The constant exposure of rural workers to pesticides is a serious public health problem. Mancozeb (MZ) is a pesticide linked to hormonal, behavioral, genetic, and neurodegenerative effects, mainly related to oxidative stress. Vitamin D is a promising molecule that acts as a protector against brain aging. This study aimed to evaluate the neuroprotective role of vitamin D in adult male and female Wistar rats exposed to MZ. Animals received 40 mg/kg of MZ i.p. and 12.5 μg/kg or 25 μg/kg vitamin D by gavage, twice a week, for 6 weeks. The concentration of manganese had a significant increase in the hippocampus of both sexes and in the striatum of females, unlike zinc, which did not show a significant increase. MZ poisoning led to mitochondrial changes in brain tissues and promoted anxiogenic effects, especially in females. Alterations in antioxidant enzymes, mainly in the catalase activity were observed in intoxicated rats. Taken together, our results showed that exposure to MZ leads to the accumulation of manganese in brain tissues, and the behavior and metabolic/oxidative impairment were different between the sexes. Furthermore, the administration of Vitamin D was effective in preventing the damage caused by the pesticide.
Collapse
|
8
|
Afsheen N, Rafique S, Rafeeq H, Irshad K, Hussain A, Huma Z, Kumar V, Bilal M, Aleya L, Iqbal HMN. Neurotoxic effects of environmental contaminants-measurements, mechanistic insight, and environmental relevance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70808-70821. [PMID: 36059010 DOI: 10.1007/s11356-022-22779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a significant and growing concern for any population regardless of age because these environmental contaminants exhibit different neurodegenerative effects on persons of different ages. These environmental contaminants are the products of human welfare projects like industry, automobile exhaust, clinical and research laboratory extrudes, and agricultural chemicals. These contaminants are found in various forms in environmental matrices like nanoparticles, particulate matter, lipophilic vaporized toxicants, and ultrafine particulate matter. Because of their small size, they can easily cross blood-brain barriers or use different cellular mechanisms for assistance. Other than this, these contaminants cause an innate immune response in different cells of the central nervous system and cause neurotoxicity. Considering the above critiques and current needs, this review summarizes different protective strategies based on bioactive compounds present in plants. Various bioactive compounds from medicinal plants with neuroprotective capacities are discussed with relevant examples. Many in vitro studies on clinical trials have shown promising outcomes using plant-based bioactive compounds against neurological disorders.
Collapse
Affiliation(s)
- Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Department of Pharmacy, Riphah International University, Faisalabad, 38000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Zille Huma
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
9
|
Zhang W, Liu H, Fu G, Li Y, Ji X, Zhang S, Wei M, Qiao K. Exposure to fluopimomide at sublethal doses causes oxidative stress in Caenorhabditis elegans regulated by insulin/insulin-like growth factor 1-like signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2529-2539. [PMID: 35833599 DOI: 10.1002/tox.23616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Fluopimomide is an innovative pesticide, widely used for agricultural pest management; however, little is known about its effect on non-target organisms. This study was designed to assess the potential risk of fluopimomide and the molecular mechanisms using Caenorhabditis elegans, a common model animal. The oxidative stress-related indicators were analyzed in C. elegans after exposure to fluopimomide for 24 h at three sublethal doses (0.2, 1.0, and 5.0 mg/L). The results demonstrated that sublethal exposure to fluopimomide adversely affected the nematodes growth, locomotive behaviors, reproduction, and lifespan, accompanying with enhanced of reactive oxygen species (ROS) generation, lipid and lipofuscin accumulation, and malondialdehyde content. In addition, exposure to fluopimomide significantly inhibited antioxidant systems including superoxide dismutase, catalase, glutathione S-transferase, and glutathione in the nematodes. Moreover, the expression of oxidative stress-related genes of sod-3, hsp-16.1, gst-4, ctl-2, daf-16, and daf-2 were significantly down-regulated, while the expression of skn-1 was significantly up-regulated. Further evidence revealed that daf-16 and skn-1 mutant strains of C. elegans significantly decreased ROS production upon fluopimomide exposure compared with the wild-type nematodes. Overall, our findings indicated that exposure to fluopimomide at sublethal doses caused oxidative damage, mainly associated with insulin/IGF-1-like signaling pathway in C. elegans. This is the first report of potential toxic effects of fluopimomide even at low concentrations, providing a new insight into the mechanisms of toxicity to C. elegans by fluopimomide.
Collapse
Affiliation(s)
- Weiping Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Huimin Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Guanghan Fu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yujie Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiaoxue Ji
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, Florida, USA
| | - Min Wei
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Kang Qiao
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| |
Collapse
|
10
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
11
|
Costa C, Teodoro M, Giambò F, Catania S, Vivarelli S, Fenga C. Assessment of Mancozeb Exposure, Absorbed Dose, and Oxidative Damage in Greenhouse Farmers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710486. [PMID: 36078202 PMCID: PMC9518406 DOI: 10.3390/ijerph191710486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 05/28/2023]
Abstract
Mancozeb (MNZ) is a fungicide commonly employed in many countries worldwide. This study assesses MNZ absorption dynamics in 19 greenhouse farmers, specifically following dermal exposure, aiming to verify the efficacy of both preventive actions and protective equipment. For data collection, a multi-assessment approach was used, which included a survey to record study population features. MNZ exposure was assessed through the indirect measurement of ethylene thiourea (ETU), widely employed as an MNZ biomarker. The ETU concentration was measured with the patch method, detecting environmental ETU trapped in filter paper pads, applied both on skin and working clothes, during the 8 h work shift. Urine and serum end-of-shift samples were also collected to measure ETU concentrations and well-known oxidative stress biomarkers, respectively, namely reactive oxygen metabolites (ROMs), advanced oxidation protein products (AOPPs), and biological antioxidant potential (BAP). It was observed that levels of ETU absorbed and ETU excreted were positively correlated. Additionally, working clothes effectively protected workers from MNZ exposure. Moreover, following stratification of the samples based on the specific working duty (i.e., preparation and spreading of MNZ and manipulation of MNZ-treated seedlings), it was found that the spreading group had higher ETU-related risk, despite lower chronic exposure levels. AOPP and ROM serum levels were higher in MNZ-exposed subjects compared with non-exposed controls, whereas BAP levels were significantly lower. Such results support an increase in the oxidative stress upon 8 h MNZ exposure at work. In particular, AOPP levels demonstrated a potential predictive role, as suggested by the contingency analysis results. Overall, this study, although conducted in a small group, confirms that ETU detection in pads, as well as in urine, might enable assessment of the risk associated with MNZ exposure in greenhouse workers. Additionally, the measurement of circulating oxidative stress biomarkers might help to stratify exposed workers based on their sensitivity to MNZ. Pivotally, the combination of both ETU measurement and biological monitoring might represent a novel valuable combined approach for risk assessment in farmhouse workers exposed to pesticides. In the future, these observations will help to implement effective preventive strategies in the workplace for workers at higher risk, including greenhouse farmers who are exposed to pesticides daily, as well as to clarify the occupational exposure levels to ETU.
Collapse
Affiliation(s)
- Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Stefania Catania
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
12
|
Autin P, Deshayes S, Lea J, Boisgerault N, Dupré E, Labarrière N, Leguevel R, Fonteneau JF, Blanquart C, Fradin D. The DCMU Herbicide Shapes T-cell Functions By Modulating Micro-RNA Expression Profiles. Front Immunol 2022; 13:925241. [PMID: 35967413 PMCID: PMC9366666 DOI: 10.3389/fimmu.2022.925241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
DCMU [N-(3,4-dichlorophenyl)-N-dimethylurea] or diuron is a widely used herbicide, which can cause adverse effects on human, especially on immune cells, due to their intrinsic properties and wide distribution. These cells are important for fighting not only against virus or bacteria but also against neoplastic cell development. We developed an approach that combines functional studies and miRNA and RNA sequencing data to evaluate the effects of DCMU on the human immune response against cancer, particularly the one carried out by CD8+ T cells. We found that DCMU modulates the expression of miRNA in a dose-dependent manner, leading to a specific pattern of gene expression and consequently to a diminished cytokine and granzyme B secretions. Using mimics or anti-miRs, we identified several miRNA, such as hsa-miR-3135b and hsa-miR-21-5p, that regulate these secretions. All these changes reduce the CD8+ T cells’ cytotoxic activity directed against cancer cells, in vitro and in vivo in a zebrafish model. To conclude, our study suggests that DCMU reduces T-cell abilities, participating thus to the establishment of an environment conducive to cancer development.
Collapse
Affiliation(s)
- Pierre Autin
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Sophie Deshayes
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Juliette Lea
- Université de Rennes, ImPACcell Plateform, BIOSIT, Rennes, France
| | - Nicolas Boisgerault
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Emilie Dupré
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Nathalie Labarrière
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, Nantes, France
| | - Rémy Leguevel
- Université de Rennes, ImPACcell Plateform, BIOSIT, Rennes, France
| | - Jean-François Fonteneau
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Christophe Blanquart
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
| | - Delphine Fradin
- Nantes Université, INSERM UMR1307, CNRS UMR6075, Université d’Angers, CRCI2NA, Nantes, France
- *Correspondence: Delphine Fradin,
| |
Collapse
|
13
|
Dogan S, Spahiu E, Cilic A. Structural Analysis of microRNAs in Myeloid Cancer Reveals Consensus Motifs. Genes (Basel) 2022; 13:genes13071152. [PMID: 35885935 PMCID: PMC9316571 DOI: 10.3390/genes13071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that function in post-transcriptional gene silencing and mRNA regulation. Although the number of nucleotides of miRNAs ranges from 17 to 27, they are mostly made up of 22 nucleotides. The expression of miRNAs changes significantly in cancer, causing protein alterations in cancer cells by preventing some genes from being translated into proteins. In this research, a structural analysis of 587 miRNAs that are differentially expressed in myeloid cancer was carried out. Length distribution studies revealed a mean and median of 22 nucleotides, with an average of 21.69 and a variance of 1.65. We performed nucleotide analysis for each position where Uracil was the most observed nucleotide and Adenine the least observed one with 27.8% and 22.6%, respectively. There was a higher frequency of Adenine at the beginning of the sequences when compared to Uracil, which was more frequent at the end of miRNA sequences. The purine content of each implicated miRNA was also assessed. A novel motif analysis script was written to detect the most frequent 3–7 nucleotide (3–7n) long motifs in the miRNA dataset. We detected CUG (42%) as the most frequent 3n motif, CUGC (15%) as a 4n motif, AGUGC (6%) as a 5n motif, AAGUGC (4%) as a 6n motif, and UUUAGAG (4%) as a 7n motif. Thus, in the second part of our study, we further characterized the motifs by analyzing whether these motifs align at certain consensus sequences in our miRNA dataset, whether certain motifs target the same genes, and whether these motifs are conserved within other species. This thorough structural study of miRNA sequences provides a novel strategy to study the implications of miRNAs in health and disease. A better understanding of miRNA structure is crucial to developing therapeutic settings.
Collapse
Affiliation(s)
- Senol Dogan
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, 04103 Leipzig, Germany
- Correspondence:
| | - Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Anis Cilic
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, 35392 Giessen, Germany;
| |
Collapse
|
14
|
Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127018. [PMID: 35742265 PMCID: PMC9222590 DOI: 10.3390/ijerph19127018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023]
Abstract
The increasing use of pesticides in intensive agriculture has had a negative impact on human health. It was widely demonstrated how pesticides can induce different genetic and epigenetic alterations associated with the development of different diseases, including tumors and neurological disorders. Therefore, the identification of effective indicators for the prediction of harmful pesticide exposure is mandatory. In this context, the aim of the study was to evaluate the modification of hsa-miR-199a-5p expression levels in liquid biopsy samples obtained from healthy donors and farm workers with chronic exposure to pesticides. For this purpose, the high-sensitive droplet digital PCR assay (ddPCR) was used to detect variation in the expression levels of the selected microRNA (miRNA). The ddPCR analyses revealed a significant down-regulation of hsa-miR-199a-5p observed in individuals exposed to pesticides compared to control samples highlighting the good predictive value of this miRNA as demonstrated by statistical analyses. Overall, the obtained results encourage the analysis of miRNAs as predictive biomarkers of chronic pesticide exposure thus improving the current strategies for the monitoring of harmful pesticide exposure.
Collapse
|
15
|
Zhang M, Xiong F, Zhang S, Guo W, He Y. Crucial Roles of miR-625 in Human Cancer. Front Med (Lausanne) 2022; 9:845094. [PMID: 35308517 PMCID: PMC8931282 DOI: 10.3389/fmed.2022.845094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic and epigenetic characteristics are core factors of cancer. MicroRNAs (miRNAs) are small non-coding RNAs which regulate gene expression at the post-transcriptional level via binding to corresponding mRNAs. Recently, increasing evidence has proven that miRNAs regulate the occurrence and development of human cancer. Here, we mainly review the abnormal expression of miR-625 in a variety of cancers. In summarizing the role and potential molecular mechanisms of miR-625 in various tumors in detail, we reveal that miR-625 is involved in a variety of biological processes, such as cell proliferation, invasion, migration, apoptosis, cell cycle regulation, and drug resistance. In addition, we discuss the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks and briefly explain the specific mechanisms of competing endogenous RNAs. In conclusion, we reveal the potential value of miR-625 in cancer diagnosis, treatment, and prognosis and hope to provide new ideas for the clinical application of miR-625.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Fei Xiong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
16
|
Expression of Selected microRNAs in Migraine: A New Class of Possible Biomarkers of Disease? Processes (Basel) 2021. [DOI: 10.3390/pr9122199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preliminary but convergent findings suggest a role for microRNAs (miRNAs) in the generation and maintenance of chronic pain and migraine. Initial observations showed that serum levels of miR-382-5p and miR-34a-5p expression were increased in serum during the migraine attack, with miR-382-5p increasing in the interictal phase as well. By contrast, miR-30a-5p levels were lower in migraine patients compared to healthy controls. Of note, antimigraine treatments proved to be capable of influencing the expression of these miRNAs. Altogether, these observations suggest that miRNAs may represent migraine biomarkers, but several points are yet to be elucidated. A major concern is that these miRNAs are altered in a broad spectrum of painful and non-painful conditions, and thus it is not possible to consider them as truly “migraine-specific” biomarkers. We feel that these miRNAs may represent useful tools to uncover and define different phenotypes across the migraine spectrum with different treatment susceptibilities and clinical features, although further studies are needed to confirm our hypothesis. In this narrative review we provide an update and a critical analysis of available data on miRNAs and migraines in order to propose possible interpretations. Our main objective is to stimulate research in an area that holds promise when it comes to providing reliable biomarkers for theoretical and practical scientific advances.
Collapse
|
17
|
Briguglio G, Costa C, Teodoro M, Giambò F, Italia S, Fenga C. Women's health and night shift work: Potential targets for future strategies in breast cancer (Review). Biomed Rep 2021; 15:98. [PMID: 34667595 PMCID: PMC8517754 DOI: 10.3892/br.2021.1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the leading cause of cancer-associated amongst women worldwide. Several studies have shown that individual, environmental and occupational factors can serve an important role in the onset of breast cancer; although the majority of studies have demonstrated this association, and several studies have investigated the biological pathways, it is impossible to describe with certainty the causal relationship that involve circadian rhythm disruption and melatonin dysregulation with the oncogenic processes. Over the years, due to the introduction of more effective screening tools, an increase in the incidence of breast cancer as well as a decrease in the age at diagnosis has been witnessed. Subsequently, an increasing number of individuals have obtained care at a younger age, which has meant that after surgery and chemotherapy, these workers have had to return to work. In light of these paradigmatic changes, the aim of the present review was to identify potential targets for future organisational strategies that should be adopted in the workplace by occupational physicians, both for prevention and for the return-to-work process of working women who have suffered from breast cancer.
Collapse
Affiliation(s)
- Giusi Briguglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Chiara Costa
- Department of Clinical and Experimental Medicine, University of Messina, I-98125 Messina, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Sebastiano Italia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, I-98125 Messina, Italy
| |
Collapse
|
18
|
Lei Q, Wu T, Wu J, Hu X, Guan Y, Wang Y, Yan J, Shi G. Roles of α‑synuclein in gastrointestinal microbiome dysbiosis‑related Parkinson's disease progression (Review). Mol Med Rep 2021; 24:734. [PMID: 34414447 PMCID: PMC8404091 DOI: 10.3892/mmr.2021.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease amongst the middle-aged and elderly populations. Several studies have confirmed that the microbiota-gut-brain axis (MGBA) serves a key role in the pathogenesis of PD. Changes to the gastrointestinal microbiome (GM) cause misfolding and abnormal aggregation of α-synuclein (α-syn) in the intestine. Abnormal α-syn is not eliminated via physiological mechanisms and is transported into the central nervous system (CNS) via the vagus nerve. The abnormal levels of α-syn aggregate in the substantia nigra pars compacta, not only leading to the formation of eosinophilic Lewis Bodies in the cytoplasm and mitochondrial dysfunction in dopaminergic (DA) neurons, but also leading to the stimulation of an inflammatory response in the microglia. These pathological changes result in an increase in oxidative stress (OS), which triggers nerve cell apoptosis, a characteristic of PD. This increase in OS further oxidizes and intensifies abnormal aggregation of α-syn, eventually forming a positive feedback loop. The present review discusses the abnormal accumulation of α-syn in the intestine caused by the GM changes and the increased levels of α-syn transport to the CNS via the MGBA, resulting in the loss of DA neurons and an increase in the inflammatory response of microglial cells in the brain of patients with PD. In addition, relevant clinical therapeutic strategies for improving the GM and reducing α-syn accumulation to relieve the symptoms and progression of PD are described.
Collapse
Affiliation(s)
- Qingchun Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tingting Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jin Wu
- Department of Neurosurgery, Puer People's Hospital, Pu'er, Yunnan 665000, P.R. China
| | - Xiaogang Hu
- Department of Neurosurgery, Puer People's Hospital, Pu'er, Yunnan 665000, P.R. China
| | - Yingxia Guan
- Department of Vasculocardiology, The Affiliated Hospital of Yunnan University, Kunming, Yunnan 650021, P.R. China
| | - Ying Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinyuan Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Guolin Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
19
|
Giambò F, Leone GM, Gattuso G, Rizzo R, Cosentino A, Cinà D, Teodoro M, Costa C, Tsatsakis A, Fenga C, Falzone L. Genetic and Epigenetic Alterations Induced by Pesticide Exposure: Integrated Analysis of Gene Expression, microRNA Expression, and DNA Methylation Datasets. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168697. [PMID: 34444445 PMCID: PMC8394939 DOI: 10.3390/ijerph18168697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Environmental or occupational exposure to pesticides is considered one of the main risk factors for the development of various diseases. Behind the development of pesticide-associated pathologies, there are both genetic and epigenetic alterations, where these latter are mainly represented by the alteration in the expression levels of microRNAs and by the change in the methylation status of the DNA. At present, no studies have comprehensively evaluated the genetic and epigenetic alterations induced by pesticides; therefore, the aim of the present study was to identify modifications in gene miRNA expression and DNA methylation useful for the prediction of pesticide exposure. For this purpose, an integrated analysis of gene expression, microRNA expression, and DNA methylation datasets obtained from the GEO DataSets database was performed to identify putative genes, microRNAs, and DNA methylation hotspots associated with pesticide exposure and responsible for the development of different diseases. In addition, DIANA-miRPath, STRING, and GO Panther prediction tools were used to establish the functional role of the putative biomarkers identified. The results obtained demonstrated that pesticides can modulate the expression levels of different genes and induce different epigenetic alterations in the expression levels of miRNAs and in the modulation of DNA methylation status.
Collapse
Affiliation(s)
- Federica Giambò
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Alessia Cosentino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.M.L.); (G.G.); (R.R.); (A.C.)
| | - Diana Cinà
- Health Management of the “Cannizzaro” Emergency Hospital of Catania, 95126 Catania, Italy;
- Clinical Pathology and Clinical Molecular Biology Unit, “Garibaldi Centro” Hospital, ARNAS Garibaldi, 95123 Catania, Italy
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy;
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (M.T.); (C.F.)
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute-IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-095-478-1278
| |
Collapse
|
20
|
Usman M, Priya K, Pandit S, Gupta P. Cancer risk and nullity of Glutathione-S-transferase mu and theta 1 in occupational pesticide workers. Curr Pharm Biotechnol 2021; 23:932-945. [PMID: 34375184 DOI: 10.2174/1389201022666210810092342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/08/2022]
Abstract
Occupational exposure to pesticides has been associated with adverse health conditions, including genotoxicity and cancer. Nullity of GSTT1/GSTM1 increases the susceptibility of pesticide workers to these adverse health effects due to lack of efficient detoxification process created by the absence of these key xenobiotic metabolizing enzymes. However, this assertion does not seem to maintain its stance at all the time; some pesticide workers with the null genotypes do not present the susceptibility. This suggests the modulatory role of other confounding factors, genetic and environmental conditions. Pesticides, aggravated by the null GSTT1/GSTM1, cause genotoxicity and cancer through oxidative stress and miRNA dysregulation. Thus, the absence of these adverse health effects together with the presence of null GSTT1/GSTM1 genotypes demands further explanation. Also, understanding the mechanism behind the protection of cells - that are devoid of GSTT1/GSTM1 - from oxidative stress constitutes a great challenge and potential research area. Therefore, this review article highlights the recent advancements in the presence and absence of cancer risk in occupational pesticide workers with GSTT1 and GSTM1 null genotypes.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| | - Piyush Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, KP-III, Greater Noida- 201310 [U.P.], India
| |
Collapse
|
21
|
Lucero B, Muñoz-Quezada MT. Neurobehavioral, Neuromotor, and Neurocognitive Effects in Agricultural Workers and Their Children Exposed to Pyrethroid Pesticides: A Review. Front Hum Neurosci 2021; 15:648171. [PMID: 34335205 PMCID: PMC8322659 DOI: 10.3389/fnhum.2021.648171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
In recent years, pyrethroids have emerged as a less toxic alternative to eliminate insect pests. However, some animal studies and studies with children show that these pesticides are toxic and lead to neurobehavioral effects similar to other pesticides, such as organophosphates. The purpose of this review was to systematize the epidemiological scientific evidence about the neurobehavioral, neuromotor, and neurocognitive effects in agricultural workers and their children exposed to pyrethroid pesticides. We conducted two searches (with different terms) in PubMed and Scopus databases, including articles in Spanish and English language on the effects of occupational exposure to pyrethroid pesticides associated with neurobehavioral, neuromotor, and neurocognitive functioning of agricultural workers and their children. There were no filters by year, and the search included studies till march 2021. To develop the search, we followed the recommendations contained in the PRISMA guidelines and the PICO strategy. The results show that in 66.6% of the studies reviewed (8 of 12 studies), agricultural workers or their children occupationally exposed to pyrethroid pesticides have a higher risk of presenting difficulties in their neurocognitive, neuromotor, or neurobehavioral performance, mainly associated with attention, processing speed (linked to hand-eye coordination), and motor coordination. There are still few studies that address this issue. However, the quality of most of the research conducted (83% intermediate or high quality) confirms the risk for neurobehavioral health in agricultural workers due to occupational exposure to pyrethroids. More research is required evaluating the exposure to pyrethroids, including biomarkers and validated neurobehavioral and neuromotor tests, in addition to evaluating the effect of simultaneous exposure to other hazardous pesticides. Assuming that the use of pyrethroids is increasing considerably and faster than the scientific evidence, it is suggested as a precautionary principle to regulate, more strictly, the sale of pyrethroids and other pesticides.
Collapse
Affiliation(s)
| | - María Teresa Muñoz-Quezada
- The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
22
|
Karimani A, Ramezani N, Afkhami Goli A, Nazem Shirazi MH, Nourani H, Jafari AM. Subchronic neurotoxicity of diazinon in albino mice: Impact of oxidative stress, AChE activity, and gene expression disturbances in the cerebral cortex and hippocampus on mood, spatial learning, and memory function. Toxicol Rep 2021; 8:1280-1288. [PMID: 34277358 PMCID: PMC8261896 DOI: 10.1016/j.toxrep.2021.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023] Open
Abstract
Diazinon (DZN) with prominent neurotoxic effects perturbs CNS function via multiple mechanisms. This investigation intends to explore mood, spatial learning, and memory dysfunction, acetylcholine esterase (AChE) activity, and neurodegeneration-related gene expression in the cortex and hippocampus regions of mice exposed to DZN for 63 consecutive days (subchronic exposure). Adult male albino mice were orally given sublethal DZN (DZNL = 0.1 mg/kg, DZNM = 1 mg/kg and DZNH = 10 mg/kg). All mice in the DZNH group died within 3 weeks postexposure. DZNL and DZNM caused body and brain weight loss (p < 0.05). Completing 9 weeks of DZN exposure, a marked decline in AChE activity and oxidative stress level was indicated in both brain regions (p < 0.05). Also, synaptophysin, vesicular acetylcholine transferase, and glutamate decarboxylase gene expressions were affected in both brain regions (p < 0.05). Furthermore, the present study revealed that DZN administration increased anxiety and depressive-like behaviors (p < 0.0001). Spatial learning and short- and long-memory were severely affected by DZNL and DZNM treatments (p < 0.0001). Taken together, subchronic exposure to low and medium doses of DZN can cause AChE inhibition, oxidative damage, and neurotransmitter disturbances in brain cells and induce neurodegeneration. These changes would impair mood, spatial learning, and memory function.
Collapse
Key Words
- AChE, acetylcholine esterase
- AD, Alzheimer’s disease
- Ach, acetylcholine
- COX-2, cyclooxygenase-2
- CX, cerebral cortex
- Cerebral cortex
- DZN, diazinon
- DZO, diazoxon
- Diazinon
- FRAP, ferric reducing antioxidant power
- FST, forced swim test
- GABA, ϒ-aminobutyric acid
- GAD65, glutamate decarboxylase 65
- HP, hippocampus
- Hippocampus
- LD50, lethal dose 50
- MB, marble burying test
- MDA, malondialdehyde
- MWM, Morris water maze test
- Memory
- NOAEL, no-observed-adverse-effect level
- Neurodegenerative diseases
- Ops, organophosphates
- PD, Parkinson’s disease
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SEM, standard error of the mean
- SYP, synaptophysin
- Spatial learning
- VAChT, vesicular acetylcholine transferase
- qRT-PCR, quantitative reverse transcription-polymerase chain reaction
Collapse
Affiliation(s)
- Asieh Karimani
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Ramezani
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Afkhami Goli
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hosein Nourani
- Department of Pathology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
23
|
Giambò F, Teodoro M, Costa C, Fenga C. Toxicology and Microbiota: How Do Pesticides Influence Gut Microbiota? A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115510. [PMID: 34063879 PMCID: PMC8196593 DOI: 10.3390/ijerph18115510] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
In recent years, new targets have been included between the health outcomes induced by pesticide exposure. The gastrointestinal tract is a key physical and biological barrier and it represents a primary site of exposure to toxic agents. Recently, the intestinal microbiota has emerged as a notable factor regulating pesticides’ toxicity. However, the specific mechanisms related to this interaction are not well known. In this review, we discuss the influence of pesticide exposure on the gut microbiota, discussing the factors influencing gut microbial diversity, and we summarize the updated literature. In conclusion, more studies are needed to clarify the host–microbial relationship concerning pesticide exposure and to define new prevention interventions, such as the identification of biomarkers of mucosal barrier function.
Collapse
Affiliation(s)
- Federica Giambò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Michele Teodoro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| | - Chiara Costa
- Clinical and Experimental Medicine Department, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-2212052
| | - Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy; (F.G.); (M.T.); (C.F.)
| |
Collapse
|
24
|
Lovison Sasso E, Cattaneo R, Rosso Storck T, Spanamberg Mayer M, Sant'Anna V, Clasen B. Occupational exposure of rural workers to pesticides in a vegetable-producing region in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25758-25769. [PMID: 33469792 DOI: 10.1007/s11356-021-12444-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The health of family farmers is at risk due to occupational exposure to pesticides. The aims of the current study were to investigate the level of farmers' perception of risks associated with pesticide use and to assess their health condition based on biochemical and immunological tests. Family farmers living in a vegetable-producing region in Southern Brazil were selected to participate in the study. More than 70% of the family farmers were often exposed to more than one type of pesticides; 41.2% were intensively using several pesticides for more than one decade and 74.4% were not using personal protective equipment (PPE) at the time of pesticide handling due to low perception of the risks posed by these chemicals. Enzymatic analysis performed in participants' blood samples showed changes in catalase (CAT) and glutathione reductase (GR) activity, in lipid peroxidation (TBARS) and carbonylated protein levels, as well as in chemoattractant (IL-8) and anti-inflammatory (IL-10) interleukin expression. Low perception of health-related risks posed by pesticides can be attributed to factors such as low schooling and lack of information, which put farmers' health at risk, as evidenced by blood biochemical and immunological changes.
Collapse
Affiliation(s)
- Eloisa Lovison Sasso
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Roberta Cattaneo
- Laboratory of Oxidative Stress and Medicinal Plants, Postgraduate Program in Integral Health Care (PPGAIS), University of Cruz Alta, Cruz Alta, RS, Brazil
| | - Tamiris Rosso Storck
- Environmental Toxicology Research Group, Postgraduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Av. Roraima, n. 1000, Santa Maria, RS, 97105-900, Brazil
| | - Mariana Spanamberg Mayer
- Laboratory of Oxidative Stress and Medicinal Plants, Postgraduate Program in Integral Health Care (PPGAIS), University of Cruz Alta, Cruz Alta, RS, Brazil
| | - Voltaire Sant'Anna
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil
| | - Barbara Clasen
- Postgraduate Program in Environment and Sustainability (PPGAS), Environmental Toxicology Research Group, State University of Rio Grande do Sul, São Francisco de Paula, RS, Brazil.
- Environmental Toxicology Research Group, Postgraduate Program in Environmental Engineering (PPGEAmb), Technology Center, Federal University of Santa Maria (UFSM), Av. Roraima, n. 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
25
|
An original biomarker for the risk of developing cardiovascular diseases and their complications: Telomere length. Toxicol Rep 2021; 8:499-504. [PMID: 33732625 PMCID: PMC7941069 DOI: 10.1016/j.toxrep.2021.02.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/27/2021] [Indexed: 12/26/2022] Open
Abstract
We studied a sample of patients with coronary heart disease. We analyzed the telomere length in this sample. We compared telomere length in patients and conventionally healthy study participants. Patients with coronary heart disease had shorter telomerestelomeres. These patients had an increased risk of cardiovascular complication.
Aim The aim of this work was to study the effect of telomere length in the chromosomes of nuclear blood cells in individuals with coronary heart disease (CHD) on the development of cardiovascular complications (CVC). Materials and methods DNA was isolated from nuclear blood cells of 498 study participants. The telomere length was determined by real-time polymerase chain reaction. The investigation of each sample was repeated three times. Five years after the end of this study, a telephone survey of 119 patients with CHD was conducted in order to obtain data on the presence of CVC. Results According to the results obtained, a decrease in telomere length in patients with coronary heart disease increases the risk of subsequent development of cardiovascular complications. Conclusion Patients with coronary heart disease with shorter telomeres compared with conventionally healthy study participants had an increased risk of cardiovascular complications within 5 years after telomere analysis.
Collapse
|
26
|
Bagheri AR, Aramesh N, Bilal M. New frontiers and prospects of metal-organic frameworks for removal, determination, and sensing of pesticides. ENVIRONMENTAL RESEARCH 2021; 194:110654. [PMID: 33359702 DOI: 10.1016/j.envres.2020.110654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Pesticides have been widely used in agriculture to control, reduce, and kill insects. Humans are also being using pesticides to control insidious animals in daily life. By these practices, a huge volume of pesticides is introduced to the environment. Despite broad-spectrum applicability, pesticides also have hazardous effects on both humans and animals at high and low concentrations. Long-term exposure to pesticides can cause different diseases, like leukemia, lymphoma, and cancers of the brain, breasts, prostate, testis, and ovaries. Reproductive disorders from pesticides include birth defects, stillbirth, spontaneous abortion, sterility, and infertility. Therefore, the application of determination and treatment methods for pre-concentration and removal of these toxic materials from the environment appears a vital concern. To date, different materials and approaches have been employed for these purposes. Among these approaches, multifunctional metal-organic frameworks (MOFs)-assisted adsorption and determination processes have always been in the spotlight. These facts are due to exclusive properties of MOFs in terms of the crystallinity, large surface area, high chemical, and physical stability, and controllable structure as well as unique features of adsorption and determination process in terms of simple, easy, cheap, available method and ability to use in large and industrial scales. In the present work, we illustrate the exceptional features of MOFs as well as the possible mechanism for the adsorption of pesticides by MOFs. The use of these fantastic materials for pre-concentration and removal of pesticides are extensively explored. In addition, the performance of MOFs was compared with other adsorbents. Finally, the new frontiers and prospects of MOFs for the determination, sensing, and removal of pesticides are presented.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
27
|
Manfo FPT, Suh CF, Nantia EA, Moundipa PF, Cho-Ngwa F. Occupational use of agrochemicals results in inhibited cholinesterase activity and altered reproductive hormone levels in male farmers from Buea, Cameroon. Toxicol Res (Camb) 2021; 10:232-248. [PMID: 33884174 DOI: 10.1093/toxres/tfaa113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The efficiency of agro pesticides and fertilizers in eliminating pests and scaling up crop yield has motivated farmers to increase their use. Unfortunately, health hazards caused on farmers by these agrochemicals are of growing concern, though not well elucidated. In order to evaluate the effects of occupational exposure to agrochemicals on some key parameters of male farmers' health in Buea Subdivision, Cameroon, a total of 101 men, including 62 farmers using the agrochemicals and a reference population of 39 men not involved in occupational utilization of the agrochemicals, were interviewed on use of protective equipment, exposure symptoms and reproductive health status. Thereafter, serum cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] activities, total antioxidant capacity and reproductive hormones [follicle-stimulating hormone (FSH), luteinizing hormone and testosterone] were assessed. Results revealed that farmers mainly used insecticides followed by fungicides, herbicides and fertilizers, but with inadequate protective measures. The use of agrochemicals resulted in several exposure symptoms including weakness, itches, burning sensation, headache, sneezing, coughing and vomiting, as well as decrease in serum AChE activity when compared to the reference population. The agrochemicals impacted negatively on the farmers' reproductive health as evidenced by increased FSH levels. Taken altogether, these results suggested that exposure to agrochemicals adversely affects farmers' health. Therefore, there is a need to further sensitize the farmers on the use of protective equipment to mitigate the exposure and resulting health hazards.
Collapse
Affiliation(s)
- Faustin Pascal Tsagué Manfo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Christian Fusi Suh
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Edouard Akono Nantia
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39, Bambili, Cameroon
| | - Paul Fewou Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Fidelis Cho-Ngwa
- Laboratory for Drugs and Molecular Diagnostics Research (ANDI Centre of Excellence for Onchocerciasis Drug Research), Biotechnology Unit, University of Buea, P.O. Box 63, Buea, Cameroon
| |
Collapse
|
28
|
Research Trends in the Efficacy of Stem Cell Therapy for Hepatic Diseases Based on MicroRNA Profiling. Int J Mol Sci 2020; 22:ijms22010239. [PMID: 33383629 PMCID: PMC7795580 DOI: 10.3390/ijms22010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Liver diseases, despite the organ’s high regenerative capacity, are caused by several environmental factors and persistent injuries. Their optimal treatment is a liver transplantation. However, this option is limited by donor shortages and immune response issues. Therefore, many researchers have been interested in identifying the therapeutic potential in treating irreversible liver damage based on stem cells and developing suitable therapeutic agents. Mesenchymal stem cells (MSCs), which are representative multipotent stem cells, are known to be highly potential stem cell therapy compared to other stem cells in the clinical trial worldwide. MSCs have therapeutic potentials for several hepatic diseases such as anti-fibrosis, proliferation of hepatocytes injured, anti-inflammation, autophagic mechanism, and inactivation of hepatic stellate cells. There are much data regarding clinical treatments, however, the data for examining the efficacy of stem cell treatment and the correlation between the stem cell engraftment and the efficacy in liver diseases is limited due to the lack of monitoring system for treatment effectiveness. Therefore, this paper introduces the characteristics of microRNAs (miRNAs) and liver disease-specific miRNA profiles, and the possibility of a biomarker that miRNA can monitor stem cell treatment efficacy by comparing miRNAs changed in liver diseases following stem cell treatment. Additionally, we also discuss the miRNA profiling in liver diseases when treated with stem cell therapy and suggest the candidate miRNAs that can be used as a biomarker that can monitor treatment efficacy in liver diseases based on MSCs therapy.
Collapse
|
29
|
Panico A, Tumolo MR, Leo CG, Donno AD, Grassi T, Bagordo F, Serio F, Idolo A, Masi RD, Mincarone P, Sabina S. The influence of lifestyle factors on miRNA expression and signal pathways: a review. Epigenomics 2020; 13:145-164. [PMID: 33355508 DOI: 10.2217/epi-2020-0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The term 'lifestyle' includes different factors that contribute to the maintenance of a good health status. Increasing evidences suggest that lifestyle factors may influence epigenetic mechanisms, such as miRNAs expression. The dysregulation of miRNAs can modify the expression of genes and molecular pathways that may lead to functional alterations. This review summarizes human studies highlighting that diet, physical activity, smoking and alcohol consumption may affect the miRNA machinery and several biological functions. Most miRNAs are involved in molecular pathways that influence inflammation, cell cycle regulation and carcinogenesis resulting in the onset or progression of pathological conditions. Investigating these interactions will be pivotal for understanding the etiology of pathologic processes, the potential new treatment strategies and for preventing diseases.
Collapse
Affiliation(s)
- Alessandra Panico
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Maria R Tumolo
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Carlo G Leo
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| | - Antonella De Donno
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Tiziana Grassi
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesco Bagordo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesca Serio
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Adele Idolo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Roberto De Masi
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, 'F. Ferrari' Hospital, Casarano, Lecce, 73042, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
30
|
Hassouna I. Transplacental neurotoxicity of cypermethrin induced astrogliosis, microgliosis and depletion of let-7 miRNAs expression in the developing rat cerebral cortex. Toxicol Rep 2020; 7:1608-1615. [PMID: 33312879 PMCID: PMC7721691 DOI: 10.1016/j.toxrep.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transplacental neurotoxicity of the pyrethroid insecticide, cypermethrin DNA alterations and immunohistochemical staining of astrocytes and microglia Cypermethrin induces astrogliosis and microgliosis in cerebral cortex MicroRNAs let7a, b, and c deplete in cerebral cortex of rat pups at postanal days
The use of type II pyrethroids, cypermethrin is becoming a growing concern among environmental research centers. While most studies have attempted to cover the areas of DNA damage and microglia activation following exposure to cypermethin in the adult or postnatal life, less is known about the exact degree of neurotoxicity that results from exposure to transplacental sublethal doses of cypermethrin. To study the transplacental neurotoxicity of cypermethrin, pregnant rats were orally administered 10 % of LD50 (25 mg/kg body weight) cypermethrin, one dose daily for one week during the gestational days 15–21. The pups were investigated at postnatal day7, 14 and 21 after birth. In brain, DNA alterations were detected, astrocytes and microglia quantification were performed and some let7 family member miRNAs are estimated. The results show a gain of three major bands in the range of 350bp to 2100bp with high intensities in cortex exposed to cypermethrin compared with similar pattern indicating unaffected genomic regions in thalamus and hypothalamus at 21days. Moreover, increases in the percentage of GFAP positive astrocytes and IBA1 positive microglia indicate astrogliosis and microgliosis respectively due to cypermethrin treatment in cerebral cortex. For the first time, drastically reduced expression of let7a, b and c members are also associated with gliosis and DNA alterations, which are detected in cerebral cortex, following transplacental neurotoxicity of cypermethrin. Taking together, these results suggest that cypermethrin neurotoxicity may be mediated partly through let7 miRNAs.
Collapse
Affiliation(s)
- Imam Hassouna
- Physiology Unit, Zoology Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| |
Collapse
|
31
|
Alam MR, Kim DK. Alterations in telomere length and mitochondrial DNA copy number in human lymphocytes on short-term exposure to moderate hypoxia. Toxicol Rep 2020; 7:1443-1447. [PMID: 33163366 PMCID: PMC7600389 DOI: 10.1016/j.toxrep.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Exposure to moderate hypoxia for 24 h significantly increased telomere length. Telomere elongation is related to the duration of hypoxia exposure. Mitochondrial DNA copy number was unaffected by hypoxia exposure. Mitochondrial DNA copy number is a more stable marker than telomere length alteration under hypoxia.
Hypoxia is related to a variety of diseases, such as cardiovascular and inflammatory diseases and various cancers. Telomere length (TL) may vary according to the hypoxia level and cell types. To the best of our knowledge, no study has investigated the effect of moderate hypoxia on TL and mitochondrial DNA copy number (mtDNAcn) in human lymphocytes. Therefore, in this study, we analyzed the effect of moderate hypoxia on TL in correlation with mtDNAcn. This study included 32 healthy male nonsmoker’s subjects; in this cohort, we had previously studied sister chromatid exchange and microsatellite instability. Blood samples from each subject were divided into three groups: a control group and two experimental groups exposed to moderate hypoxia for 12 or 24 h. Relative TL and mtDNAcn were measured by a quantitative real-time polymerase chain reaction. The TL in the control group did not significantly differ from that in the experimental group subjected to hypoxia for 12 h; however, the TL in the 24 h hypoxia–treated experimental group was significantly higher than that in the control group. The correlation between TL and mtDNAcn was not statistically significant in the two hypoxic states. The increase in TL was observed on exposure to hypoxia for 24 h and not for 12 h; thus, the findings suggest that telomere elongation is related to hypoxia exposure duration. The mtDNAcn in the two experimental groups did not significantly differ from that in the control group. These observations suggest that mtDNAcn alterations show more genetic stability than TL alterations. To the best of our knowledge, this is the first in vitro study on human lymphocytes reporting an increase in TL and no alteration in mtDNAcn after short-time exposure to moderate hypoxia.
Collapse
Affiliation(s)
- Mohammad Rizwan Alam
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea.,Hanvit Institute for Medical Genetics, Daegu, Republic of Korea
| |
Collapse
|
32
|
Ahmed MS, Yesmin M, Jeba F, Hoque MS, Jamee AR, Salam A. Risk assessment and evaluation of heavy metals concentrations in blood samples of plastic industry workers in Dhaka, Bangladesh. Toxicol Rep 2020; 7:1373-1380. [PMID: 33102140 PMCID: PMC7573355 DOI: 10.1016/j.toxrep.2020.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
To assess the potential health risk caused by heavy metals twenty-six blood samples were collected from plastic industry workers based on ages and smoking status in Dhaka, Bangladesh. Heavy metals were analyzed with an atomic absorption spectrometer. The mean concentrations of Lead (Pb), Cadmium (Cd), Nickel (Ni), and Zinc (Zn) found in blood samples of the exposed workers were 32.78 ± 9.47, 1.08 ± 0.47, 1.42 ± 1.01, and 9.08 ± 1.95 μgL-1, respectively. The average heavy metal concentrations in blood samples of smoking workers show a narrow range of fluctuation than that of non-smoking workers. A review of different age groups of industry workers shows the workers between the ages of 26 and 40 are more likely to contaminated with Pb (35.90 ± 8.06 μgL-1) and Ni (1.61 ± 1.31 μgL-1). The higher level of Cd (1.26 ± 0.46 μgL-1) and Zn (9.91 ± 2.80 μgL-1) was found in >40 years old workers. The mean concentration in indoor dust samples of different industrial subsections reported as 40.27 ± 10.33, 3.24 ± 0.83, 18.08 ± 3.61, and 103.64 ± 8.16 mg kg-1 for Pb, Cd, Ni, and Zn, respectively. Exposed workers have relatively less critical health implications concluded from the average daily intake (ADI), hazard quotient (HQs), and hazard index (HI) values. The HI values of Pb, Cd, Ni, and Zn were reported as 2.0 × 10-2, 4.64 × 10-4, 1.62 × 10-3, and 5.49 × 10-4, respectively, which have imparted minimal risks (as HI < 1) to the health of the workers. The cancer risks of Pb, Cd, and Ni were reported as 1.46 × 10-10, 1.77 × 10-9, and 1.31 × 10-9, respectively lower than the threshold values. Therefore, the result divulged a potentially lower cancer risk compared to EPA limit value of 1 × 10-6 to 1 × 10-4 for exposed industrial workers.
Collapse
Affiliation(s)
- Md. Shakil Ahmed
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mahbuba Yesmin
- Department of Medicine, Enam Medical College & Hospital, Savar Dhaka, Bangladesh
| | - Farah Jeba
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Sirajul Hoque
- Department of Soil, Water and Environment, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ahsan Rahman Jamee
- Department of Statistics, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|