1
|
Li Y, Zhong Y, Li C, Han Z, Cui Y, He R, Liu Y, Cui Q, He D, Hu Z, Zhang Q, Bai J. Interleukin-9 promotes EMT-mediated PM 2.5-induced pulmonary fibrosis by activating the STAT3 pathway. Arch Toxicol 2024; 98:4047-4058. [PMID: 39259283 DOI: 10.1007/s00204-024-03864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
This study investigated the impact of PM2.5 on promoting EMT in PM2.5-induced pulmonary fibrosis (PF) development and explored molecular mechanisms of the IL-9/STAT3/Snail/TWIST1 signaling pathway in PF owing to PM2.5. Four groups of male SD rats were formed: control (0 mg/kg.bw), low (1 mg/kg.bw), medium (5 mg/kg.bw), and high-dose (25 mg/kg.bw) PM2.5 groups. Experimental rats were subjected to PM2.5 exposure via intratracheal instillation, given once weekly for 16 weeks. 24 h after the final exposure, blood, BALF, and lung tissues were collected. Pulmonary epithelial cells underwent cultivation and exposure to varying PM2.5 concentrations with/without inhibitors for 24 h, after which total protein was extracted for relevant protein assays. The findings demonstrated that PM2.5 damaged lung tissue to different degrees and led to PF in rats. Rats subjected to PM2.5 exposure exhibited elevated concentrations of IL-9 protein in both serum and BALF, and elevated levels of IL-9 and its receptor, IL-9R, in lung tissues, compared to control counterparts. Furthermore, PM2.5-exposed groups demonstrated significantly augmented protein levels of p-STAT3, Snail, TWIST1, Vimentin, COL-I, and α-SMA, while displaying notably diminished levels of E-Cadherin compared to control group. The same findings were observed in PM2.5-treated cells. In BEAS-2B cells co-treated with Stattic (STAT3 inhibitor) and PM2.5, the opposite results occurred. Similar results were obtained for cells co-treated with IL-9-neutralizing antibody and PM2.5. Our findings suggest PM2.5 mediates PF development by promoting IL-9 expression, leading to STAT3 phosphorylation and upregulation of Snail and TWIST1 expression, triggering EMT occurrence and progression in lung epithelial cells.
Collapse
Affiliation(s)
- Yuxuan Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yi Zhong
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Chenwen Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
- Yongchuan District Center for Disease Control and Prevention, Chongqing, 402160, China
| | - Zhixia Han
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yan Cui
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Renjiang He
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yingyi Liu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Qinlin Cui
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Daping He
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Zhengquan Hu
- Luzhou Ecological Environment Monitoring Center of Sichuan Province, Luzhou, 646000, China.
| | - Qingbi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
3
|
Zhu C, Yao M. Real-Time Monitoring of Air Pollution Health Impacts Using Breath-Borne Gaseous Biomarkers from Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4522-4534. [PMID: 38411076 DOI: 10.1021/acs.est.3c08629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Offline techniques are adopted for studying air pollution health impacts, thus failing to provide in situ observations. Here, we have demonstrated their real-time monitoring by online analyzing an array of gaseous biomarkers from rats' exhaled breath using an integrated exhaled breath array sensor (IEBAS) developed. The biomarkers include total volatile organic compounds (TVOC), CO2, CO, NO, H2S, H2O2, O2, and NH3. Specific breath-borne VOCs were also analyzed by a gas chromatography-ion mobility spectrometer (GC-IMS). After real-life ambient air pollution exposures (2 h), the pollution levels of PM2.5 and O3 were both found to significantly affect the relative levels of multiple gaseous biomarkers in rats' breath. Eleven biomarkers, especially NO, H2S, and 1-propanol, were detected as significantly correlated with PM2.5 concentration, while heptanal was shown to be significantly correlated with O3. Likewise, significant changes were also detected in multiple breath-borne biomarkers from rats under lab-controlled O3 exposures with levels of 150, 300, and 1000 μg/m3 (2 h), compared to synthetic air exposure. Importantly, heptanal was experimentally confirmed as a reliable biomarker for O3 exposure, with a notable dose-response relationship. In contrast, conventional biomarkers of inflammation and oxidative stress in rat sera exhibited insignificant differences after the 2 h exposures. The results imply that breath-borne gaseous biomarkers can serve as an early and sensitive indicator for ambient pollutant exposure. This work pioneered a new research paradigm for online monitoring of air pollution health impacts while obtaining important candidate biomarker information for PM2.5 and O3 exposures.
Collapse
Affiliation(s)
- Chenyu Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Chen N, Ma LL, Zhang Y, Yan YX. Association of household solid fuel use and long-term exposure to ambient air pollution with estimated 10-year high cardiovascular disease risk among postmenopausal women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123091. [PMID: 38061434 DOI: 10.1016/j.envpol.2023.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
This study aimed to explore the separate and joint effects of long-term ambient air pollution and household air pollution exposure on 10-year high cardiovascular disease (CVD) risk among postmenopausal women. A total of 4679 postmenopausal women from the China Health and Retirement Longitudinal Study (CHARLS) were included in this study. Information of fuel type was collected by standard questionnaires and use of solid fuel was considered as a proxy for household air pollution. Data of ambient air pollutants (PM1, PM2.5, PM10, SO2, NO2, CO, O3) were obtained from the ChinaHighAirPollutants (CHAP) datasets. Logistic regression models were performed to assess the separate and joint effects of long-term exposure to ambient air pollution and use of solid fuel on 10-year high CVD risk. We found use of solid fuel and its duration and ambient air pollutants (PM1, PM2.5, PM10, SO2, NO2) were all positively associated with 10-year high CVD risk among postmenopausal women (P < 0.05). Compared to those used clean fuel and exposed to low ambient air pollution levels, odds ratios (ORs) and 95% confidence intervals (CIs) for participants using solid fuels and exposed to high ambient air pollution levels (PM1, PM2.5, PM10, SO2, NO2, CO, O3) were 1.66 (1.35, 2.05), 1.66 (1.35, 2.04), 1.49 (1.22, 1.83), 1.28 (1.05, 1.57), 1.67 (1.34, 2.07), 1.28 (1.04, 1.57), 1.46 (1.18, 1.80), respectively. Moreover, significant additive interactions of solid fuel use with PM1 and PM2.5 on 10-year high CVD risk were observed, with approximately 18% and 23% of 10-year high risk of CVD attributable to the interaction. Overall, indoor and outdoor air pollution had separate and joint effects on 10-year high CVD risk among postmenopausal women. Therefore, simultaneously improving indoor and outdoor air quality are of great importance and could have a joint impact on prevention of CVD and improved health among postmenopausal women.
Collapse
Affiliation(s)
- Ning Chen
- Department of Epidemiology and Biostatistics, and Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Lin-Lin Ma
- Department of Epidemiology and Biostatistics, and Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, and Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yu-Xiang Yan
- Department of Epidemiology and Biostatistics, and Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Qin S, Zeng H, Wu Q, Li Q, Zeeshan M, Ye L, Jiang Y, Zhang R, Jiang X, Li M, Zhang R, Chen W, Chou WC, Dong GH, Li DC, Zeng XW. An integrative analysis of lipidomics and transcriptomics in various mouse brain regions in response to real-ambient PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165112. [PMID: 37364843 DOI: 10.1016/j.scitotenv.2023.165112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Exposure to Fine particulate matter (PM2.5) has been associated with various neurological disorders. However, the underlying mechanisms of PM2.5-induced adverse effects on the brain are still not fully defined. Multi-omics analyses could offer novel insights into the mechanisms of PM2.5-induced brain dysfunction. In this study, a real-ambient PM2.5 exposure system was applied to male C57BL/6 mice for 16 weeks, and lipidomics and transcriptomics analysis were performed in four brain regions. The findings revealed that PM2.5 exposure led to 548, 283, 304, and 174 differentially expressed genes (DEGs), as well as 184, 89, 228, and 49 distinctive lipids in the hippocampus, striatum, cerebellum, and olfactory bulb, respectively. Additionally, in most brain regions, PM2.5-induced DEGs were mainly involved in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, and calcium signaling pathway, while PM2.5-altered lipidomic profile were primarily enriched in retrograde endocannabinoid signaling and biosynthesis of unsaturated fatty acids. Importantly, mRNA-lipid correlation networks revealed that PM2.5-altered lipids and DEGs were obviously enriched in pathways involving in bile acid biosynthesis, De novo fatty acid biosynthesis, and saturated fatty acids beta-oxidation in brain regions. Furthermore, multi-omics analyses revealed that the hippocampus was the most sensitive part to PM2.5 exposure. Specifically, dysregulation of Pla2g1b, Pla2g, Alox12, Alox15, and Gpx4 induced by PM2.5 were closely correlated to the disruption of alpha-linolenic acid, arachidonic acid and linoleic acid metabolism in the hippocampus. In summary, our findings highlight differential lipidomic and transcriptional signatures of various brain regions by real-ambient PM2.5 exposure, which will advance our understanding of potential mechanisms of PM2.5-induecd neurotoxicity.
Collapse
Affiliation(s)
- Shuangjian Qin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingqing Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States
| | - Guang-Hui Dong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dao-Chuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Wen Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Wang Y, Jiang J, Chen L, Guo T, Chen S, Du Z, Wei J, Zhang W, Hao Y. Is COPD mortality in South China causally linked to the long-term PM 1 exposure? Evidence from a large community-based cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115299. [PMID: 37499383 DOI: 10.1016/j.ecoenv.2023.115299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Long-term ambient particulate matter (PM) exposure has been found associated with chronic obstructive pulmonary disease (COPD) mortality in an increasing body of research. However, limited evidence was available on the potential causal links between PM1 and COPD mortality, especially in highly exposed areas. OBJECTIVES To examine the COPD mortality risk following long-term ambient PM1 exposure in south China. METHODS The cohort included 580,757 participants recruited during 2009-2015. Satellite-based annual concentrations of PM1 were estimated at a spatial resolution of 1 km × 1 km and assigned to each participant based on their residential addresses. We analyzed the potential causal links between time-varying PM1 exposure and COPD mortality using marginal structural cox models within causal frameworks. Stratified analyses were also performed to identify the potential susceptible groups. RESULTS The annual average PM1 concentration continuously decreased over time. After adjusting for confounders, each 1 μg/m3 increase in PM1 concentration corresponded to an 8.1 % (95% confidence interval: 6.4-9.9 %) increment in the risk of COPD mortality. The impact of PM1 was more pronounced among the elderly and those with low exercise frequency, with a 1.9-6.9 % higher risk than their counterparts. We further observed a 0.1-9.7 % greater risk among those who lived in lower greenness settings. Additionally, we observed higher effect estimates in participants with long-term low PM1 exposure compared to the general population. CONCLUSIONS COPD mortality risk significantly increased following long term ambient PM1 exposure, particularly among groups with certain demographics or long-term low exposure.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou, China
| | - Jie Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Liufu Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Tong Guo
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou, China
| | - Shimin Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, United States.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-Sen Global Health Institute, Sun Yat-Sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China; Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing, China.
| |
Collapse
|
7
|
Wang Y, Wei J, Zhang Y, Guo T, Chen S, Wu W, Chen S, Li Z, Qu Y, Xiao J, Deng X, Liu Y, Du Z, Zhang W, Hao Y. Estimating causal links of long-term exposure to particulate matters with all-cause mortality in South China. ENVIRONMENT INTERNATIONAL 2023; 171:107726. [PMID: 36638656 DOI: 10.1016/j.envint.2022.107726] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The association between long-term particulate matter (PM) exposure and all-cause mortality has been well-documented. However, evidence is still limited from high-exposed cohorts, especially for PM1 which is smaller while more toxic than other commonly investigated particles. We aimed to examine the potential casual links of long-term PMs exposure with all-cause mortality in high-exposed areas. METHODS A total of 580,757 participants in southern China were enrolled during 2009-2015 and followed up to 2020. The annual average concentration of PM1, PM2.5, and PM10 at 1 km2 spatial resolution was assessed for each residential address through validated spatiotemporal models. We used marginal structural Cox models to estimate the PM-mortality associations which were further stratified by sociodemographic, lifestyle factors and general exposure levels. RESULTS 37,578 deaths were totally identified during averagely 8.0 years of follow-up. Increased exposure to all 3 PM size fractions were significantly associated with increased risk of all-cause mortality, with hazard ratios (HRs) of 1.042 (95 % confidence interval (CI): 1.037-1.046), 1.031 (95 % CI: 1.028-1.033), and 1.029 (95 % CI: 1.027-1.031) per 1 μg/m3 increase in PM1, PM2.5, and PM10 concentrations, respectively. We observed greater effect estimates among the elderly (age ≥ 65 years), unmarried participants, and those with low education attainment. Additionally, the effect of PM1, PM2.5, and PM10 tend to be higher in the low-exposure group than in the general population. CONCLUSIONS We provided comprehensive evidence for the potential causal links betweenlong-term PM exposureand all-cause mortality, and suggested stronger links for PM1compared to large particles and among certain vulnerable subgroups.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Tong Guo
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shirui Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Wu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Ziqiang Li
- Department of Preventive Medicine, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Yanji Qu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Xinlei Deng
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Yu Liu
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Du
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking, Beijing, China.
| |
Collapse
|
8
|
Jin T, Amini H, Kosheleva A, Danesh Yazdi M, Wei Y, Castro E, Di Q, Shi L, Schwartz J. Associations between long-term exposures to airborne PM 2.5 components and mortality in Massachusetts: mixture analysis exploration. Environ Health 2022; 21:96. [PMID: 36221093 PMCID: PMC9552465 DOI: 10.1186/s12940-022-00907-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Numerous studies have documented PM2.5's links with adverse health outcomes. Comparatively fewer studies have evaluated specific PM2.5 components. The lack of exposure measurements and high correlation among different PM2.5 components are two limitations. METHODS We applied a novel exposure prediction model to obtain annual Census tract-level concentrations of 15 PM2.5 components (Zn, V, Si, Pb, Ni, K, Fe, Cu, Ca, Br, SO42-, NO3-, NH4+, OC, EC) in Massachusetts from 2000 to 2015, to which we matched geocoded deaths. All non-accidental mortality, cardiovascular mortality, and respiratory mortality were examined for the population aged 18 or over. Weighted quantile sum (WQS) regression models were used to examine the cumulative associations between PM2.5 components mixture and outcomes and each component's contributions to the cumulative associations. We have fit WQS models on 15 PM2.5 components and a priori identified source groups (heavy fuel oil combustion, biomass burning, crustal matter, non-tailpipe traffic source, tailpipe traffic source, secondary particles from power plants, secondary particles from agriculture, unclear source) for the 15 PM2.5 components. Total PM2.5 mass analysis and single component associations were also conducted through quasi-Poisson regression models. RESULTS Positive cumulative associations between the components mixture and all three outcomes were observed from the WQS models. Components with large contribution to the cumulative associations included K, OC, and Fe. Biomass burning, traffic emissions, and secondary particles from power plants were identified as important source contributing to the cumulative associations. Mortality rate ratios for cardiovascular mortality were of greater magnitude than all non-accidental mortality and respiratory mortality, which is also observed in cumulative associations estimated from WQS, total PM2.5 mass analysis, and single component associations. CONCLUSION We have found positive associations between the mixture of 15 PM2.5 components and all non-accidental mortality, cardiovascular mortality, and respiratory mortality. Among these components, Fe, K, and OC have been identified as having important contribution to the cumulative associations. The WQS results also suggests potential source effects from biomass burning, traffic emissions, and secondary particles from power plants.
Collapse
Affiliation(s)
- Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Heresh Amini
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mahdieh Danesh Yazdi
- Department of Family, Population, & Preventive Medicine, Program in Public Health, Stony Brook University, New York, NY, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edgar Castro
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
9
|
Zhao X, Zhao X, Han F, Song Z, Wang D, Fan J, Jia Z, Jiang G. A research on dust suppression mechanism and application technology in mining and loading process of burnt rock open pit coal mines. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:1568-1584. [PMID: 34516345 DOI: 10.1080/10962247.2021.1979123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In order to solve the serious dust pollution problem in mining and loading process of burnt rock open-pit coal mines, a dust suppression technology was proposed to investigate the compound dust suppressant with four functions of wetting, coagulation, moisture absorption, and moisture retention, and improve the hydrophilicity and dust suppression efficiency of burnt rock. Through single-factor experiments, four functional reagents were selected. Determined the best mass concentration ratio by orthogonal test, and the optimum dilution ratio was determined through the contact angle verification test. Fourier infrared spectroscopy (FTIR) analysis of the functional group of the compound dust suppressant showed that the hydrophilic functional group was increased. The scanning electron microscopy (SEM) revealed that the dust surface formed a dense film after spraying the dust suppressant, and the effect of fine dust coagulation was obvious. The results of the wind tunnel simulation test revealed that the inhibitory efficiency of the compound dust suppressant on total dust and respirable dust could reach up to 81.90% and 87.06%, respectively, under a wind speed of 4.00 m/s. The field test data for mining and loading spray dust suppression in open-pit coal mines revealed that the dust suppression efficiency of whole dust and respirable dust was greater than 85.70%, which indicates that the compound dust suppressant can effectively suppress the dust of burnt rock, and effectively improve the working environment quality of mining and loading in open-pit coal mines.Implications: Open-pit coal mines located in arid areas will produce a large amount of dust during the mining and loading process, which will cause serious air pollution. In particular, the burnt rock is highly hydrophobic, and it is difficult to achieve effective removal by water spraying. The open-pit coal mine face advances faster and has strong mobility, There are few researches on dust reduction in this link. Therefore, in this study, in order to improve the dust suppression efficiency in the mining and loading process, a compound dust suppressant to improve the hydrophilicity of the burnt rock was developed through single-factor experiments and orthogonal experiments. Microscopic analysis using FTIR and SEM confirmed the wetting and coagulation effect of the dust suppressant. Then designed a spray dust suppression program for the mining and loading process and achieved good results.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, People's Republic of China
| | - Xueying Zhao
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, People's Republic of China
| | - Fangwei Han
- College of Safety Science and Engineering, Liaoning Technical University, Huludao, People's Republic of China
| | - Ziling Song
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, People's Republic of China
| | - Dong Wang
- College of Mining, Liaoning Technical University, Fuxin, People's Republic of China
| | - Junfu Fan
- College of Mining, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Zhengzhao Jia
- College of Mining, Liaoning Technical University, Fuxin, People's Republic of China
| | - Guiguo Jiang
- College of Environmental Science and Engineering, Liaoning Technical University, Fuxin, People's Republic of China
| |
Collapse
|
10
|
Gu Y, Zhang R, Jiang B, Xu X, Guan JJ, Jiang XJ, Zhou Y, Zhou YL, Chen X. Repair of Spinal Cord Injury by Inhibition of PLK4 Expression Through Local Delivery of siRNA-Loaded Nanoparticles. J Mol Neurosci 2021; 72:544-554. [PMID: 34471984 DOI: 10.1007/s12031-021-01871-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Polo-like kinase 4 (PLK4) is one of the key regulators of centrosomal replication. However, its role and mechanism in spinal cord injury (SCI) are still unclear. The SCI model on rats was constructed and the expression and localization of PLK4 in the spinal cord are analyzed with Western blot and immunofluorescence, respectively. Then the specific siRNAs were encapsulated in nanoparticles for the inhibition of PLK4 expression. Afterward, the role of PLK4 on astrocytes was investigated by knocking down its expression in the primary astrocytes. Moreover, siRNA-loaded nanoparticles were injected into the injured spinal cord of rats, and the motor function recovery of rats after SCI was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale method. Notably, the siRNA-loaded nanoparticles effectively transfect primary astrocytes and significantly inhibit PLK4 expression, together with the expression of PCNA with significance. After treatment, restoration of the motor function following SCI was significantly improved in the PLK4 knockdown group compared with the control group. Therefore, we speculate that inhibition of Plk4 may inhibit the proliferation of astrocytes and decrease the inflammatory response mediated by astrocytes, so as to promote the functional recovery of SCI. In conclusion, inhibition of PLK4 expression via siRNA-loaded nanoparticles may be a potential treatment for SCI.
Collapse
Affiliation(s)
- Yingchu Gu
- Medical College of Nantong University, Nantong, 226001, China
| | - Runze Zhang
- Medical College of Nantong University, Nantong, 226001, China
| | - Bin Jiang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xin Xu
- Medical College of Nantong University, Nantong, 226001, China
| | - Jun Jie Guan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xing Jie Jiang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yuan Zhou
- Department of Pain, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Xiangdong Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
11
|
Fatema K, Shoily SS, Ahsan T, Haidar Z, Sumit AF, Sajib AA. Effects of arsenic and heavy metals on metabolic pathways in cells of human origin: Similarities and differences. Toxicol Rep 2021; 8:1109-1120. [PMID: 34141598 PMCID: PMC8188178 DOI: 10.1016/j.toxrep.2021.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
There are distinctive overlaps in different heavy metal affected metabolic pathways. Affected pathways vary according to the tissue origin and maturity of the cell. Arsenic appears to have relatively more pleiotropic effects on metabolic pathways. Some of the arsenic affected pathways are associated with diabetes.
Various anthropogenic and natural events over the years have gradually increased human exposure to various heavy metals. Several of these heavy metals including cadmium, mercury, nickel, chromium, and the metalloid arsenic among others, have created major public health concerns for their high level of toxicities. Identification of the general as well as the differentially affected cellular metabolic pathways will help understanding the molecular mechanism of different heavy metal-induced toxicities. In this study, we analyzed 25 paired (control vs. treated) transcriptomic datasets derived following treatment of various human cells with different heavy metals and metalloid (arsenic, cadmium, chromium, iron, mercury, nickel and vanadium) to identify the affected metabolic pathways. The effects of these metals on metabolic pathways depend not only on the metals per se, but also on the nature of the treated cells. Tissue of origin, therefore, must be considered while assessing the effects of any particular heavy metal or metalloid. Among the metals and metalloid, arsenic appears to have relatively more pleiotropic influences on cellular metabolic pathways including those known to have association with diabetes. Although only two stem cell derived datasets are included in the current study, effects of heavy metals on these cells appear to be different from other mature cells of similar tissue origin. This study provides useful information about different heavy metal affected pathways, which may be useful in further exploration using wet-lab based techniques.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Ahmed Faisal Sumit
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
12
|
Pikula K, Kirichenko K, Vakhniuk I, Kalantzi OI, Kholodov A, Orlova T, Markina Z, Tsatsakis A, Golokhvast K. Aquatic toxicity of particulate matter emitted by five electroplating processes in two marine microalgae species. Toxicol Rep 2021; 8:880-887. [PMID: 33981588 PMCID: PMC8085665 DOI: 10.1016/j.toxrep.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022] Open
Abstract
Electroplating is a widely used group of industrial processes that make a metal coating on a solid substrate. Our previous research studied the concentrations, characteristics, and chemical composition of nano- and microparticles emitted during different electroplating processes. The objective of this study was to evaluate the environmental toxicity of particulate matter obtained from five different electrochemical processes. We collected airborne particle samples formed during aluminum cleaning, aluminum etching, chemical degreasing, nonferrous metals etching, and nickel plating. The toxicity of the particles was evaluated by the standard microalgae growth rate inhibition test. Additionally, we evaluated membrane potential and cell size changes in the microalgae H. akashiwo and P. purpureum exposed to the obtained suspensions of electroplating particles. The findings of this research demonstrate that the aquatic toxicity of electroplating emissions significantly varies between different industrial processes and mostly depends on particle chemical composition and solubility rather than the number of insoluble particles. The sample from an aluminum cleaning workshop was significantly more toxic for both microalgae species compared to the other samples and demonstrated dose and time-dependent toxicity. The samples obtained during chemical degreasing and nonferrous metals etching processes induced depolarization of microalgal cell membranes, demonstrated the potential of chronic toxicity, and stimulated the growth rate of microalgae after 72 h of exposure. Moreover, the sample from a nonferrous metals etching workshop revealed hormetic dose-response toxicity in H. akashiwo, which can lead to harmful algal blooms in the environment.
Collapse
Affiliation(s)
- Konstantin Pikula
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
- Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Konstantin Kirichenko
- Far Eastern Federal University, Vladivostok, 690922, Russia
- Siberian Federal Scientific Center of Agrobiotechnologies of the Russian Academy of Sciences, SFSCA RAS, 630501, Krasnoobsk, Novosibirsk region, Russia
| | - Igor Vakhniuk
- Far Eastern Federal University, Vladivostok, 690922, Russia
- Siberian Federal Scientific Center of Agrobiotechnologies of the Russian Academy of Sciences, SFSCA RAS, 630501, Krasnoobsk, Novosibirsk region, Russia
| | | | - Aleksei Kholodov
- Far East Geological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Tatiana Orlova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Zhanna Markina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia
| | - Kirill Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
- Far Eastern Federal University, Vladivostok, 690922, Russia
- Siberian Federal Scientific Center of Agrobiotechnologies of the Russian Academy of Sciences, SFSCA RAS, 630501, Krasnoobsk, Novosibirsk region, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041, Vladivostok, Russia
| |
Collapse
|