1
|
Weiner E, Berryman E, Frey F, Solís AG, Leier A, Lago TM, Šarić A, Otegui MS. Endosomal membrane budding patterns in plants. Proc Natl Acad Sci U S A 2024; 121:e2409407121. [PMID: 39441629 PMCID: PMC11536153 DOI: 10.1073/pnas.2409407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024] Open
Abstract
Multivesicular endosomes (MVEs) sequester membrane proteins destined for degradation within intralumenal vesicles (ILVs), a process mediated by the membrane-remodeling action of Endosomal Sorting Complex Required for Transport (ESCRT) proteins. In Arabidopsis, endosomal membrane constriction and scission are uncoupled, resulting in the formation of extensive concatenated ILV networks and enhancing cargo sequestration efficiency. Here, we used a combination of electron tomography, computer simulations, and mathematical modeling to address the questions of when concatenated ILV networks evolved in plants and what drives their formation. Through morphometric analyses of tomographic reconstructions of endosomes across yeast, algae, and various land plants, we have found that ILV concatenation is widespread within plant species, but only prevalent in seed plants, especially in flowering plants. Multiple budding sites that require the formation of pores in the limiting membrane were only identified in hornworts and seed plants, suggesting that this mechanism has evolved independently in both plant lineages. To identify the conditions under which these multiple budding sites can arise, we used particle-based molecular dynamics simulations and found that changes in ESCRT filament properties, such as filament curvature and membrane binding energy, can generate the membrane shapes observed in multiple budding sites. To understand the relationship between membrane budding activity and ILV network topology, we performed computational simulations and identified a set of membrane remodeling parameters that can recapitulate our tomographic datasets.
Collapse
Affiliation(s)
- Ethan Weiner
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Elizabeth Berryman
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Felix Frey
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Ariadna González Solís
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - André Leier
- Department of Genetics, School of Medicine, University of Alabama-Birmingham, Birmingham, AL35294-0024
| | - Tatiana Marquez Lago
- Department of Genetics, School of Medicine, University of Alabama-Birmingham, Birmingham, AL35294-0024
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Marisa S. Otegui
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
2
|
Wang Y, Li S, Mokbel M, May AI, Liang Z, Zeng Y, Wang W, Zhang H, Yu F, Sporbeck K, Jiang L, Aland S, Agudo-Canalejo J, Knorr RL, Fang X. Biomolecular condensates mediate bending and scission of endosome membranes. Nature 2024; 634:1204-1210. [PMID: 39385023 PMCID: PMC11525194 DOI: 10.1038/s41586-024-07990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/23/2024] [Indexed: 10/11/2024]
Abstract
Multivesicular bodies are key endosomal compartments implicated in cellular quality control through their degradation of membrane-bound cargo proteins1-3. The ATP-consuming ESCRT protein machinery mediates the capture and engulfment of membrane-bound cargo proteins through invagination and scission of multivesicular-body membranes to form intraluminal vesicles4,5. Here we report that the plant ESCRT component FREE16 forms liquid-like condensates that associate with membranes to drive intraluminal vesicle formation. We use a minimal physical model, reconstitution experiments and in silico simulations to identify the dynamics of this process and describe intermediate morphologies of nascent intraluminal vesicles. Furthermore, we find that condensate-wetting-induced line tension forces and membrane asymmetries are sufficient to mediate scission of the membrane neck without the ESCRT protein machinery or ATP consumption. Genetic manipulation of the ESCRT pathway in several eukaryotes provides additional evidence for condensate-mediated membrane scission in vivo. We find that the interplay between condensate and machinery-mediated scission mechanisms is indispensable for osmotic stress tolerance in plants. We propose that condensate-mediated scission represents a previously undescribed scission mechanism that depends on the physicomolecular properties of the condensate and is involved in a range of trafficking processes. More generally, FREE1 condensate-mediated membrane scission in multivesicular-body biogenesis highlights the fundamental role of wetting in intracellular dynamics and organization.
Collapse
Affiliation(s)
- Yanning Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shulin Li
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Marcel Mokbel
- Faculty of Mathematics and Informatics, Technical University Freiberg, Freiberg, Germany
| | - Alexander I May
- Institute of Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Zizhen Liang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonglun Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Wang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Honghong Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Katharina Sporbeck
- Institute of Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sebastian Aland
- Faculty of Mathematics and Informatics, Technical University Freiberg, Freiberg, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Physics and Astronomy, University College London, London, UK
| | - Roland L Knorr
- Institute of Biology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
- Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Xiaofeng Fang
- School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Yavuz B, Mutlu EC, Ahmed Z, Ben-Nissan B, Stamboulis A. Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration. Int J Mol Sci 2024; 25:5863. [PMID: 38892052 PMCID: PMC11172915 DOI: 10.3390/ijms25115863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, microvesicles, and other lipid vesicles derived from cells, play a pivotal role in intercellular communication by transferring information between cells. EVs secreted by progenitor and stem cells have been associated with the therapeutic effects observed in cell-based therapies, and they also contribute to tissue regeneration following injury, such as in orthopaedic surgery cases. This review explores the involvement of EVs in nerve regeneration, their potential as drug carriers, and their significance in stem cell research and cell-free therapies. It underscores the importance of bioengineers comprehending and manipulating EV activity to optimize the efficacy of tissue engineering and regenerative therapies.
Collapse
Affiliation(s)
- Burcak Yavuz
- Vocational School of Health Services, Altinbas University, 34147 Istanbul, Turkey;
| | - Esra Cansever Mutlu
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| | - Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - Besim Ben-Nissan
- Translational Biomaterials and Medicine Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| | - Artemis Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, College of Engineering and Physical Science, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
4
|
Song C, Xie K, Chen H, Xu S, Mao H. Wheat ESCRT-III protein TaSAL1 regulates male gametophyte transmission and controls tillering and heading date. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2372-2384. [PMID: 38206130 DOI: 10.1093/jxb/erae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.
Collapse
Affiliation(s)
- Chengxiang Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaidi Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Gai C, Pomatto MAC, Deregibus MC, Dieci M, Piga A, Camussi G. Edible Plant-Derived Extracellular Vesicles for Oral mRNA Vaccine Delivery. Vaccines (Basel) 2024; 12:200. [PMID: 38400183 PMCID: PMC10893065 DOI: 10.3390/vaccines12020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Nucleic acid delivery through extracellular vesicles (EVs) is a well-preserved evolutionary mechanism in all life kingdoms including eukaryotes, prokaryotes, and plants. EVs naturally allow horizontal transfer of native as well as exogenous functional mRNAs, which once incorporated in EVs are protected from enzymatic degradation. This observation has prompted researchers to investigate whether EVs from different sources, including plants, could be used for vaccine delivery. Several studies using human or bacterial EVs expressing mRNA or recombinant SARS-CoV-2 proteins showed induction of a humoral and cell mediated immune response. Moreover, EV-based vaccines presenting the natural configuration of viral antigens have demonstrated advantages in conferring long-lasting immunization and lower toxicity than synthetic nanoparticles. Edible plant-derived EVs were shown to be an alternative to human EVs for vaccine delivery, especially via oral administration. EVs obtained from orange juice (oEVs) loaded with SARS-CoV-2 mRNAs protected their cargo from enzymatic degradation, were stable at room temperature for one year, and were able to trigger a SARS-CoV-2 immune response in mice. Lyophilized oEVs containing the S1 mRNA administered to rats via gavage induced a specific humoral immune response with generation of blocking antibodies, including IgA and Th1 lymphocyte activation. In conclusion, mRNA-containing oEVs could be used for developing new oral vaccines due to optimal mucosal absorption, resistance to stress conditions, and ability to stimulate a humoral and cellular immune response.
Collapse
Affiliation(s)
- Chiara Gai
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| | - Margherita Alba Carlotta Pomatto
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| | | | - Marco Dieci
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
| | - Alessandro Piga
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| |
Collapse
|
6
|
Ambrosone A, Barbulova A, Cappetta E, Cillo F, De Palma M, Ruocco M, Pocsfalvi G. Plant Extracellular Vesicles: Current Landscape and Future Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:4141. [PMID: 38140468 PMCID: PMC10747359 DOI: 10.3390/plants12244141] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Plant cells secrete membrane-enclosed micrometer- and nanometer-sized vesicles that, similarly to the extracellular vesicles (EVs) released by mammalian or bacterial cells, carry a complex molecular cargo of proteins, nucleic acids, lipids, and primary and secondary metabolites. While it is technically complicated to isolate EVs from whole plants or their tissues, in vitro plant cell cultures provide excellent model systems for their study. Plant EVs have been isolated from the conditioned culture media of plant cell, pollen, hairy root, and protoplast cultures, and recent studies have gathered important structural and biological data that provide a framework to decipher their physiological roles and unveil previously unacknowledged links to their diverse biological functions. The primary function of plant EVs seems to be in the secretion that underlies cell growth and morphogenesis, cell wall composition, and cell-cell communication processes. Besides their physiological functions, plant EVs may participate in defence mechanisms against different plant pathogens, including fungi, viruses, and bacteria. Whereas edible and medicinal-plant-derived nanovesicles isolated from homogenised plant materials ex vivo are widely studied and exploited, today, plant EV research is still in its infancy. This review, for the first time, highlights the different in vitro sources that have been used to isolate plant EVs, together with the structural and biological studies that investigate the molecular cargo, and pinpoints the possible role of plant EVs as mediators in plant-pathogen interactions, which may contribute to opening up new scenarios for agricultural applications, biotechnology, and innovative strategies for plant disease management.
Collapse
Affiliation(s)
- Alfredo Ambrosone
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.A.); (E.C.)
| | - Ani Barbulova
- Institute of Biosciences and BioResources (IBBR), Research Division (R.D.) Naples, National Research Council of Italy (CNR), 80131 Naples, Italy;
| | - Elisa Cappetta
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.A.); (E.C.)
| | - Fabrizio Cillo
- Institute for Sustainable Plant Protection, Research Division (R.D.) Bari, National Research Council of Italy (CNR), 70126 Bari, Italy;
| | - Monica De Palma
- Institute of Biosciences and BioResources (IBBR), Research Division (R.D.) Portici, National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection, Research Division (R.D.) Portici, National Research Council of Italy (CNR), 80055 Portici, Italy;
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources (IBBR), Research Division (R.D.) Naples, National Research Council of Italy (CNR), 80131 Naples, Italy;
| |
Collapse
|
7
|
Zhu X, Yin J, Guo H, Wang Y, Ma B. Vesicle trafficking in rice: too little is known. FRONTIERS IN PLANT SCIENCE 2023; 14:1263966. [PMID: 37790794 PMCID: PMC10543891 DOI: 10.3389/fpls.2023.1263966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023]
Abstract
The vesicle trafficking apparatus is a fundamental machinery to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. Thus, it is broadly conserved in eukaryotes including plants. Intensive studies in the model organisms have produced a comprehensive picture of vesicle trafficking in yeast and human. However, with respect to the vesicle trafficking of plants including rice, our understanding of the components and their coordinated regulation is very limited. At present, several vesicle trafficking apparatus components and cargo proteins have been identified and characterized in rice, but there still remain large unknowns concerning the organization and function of the rice vesicle trafficking system. In this review, we outline the main vesicle trafficking pathways of rice based on knowledge obtained in model organisms, and summarize current advances of rice vesicle trafficking. We also propose to develop methodologies applicable to rice and even other crops for further exploring the mysteries of vesicle trafficking in plants.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hongming Guo
- Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Jeong J, Kang I, Kim Y, Ku KB, Park JH, Kim HJ, Kim CW, La J, Jung HE, Kim HC, Choi YJ, Kim J, Kim J, Lee HK. Regulation of c-SMAC formation and AKT-mTOR signaling by the TSG101-IFT20 axis in CD4 + T cells. Cell Mol Immunol 2023; 20:525-539. [PMID: 37029318 DOI: 10.1038/s41423-023-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
CD4+ T cells play major roles in the adaptive immune system, which requires antigen recognition, costimulation, and cytokines for its elaborate orchestration. Recent studies have provided new insight into the importance of the supramolecular activation cluster (SMAC), which comprises concentric circles and is involved in the amplification of CD4+ T cell activation. However, the underlying mechanism of SMAC formation remains poorly understood. Here, we performed single-cell RNA sequencing of CD4+ T cells left unstimulated and stimulated with anti-CD3 and anti-CD28 antibodies to identify novel proteins involved in their regulation. We found that intraflagellar transport 20 (IFT20), previously known as cilia-forming protein, was upregulated in antibody-stimulated CD4+ T cells compared to unstimulated CD4+ T cells. We also found that IFT20 interacted with tumor susceptibility gene 101 (TSG101), a protein that endocytoses ubiquitinated T-cell receptors. The interaction between IFT20 and TSG101 promoted SMAC formation, which led to amplification of AKT-mTOR signaling. However, IFT20-deficient CD4+ T cells showed SMAC malformation, resulting in reduced CD4+ T cell proliferation, aerobic glycolysis, and cellular respiration. Finally, mice with T-cell-specific IFT20 deficiency exhibited reduced allergen-induced airway inflammation. Thus, our data suggest that the IFT20-TSG101 axis regulates AKT-mTOR signaling via SMAC formation.
Collapse
Affiliation(s)
- Jiung Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Keun Bon Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun-Jin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chae Won Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeongwoo La
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hi Eun Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeon Cheol Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Zeng Y, Li B, Huang S, Li H, Cao W, Chen Y, Liu G, Li Z, Yang C, Feng L, Gao J, Lo SW, Zhao J, Shen J, Guo Y, Gao C, Dagdas Y, Jiang L. The plant unique ESCRT component FREE1 regulates autophagosome closure. Nat Commun 2023; 14:1768. [PMID: 36997511 PMCID: PMC10063618 DOI: 10.1038/s41467-023-37185-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
The energy sensor AMP-activated protein kinase (AMPK) can activate autophagy when cellular energy production becomes compromised. However, the degree to which nutrient sensing impinges on the autophagosome closure remains unknown. Here, we provide the mechanism underlying a plant unique protein FREE1, upon autophagy-induced SnRK1α1-mediated phosphorylation, functions as a linkage between ATG conjugation system and ESCRT machinery to regulate the autophagosome closure upon nutrient deprivation. Using high-resolution microscopy, 3D-electron tomography, and protease protection assay, we showed that unclosed autophagosomes accumulated in free1 mutants. Proteomic, cellular and biochemical analysis revealed the mechanistic connection between FREE1 and the ATG conjugation system/ESCRT-III complex in regulating autophagosome closure. Mass spectrometry analysis showed that the evolutionary conserved plant energy sensor SnRK1α1 phosphorylates FREE1 and recruits it to the autophagosomes to promote closure. Mutagenesis of the phosphorylation site on FREE1 caused the autophagosome closure failure. Our findings unveil how cellular energy sensing pathways regulate autophagosome closure to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Baiying Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuxian Huang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenhan Cao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yixuan Chen
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoyong Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenping Li
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lei Feng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sze Wan Lo
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jierui Zhao
- Vienna BioCenter PhD Program, Doctoral School of the University at Vienna and Medical University of Vienna, Vienna, Austria
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK Shenzhen Research Institute, Shenzhen, China.
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Zhou L, Chen S, Cai M, Cui S, Ren Y, Zhang X, Liu T, Zhou C, Jin X, Zhang L, Wu M, Zhang S, Cheng Z, Zhang X, Lei C, Lin Q, Guo X, Wang J, Zhao Z, Jiang L, Zhu S, Wan J. ESCRT-III component OsSNF7.2 modulates leaf rolling by trafficking and endosomal degradation of auxin biosynthetic enzyme OsYUC8 in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36702785 DOI: 10.1111/jipb.13460] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Saihua Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Maohong Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinyue Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tianzhen Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Limin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Minxi Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuyi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
11
|
The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci 2023; 24:ijms24021337. [PMID: 36674857 PMCID: PMC9865891 DOI: 10.3390/ijms24021337] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Exosomes are a subtype of membrane-contained vesicles 40-200 nm in diameter that are secreted by cells into their surroundings. By transporting proteins, lipids, mRNA, miRNA, lncRNA, and DNA, exosomes are able to perform such vital functions as maintaining cellular homeostasis, removing cellular debris, and facilitating intercellular and interorgan communication. Exosomes travel in all body fluids and deliver their molecular messages in autocrine, paracrine as well as endocrine manners. In recent years, there has been an increased interest in studying exosomes as diagnostic markers and therapeutic targets, since in many disease conditions this machinery becomes dysregulated or hijacked by pathological processes. Additionally, delivery of exosomes and exosomal miRNA has already been shown to improve systemic metabolism and inhibit progression of cancer development in mice. However, the subcellular machinery of exosomes, including their biogenesis, release and uptake, remains largely unknown. This review will bring molecular details of these processes up to date with the goal of expanding the knowledge basis for designing impactful exosome experiments in the future.
Collapse
|
12
|
Li H, Li T, Li Y, Bai H, Dai Y, Liao Y, Wei J, Shen W, Zheng B, Zhang Z, Gao C. The plant FYVE domain-containing protein FREE1 associates with microprocessor components to repress miRNA biogenesis. EMBO Rep 2023; 24:e55037. [PMID: 36373807 PMCID: PMC9827557 DOI: 10.15252/embr.202255037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
FYVE domain protein required for endosomal sorting 1 (FREE1), originally identified as a plant-specific component of the endosomal sorting complex required for transport (ESCRT) machinery, plays diverse roles either in endosomal sorting in the cytoplasm or in transcriptional regulation of abscisic acid signaling in the nucleus. However, to date, a role for FREE1 or other ESCRT components in the regulation of plant miRNA biology has not been discovered. Here, we demonstrate a nuclear function of FREE1 as a cofactor in miRNA biogenesis in plants. FREE1 directly interacts with the plant core microprocessor component CPL1 in nuclear bodies and disturbs the association between HYL1, SE and CPL1. Inactivation of FREE1 in the nucleus increases the binding affinity between HYL1, SE, and CPL1 and causes a transition of HYL1 from the inactive hyperphosphorylated version to the active hypophosphorylated form, thereby promoting miRNA biogenesis. Our results suggest that FREE1 has evolved as a negative regulator of miRNA biogenesis and provides evidence for a link between FYVE domain-containing proteins and miRNA biogenesis in plants.
Collapse
Affiliation(s)
- Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Tingting Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Yingzhu Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Yanghuan Dai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Yanglan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Juan Wei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life SciencesFudan UniversityShanghaiChina
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
13
|
González Solís A, Berryman E, Otegui MS. Plant endosomes as protein sorting hubs. FEBS Lett 2022; 596:2288-2304. [PMID: 35689494 DOI: 10.1002/1873-3468.14425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
Abstract
Endocytosis, secretion, and endosomal trafficking are key cellular processes that control the composition of the plasma membrane. Through the coordination of these trafficking pathways, cells can adjust the composition, localization, and turnover of proteins and lipids in response to developmental or environmental cues. Upon being incorporated into vesicles and internalized through endocytosis, plant plasma membrane proteins are delivered to the trans-Golgi network (TGN). At the TGN, plasma membrane proteins are recycled back to the plasma membrane or transferred to multivesicular endosomes (MVEs), where they are further sorted into intralumenal vesicles for degradation in the vacuole. Both types of plant endosomes, TGN and MVEs, act as sorting organelles for multiple endocytic, recycling, and secretory pathways. Molecular assemblies such as retromer, ESCRT (endosomal sorting complex required for transport) machinery, small GTPases, adaptor proteins, and SNAREs associate with specific domains of endosomal membranes to mediate different sorting and membrane-budding events. In this review, we discuss the mechanisms underlying the recognition and sorting of proteins at endosomes, membrane remodeling and budding, and their implications for cellular trafficking and physiological responses in plants.
Collapse
Affiliation(s)
- Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
14
|
Plant ESCRT protein ALIX coordinates with retromer complex in regulating receptor-mediated sorting of soluble vacuolar proteins. Proc Natl Acad Sci U S A 2022; 119:e2200492119. [PMID: 35533279 PMCID: PMC9171914 DOI: 10.1073/pnas.2200492119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery in multicellular organisms plays canonical functions in multivesicular body (MVB) biogenesis and membrane protein sorting. Nonetheless, its critical role in the sorting of soluble vacuolar proteins and its interplay with endosomal recycling machinery have yet to be reported. In this study, we demonstrate that Arabidopsis ESCRT-associated ALIXinteracts with the retromer core subunitsto regulate their recruitment onto endosome membrane for recycling of vacuolar sorting receptors (VSRs) for efficient sorting of soluble vacuolar proteins. This work provides molecular insights into the unique properties of ALIX in regulating vacuolar transport of soluble proteins, thus shedding new light on the crosstalk and coordination between the vacuolar trafficking and endosomal recycling pathways in plants. Vacuolar proteins play essential roles in plant physiology and development, but the factors and the machinery regulating their vesicle trafficking through the endomembrane compartments remain largely unknown. We and others have recently identified an evolutionarily conserved plant endosomal sorting complex required for transport (ESCRT)-associated protein apoptosis-linked gene-2 interacting protein X (ALIX), which plays canonical functions in the biogenesis of the multivesicular body/prevacuolar compartment (MVB/PVC) and in the sorting of ubiquitinated membrane proteins. In this study, we elucidate the roles and underlying mechanism of ALIX in regulating vacuolar transport of soluble proteins, beyond its conventional ESCRT function in eukaryotic cells. We show that ALIX colocalizes and physically interacts with the retromer core subunits Vps26 and Vps29 in planta. Moreover, double-mutant analysis reveals the genetic interaction of ALIX with Vps26 and Vps29 for regulating trafficking of soluble vacuolar proteins. Interestingly, depletion of ALIX perturbs membrane recruitment of Vps26 and Vps29 and alters the endosomal localization of vacuolar sorting receptors (VSRs). Taken together, ALIX functions as a unique retromer core subcomplex regulator by orchestrating receptor-mediated vacuolar sorting of soluble proteins.
Collapse
|
15
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
16
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Agaoua A, Bendahmane A, Moquet F, Dogimont C. Membrane Trafficking Proteins: A New Target to Identify Resistance to Viruses in Plants. PLANTS 2021; 10:plants10102139. [PMID: 34685948 PMCID: PMC8541145 DOI: 10.3390/plants10102139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Replication cycles from most simple-stranded positive RNA viruses infecting plants involve endomembrane deformations. Recent published data revealed several interactions between viral proteins and plant proteins associated with vesicle formation and movement. These plant proteins belong to the COPI/II, SNARE, clathrin and ESCRT endomembrane trafficking mechanisms. In a few cases, variations of these plant proteins leading to virus resistance have been identified. In this review, we summarize all known interactions between these plant cell mechanisms and viruses and highlight strategies allowing fast identification of variant alleles for membrane-associated proteins.
Collapse
Affiliation(s)
- Aimeric Agaoua
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences-Paris-Saclay (IPS2), Université Paris-Saclay, INRAE, CNRS, Univ Evry, 91405 Orsay, France;
| | | | - Catherine Dogimont
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
- Correspondence:
| |
Collapse
|
18
|
Derevnina L, Contreras MP, Adachi H, Upson J, Vergara Cruces A, Xie R, Skłenar J, Menke FLH, Mugford ST, MacLean D, Ma W, Hogenhout SA, Goverse A, Maqbool A, Wu CH, Kamoun S. Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biol 2021; 19:e3001136. [PMID: 34424903 PMCID: PMC8412950 DOI: 10.1371/journal.pbio.3001136] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/02/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
In plants, nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins can form receptor networks to confer hypersensitive cell death and innate immunity. One class of NLRs, known as NLR required for cell death (NRCs), are central nodes in a complex network that protects against multiple pathogens and comprises up to half of the NLRome of solanaceous plants. Given the prevalence of this NLR network, we hypothesised that pathogens convergently evolved to secrete effectors that target NRC activities. To test this, we screened a library of 165 bacterial, oomycete, nematode, and aphid effectors for their capacity to suppress the cell death response triggered by the NRC-dependent disease resistance proteins Prf and Rpi-blb2. Among 5 of the identified suppressors, 1 cyst nematode protein and 1 oomycete protein suppress the activity of autoimmune mutants of NRC2 and NRC3, but not NRC4, indicating that they specifically counteract a subset of NRC proteins independently of their sensor NLR partners. Whereas the cyst nematode effector SPRYSEC15 binds the nucleotide-binding domain of NRC2 and NRC3, the oomycete effector AVRcap1b suppresses the response of these NRCs via the membrane trafficking-associated protein NbTOL9a (Target of Myb 1-like protein 9a). We conclude that plant pathogens have evolved to counteract central nodes of the NRC immune receptor network through different mechanisms. Coevolution with pathogen effectors may have driven NRC diversification into functionally redundant nodes in a massively expanded NLR network.
Collapse
Affiliation(s)
- Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Jessica Upson
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Angel Vergara Cruces
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Rongrong Xie
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai, Jiao Tong University, Shanghai, China
| | - Jan Skłenar
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Frank L. H. Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Sam T. Mugford
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Wenbo Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | | | - Aska Goverse
- Laboratory of Nematology, Wageningen University and Research, Wageningen, the Netherlands
| | - Abbas Maqbool
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
19
|
Avalos-Padilla Y, Georgiev VN, Lantero E, Pujals S, Verhoef R, N. Borgheti-Cardoso L, Albertazzi L, Dimova R, Fernàndez-Busquets X. The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection. PLoS Pathog 2021; 17:e1009455. [PMID: 33798247 PMCID: PMC9159051 DOI: 10.1371/journal.ppat.1009455] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with Plasmodium falciparum enhances extracellular
vesicle (EV) production in parasitized red blood cells (pRBCs), an important
mechanism for parasite-to-parasite communication during the asexual
intraerythrocytic life cycle. The endosomal
sorting complex
required for transport
(ESCRT), and in particular the ESCRT-III sub-complex, participates in the
formation of EVs in higher eukaryotes. However, RBCs have lost the majority of
their organelles through the maturation process, including an important
reduction in their vesicular network. Therefore, the mechanism of EV production
in P. falciparum-infected RBCs remains to be
elucidated. Here we demonstrate that P.
falciparum possesses a functional ESCRT-III machinery
activated by an alternative recruitment pathway involving the action of PfBro1
and PfVps32/PfVps60 proteins. Additionally, multivesicular body formation and
membrane shedding, both reported mechanisms of EV production, were reconstituted
in the membrane model of giant unilamellar vesicles using the purified
recombinant proteins. Moreover, the presence of PfVps32, PfVps60 and PfBro1 in
EVs purified from a pRBC culture was confirmed by super-resolution microscopy
and dot blot assays. Finally, disruption of the PfVps60 gene
led to a reduction in the number of the produced EVs in the KO strain and
affected the distribution of other ESCRT-III components. Overall, our results
increase the knowledge on the underlying molecular mechanisms during malaria
pathogenesis and demonstrate that ESCRT-III P.
falciparum proteins participate in EV production. Malaria is a disease caused by Plasmodium parasites that is
still a leading cause of death in many low-income countries, and for which
currently available therapeutic strategies are not succeeding in its control,
let alone eradication. An interesting feature observed after
Plasmodium invasion is the increase of extracellular
vesicles (EVs) generated by parasitized red blood cells (pRBCs), which lack a
vesicular trafficking that would explain EV production. Here, by combining
different approaches, we demonstrated the participation of the
endosomal sorting
complex required for
transport (ESCRT) machinery from Plasmodium
falciparum in the production of EVs in pRBCs. Moreover, we were
able to detect ESCRT-III proteins adjacent to the membrane of the host and in
EVs purified from a pRBC culture, which shows the export of these proteins and
their participation in EV production. Finally, the disruption of an ESCRT-III
associated gene, Pfvps60, led to a significant reduction in the
amount of EVs. Altogether, these results confirm ESCRT-III participation in EV
production and provide novel information on the P.
falciparum protein export mechanisms, which can be used for
the development of new therapeutic strategies against malaria, based on the
disruption of EV formation and trafficking.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
- * E-mail: (YA-P); (XF-B)
| | - Vasil N. Georgiev
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
| | - Elena Lantero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics,
Universitat de Barcelona, Barcelona, Spain
| | - René Verhoef
- Computational Biology Group, Eindhoven University of Technology,
Eindhoven, The Netherlands
| | - Livia N. Borgheti-Cardoso
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering and the Institute for Complex
Molecular Systems, Eindhoven University of Technology, Eindhoven, The
Netherlands
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
| | - Xavier Fernàndez-Busquets
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
- * E-mail: (YA-P); (XF-B)
| |
Collapse
|
20
|
Roach TG, Lång HKM, Xiong W, Ryhänen SJ, Capelluto DGS. Protein Trafficking or Cell Signaling: A Dilemma for the Adaptor Protein TOM1. Front Cell Dev Biol 2021; 9:643769. [PMID: 33718385 PMCID: PMC7952518 DOI: 10.3389/fcell.2021.643769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Lysosomal degradation of ubiquitinated transmembrane protein receptors (cargo) relies on the function of Endosomal Sorting Complex Required for Transport (ESCRT) protein complexes. The ESCRT machinery is comprised of five unique oligomeric complexes with distinct functions. Target of Myb1 (TOM1) is an ESCRT protein involved in the initial steps of endosomal cargo sorting. To exert its function, TOM1 associates with ubiquitin moieties on the cargo via its VHS and GAT domains. Several ESCRT proteins, including TOLLIP, Endofin, and Hrs, have been reported to form a complex with TOM1 at early endosomal membrane surfaces, which may potentiate the role of TOM1 in cargo sorting. More recently, it was found that TOM1 is involved in other physiological processes, including autophagy, immune responses, and neuroinflammation, which crosstalk with its endosomal cargo sorting function. Alteration of TOM1 function has emerged as a phosphoinositide-dependent survival mechanism for bacterial infections and cancer progression. Based on current knowledge of TOM1-dependent cellular processes, this review illustrates how TOM1 functions in coordination with an array of protein partners under physiological and pathological scenarios.
Collapse
Affiliation(s)
- Tiffany G. Roach
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - Heljä K. M. Lång
- Division of Hematology, Oncology, and Stem Cell Transplantation, Children’s Hospital, and Pediatric Research Center, The New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - Samppa J. Ryhänen
- Division of Hematology, Oncology, and Stem Cell Transplantation, Children’s Hospital, and Pediatric Research Center, The New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
21
|
Palomar VM, Garciarrubio A, Garay-Arroyo A, Martínez-Martínez C, Rosas-Bringas O, Reyes JL, Covarrubias AA. The canonical RdDM pathway mediates the control of seed germination timing under salinity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:691-707. [PMID: 33131171 DOI: 10.1111/tpj.15064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plants respond to adverse environmental cues by adjusting a wide variety of processes through highly regulated mechanisms to maintain plant homeostasis for survival. As a result of the sessile nature of plants, their response, adjustment and adaptation to the changing environment is intimately coordinated with their developmental programs through the crosstalk of regulatory networks. Germination is a critical process in the plant life cycle, and thus plants have evolved various strategies to control the timing of germination according to their local environment. The mechanisms involved in these adjustment responses are largely unknown, however. Here, we report that mutations in core elements of canonical RNA-directed DNA methylation (RdDM) affect the germination and post-germination growth of Arabidopsis seeds grown under salinity stress. Transcriptomic and whole-genome bisulfite sequencing (WGBS) analyses support the involvement of this pathway in the control of germination timing and post-germination growth under salinity stress by preventing the transcriptional activation of genes implicated in these processes. Subsequent transcriptional effects on genes that function in relation to these developmental events support this conclusion.
Collapse
Affiliation(s)
- Víctor Miguel Palomar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Alejandro Garciarrubio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N anexo Jardín Botánico Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04500, México
| | - Coral Martínez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Omar Rosas-Bringas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| |
Collapse
|
22
|
Liu J, Wang Y, Cheng Y. The ESCRT-I components VPS28A and VPS28B are essential for auxin-mediated plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1617-1634. [PMID: 33058303 DOI: 10.1111/tpj.15024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The highly conserved endosomal sorting complex required for transport (ESCRT) pathway plays critical roles in endosomal sorting of ubiquitinated plasma membrane proteins for degradation. However, the functions of many components of the ESCRT machinery in plants remain unsolved. Here we show that the ESCRT-I subunits VPS28A and VPS28B are functionally redundant and required for embryonic development in Arabidopsis. We conducted a screen for genetic enhancers of pid, which is defective in auxin signaling and transport. We isolated a no--cotyledon in pid 104 (ncp104) mutant, which failed to develop cotyledons in a pid background. We discovered that ncp104 was a unique recessive gain-of-function allele of vps28a. VPS28A and VPS28B were expressed during embryogenesis and the proteins were localized to the trans-Golgi network/early endosome and post-Golgi/endosomal compartments, consistent with their functions in endosomal sorting and embryogenesis. The single vps28a and vps28b loss-of-function mutants did not display obvious developmental defects, but their double mutants showed abnormal cell division patterns and were arrested at the globular embryo stage. The vps28a vps28b double mutants showed altered auxin responses, disrupted PIN1-GFP expression patterns, and abnormal PIN1-GFP accumulation in small aberrant vacuoles. The ncp104 mutation may cause the VPS28A protein to become unstable and/or toxic. Taken together, our findings demonstrate that the ESCRT-I components VPS28A and VPS28B redundantly play essential roles in vacuole formation, endosomal sorting of plasma membrane proteins, and auxin-mediated plant development.
Collapse
Affiliation(s)
- Jianyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanning Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Youfa Cheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
23
|
Ubiquitination of TLR3 by TRIM3 signals its ESCRT-mediated trafficking to the endolysosomes for innate antiviral response. Proc Natl Acad Sci U S A 2020; 117:23707-23716. [PMID: 32878999 DOI: 10.1073/pnas.2002472117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Trafficking of toll-like receptor 3 (TLR3) from the endoplasmic reticulum (ER) to endolysosomes and its subsequent proteolytic cleavage are required for it to sense viral double-stranded RNA (dsRNA) and trigger antiviral response, yet the underlying mechanisms remain enigmatic. We show that the E3 ubiquitin ligase TRIM3 is mainly located in the Golgi apparatus and transported to the early endosomes upon stimulation with the dsRNA analog poly(I:C). TRIM3 mediates K63-linked polyubiquitination of TLR3 at K831, which is enhanced following poly(I:C) stimulation. The polyubiquitinated TLR3 is recognized and sorted by the ESCRT (endosomal sorting complex required for transport) complexes to endolysosomes. Deficiency of TRIM3 impairs TLR3 trafficking from the Golgi apparatus to endosomes and its subsequent activation. Trim3 -/- cells and mice express lower levels of antiviral genes and show lower levels of inflammatory response following poly(I:C) but not lipopolysaccharide (LPS) stimulation. These findings suggest that TRIM3-mediated polyubiquitination of TLR3 represents a feedback-positive regulatory mechanism for TLR3-mediated innate immune and inflammatory responses.
Collapse
|
24
|
Analysis of Membrane Proteins Transport from Endosomal Compartments to Vacuoles. Methods Mol Biol 2020. [PMID: 32632801 DOI: 10.1007/978-1-0716-0767-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Endocytosis and endosomal trafficking to vacuoles play important roles in regulating the homeostasis of plasma membrane (PM) proteins in plant cells. FREE1 (FYVE domain protein required for endosomal sorting 1) is a plant-unique component of the ESCRT (endosomal sorting complex required for transport) machinery. In free1 mutant plants, PIN-FORMED 2 (PIN2)-GFP was found to mislocalize from the PM to the tonoplast. In this chapter, we describe a detailed protocol for studying vacuolar sorting and degradation of PIN2-GFP by using T-DNA insertional mutants, dexamethasone (DEX) inducible RNAi lines, and other tools, including Fei-Mao (FM) dye staining and dark treatment. By using these methods, we illustrate the endosomal trafficking and vacuolar degradation of PIN2-GFP in plants.
Collapse
|
25
|
Moulinier-Anzola J, Schwihla M, De-Araújo L, Artner C, Jörg L, Konstantinova N, Luschnig C, Korbei B. TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants. MOLECULAR PLANT 2020; 13:717-731. [PMID: 32087370 DOI: 10.1016/j.molp.2020.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 05/21/2023]
Abstract
Protein abundance and localization at the plasma membrane (PM) shapes plant development and mediates adaptation to changing environmental conditions. It is regulated by ubiquitination, a post-translational modification crucial for the proper sorting of endocytosed PM proteins to the vacuole for subsequent degradation. To understand the significance and the variety of roles played by this reversible modification, the function of ubiquitin receptors, which translate the ubiquitin signature into a cellular response, needs to be elucidated. In this study, we show that TOL (TOM1-like) proteins function in plants as multivalent ubiquitin receptors, governing ubiquitinated cargo delivery to the vacuole via the conserved Endosomal Sorting Complex Required for Transport (ESCRT) pathway. TOL2 and TOL6 interact with components of the ESCRT machinery and bind to K63-linked ubiquitin via two tandemly arranged conserved ubiquitin-binding domains. Mutation of these domains results not only in a loss of ubiquitin binding but also altered localization, abolishing TOL6 ubiquitin receptor activity. Function and localization of TOL6 is itself regulated by ubiquitination, whereby TOL6 ubiquitination potentially modulates degradation of PM-localized cargoes, assisting in the fine-tuning of the delicate interplay between protein recycling and downregulation. Taken together, our findings demonstrate the function and regulation of a ubiquitin receptor that mediates vacuolar degradation of PM proteins in higher plants.
Collapse
Affiliation(s)
- Jeanette Moulinier-Anzola
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Maximilian Schwihla
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Lucinda De-Araújo
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christina Artner
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Lisa Jörg
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Nataliia Konstantinova
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christian Luschnig
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Barbara Korbei
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
26
|
Stefaniak S, Wojtyla Ł, Pietrowska-Borek M, Borek S. Completing Autophagy: Formation and Degradation of the Autophagic Body and Metabolite Salvage in Plants. Int J Mol Sci 2020; 21:E2205. [PMID: 32210003 PMCID: PMC7139740 DOI: 10.3390/ijms21062205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved process that occurs in yeast, plants, and animals. Despite many years of research, some aspects of autophagy are still not fully explained. This mostly concerns the final stages of autophagy, which have not received as much interest from the scientific community as the initial stages of this process. The final stages of autophagy that we take into consideration in this review include the formation and degradation of the autophagic bodies as well as the efflux of metabolites from the vacuole to the cytoplasm. The autophagic bodies are formed through the fusion of an autophagosome and vacuole during macroautophagy and by vacuolar membrane invagination or protrusion during microautophagy. Then they are rapidly degraded by vacuolar lytic enzymes, and products of the degradation are reused. In this paper, we summarize the available information on the trafficking of the autophagosome towards the vacuole, the fusion of the autophagosome with the vacuole, the formation and decomposition of autophagic bodies inside the vacuole, and the efflux of metabolites to the cytoplasm. Special attention is given to the formation and degradation of autophagic bodies and metabolite salvage in plant cells.
Collapse
Affiliation(s)
- Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (S.S.); (Ł.W.)
| |
Collapse
|
27
|
Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense. PLANTS 2020; 9:plants9030389. [PMID: 32245198 PMCID: PMC7154882 DOI: 10.3390/plants9030389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking.
Collapse
|
28
|
Protein sorting into protein bodies during barley endosperm development is putatively regulated by cytoskeleton members, MVBs and the HvSNF7s. Sci Rep 2020; 10:1864. [PMID: 32024857 PMCID: PMC7002727 DOI: 10.1038/s41598-020-58740-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Cereal endosperm is a short-lived tissue adapted for nutrient storage, containing specialized organelles, such as protein bodies (PBs) and protein storage vacuoles (PSVs), for the accumulation of storage proteins. During development, protein trafficking and storage require an extensive reorganization of the endomembrane system. Consequently, endomembrane-modifying proteins will influence the final grain quality and yield. However, little is known about the molecular mechanism underlying endomembrane system remodeling during barley grain development. By using label-free quantitative proteomics profiling, we quantified 1,822 proteins across developing barley grains. Based on proteome annotation and a homology search, 94 proteins associated with the endomembrane system were identified that exhibited significant changes in abundance during grain development. Clustering analysis allowed characterization of three different development phases; notably, integration of proteomics data with in situ subcellular microscopic analyses showed a high abundance of cytoskeleton proteins associated with acidified PBs at the early development stages. Moreover, endosomal sorting complex required for transport (ESCRT)-related proteins and their transcripts are most abundant at early and mid-development. Specifically, multivesicular bodies (MVBs), and the ESCRT-III HvSNF7 proteins are associated with PBs during barley endosperm development. Together our data identified promising targets to be genetically engineered to modulate seed storage protein accumulation that have a growing role in health and nutritional issues.
Collapse
|
29
|
Schwihla M, Korbei B. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:680. [PMID: 32528512 PMCID: PMC7253699 DOI: 10.3389/fpls.2020.00680] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The plasma membrane (PM), as border between the inside and the outside of a cell, is densely packed with proteins involved in the sensing and transmission of internal and external stimuli, as well as transport processes and is therefore vital for plant development as well as quick and accurate responses to the environment. It is consequently not surprising that several regulatory pathways participate in the tight regulation of the spatiotemporal control of PM proteins. Ubiquitination of PM proteins plays a key role in directing their entry into the endo-lysosomal system, serving as a signal for triggering endocytosis and further sorting for degradation. Nevertheless, a uniting picture of the different roles of the respective types of ubiquitination in the consecutive steps of down-regulation of membrane proteins is still missing. The trans-Golgi network (TGN), which acts as an early endosome (EE) in plants receives the endocytosed cargo, and here the decision is made to either recycled back to the PM or further delivered to the vacuole for degradation. A multi-complex machinery, the endosomal sorting complex required for transport (ESCRT), concentrates ubiquitinated proteins and ushers them into the intraluminal vesicles of multi-vesicular bodies (MVBs). Several ESCRTs have ubiquitin binding subunits, which anchor and guide the cargos through the endocytic degradation route. Basic enzymes and the mode of action in the early degradation steps of PM proteins are conserved in eukaryotes, yet many plant unique components exist, which are often essential in this pathway. Thus, deciphering the initial steps in the degradation of ubiquitinated PM proteins, which is the major focus of this review, will greatly contribute to the larger question of how plants mange to fine-tune their responses to their environment.
Collapse
|
30
|
García-León M, Cuyas L, El-Moneim DA, Rodriguez L, Belda-Palazón B, Sanchez-Quant E, Fernández Y, Roux B, Zamarreño ÁM, García-Mina JM, Nussaume L, Rodriguez PL, Paz-Ares J, Leonhardt N, Rubio V. Arabidopsis ALIX Regulates Stomatal Aperture and Turnover of Abscisic Acid Receptors. THE PLANT CELL 2019; 31:2411-2429. [PMID: 31363038 PMCID: PMC6790096 DOI: 10.1105/tpc.19.00399] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 05/03/2023]
Abstract
The plant endosomal trafficking pathway controls the abundance of membrane-associated soluble proteins, as shown for abscisic acid (ABA) receptors of the PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS (PYR/PYL/RCAR) family. ABA receptor targeting for vacuolar degradation occurs through the late endosome route and depends on FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING1 (FYVE1) and VACUOLAR PROTEIN SORTING23A (VPS23A), components of the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT-I (ESCRT-I) complexes. FYVE1 and VPS23A interact with ALG-2 INTERACTING PROTEIN-X (ALIX), an ESCRT-III-associated protein, although the functional relevance of such interactions and their consequences in cargo sorting are unknown. In this study we show that Arabidopsis (Arabidopsis thaliana) ALIX directly binds to ABA receptors in late endosomes, promoting their degradation. Impaired ALIX function leads to altered endosomal localization and increased accumulation of ABA receptors. In line with this activity, partial loss-of-function alix-1 mutants display ABA hypersensitivity during growth and stomatal closure, unveiling a role for the ESCRT machinery in the control of water loss through stomata. ABA-hypersensitive responses are suppressed in alix-1 plants impaired in PYR/PYL/RCAR activity, in accordance with ALIX affecting ABA responses primarily by controlling ABA receptor stability. ALIX-1 mutant protein displays reduced interaction with VPS23A and ABA receptors, providing a molecular basis for ABA hypersensitivity in alix-1 mutants. Our findings unveil a negative feedback mechanism triggered by ABA that acts via ALIX to control the accumulation of specific PYR/PYL/RCAR receptors.
Collapse
Affiliation(s)
| | - Laura Cuyas
- Centro Nacional de Biotecnología, 28049 Madrid, Spain
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, BIAM, UMR7265, SAVE, Saint Paul-Lez-Durance, France
- Centre Mondial de l'Innovation, Groupe Roullier, Saint-Malo, France
| | - Diaa Abd El-Moneim
- Centro Nacional de Biotecnología, 28049 Madrid, Spain
- Department of Plant Production, Genetic Branch, Faculty of Environmental and Agricultural Sciences, Arish University, North Sinai, Egypt
| | - Lesia Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain
| | | | | | - Brice Roux
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, BIAM, UMR7265, SAVE, Saint Paul-Lez-Durance, France
| | - Ángel María Zamarreño
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - José María García-Mina
- Department of Environmental Biology, Agricultural Chemistry and Biology Group-CMI Roullier, Faculty of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Laurent Nussaume
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, BIAM, UMR7265, SAVE, Saint Paul-Lez-Durance, France
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain
| | | | - Nathalie Leonhardt
- Aix Marseille Université, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, BIAM, UMR7265, SAVE, Saint Paul-Lez-Durance, France
| | - Vicente Rubio
- Centro Nacional de Biotecnología, 28049 Madrid, Spain
| |
Collapse
|
31
|
Mosesso N, Nagel MK, Isono E. Ubiquitin recognition in endocytic trafficking - with or without ESCRT-0. J Cell Sci 2019; 132:132/16/jcs232868. [PMID: 31416855 DOI: 10.1242/jcs.232868] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability to sense and adapt to the constantly changing environment is important for all organisms. Cell surface receptors and transporters are key for the fast response to extracellular stimuli and, thus, their abundance on the plasma membrane has to be strictly controlled. Heteromeric endosomal sorting complexes required for transport (ESCRTs) are responsible for mediating the post-translational degradation of endocytosed plasma membrane proteins in eukaryotes and are essential both in animals and plants. ESCRTs bind and sort ubiquitylated cargoes for vacuolar degradation. Although many components that comprise the multi-subunit ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III complexes are conserved in eukaryotes, plant and animal ESCRTs have diverged during the course of evolution. Homologues of ESCRT-0, which recognises ubiquitylated cargo, have emerged in metazoan and fungi but are not found in plants. Instead, the Arabidopsis genome encodes plant-specific ubiquitin adaptors and a greater number of target of Myb protein 1 (TOM1) homologues than in mammals. In this Review, we summarise and discuss recent findings on ubiquitin-binding proteins in Arabidopsis that could have equivalent functions to ESCRT-0. We further hypothesise that SH3 domain-containing proteins might serve as membrane curvature-sensing endophilin and amphiphysin homologues during plant endocytosis.
Collapse
Affiliation(s)
- Niccolò Mosesso
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| | | | - Erika Isono
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
32
|
Ibl V. ESCRTing in cereals: still a long way to go. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1144-1152. [PMID: 31327097 DOI: 10.1007/s11427-019-9572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 01/28/2023]
Abstract
The multivesicular body (MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport (ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley (Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies (PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
33
|
Liu L, Zhang Q. Identification and functional analysis of candidate gene VPS28 for milk fat in bovine mammary epithelial cells. Biochem Biophys Res Commun 2019; 510:606-613. [PMID: 30739790 DOI: 10.1016/j.bbrc.2019.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
Abstract
In a previous genome-wide association study on milk production traits in Chinese Holstein population, we revealed VPS28 gene was highly expressed in mammary gland tissue and a -58C > T mutation in 5'-UTR of it was significantly associated with milk fat content traits. In this study, we explored the effect of this -58C > T mutation on VPS28, and found it could significantly decrease promoter activity of VPS28 by reducing transcription factor binding sites. To identify the potential functional SNP involved, we performed RNAi experiment in BMECs, the results showed that VPS28 knockdown could increase the expression of ADFP and CD36, lead accumulation of ubiquitinated proteins, long chain fatty acids and triglyceride, and decrease the proteasome activity. Therefore, our study demonstrates that the -58C > T mutation could facilitate milk fat synthesis in two ways. The one is involved in ESCRTs signaling, it could directly lead an accumulation of ubqiuitinated membrane proteins to promote the long chain fatty acids uptake to incorporation into TG. The other is involved in ubiquitination-proteasome system, it could indirectly lead a dysfunction of proteasome to accumulate the ubqiuitinated proteins to promote TG synthesis. In conclusion, our study demonstrates that VPS28 could be a strong candidate gene for milk fat content traits, and in particular, the -58C > T mutation in 5'-UTR of VPS28 could be a functional mutation for its effects on milk fat content.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Sciences, Southwest Forestry University, Kunming, Yunnan, 650224, China; Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Xie Q, Chen A, Zhang Y, Yuan M, Xie W, Zhang C, Zheng W, Wang Z, Li G, Zhou J. Component Interaction of ESCRT Complexes Is Essential for Endocytosis-Dependent Growth, Reproduction, DON Production and Full Virulence in Fusarium graminearum. Front Microbiol 2019; 10:180. [PMID: 30809208 PMCID: PMC6379464 DOI: 10.3389/fmicb.2019.00180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/23/2019] [Indexed: 01/18/2023] Open
Abstract
Multivesicular bodies (MVBs) are critical intermediates in the trafficking of ubiquitinated endocytosed surface proteins to the lysosome/vacuole for destruction. Recognizing and packaging ubiquitin modified cargoes to the MVB pathway require ESCRT (Endosomal sorting complexes required for transport) machinery, which consists of four core subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. Our previous results showed that ESCRT-0 is essential for fungal development and pathogenicity in Fusarium graminearum. We then, in this study, systemically studied the protein-protein interactions within F. graminearum ESCRT-I, -II or -III complex, as well as between ESCRT-0 and ESCRT-I, ESCRT-I and ESCRT-II, and ESCRT-II and ESCRT-III complexes and found that loss of any ESCRT component resulted in abnormal function in endocytosis. In addition, ESCRT deletion mutants displayed severe defects in growth, deoxynivalenol (DON) production, virulence, sexual, and asexual reproduction. Importantly genetic complementation with corresponding ESCRT genes fully rescued all these defective phenotypes, indicating the essential role of ESCRT machinery in fungal development and plant infection in F. graminearum. Taken together, the protein-protein interactome and biological functions of the ESCRT machinery is first profoundly characterized in F. graminearum, providing a foundation for further exploration of ESCRT machinery in filamentous fungi.
Collapse
Affiliation(s)
- Qiurong Xie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunzhi Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Yuan
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Xie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengkang Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jie Zhou
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
35
|
Nagel MK, Vogel K, Isono E. Transient Expression of ESCRT Components in Arabidopsis Root Cell Suspension Culture-Derived Protoplasts. Methods Mol Biol 2019; 1998:163-174. [PMID: 31250301 DOI: 10.1007/978-1-4939-9492-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Localization studies are important to understand the function of diverse proteins. The endosomal trafficking pathway is very complex, and a lot of proteins function in this pathway, primarily the endosomal sorting complexes required for transport (ESCRTs). Some of the ESCRT-related proteins or mutant variants cannot be stably expressed in planta due to the toxicity of their expression. Therefore, a transient expression system is necessary to study their function. Transient expression in protoplasts from Arabidopsis root cell-derived culture serves as a fast and reliable method for the expression and cell biological and biochemical analyses of otherwise toxic constructs.
Collapse
Affiliation(s)
- Marie-Kristin Nagel
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Karin Vogel
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
36
|
Paez-Valencia J, Otegui MS. Purification of Plant ESCRT Proteins for Polyclonal Antibody Production. Methods Mol Biol 2019; 1998:227-238. [PMID: 31250306 DOI: 10.1007/978-1-4939-9492-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Most endosomal sorting complex required for transport (ESCRT)-III proteins are not fully functional when expressed as fusion of fluorescent or epitope tags, frequently making the use of specific antibodies the only available method for their detection. Heterologous expression of ESCRT-III proteins in bacteria often results in the formation of insoluble aggregates or inclusion bodies that interfere with their purification. However, inclusion bodies are usually pure protein aggregates with high antigenicity. In addition, since proteins within inclusion bodies are presented in a range of folding states, immunization with inclusion bodies can potentially result in antibodies with specificity for different folding states of the protein under study. We describe here a protocol to isolate bacterial inclusion bodies of plant ESCRT-III proteins for production of polyclonal antibodies. We also describe a nitrocellulose-based immunoaffinity purification method that allows the immobilization of ESCRT-III proteins and the subsequent isolation of specific antibodies from a crude serum.
Collapse
Affiliation(s)
- Julio Paez-Valencia
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
- Laboratory of Molecular and Cellular Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
37
|
Shen J, Zhao Q, Wang X, Gao C, Zhu Y, Zeng Y, Jiang L. A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis. Nat Commun 2018; 9:3784. [PMID: 30224707 PMCID: PMC6141507 DOI: 10.1038/s41467-018-05913-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Plant development, defense, and many physiological processes rely on the endosomal sorting complex required for transport (ESCRT) machinery to control the homeostasis of membrane proteins by selective vacuolar degradation. Although ESCRT core components are conserved among higher eukaryotes, the regulators that control the function of the ESCRT machinery remain elusive. We recently identified a plant-specific ESCRT component, FREE1, that is essential for multivesicular body/prevacuolar compartment (MVB/PVC) biogenesis and vacuolar sorting of membrane proteins. Here we identify a plant-specific Bro1-domain protein BRAF, which regulates FREE1 recruitment to the MVB/PVC membrane by competitively binding to the ESCRT-I component Vps23. Altogether, we have successfully identified a role for BRAF, whose function as a unique evolutionary ESCRT regulator in orchestrating intraluminal vesicle formation in MVB/PVCs and the sorting of membrane proteins for degradation in plants makes it an important regulatory mechanism underlying the ESCRT machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Jinbo Shen
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Linan, Hangzhou, 311300, China.
| | - Qiong Zhao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiangfeng Wang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Caiji Gao
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Ying Zhu
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
38
|
Shabrangy A, Roustan V, Reipert S, Weidinger M, Roustan PJ, Stoger E, Weckwerth W, Ibl V. Using RT-qPCR, Proteomics, and Microscopy to Unravel the Spatio-Temporal Expression and Subcellular Localization of Hordoindolines Across Development in Barley Endosperm. FRONTIERS IN PLANT SCIENCE 2018; 9:775. [PMID: 29951075 PMCID: PMC6008550 DOI: 10.3389/fpls.2018.00775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 05/22/2018] [Indexed: 05/20/2023]
Abstract
Hordeum vulgare (barley) hordoindolines (HINs), HINa, HINb1, and HINb2, are orthologous proteins of wheat puroindolines (PINs) that are small, basic, cysteine-rich seed-specific proteins and responsible for grain hardness. Grain hardness is, next to its protein content, a major quality trait. In barley, HINb is most highly expressed in the mid-stage developed endosperm and is associated with both major endosperm texture and grain hardness. However, data required to understand the spatio-temporal dynamics of HIN transcripts and HIN protein regulation during grain filling processes are missing. Using reverse transcription quantitative PCR (RT-qPCR) and proteomics, we analyzed HIN transcript and HIN protein abundance from whole seeds (WSs) at four [6 days after pollination (dap), 10, 12, and ≥20 dap] as well as from aleurone, subaleurone, and starchy endosperm at two (12 and ≥20 dap) developmental stages. At the WS level, results from RT-qPCR, proteomics, and western blot showed a continuous increase of HIN transcript and HIN protein abundance across these four developmental stages. Miroscopic studies revealed HIN localization mainly at the vacuolar membrane in the aleurone, at protein bodies (PBs) in subaleurone and at the periphery of starch granules in the starchy endosperm. Laser microdissetion (LMD) proteomic analyses identified HINb2 as the most prominent HIN protein in starchy endosperm at ≥20 dap. Additionally, our quantification data revealed a poor correlation between transcript and protein levels of HINs in subaleurone during development. Here, we correlated data achieved by RT-qPCR, proteomics, and microscopy that reveal different expression and localization pattern of HINs in each layer during barley endosperm development. This indicates a contribution of each tissue to the regulation of HINs during grain filling. The effect of the high protein abundance of HINs in the starchy endosperm and their localization at the periphery of starch granules at late development stages at the cereal-based end-product quality is discussed. Understanding the spatio-temporal regulated HINs is essential to improve barley quality traits for high end-product quality, as hard texture of the barley grain is regulated by the ratio between HINb/HINa.
Collapse
Affiliation(s)
- Azita Shabrangy
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Siegfried Reipert
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Marieluise Weidinger
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Pierre-Jean Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
ESCRT-mediated sorting and intralumenal vesicle concatenation in plants. Biochem Soc Trans 2018; 46:537-545. [PMID: 29666213 DOI: 10.1042/bst20170439] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/16/2022]
Abstract
The degradation of plasma membrane and other membrane-associated proteins require their sorting at endosomes for delivery to the vacuole. Through the endocytic pathway, ubiquitinated membrane proteins (cargo) are delivered to endosomes where the ESCRT (endosomal sorting complex required for transport) machinery sorts them into intralumenal vesicles for degradation. Plants contain both conserved and plant-specific ESCRT subunits. In this review, I discuss the role of characterized plant ESCRT components, the evolutionary diversification of the plant ESCRT machinery, and a recent study showing that endosomal intralumenal vesicles form in clusters of concatenated vesicle buds by temporally uncoupling membrane constriction from membrane fission.
Collapse
|
40
|
Kalinowska K, Isono E. All roads lead to the vacuole-autophagic transport as part of the endomembrane trafficking network in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1313-1324. [PMID: 29165603 DOI: 10.1093/jxb/erx395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/14/2017] [Indexed: 05/10/2023]
Abstract
Plants regulate their development and response to the changing environment by sensing and interpreting environmental signals. Intracellular trafficking pathways including endocytic-, vacuolar-, and autophagic trafficking are important for the various aspects of responses in plants. Studies in the last decade have shown that the autophagic transport pathway uses common key components of endomembrane trafficking as well as specific regulators. A number of factors previously described for their function in endosomal trafficking have been discovered to be involved in the regulation of autophagy in plants. These include conserved endocytic machineries, such as the endosomal sorting complex required for transport (ESCRT), subunits of the HOPS and exocyst complexes, SNAREs, and RAB GTPases as well as plant-specific proteins. Defects in these factors have been shown to cause impairment of autophagosome formation, transport, fusion, and degradation, suggesting crosstalk between autophagy and other intracellular trafficking processes. In this review, we focus mainly on possible functions of endosomal trafficking components in autophagy.
Collapse
|
41
|
Avalos-Padilla Y, Knorr RL, Javier-Reyna R, García-Rivera G, Lipowsky R, Dimova R, Orozco E. The Conserved ESCRT-III Machinery Participates in the Phagocytosis of Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:53. [PMID: 29546036 PMCID: PMC5838018 DOI: 10.3389/fcimb.2018.00053] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/12/2018] [Indexed: 01/22/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) orchestrates cell membrane-remodeling mechanisms in eukaryotes, including endocytosis. However, ESCRT functions in phagocytosis (ingestion of ≥250 nm particles), has been poorly studied. In macrophages and amoebae, phagocytosis is required for cell nutrition and attack to other microorganisms and cells. In Entamoeba histolytica, the voracious protozoan responsible for human amoebiasis, phagocytosis is a land mark of virulence. Here, we have investigated the role of ESCRT-III in the phagocytosis of E. histolytica, using mutant trophozoites, recombinant proteins (rEhVps20, rEhVps32, rEhVps24, and rEhVps2) and giant unilamellar vesicles (GUVs). Confocal images displayed the four proteins located around the ingested erythrocytes, in erythrocytes-containing phagosomes and in multivesicular bodies. EhVps32 and EhVps2 proteins co-localized at the phagocytic cups. Protein association increased during phagocytosis. Immunoprecipitation and flow cytometry assays substantiated these associations. GUVs revealed that the protein assembly sequence is essential to form intraluminal vesicles (ILVs). First, the active rEhVps20 bound to membranes and recruited rEhVps32, promoting membrane invaginations. rEhVps24 allowed the detachment of nascent vesicles, forming ILVs; and rEhVps2 modulated their size. The knock down of Ehvps20 and Ehvps24genes diminished the rate of erythrophagocytosis demonstrating the importance of ESCRT-III in this event. In conclusion, we present here evidence of the ESCRT-III participation in phagocytosis and delimitate the putative function of proteins, according to the in vitro reconstruction of their assembling.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Departamento de Infectómica y Patogénesis Molecular, CINVESTAV IPN, Mexico City, Mexico
| | - Roland L Knorr
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV IPN, Mexico City, Mexico
| | | | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV IPN, Mexico City, Mexico
| |
Collapse
|
42
|
Livramento KGD, Freitas NC, Máximo WPF, Zanetti R, Paiva LV. Gene Expression Profile Analysis is Directly Affected by the Selected Reference Gene: The Case of Leaf-Cutting Atta Sexdens. INSECTS 2018; 9:E18. [PMID: 29419794 PMCID: PMC5872283 DOI: 10.3390/insects9010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/13/2023]
Abstract
Although several ant species are important targets for the development of molecular control strategies, only a few studies focus on identifying and validating reference genes for quantitative reverse transcription polymerase chain reaction (RT-qPCR) data normalization. We provide here an extensive study to identify and validate suitable reference genes for gene expression analysis in the ant Atta sexdens, a threatening agricultural pest in South America. The optimal number of reference genes varies according to each sample and the result generated by RefFinder differed about which is the most suitable reference gene. Results suggest that the RPS16, NADH and SDHB genes were the best reference genes in the sample pool according to stability values. The SNF7 gene expression pattern was stable in all evaluated sample set. In contrast, when using less stable reference genes for normalization a large variability in SNF7 gene expression was recorded. There is no universal reference gene suitable for all conditions under analysis, since these genes can also participate in different cellular functions, thus requiring a systematic validation of possible reference genes for each specific condition. The choice of reference genes on SNF7 gene normalization confirmed that unstable reference genes might drastically change the expression profile analysis of target candidate genes.
Collapse
Affiliation(s)
- Kalynka G do Livramento
- Central Laboratory of Molecular Biology, Federal University of Lavras (UFLA), Lavras, MG 37200-000, Brazil.
| | - Natália C Freitas
- Central Laboratory of Molecular Biology, Federal University of Lavras (UFLA), Lavras, MG 37200-000, Brazil.
| | - Wesley P F Máximo
- Central Laboratory of Molecular Biology, Federal University of Lavras (UFLA), Lavras, MG 37200-000, Brazil.
| | - Ronald Zanetti
- Entomology Department, Federal University of Lavras (UFLA), Lavras, MG 37200-000, Brazil.
| | - Luciano V Paiva
- Chemistry Department, Federal University of Lavras (UFLA), Lavras, MG 37200-000, Brazil.
| |
Collapse
|
43
|
Isono E, Kalinowska K. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:49-55. [PMID: 28753460 DOI: 10.1016/j.pbi.2017.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants.
Collapse
Affiliation(s)
- Erika Isono
- Department of Plant Sciences, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 8, 85456 Freising, Germany; Department of Biology, University of Konstanz, Universtitätsstrasse 10, 78464 Konstanz, Germany.
| | - Kamila Kalinowska
- Department of Plant Sciences, School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 8, 85456 Freising, Germany
| |
Collapse
|
44
|
Rayapuram N, Bigeard J, Alhoraibi H, Bonhomme L, Hesse AM, Vinh J, Hirt H, Pflieger D. Quantitative Phosphoproteomic Analysis Reveals Shared and Specific Targets of Arabidopsis Mitogen-Activated Protein Kinases (MAPKs) MPK3, MPK4, and MPK6. Mol Cell Proteomics 2017; 17:61-80. [PMID: 29167316 DOI: 10.1074/mcp.ra117.000135] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4, and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. Although some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4, and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. One hundred fifty-two peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar nonfermenting (SnRK) protein kinases.
Collapse
Affiliation(s)
- Naganand Rayapuram
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jean Bigeard
- §Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.,¶Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Hanna Alhoraibi
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ludovic Bonhomme
- ‖UMR INRA/UBP Génétique, Diversité et Écophysiologie des Céréales, Université de Clermont-Ferrand, 63039 Clermont-Ferrand, France
| | - Anne-Marie Hesse
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France
| | - Joëlle Vinh
- ‡‡ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex05, France
| | - Heribert Hirt
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Delphine Pflieger
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France.,§§CNRS, LAMBE UMR 8587, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
45
|
Gao C, Zhuang X, Shen J, Jiang L. Plant ESCRT Complexes: Moving Beyond Endosomal Sorting. TRENDS IN PLANT SCIENCE 2017; 22:986-998. [PMID: 28867368 DOI: 10.1016/j.tplants.2017.08.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 05/19/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is an ancient system that deforms membrane and severs membrane necks from the inside. Extensive evidence has accumulated to demonstrate the conserved functions of plant ESCRTs in multivesicular body (MVB) biogenesis and MVB-mediated membrane protein sorting. In addition, recent exciting findings have uncovered unique plant ESCRT components and point to emerging roles for plant ESCRTs in non-endosomal sorting events such as autophagy, cytokinesis, and viral replication. Plant-specific processes, such as abscisic acid (ABA) signaling and chloroplast turnover, provide further evidence for divergences in the functions of plant ESCRTs during evolution. We summarize the multiple roles and current working models for plant ESCRT machinery and speculate on future ESCRT studies in the plant field.
Collapse
Affiliation(s)
- Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China; These authors contributed equally to this work
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, New Territories, Hong Kong, China; These authors contributed equally to this work
| | - Jinbo Shen
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, New Territories, Hong Kong, China; These authors contributed equally to this work
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong (CUHK), Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
46
|
Yu F, Xie Q. Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. TRENDS IN PLANT SCIENCE 2017; 22:976-985. [PMID: 28919033 DOI: 10.1016/j.tplants.2017.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/26/2023]
Abstract
The phytohormone abscisic acid (ABA) is a vital endogenous messenger that regulates diverse physiological processes in plants. The regulation of ABA signaling has been well studied at both the transcriptional and translational levels. Post-translational modification of key regulators in ABA signaling by the 26S ubiquitin proteasome pathway is well known. Recently, increasing evidence demonstrates that atypical turnover of key regulators by the endocytic trafficking pathway and autophagy also play vital roles in ABA perception, signaling, and action. We summarize and synthesize here recent findings in the field of ABA signaling.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Number 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Number 1 West Beichen Road, Chaoyang District, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
47
|
Horner DS, Pasini ME, Beltrame M, Mastrodonato V, Morelli E, Vaccari T. ESCRT genes and regulation of developmental signaling. Semin Cell Dev Biol 2017; 74:29-39. [PMID: 28847745 DOI: 10.1016/j.semcdb.2017.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.
Collapse
Affiliation(s)
- David S Horner
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria E Pasini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|
48
|
Nagel MK, Kalinowska K, Vogel K, Reynolds GD, Wu Z, Anzenberger F, Ichikawa M, Tsutsumi C, Sato MH, Kuster B, Bednarek SY, Isono E. Arabidopsis SH3P2 is an ubiquitin-binding protein that functions together with ESCRT-I and the deubiquitylating enzyme AMSH3. Proc Natl Acad Sci U S A 2017; 114:E7197-E7204. [PMID: 28784794 PMCID: PMC5576839 DOI: 10.1073/pnas.1710866114] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis of plasma membrane proteins is an essential regulatory process that controls plasma membrane protein abundance and is therefore important for many signaling pathways, such as hormone signaling and biotic and abiotic stress responses. On endosomal sorting, plasma membrane proteins maybe recycled or targeted for vacuolar degradation, which is dependent on ubiquitin modification of the cargos and is driven by the endosomal sorting complexes required for transport (ESCRTs). Components of the ESCRT machinery are highly conserved among eukaryotes, but homologs of ESCRT-0 that are responsible for recognition and concentration of ubiquitylated proteins are absent in plants. Recently several ubiquitin-binding proteins have been identified that serve in place of ESCRT-0; however, their function in ubiquitin recognition and endosomal trafficking is not well understood yet. In this study, we identified Src homology-3 (SH3) domain-containing protein 2 (SH3P2) as a ubiquitin- and ESCRT-I-binding protein that functions in intracellular trafficking. SH3P2 colocalized with clathrin light chain-labeled punctate structures and interacted with clathrin heavy chain in planta, indicating a role for SH3P2 in clathrin-mediated endocytosis. Furthermore, SH3P2 cofractionates with clathrin-coated vesicles (CCVs), suggesting that it associates with CCVs in planta Mutants of SH3P2 and VPS23 genetically interact, suggesting that they could function in the same pathway. Based on these results, we suggest a role of SH3P2 as an ubiquitin-binding protein that binds and transfers ubiquitylated proteins to the ESCRT machinery.
Collapse
Affiliation(s)
- Marie-Kristin Nagel
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Kamila Kalinowska
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Karin Vogel
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhixiang Wu
- Chair of Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Franziska Anzenberger
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Mie Ichikawa
- Department of Life and Environmental Sciences, Kyoto Prefectural University, 606-0823 Kyoto, Japan
| | - Chie Tsutsumi
- Department of Botany, National Museum of Nature and Science, 305-0005 Tsukuba, Japan
| | - Masa H Sato
- Department of Life and Environmental Sciences, Kyoto Prefectural University, 606-0823 Kyoto, Japan
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | - Erika Isono
- Chair of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Chair of Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
49
|
Sutipatanasomboon A, Herberth S, Alwood EG, Häweker H, Müller B, Shahriari M, Zienert AY, Marin B, Robatzek S, Praefcke GJK, Ayscough KR, Hülskamp M, Schellmann S. Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death. Sci Rep 2017; 7:8677. [PMID: 28819237 PMCID: PMC5561093 DOI: 10.1038/s41598-017-08577-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022] Open
Abstract
Cell death, autophagy and endosomal sorting contribute to many physiological, developmental and immunological processes in plants. They are mechanistically interconnected and interdependent, but the molecular basis of their mutual regulation has only begun to emerge in plants. Here, we describe the identification and molecular characterization of CELL DEATH RELATED ENDOSOMAL FYVE/SYLF PROTEIN 1 (CFS1). The CFS1 protein interacts with the ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT I (ESCRT-I) component ELCH (ELC) and is localized at ESCRT-I-positive late endosomes likely through its PI3P and actin binding SH3YL1 Ysc84/Lsb4p Lsb3p plant FYVE (SYLF) domain. Mutant alleles of cfs1 exhibit auto-immune phenotypes including spontaneous lesions that show characteristics of hypersensitive response (HR). Autoimmunity in cfs1 is dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-mediated effector-triggered immunity (ETI) but independent from salicylic acid. Additionally, cfs1 mutants accumulate the autophagy markers ATG8 and NBR1 independently from EDS1. We hypothesize that CFS1 acts at the intersection of autophagosomes and endosomes and contributes to cellular homeostasis by mediating autophagosome turnover.
Collapse
Affiliation(s)
| | - Stefanie Herberth
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Ellen G Alwood
- Department of Biomedical Science, The University of Sheffield, Western Bank Sheffield, S10 2TN, United Kingdom
| | - Heidrun Häweker
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Britta Müller
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Mojgan Shahriari
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
- Institut für Biologie II, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg i. Br., Germany
| | - Anke Y Zienert
- Institut für Genetik, Universtiy of Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Birger Marin
- Botanik I, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Gerrit J K Praefcke
- Institut für Genetik, Universtiy of Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
- Division of Haematology/Transfusion Medicine, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany
| | - Kathryn R Ayscough
- Department of Biomedical Science, The University of Sheffield, Western Bank Sheffield, S10 2TN, United Kingdom
| | - Martin Hülskamp
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany.
| | - Swen Schellmann
- Botanik III, Biocenter, Universtiy of Cologne, Zülpicher Str. 47B, 50674, Cologne, Germany.
| |
Collapse
|
50
|
Krüger F, Schumacher K. Pumping up the volume - vacuole biogenesis in Arabidopsis thaliana. Semin Cell Dev Biol 2017; 80:106-112. [PMID: 28694113 DOI: 10.1016/j.semcdb.2017.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023]
Abstract
Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.
Collapse
Affiliation(s)
- Falco Krüger
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, DE-69120 Heidelberg, Germany
| | - Karin Schumacher
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, DE-69120 Heidelberg, Germany.
| |
Collapse
|