1
|
Nicholas L, Devine A, Robertson I, Mabbett I. The Effect of Biochar on Tomato ( Solanum lycopersicum) Cultivar Micro-Tom Grown under Continuous Light. JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION 2024; 24:6775-6781. [PMID: 39722815 PMCID: PMC11666722 DOI: 10.1007/s42729-024-02003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/27/2024] [Indexed: 12/28/2024]
Abstract
Continuous lighting (CL) has the potential to increase crop yield in greenhouse production. Tomato plants, however, when exposed to CL develop inter-vascular chlorosis, a leaf injury which causes a reduction in chlorophyll content and necrosis. The application of biochar can reduce physiological stress in plants, we examine if biochar also reduces necrosis in tomatoes when grown under CL. Faecal sludge biochar was applied to an acidic soil to examine plant growth and yield in Micro-Tom tomato plants grown under continuous light. We examined soil and plant growth properties of three soil application treatments: a control soil, biochar treatment (4%w/w) (Biochar), and a combined biochar (2% w/w) and fertilizer (2% w/w) treatment (Biochar + Fert). Faecal sludge biochar addition produced plant heights 216% greater than control and above ground biomass 583% greater than control. The biochar and fertilizer treatment group produced a 487% increase in leaf number compared to biochar. The combined biochar and fertilizer treatment produced a 398% increase in dried above ground biomass and a 177% increase in dried fruit yield compared with biochar. Plants in the biochar and fertilizer treatment group showed less visual evidence of continuous light induced leaf injury.Biochar addition did not limit continuous light induced leaf chlorosis whereas combined biochar and fertilizer treatment resulted in a significant reduction in leaf injury and death. Overall, the application of biochar and biochar and fertilizer combined increased crop yield. Supplementary Information The online version contains supplementary material available at 10.1007/s42729-024-02003-5.
Collapse
Affiliation(s)
- Larissa Nicholas
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, Wales SA2 8PP UK
| | - Aisling Devine
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales SA2 8PP UK
| | - Iain Robertson
- Geography Department, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP UK
| | - Ian Mabbett
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, Wales SA2 8PP UK
| |
Collapse
|
2
|
Wu S, Li R, Bu C, Zhu C, Miao C, Zhang Y, Cui J, Jiang Y, Ding X. Photoperiodic Effect on Growth, Photosynthesis, Mineral Elements, and Metabolome of Tomato Seedlings in a Plant Factory. PLANTS (BASEL, SWITZERLAND) 2024; 13:3119. [PMID: 39599328 PMCID: PMC11597524 DOI: 10.3390/plants13223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The duration of light exposure is a crucial environmental factor that regulates various physiological processes in plants, with optimal timing differing between species and varieties. To assess the effect of photoperiods on the growth and metabolites of a specific truss tomato cultivar, three photoperiods (12 h, 16 h, and 20 h) were tested in a plant factory. Growth parameters, including plant height, stem diameter, fresh and dry weights of shoots and roots, photosynthetic characteristics, mineral content, and metabolome profiles, were analyzed under these conditions. The results indicated that prolonged light exposure enhanced plant growth, with the highest photosynthesis and chlorophyll content observed under a 20 h photoperiod. However, no significant correlation was observed between the photoperiod and the mineral element content, particularly for macro minerals. Metabolome analysis revealed that different photoperiods influenced the accumulation of metabolites, particularly in the lipid metabolism, amino acid metabolism, and membrane transport pathways. Long periods of light would enhance photosynthesis and metabolism, improving the rapid growth of tomato seedlings. Overall, this study provides a theoretical basis for understanding the responses of truss tomato cultivars to varying photoperiods in plant factories and proposes an optimizable method for accelerating the progress of tomato seedling cultivation.
Collapse
Affiliation(s)
- Shaofang Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Rongguang Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chongxing Bu
- Xinjiang Kechuang Tianda Agricultural Engineering Co., Ltd., Changji 831100, China;
| | - Cuifang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Jiawei Cui
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| |
Collapse
|
3
|
Shibaeva TG, Sherudilo EG, Rubaeva AA, Shmakova NY, Titov AF. Response of Native and Non-Native Subarctic Plant Species to Continuous Illumination by Natural and Artificial Light. PLANTS (BASEL, SWITZERLAND) 2024; 13:2742. [PMID: 39409612 PMCID: PMC11479083 DOI: 10.3390/plants13192742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
This study addressed the following questions: How does continuous lighting (CL) impact plant physiology, and photosynthetic and stress responses? Does the impact of CL depend on the source of the light and other environmental factors (natural vs. artificial)? Do responses to CL differ for native and non-native plant species in the subarctic region and, if differences exist, what physiological reasons might they be associated with them? Experiments were conducted with three plants native to the subarctic region (Geranium sylvaticum L., Geum rivale L., Potentilla erecta (L.) Raeusch.) and three non-native plant species (Geranium himalayense Klotzsch, Geum coccineum Sibth. and Sm., Potentilla atrosanguinea Loddiges ex D. Don) introduced in the Polar-Alpine Botanic Garden (KPABG, 67°38' N). The experimental groups included three species pairs exposed to (1) a natural 16 h photoperiod, (2) natural CL, (3) an artificial 16 h photoperiod and (4) artificial CL. In the natural environment, measurements of physiological and biochemical parameters were carried out at the peak of the polar day (at the end of June), when the plants were illuminated continuously, and in the second week of August, when the day length was about 16 h. Th experiments with artificial lighting were conducted in climate chambers where plants were exposed to 16 h or 24 h photoperiods for two weeks. Other parameters (light intensity, spectrum composition, temperature and air humidity) were held constant. The obtained results have shown that plants lack specific mechanisms of tolerance to CL. The protective responses are non-specific and induced by developing photo-oxidative stress. In climate chambers, under constant environmental conditions artificial CL causes leaf injuries due to oxidative stress, the main cause of which is circadian asynchrony. In nature, plants are not photodamaged during the polar day, as endogenous rhythms are maintained due to daily fluctuations of several environmental factors (light intensity, spectral distribution, temperature and air humidity). The obtained data show that among possible non-specific protective mechanisms, plants use flavonoids to neutralize the excess ROS generated under CL. In local subarctic plants, their photoprotective role is significantly higher than in non-native introduced plant species.
Collapse
Affiliation(s)
- Tatjana G. Shibaeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (A.A.R.); (A.F.T.)
| | - Elena G. Sherudilo
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (A.A.R.); (A.F.T.)
| | - Alexandra A. Rubaeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (A.A.R.); (A.F.T.)
| | - Natalya Yu. Shmakova
- Polar-Alpine Botanical Garden, Kola Scientific Center, Russian Academy of Sciences, Kirovsk 184256, Russia;
| | - Alexander F. Titov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (A.A.R.); (A.F.T.)
| |
Collapse
|
4
|
Hu ZH, Sun MZ, Yang KX, Zhang N, Chen C, Xiong JW, Yang N, Chen Y, Liu H, Li XH, Chen X, Xiong AS, Zhuang J. High-Throughput Transcriptomic Analysis of Circadian Rhythm of Chlorophyll Metabolism under Different Photoperiods in Tea Plants. Int J Mol Sci 2024; 25:9270. [PMID: 39273222 PMCID: PMC11395263 DOI: 10.3390/ijms25179270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Tea plants are a perennial crop with significant economic value. Chlorophyll, a key factor in tea leaf color and photosynthetic efficiency, is affected by the photoperiod and usually exhibits diurnal and seasonal variations. In this study, high-throughput transcriptomic analysis was used to study the chlorophyll metabolism, under different photoperiods, of tea plants. We conducted a time-series sampling under a skeleton photoperiod (6L6D) and continuous light conditions (24 L), measuring the chlorophyll and carotenoid content at a photoperiod interval of 3 h (24 h). Transcriptome sequencing was performed at six time points across two light cycles, followed by bioinformatics analysis to identify and annotate the differentially expressed genes (DEGs) involved in chlorophyll metabolism. The results revealed distinct expression patterns of key genes in the chlorophyll biosynthetic pathway. The expression levels of CHLE (magnesium-protoporphyrin IX monomethyl ester cyclase gene), CHLP (geranylgeranyl reductase gene), CLH (chlorophyllase gene), and POR (cytochrome P450 oxidoreductase gene), encoding enzymes in chlorophyll synthesis, were increased under continuous light conditions (24 L). At 6L6D, the expression levels of CHLP1.1, POR1.1, and POR1.2 showed an oscillating trend. The expression levels of CHLP1.2 and CLH1.1 showed the same trend, they both decreased under light treatment and increased under dark treatment. Our findings provide potential insights into the molecular basis of how photoperiods regulate chlorophyll metabolism in tea plants.
Collapse
Affiliation(s)
- Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Zhen Sun
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai-Xin Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Wen Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Fayezizadeh MR, Ansari NA, Sourestani MM, Hasanuzzaman M. Variations in photoperiods and their impact on yield, photosynthesis and secondary metabolite production in basil microgreens. BMC PLANT BIOLOGY 2024; 24:712. [PMID: 39060976 PMCID: PMC11282849 DOI: 10.1186/s12870-024-05448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The effects of different photoperiods on plant phytochemical synthesis can be improved by adjusting the daily light integral. Photoperiod is one of the most important environmental factors that control growth, plant's internal rhythm and the synthesis of secondary metabolites. Information about the appropriate standard in terms of photoperiod for growing basil microgreens as one of the most important medicinal plants is limited. In this study, the effects of five different photoperiods, 6 (6 h × 3 cycles), 8 (8 h × 2 cycles), 16, 18, and 24 h day- 1 on the yield, photosynthesis and synthesis of secondary metabolites of three cultivars and one genotype of basil microgreens in floating system were evaluated. The purpose of this research was to determine the feasibility of using permanent light in growing basil microgreens and to create the best balance between beneficial secondary metabolites and performance. RESULTS The results showed that the effects of photoperiod and cultivar on all investigated traits and their interaction on photosynthetic pigments, antioxidant capacity, total phenolic compounds, proline content and net photosynthesis rate were significantly different at the 1% level. The highest levels of vitamin C, flavonoids, anthocyanins, yield and antioxidant potential composite index (APCI) were obtained under the 24-h photoperiod. The highest antioxidant capacity was obtained for the Kapoor cultivar, and the highest total phenolic compound and proline contents were measured for the Ablagh genotype under a 24-h photoperiod. The highest yield (4.36 kg m- 2) and APCI (70.44) were obtained for the Ablagh genotype. The highest nitrate content was obtained with a photoperiod of 18 h for the Kapoor cultivar. The highest net photosynthesis rate was related to the Violeto cultivar under a 24-hour photoperiod (7.89 μmol CO2 m- 2 s- 1). Antioxidant capacity and flavonoids had a positive correlation with phenolic compounds and vitamin C. Yield had a positive correlation with antioxidant capacity, flavonoids, vitamin C, APCI, and proline. CONCLUSIONS Under continuous light conditions, basil microgreens resistance to light stress by increasing the synthesis of secondary metabolites and the increase of these biochemical compounds made basil microgreens increase their performance along with the increase of these health-promoting compounds. The best balance between antioxidant compounds and performance was achieved in continuous red + blue light. Based on these results, the use of continuous artificial LED lighting, due to the increase in plant biochemical with antioxidant properties and yield, can be a suitable strategy for growing basil microgreens in floating systems.
Collapse
Affiliation(s)
- Mohammad Reza Fayezizadeh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
| | - Naser Alemzadeh Ansari
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran.
| | - Mohammad Mahmoodi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Paglialunga G, Moscatello S, Battistelli A, Mattioni M, Del Bianco M, Proietti S. Continuous Blue Light Treatment Enhances the Nutritional Value of Hydroponically Grown Eruca vesicaria L. by Improving Ascorbic Acid Biosynthesis. Foods 2024; 13:2141. [PMID: 38998646 PMCID: PMC11241139 DOI: 10.3390/foods13132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigates the effect of continuous blue light (CBL) treatment on quality-related metabolites, focusing on ascorbic acid (AsA) accumulation in hydroponically grown Eruca vesicaria (L.). Plants were subjected to CBL treatment, consisting of 24-h exposure to constant-intensity blue light (48 μmol m-2 s-1) and 12-h exposure to the remaining spectrum (192 μmol m-2 s-1). The activities of key enzymes in AsA biosynthesis and recycling were analyzed, including L-galactono-1,4-lactone dehydrogenase (GalLDh), monodehydroascorbate reductase (MDhAR), dehydroascorbate reductase (DhAR), and ascorbate peroxidase (APX). The results showed a significant increase in AsA accumulation of 65.9% during the "day" and 69.1% during the "night" phases under CBL compared to controls. GalLDh activity increased by 20% during the "day phase" in CBL-treated plants. APX activity also rose significantly under CBL conditions, by 101% during the "day" and 75.6% during the "night". However, this did not affect dehydroascorbic acid levels or the activities of MDhAR and DhAR. These findings highlight the potential of tailored light treatments to enhance the nutraceutical content of horticultural species, offering valuable insights for sustainably improving food quality in controlled-environment agriculture (CEA) systems and understanding the roles of blue light in ascorbic acid biosynthesis.
Collapse
Affiliation(s)
- Gabriele Paglialunga
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| | - Michele Mattioni
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| | | | - Simona Proietti
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| |
Collapse
|
7
|
Lanoue J, St Louis S, Little C, Hao X. Photosynthetic adaptation strategies in peppers under continuous lighting: insights into photosystem protection. FRONTIERS IN PLANT SCIENCE 2024; 15:1372886. [PMID: 38882573 PMCID: PMC11176547 DOI: 10.3389/fpls.2024.1372886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/29/2024] [Indexed: 06/18/2024]
Abstract
Energy efficient lighting strategies have received increased interest from controlled environment producers. Long photoperiods (up to 24 h - continuous lighting (CL)) of lower light intensities could be used to achieve the desired daily light integral (DLI) with lower installed light capacity/capital costs and low electricity costs in regions with low night electricity prices. However, plants grown under CL tend to have higher carbohydrate and reactive oxygen species (ROS) levels which may lead to leaf chlorosis and down-regulation of photosynthesis. We hypothesize that the use of dynamic CL using a spectral change and/or light intensity change between day and night can negate CL-injury. In this experiment we set out to assess the impact of CL on pepper plants by subjecting them to white light during the day and up to 150 µmol m-2 s-1 of monochromatic blue light at night while controlling the DLI at the same level. Plants grown under all CL treatments had similar cumulative fruit number and weight compared to the 16h control indicating no reduction in production. Plants grown under CL had higher carbohydrate levels and ROS-scavenging capacity than plants grown under the 16h control. Conversely, the amount of photosynthetic pigment decreased with increasing nighttime blue light intensity. The maximum quantum yield of photosystem II (Fv/Fm), a metric often used to measure stress, was unaffected by light treatments. However, when light-adapted, the operating efficiency of photosystem II (ΦPSII) decreased and non-photochemical quenching (NPQ) increased with increasing nighttime blue light intensity. This suggests that both acclimated and instantaneous photochemistry during CL can be altered and is dependent on the nighttime light intensity. Furthermore, light-adapted chlorophyll fluorescence measurements may be more adept at detecting altered photochemical states than the conventional stress metric using dark-adapted measurements.
Collapse
Affiliation(s)
- Jason Lanoue
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Sarah St Louis
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Celeste Little
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
8
|
Yu H, Liu P, Xu J, Wang T, Lu T, Gao J, Li Q, Jiang W. The Effects of Different Durations of Night-Time Supplementary Lighting on the Growth, Yield, Quality and Economic Returns of Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1516. [PMID: 38891324 PMCID: PMC11174464 DOI: 10.3390/plants13111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
To achieve higher economic returns, we employ inexpensive valley electricity for night-time supplementary lighting (NSL) of tomato plants, investigating the effects of various durations of NSL on the growth, yield, and quality of tomato. Tomato plants were treated with supplementary light for a period of 0 h, 3 h, 4 h, and 5 h during the autumn-winter season. The findings revealed superior growth and yield of tomato plants exposed to 3 h, 4 h, and 5 h of NSL compared to their untreated counterparts. Notably, providing lighting for 3 h demonstrated greater yields per plant and per trough than 5 h exposure. To investigate if a reduced duration of NSL would display similar effects on the growth and yield of tomato plants, tomato plants received supplementary light for 0 h, 1 h, 2 h, and 3 h at night during the early spring season. Compared to the control group, the stem diameter, chlorophyll content, photosynthesis rate, and yield of tomatoes significantly increased upon supplementation with lighting. Furthermore, the input-output ratios of 1 h, 2 h, and 3 h NSL were calculated as 1:10.11, 1:4.38, and 1:3.92, respectively. Nonetheless, there was no detectable difference in yield between the 1 h, 2 h, and 3 h NSL groups. These findings imply that supplemental LED lighting at night affects tomato growth in the form of light signals. Night-time supplemental lighting duration of 1 h is beneficial to plant growth and yield, and its input-output ratio is the lowest, which is an appropriate NSL mode for tomato cultivation.
Collapse
Affiliation(s)
- Hongjun Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Peng Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Jingcheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
- Taizhou Academy of Agricultural Sciences, Taizhou 318014, China
| | - Tanyu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Tao Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Qiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| | - Weijie Jiang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.Y.); (P.L.); (J.X.); (T.W.); (T.L.)
| |
Collapse
|
9
|
Marie TRJG, Leonardos ED, Rana N, Grodzinski B. Tomato and mini-cucumber tolerance to photoperiodic injury involves photorespiration and the engagement of nighttime cyclic electron flow from dynamic LEDs. FRONTIERS IN PLANT SCIENCE 2024; 15:1384518. [PMID: 38841277 PMCID: PMC11150841 DOI: 10.3389/fpls.2024.1384518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Controlled environment agriculture (CEA) is critical for achieving year-round food security in many regions of the world. CEA is a resource-intensive endeavor, with lighting consuming a large fraction of the energy. To lessen the burden on the grid and save costs, an extended photoperiod strategy can take advantage of off-peak time-of-day options from utility suppliers. However, extending the photoperiod limits crop production morphologically and physiologically if pushed too long. Here, we present a continuous-light dynamic light-emitting diode (LED) strategy (involving changes in spectra, intensity, and timing), that overcomes these limitations. We focused on tomato, a well described photoperiodic injury-sensitive species, and mini-cucumber, a photoperiodic injury-tolerant species to first assess morphological responses under control (16-h photoperiod, unchanging spectrum), constant (24-h photoperiod, unchanging spectrum), and two variations of a dynamic LED strategy, dynamic 1 (16-h "day", 3-h "peak", 8-h "night" spectra) and dynamic 2 (20-h "day", 5-h "peak", 4-h "night" spectra). Next, we tested the hypothesis of photorespiration's involvement in photoperiodic injury by using a leaf gas exchange coupled with chlorophyll fluorescence protocol. We further explored Adenosine triphosphate (ATP): Nicotinamide adenine dinucleotide phosphate (NADPH) ratio supply/demand responses by probing photosynthetic electron flow and proton flow with the MultispeQ instrument. We found canopy architecture can be tuned by minor variations of the same dynamic LED strategy, and we highlight dynamic 1 as the optimal choice for both tomato and mini-cucumber as it improved biomass/architecture and first-yield, respectively. A central discovery was that dynamic 1 had a significantly higher level of photorespiration than control, for both species. Unexpectedly, photorespiration was comparable between species under the same treatments, except under constant. However, preliminary data on a fully tolerant tomato genotype grown under constant treatment upregulated photorespiration similar to mini-cucumber. These results suggest that photoperiodic injury tolerance involves a sustained higher level of photorespiration under extended photoperiods. Interestingly, diurnal MultispeQ measurements point to the importance of cyclic electron flow at subjective nighttime that may also partially explain why dynamic LED strategies mitigate photoperiodic injury. We propose an ontology of photoperiodic injury involving photorespiration, triose phosphate utilization, peroxisomal H2O2-catalase balance, and a circadian external coincidence model of sensitivity that initiates programmed cell death.
Collapse
|
10
|
Zhou Y, Wu W, Sun Y, Shen Y, Mao L, Dai Y, Yang B, Liu Z. Integrated transcriptome and metabolome analysis reveals anthocyanin biosynthesis mechanisms in pepper (Capsicum annuum L.) leaves under continuous blue light irradiation. BMC PLANT BIOLOGY 2024; 24:210. [PMID: 38519909 PMCID: PMC10960449 DOI: 10.1186/s12870-024-04888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Different metabolic compounds give pepper leaves and fruits their diverse colors. Anthocyanin accumulation is the main cause of the purple color of pepper leaves. The light environment is a critical factor affecting anthocyanin biosynthesis. It is essential that we understand how to use light to regulate anthocyanin biosynthesis in plants. RESULT Pepper leaves were significantly blue-purple only in continuous blue light or white light (with a blue light component) irradiation treatments, and the anthocyanin content of pepper leaves increased significantly after continuous blue light irradiation. This green-to-purple phenotype change in pepper leaves was due to the expression of different genes. We found that the anthocyanin synthesis precursor-related genes PAL and 4CL, as well as the structural genes F3H, DFR, ANS, BZ1, and F3'5'H in the anthocyanin synthesis pathway, had high expression under continuous blue light irradiation. Similarly, the expression of transcription factors MYB1R1-like, MYB48, MYB4-like isoform X1, bHLH143-like, and bHLH92-like isoform X3, and circadian rhythm-related genes LHY and COP1, were significantly increased after continuous blue light irradiation. A correlation network analysis revealed that these transcription factors and circadian rhythm-related genes were positively correlated with structural genes in the anthocyanin synthesis pathway. Metabolomic analysis showed that delphinidin-3-O-glucoside and delphinidin-3-O-rutinoside were significantly higher under continuous blue light irradiation relative to other light treatments. We selected 12 genes involved in anthocyanin synthesis in pepper leaves for qRT-PCR analysis, and the accuracy of the RNA-seq results was confirmed. CONCLUSIONS In this study, we found that blue light and 24-hour irradiation together induced the expression of key genes and the accumulation of metabolites in the anthocyanin synthesis pathway, thus promoting anthocyanin biosynthesis in pepper leaves. These results provide a basis for future study of the mechanisms of light quality and photoperiod in anthocyanin synthesis and metabolism, and our study may serve as a valuable reference for screening light ratios that regulate anthocyanin biosynthesis in plants.
Collapse
Affiliation(s)
- Yao Zhou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Weisheng Wu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ying Sun
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yiyu Shen
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Lianzhen Mao
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yunhua Dai
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| | - Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory of Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
11
|
Yu H, Yuan X, Xie Z, Zhang Q, Zheng C, Sun L. A Long Photoperiod Promoted the Development, Reproduction, and Predation of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) at an Average Greenhouse Temperature during the Winter. INSECTS 2024; 15:214. [PMID: 38667344 PMCID: PMC11050048 DOI: 10.3390/insects15040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
To explore the feasibility of adjusting the photoperiod to regulate the life parameters and predation ability of Harmonia axyridis Pallas in greenhouses during the winter, life tables were constructed for H. axyridis under the three following photoperiods: 9L:15D (light/dark), 12L:12D, and 16L:8D at 15 °C, an average greenhouse temperature during the winter when aphids severely damage vegetables. The effects of photoperiods on predation by this ladybird were tested in both laboratory and greenhouse settings. The results showed that increased illumination promoted the development and reproduction of H. axyridis; under medium and long photoperiods, the pre-adult periods were 3.61 days and 4.34 days shorter than that under the short photoperiod, respectively, and the fecundity increased by 1.78 and 2.41 times. Population parameters r, λ, and R0 increased as illumination time increased, whereas T decreased. Increased illumination also increased the predation by third- and fourth-instar larvae and adults. The amounts of predation by fourth-instar larvae and adults increased by 22.16% and 75.09% under the medium photoperiod, and those under the long photoperiod increased by 71.96% and 89.64%, respectively. The numbers of Myzus persicae Sulzer predated by H. axyridis under the long photoperiod were higher than those under the short photoperiod in a greenhouse, and the predation parameters were influenced.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Sun
- College of Plant Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao 266109, China; (H.Y.); (X.Y.); (Z.X.); (Q.Z.); (C.Z.)
| |
Collapse
|
12
|
Wang L, Ma C, Wang S, Yang F, Sun Y, Tang J, Luo J, Wu J. Ethylene and jasmonate signaling converge on gibberellin catabolism during thigmomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:758-773. [PMID: 37847103 DOI: 10.1093/plphys/kiad556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/18/2023]
Abstract
Touch induces marked morphological changes in plants, including reduced rosette diameters and delayed flowering, a process called thigmomorphogenesis. Previous studies have revealed that thigmomorphogenesis in Arabidopsis (Arabidopsis thaliana) results from touch-induced accumulation of jasmonic acid (JA) and GIBBERELLIN 2-OXIDASE7 (GA2ox7) transcripts, which encode a gibberellin (GA) catabolism enzyme, leading to reduced levels of active GAs. However, the mechanisms underlying thigmomorphogenesis remain uncharacterized. Here, we showed that touch induces ethylene (ET) production in Arabidopsis. After touch treatment, ET biosynthesis and signaling mutants exhibited even greater thigmomorphogenic changes and more decreased GA4 contents than did wild-type (WT) plants. Biochemical analysis indicated that the transcription factor ETHYLENE INSENSITIVE3 (EIN3) of the ET pathway binds to the promoter of GA2ox8 (encoding another GA 2-oxidase performing the same GA modification as GA2ox7) and represses GA2ox8 transcription. Moreover, MYC2, the master regulator of JA signaling, directly promoted GA2ox7 expression by binding the G-box motif on GA2ox7 promoter. Further genetic analysis suggested that the ET and JA pathways independently control the expression of GA2ox8 and GA2ox7, respectively. This study reveals that the ET pathway is a novel repressor of touch-induced thigmomorphogenesis and highlights that the ET and JA pathways converge on GA catabolism but play opposite roles to fine-tune GA4 content during thigmomorphogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canrong Ma
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuanghua Wang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Sun
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinxiang Tang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Luo
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| |
Collapse
|
13
|
Shibaeva TG, Sherudilo EG, Ikkonen E, Rubaeva AA, Levkin IA, Titov AF. Effects of Extended Light/Dark Cycles on Solanaceae Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:244. [PMID: 38256794 PMCID: PMC10821415 DOI: 10.3390/plants13020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
The absence of an externally-imposed 24 h light/dark cycle in closed plant production systems allows setting the light environmental parameters in unconventional ways. Innovative lighting modes for energy-saving, high-quality, and yield production are widely discussed. This study aimed to evaluate the effects of the light/dark cycles of 16/8 h (control) and 24/12 h, 48/24 h, 96/48 h, 120/60 h (unconventional cycles) based on the same total light amount, and continuous lighting (360/0 h) on plant performance of some Solanaceae species. Responses of eggplant (Solanum melongena L.), sweet pepper (Capsicum annuum L.), tobacco (Nicotiana tabacum L.), and tomato (Solanum lycopersicum L.) plants to extended light/dark cycles and continuous lighting were studied under controlled climate conditions. Plants with two true leaves were exposed to different light/dark cycles for 15 days. Light intensity was 250 µmol m-2 s-1 PPFD, provided by light-emitting diodes (LEDs). After the experiment, tomato, sweet pepper, and eggplant transplants were planted in a greenhouse and grown under identical conditions of natural photoperiod for the estimation of the after-effect of light treatments on fruit yield. Extended light/dark cycles of 24/12 h, 48/24 h, 96/48 h, 120/60 h, and 360/0 h affected growth, development, photosynthetic pigment content, anthocyanin and flavonoid content, and redox state of plants. Effects varied with plant species and length of light/dark cycles. In some cases, measured parameters improved with increasing light/dark periods despite the same total sum of illumination received by plants. Treatments of tomato and pepper transplants with 48/24 h, 96/48 h, and 120/60 h resulted in higher fruit yield compared to conventional 16/8 h photoperiod. The conclusion was made that extended light/dark cycles can result in increased light use efficiency compared to conventional photoperiod and, therefore, reduced product cost, but for practical application, the effects need to be further explored for individual plant species or even cultivars.
Collapse
Affiliation(s)
- Tatjana G. Shibaeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| | - Elena G. Sherudilo
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| | - Elena Ikkonen
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| | - Alexandra A. Rubaeva
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| | - Ilya A. Levkin
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
- Institute of Biology, Ecology and Agricultural Technologies, Petrozavodsk State University, Petrozavodsk 185910, Russia
| | - Alexander F. Titov
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk 185910, Russia; (E.G.S.); (E.I.); (A.A.R.); (I.A.L.); (A.F.T.)
| |
Collapse
|
14
|
Moscatello S, Proietti S, Severoni A, Battistelli A. Simple procedure to enhance pulsed amperometric detector (PAD) response stability for inulin-type fructans analysis. Application to a case study with chicory taproot. Food Chem 2024; 430:136923. [PMID: 37517944 DOI: 10.1016/j.foodchem.2023.136923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/05/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
A new electrode management, within the HPAEC-PAD systems, was proposed to measure inulin-type fructans in chicory roots, grown under two lighting periods: 12 h (T-12 h) and 24 h continuous lighting (T-24 h-CL), with the same daily light integral (DLI). The amperometric cell turn-off (PAD-Off) after elution of carbohydrate of interest, allowed the stabilization of the PAD response, avoiding excessive electrode surface oxidation. The enhanced signal stability allowed the application of fucose as internal standard (ISTD) for data normalization, improving the correctness of linear calibration curves and the quantification of fructans in the case study of chicory plants. T-24 h-CL decreased FW and DW of chicory leaves while increasing these parameters in roots. Fructans amount in chicory roots was significantly higher in the T-24-CL photoperiod. The accuracy of prebiotics quantification by PAD-Off emphasized significant differences between light treatments. CL can improve the yield and quality of chicory roots.
Collapse
Affiliation(s)
- Stefano Moscatello
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche (CNR), Porano (TR) 05010, Italy.
| | - Simona Proietti
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche (CNR), Porano (TR) 05010, Italy.
| | - Anna Severoni
- Thermo Fisher Scientific, Strada Rivoltana, Rodano (MI) 20053, Italy
| | - Alberto Battistelli
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche (CNR), Porano (TR) 05010, Italy
| |
Collapse
|
15
|
Bucher SF, Uhde L, Weigelt A, Cesarz S, Eisenhauer N, Gebler A, Kyba C, Römermann C, Shatwell T, Hines J. Artificial light at night decreases plant diversity and performance in experimental grassland communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220358. [PMID: 37899022 PMCID: PMC10613542 DOI: 10.1098/rstb.2022.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/28/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) affects many areas of the world and is increasing globally. To date, there has been limited and inconsistent evidence regarding the consequences of ALAN for plant communities, as well as for the fitness of their constituent species. ALAN could be beneficial for plants as they need light as energy source, but they also need darkness for regeneration and growth. We created model communities composed of 16 plant species sown, exposed to a gradient of ALAN ranging from 'moonlight only' to conditions like situations typically found directly underneath a streetlamp. We measured plant community composition and its production (biomass), as well as functional traits of three plant species from different functional groups (grasses, herbs, legumes) in two separate harvests. We found that biomass was reduced by 33% in the highest ALAN treatment compared to the control, Shannon diversity decreased by 43% and evenness by 34% in the first harvest. Some species failed to establish in the second harvest. Specific leaf area, leaf dry matter content and leaf hairiness responded to ALAN. These responses suggest that plant communities will be sensitive to increasing ALAN, and they flag a need for plant conservation activities that consider impending ALAN scenarios. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Lia Uhde
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Alexandra Weigelt
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Simone Cesarz
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Nico Eisenhauer
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Alban Gebler
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| | - Christopher Kyba
- Interdisciplinary Geographic Information Sciences, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Remote Sensing and Geoinformatics, Deutsches GeoForschungsZentrum GFZ, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Tom Shatwell
- Department of Lake Research, Helmholtz-Centre for Environmental Research – UFZ, 39114 Magdeburg, Germany
| | - Jes Hines
- Department of Plant Biodiversity, Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, 07743 Jena, Germany
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04109 Leipzig, Germany
| |
Collapse
|
16
|
Soufi HR, Roosta HR, Fatehi F, Ghorbanpour M. Spectral composition of LED light differentially affects biomass, photosynthesis, nutrient profile, and foliar nitrate accumulation of lettuce grown under various replacement methods of nutrient solution. Food Sci Nutr 2023; 11:8143-8162. [PMID: 38107131 PMCID: PMC10724622 DOI: 10.1002/fsn3.3735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
To enhance crop yield and quality, plant cultivation in controlled-growing systems is an alternative to traditional open-field farming. The use of light-emitting diode (LED) as an adjustable light source represents a promising approach to improve plant growth, metabolism, and function. The objective of this study was to assess the impact of different light spectra (red, red/blue (3:1), blue, and white) with an emission peak of around 656, 656, 450, and 449 nm, respectively, under various replacement methods of nutrient solution (complete replacement (CR), EC-based replacement (ECBR), and replacing based on plant needs (RBPN)), on biomass, physiological traits, and macro- and micronutrient contents of two best-known lettuce varieties, Lollo Rossa (LR) and Lollo Bionda (LB), in the nutrient film technique (NFT) hydroponic system. The results indicated that mix of red and blue LED spectra under RBPN method is the most effective treatment to enhance fresh and dry weights of lettuce plants. In addition, red LED spectrum under RBPN, and red and blue light under ECBR nutrient solution significantly increased leaf stomatal conductance, net photosynthesis and transpiration rate, and intercellular CO2 concentration of LR variety. Phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mn) content in LR variety, and iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) content in both varieties increased upon exposure to blue and red LED light spectrum with RBPN method. Our results suggest that exposure to combination of red and blue light along with feeding plants using RBPN and ECBR methods can increase absorption of macro- and micronutrient elements and improve photosynthetic properties, and eventually increase lettuce yield with lower nitrate accumulation.
Collapse
Affiliation(s)
- Hamid Reza Soufi
- Department of Horticultural Sciences, Faculty of AgricultureVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| | - Foad Fatehi
- Department of AgriculturePayame Noor University (PNU)TehranIran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| |
Collapse
|
17
|
Wei Y, Li Z, Zhang J, Hu D. Effects of artificial light at night and drought on the photosynthesis and physiological traits of two urban plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1263795. [PMID: 37900748 PMCID: PMC10602676 DOI: 10.3389/fpls.2023.1263795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Urban plants are currently confronted with the stresses posed by artificial light at night (ALAN) and drought. A field block experiment was designed to explore the potential effects of ALAN and drought on the photosynthesis and physiological characters of two common urban plants, Euonymus japonicus (E. japonicus) and Rosa hybrida (R. hybrida). Each plant species was subjected to four distinct treatments: neither ALAN nor drought, ALAN, drought, and both ALAN and drought. The result showed the following: (1) ALAN significantly reduced the effective quantum yield (ΦPSII), apparent electron transfer rate (ETR), photochemical quenching parameter (qp), net photosynthetic (Pn), stomatal conductance (Gs), stomatal limit value (Ls), and the pigment concentrations and remarkably increased the content of malondialdehyde (MDA), total antioxidant capacity (TAC), and starch in both E. japonicus and R. hybrida. Furthermore, ALAN increased the soluble saccharides of E. japonicus, and this effect of ALAN also occurred on R. hybrida under drought. (2) Drought significantly decreased the ΦPSII, ETR, qp, Pn, Gs, Ls, and the pigment concentrations and remarkably increased the content of MDA and TAC for both E. japonicus and R. hybrida. Moreover, drought did not significantly change the starch content of both species, and it significantly increased the content of soluble saccharides for E. japonicus. (3) The interaction between ALAN and drought occurred on the ΦPSII, ETR, Pn, MDA, and TAC of E. japonicus, but had no effect on R. hybrida. For urban areas affected by ALAN and drought, it is advisable to select plant species with strong stress resistance for gardening purposes, and plants directly exposed to ALAN should receive sufficient water during hot and dry weather conditions to maintain their normal growth.
Collapse
Affiliation(s)
- Yaxi Wei
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Jiaolong Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Yu Y, Cheng Q, Wang F, Zhu Y, Shang X, Jones A, He H, Song Y. Crop/Plant Modeling Supports Plant Breeding: I. Optimization of Environmental Factors in Accelerating Crop Growth and Development for Speed Breeding. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0099. [PMID: 37817886 PMCID: PMC10561689 DOI: 10.34133/plantphenomics.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
The environmental conditions in customered speed breeding practice are, to some extent, empirical and, thus, can be further optimized. Crop and plant models have been developed as powerful tools in predicting growth and development under various environments for extensive crop species. To improve speed breeding, crop models can be used to predict the phenotypes resulted from genotype by environment by management at the population level, while plant models can be used to examine 3-dimensional plant architectural development by microenvironments at the organ level. By justifying the simulations via numerous virtual trials using models in testing genotype × environment × management, an optimized combination of environmental factors in achieving desired plant phenotypes can be quickly determined. Artificial intelligence in assisting for optimization is also discussed. We admit that the appropriate modifications on modeling algorithms or adding new modules may be necessary in optimizing speed breeding for specific uses. Overall, this review demonstrates that crop and plant models are promising tools in providing the optimized combinations of environment factors in advancing crop growth and development for speed breeding.
Collapse
Affiliation(s)
- Yi Yu
- Anhui Agricultural University, School of Agronomy, Hefei, Anhui Province 230036, China
| | - Qin Cheng
- Jiangxi Agricultural University, School of Agricultural Sciences, Nanchang, Jiangxi Province 330045, China
| | - Fei Wang
- Anhui Agricultural University, School of Agronomy, Hefei, Anhui Province 230036, China
| | - Yulei Zhu
- Anhui Agricultural University, School of Agronomy, Hefei, Anhui Province 230036, China
| | - Xiaoguang Shang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization,
Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Ashley Jones
- The Australian National University, Research School of Biology, Canberra, ACT 2601, Australia
| | - Haohua He
- Jiangxi Agricultural University, School of Agricultural Sciences, Nanchang, Jiangxi Province 330045, China
| | - Youhong Song
- Anhui Agricultural University, School of Agronomy, Hefei, Anhui Province 230036, China
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Centre for Crop Science, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Choi H, Back S, Kim GW, Lee K, Venkatesh J, Lee HB, Kwon JK, Kang BC. Development of a speed breeding protocol with flowering gene investigation in pepper ( Capsicum annuum). FRONTIERS IN PLANT SCIENCE 2023; 14:1151765. [PMID: 37841628 PMCID: PMC10569693 DOI: 10.3389/fpls.2023.1151765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023]
Abstract
Pepper (Capsicum spp.) is a vegetable and spice crop in the Solanaceae family with many nutritional benefits for human health. During several decades, horticultural traits, including disease resistance, yield, and fruit quality, have been improved through conventional breeding methods. Nevertheless, cultivar development is a time-consuming process because of the long generation time of pepper. Recently, speed breeding has been introduced as a solution for shorting the breeding cycle in long-day or day-neutral field crops, but there have been only a few studies on speed breeding in vegetable crops. In this study, a speed breeding protocol for pepper was developed by controlling the photoperiod and light quality. Under the condition of a low red (R) to far-red (FR) ratio of 0.3 with an extended photoperiod (Epp) of 20 h (95 ± 0 DAT), the time to first harvest was shortened by 75 days after transplant (DAT) compared to that of the control treatment (170 ± 2 DAT), suggesting that Epp with FR light is an essential factor for flowering in pepper. In addition, we established the speed breeding system in a greenhouse with a 20 h photoperiod and a 3.8 R:FR ratio and promoted the breeding cycle of C. annuum for 110 days from seed to seed. To explain the accelerated flowering response to the Epp and supplemented FR light, genome-wide association study (GWAS) and gene expression analysis were performed. As a result of the GWAS, we identified a new flowering gene locus for pepper and suggested four candidate genes for flowering (APETALA2 (AP2), WUSCHEL-RELATED HOMEOBOX4 (WOX4), FLOWERING LOCUS T (FT), and GIGANTEA (GI)). Through expression analysis with the candidate genes, it appeared that Epp and FR induced flowering by up-regulating the flowering-promoting gene GI and down-regulating FT. The results demonstrate the effect of a combination of Epp and FR light by genetic analysis of flowering gene expression. This is the first study that verifies gene expression patterns associated with the flowering responses of pepper in a speed breeding system. Overall, this study demonstrates that speed breeding can shorten the breeding cycle and accelerate genetic research in pepper through reduced generation time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Lo Piccolo E, Lauria G, Guidi L, Remorini D, Massai R, Landi M. Shedding light on the effects of LED streetlamps on trees in urban areas: Friends or foes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161200. [PMID: 36581265 DOI: 10.1016/j.scitotenv.2022.161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Streetlamp illumination disturbs the natural physiological processes and circadian rhythms of living organisms, including photosynthesizing "citizens". The light-emitting diode (LED) technology has replaced high-pressure sodium lamps. Therefore, the effects of LED streetlamps on urban trees need to be elucidated as these new lamps have a different light spectrum (with a peak in the blue and red regions of the spectrum, i.e., highly efficient wavebands for photosynthesis) compared to older technologies. To address the above-mentioned issue, two widely utilised tree species in the urban environment, including Platanus × acerifolia (P) and Tilia platyphyllos (T), were grown with or without the effect of LED streetlamps using two realistic illumination intensities (300 and 700 μmol m-2 s-1). Gas exchanges and biochemical features (starch, soluble sugar, and chlorophyll content) of illuminated vs non-illuminated trees were compared during the whole vegetative season. Our results showed that both tree species were strongly influenced by LED streetlamps at physiological and biochemical levels. Specifically, the mature leaves of P and T streetlamp-illuminated trees had a lower CO2 assimilation rate at dawn and had higher chlorophyll content, with lower starch content than controls. Our results showed that the differences between the effects of the two selected light intensities on the physiochemical attributes of P and T trees were not statistically significant, suggesting the absence of a dose-dependent effect. The most significant difference between T and P trees concerning the LED-triggered species-specific effect was that the delay in winter dormancy occurred only in P individuals. This study provided insights into the extent of LED streetlamp disturbance on trees. Our findings might raise awareness of the necessity to provide less impacting solutions to improve the wellness of trees in the urban environment.
Collapse
Affiliation(s)
- E Lo Piccolo
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - G Lauria
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - L Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - D Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - R Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy; CIRSEC, Centre for Climate Change Impact, University of Pisa, Italy.
| |
Collapse
|
21
|
He J, Gan JHS, Qin L. Productivity, photosynthetic light-use efficiency, nitrogen metabolism and nutritional quality of C 4 halophyte Portulaca oleracea L. grown indoors under different light intensities and durations. FRONTIERS IN PLANT SCIENCE 2023; 14:1106394. [PMID: 36875599 PMCID: PMC9975723 DOI: 10.3389/fpls.2023.1106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Portulaca oleracea L. (known as purslane), is a nutritious facultative C4 halophyte. Recently, it has been successfully grown indoors under LED lightings by our team. However, basic understanding about the impacts of light on purslanes are lacking. This study aimed to investigate the effects of light intensity and duration on productivity, photosynthetic light use efficiency, nitrogen metabolism and nutritional quality of indoor grown purslanes. All plants were grown in 10% artificial seawater hydroponically under different photosynthetic photon flux densities (PPFDs) and durations and thus different daily light integrals (DLI). They are, L1 (240 µmol photon m-2 s-1, 12 h, DLI = 10.368 mol m-2 day-1); L2 (320 µmol photon m-2 s-1, 18 h, DLI = 20.736 mol m-2 day-1); L3 (240 µmol photon m-2 s-1, 24 h, DLI = 20.736 mol m-2 day-1); L4 (480 µmol photon m-2 s-1, 12 h, DLI = 20.736 mol m-2 day-1), respectively. Compared to L1, higher DLI promoted root and shoot growth and thus increased shoot productivity by 2.63-,1.96-, 3.83-folds, respectively for purslane grown under L2, L3, L4. However, under the same DLI, L3 plants (continuous light, CL) had significantly lower shoot and root productivities compared those with higher PPFDs but shorter durations (L2 and L4). While all plants had similar total chlorophyll and carotenoid concentrations, CL (L3) plants had significantly lower light use efficiency (Fv/Fm ratio), electron transport rate, effective quantum yield of PSII, photochemical- and non-photochemical quenching. Compared to L1, higher DLI with higher PPFDs (L2 and L4) increased leaf maximum nitrate reductase activity while longer durations increased leafNO 3 - concentrations and total reduced nitrogen. There were no significant differences in leaf total soluble protein, total soluble sugar and total ascorbic acid concentrations in both leaf and stem regardless of light conditions. However, L2 plants had the highest leaf proline concentration but leaf total phenolic compounds concentration was higher in L3 plants instead. Generally, L2 plants had the highest dietary minerals such as K, Ca, Mg and Fe among the four different light conditions. Overall, L2 condition is the most suitable lighting strategy in enhancing productivity and nutritional quality of purslane.
Collapse
Affiliation(s)
- Jie He
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | | | | |
Collapse
|
22
|
Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling. Nat Commun 2023; 14:713. [PMID: 36759607 PMCID: PMC9911384 DOI: 10.1038/s41467-023-36382-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Many plant pathogens induce water-soaked lesions in infected tissues. In the case of Pseudomonas syringae (Pst), water-soaking effectors stimulate abscisic acid (ABA) production and signaling, resulting in stomatal closure. This reduces transpiration, increases water accumulation, and induces an apoplastic microenvironment favorable for bacterial growth. Stomata are sensitive to environmental conditions, including light. Here, we show that a period of darkness is required for water-soaking, and that a constant light regime abrogates stomatal closure by Pst. We find that constant light induces resistance to Pst, and that this effect requires salicylic acid (SA). Constant light did not alter effector-induced accumulation of ABA, but induced greater SA production, promoting stomatal opening despite the presence of ABA. Furthermore, application of a SA analog was sufficient to prevent pathogen-induced stomatal closure and water-soaking. Our results suggest potential approaches for interfering with a common virulence strategy, as well as providing a physiological mechanism by which SA functions in defense against pathogens.
Collapse
|
23
|
Yang X, Hu J, Wang Z, Huang T, Xiang Y, Zhang L, Peng J, Tomas-Barberan FA, Yang Q. Pre-harvest Nitrogen Limitation and Continuous Lighting Improve the Quality and Flavor of Lettuce ( Lactuca sativa L.) under Hydroponic Conditions in Greenhouse. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:710-720. [PMID: 36574360 DOI: 10.1021/acs.jafc.2c07420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Short-term nitrogen limitation and continuous lighting (red/blue = 3:1) were applied individually and in combination to butterhead and red oak leaf lettuce for 1, 2, or 3 days before harvest to assess their effects on improving the nutritional value and sweet taste and reducing nitrate content and bitterness of lettuce. The results suggested that a 3-day nitrogen limitation combined with continuous lighting reduced the lettuce content of nitrate and sesquiterpene lactones and improved the quantities of soluble sugar, soluble protein, anthocyanins, and phenolic compounds without reducing the fresh weight of lettuce. In addition, in vitro simulated digestion results suggested that the 3-day nitrogen limitation combined with continuous lighting significantly improved the sweetness and reduced the bitterness of lettuce compared to the control. In conclusion, nitrogen limitation combined with continuous lighting for 3 days before harvest effectively enhanced the quality and taste of lettuce, showing great potential for its use in hydroponic lettuce production.
Collapse
Affiliation(s)
- Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jiangtao Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Zheng Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yuting Xiang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Jie Peng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Francisco A Tomas-Barberan
- Centre for Applied Biology and Soil Science of Segura, Spanish National Research Council (CEBAS-CSIC), Murcia 30100, Spain
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (IUA-CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| |
Collapse
|
24
|
Tenkanen A, Keinänen M, Oksanen E, Keski-Saari S, Kontunen-Soppela S. Polar day syndrome: differences in growth, photosynthetic traits and sink-size patterns between northern and southern Finnish silver birch (Betula pendula Roth) provenances in native and non-native photoperiods. TREE PHYSIOLOGY 2023; 43:16-30. [PMID: 36049078 PMCID: PMC9833867 DOI: 10.1093/treephys/tpac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Continuous light (CL) is available throughout the polar day for plants in the Arctic during the growing season, whereas provenances of the same species experience a very different environment with non-CL (NCL) just a few latitudes to the south. Both provenances need to acclimate to climate warming, yet we lack comprehensive understanding of how their growth, photosynthesis and leaf traits differ. Further, the provenances presumably have morphological and physiological adaptations to their native environments and therefore differ in response to photoperiod. We tested the height growth, leaf longevity, biomass accumulation, biomass allocation and rates of gas exchange of northern (67°N) and southern (61°N) Finnish silver birch (Betula pendula Roth) origins in CL- and NCL-treatments in a 4-month chamber experiment. Irrespective of photoperiod, 67°N had higher area-based photosynthetic rate (Anet), stomatal conductance (gs) and relative height growth rate (RGR), but lower stomatal density and fewer branches and leaves than 61°N. Photoperiod affected height growth cessation, biomass and photosynthetic traits, whereas leaf longevity and many leaf functional traits remained unchanged. In CL, both provenances had lower gs, higher RGR, increased shoot:root ratio and increased sink sizes (more branching, more leaves, increased total plant dry weight) compared with NCL. In NCL, 67°N ceased height growth earlier than in CL, which altered biomass accumulation and distribution patterns. Northern conditions impose challenges for plant growth and physiology. Whether a provenance inhabits and is adapted to an area with or without CL can also affect its response to the changing climate. Northern birches may have adapted to CL and the short growing season with a 'polar day syndrome' of traits, including relatively high gas exchange rates with low leaf biomass and growth traits that are mainly limited by the environment and the earlier growth cessation (to avoid frost damage).
Collapse
Affiliation(s)
- Antti Tenkanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
| | - Markku Keinänen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
- University of Eastern Finland, Institute of Photonics, Yliopistokatu 7, PO Box 111, 80101 Joensuu, Finland
| | - Elina Oksanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
| | - Sarita Keski-Saari
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
| | - Sari Kontunen-Soppela
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistokatu 7, P.O. Box 111, 80101 Joensuu, Finland
| |
Collapse
|
25
|
Ji M, Wang G, Liu X, Li X, Xue Y, Amombo E, Fu J. The extended day length promotes earlier flowering of bermudagrass. PeerJ 2022; 10:e14326. [PMID: 36411836 PMCID: PMC9675341 DOI: 10.7717/peerj.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Day length is a very critical environmental factor affecting plant growth and development. The extension of light application time has been shown to promote flowering in the long-day plant and to shorten breeding time in some crops. However, previous research on the regulation of bermudagrass flowering by light application time is scarce. Therefore, this study investigated the effect of day length on the growth and flowering of bermudagrass by prolonging the light application time in a controlled greenhouse. Three different light application times were set up in the experiment: 22/2 h (22 hours light/2 hours dark), 18/6 h (18 hours light/6 hours dark), 14/10 h (14 hours light/10 hours dark). Results showed that extending the light application time not only promoted the growth of bermudagrass (plant height, fresh weight, dry weight) but also its nutrient uptake (nitrogen (N) and phosphorous (P) content). In addition, daily light integrals were different when flowering under different light application times. Most importantly, under the 22/2 h condition, flowering time was successfully reduced to 44 days for common bermudagrass (Cynodon dactylon [L.] pers) genotype A12359 and 36 days for African bermudagrass (Cynodon transvaalensis Burtt-Davy) genotype ABD11. This study demonstrated a successful method of bermudagrass flowering earlier than usual time by manipulating light application time which may provide useful insights for bermudagrass breeding.
Collapse
|
26
|
Lanoue J, St. Louis S, Little C, Hao X. Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens. FRONTIERS IN PLANT SCIENCE 2022; 13:983222. [PMID: 36247650 PMCID: PMC9564221 DOI: 10.3389/fpls.2022.983222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Microgreens represent a fast growing segment of the edible greens industry. They are prized for their colour, texture, and flavour. Compared to their mature counterparts, microgreens have much higher antioxidant and nutrient content categorizing them as a functional food. However, current production practices in plant factories with artificial light are energy intensive. Specifically, the lack of sunlight within the indoor structure means all of the light must be provided via energy consuming light fixtures, which is energy intensive and costly. Plant growth is usually increased with the total amount of light provided to the plants - daily light integral (DLI). Long photoperiods of low intensity lighting (greater than 18h) providing the desired/target DLI can reduce the capital costs for light fixtures and electricity costs. This is achieved by moving the electricity use from peak daytime hours (high price) to off-peak hours (low price) during the night in regions with time-based pricing scheme and lowering the electricity use for air conditioning, if plant growth is not compromised. However, lighting with photoperiods longer than tolerance thresholds (species/cultivar specific) usually leads to plant stress/damage. Therefore, we investigated the effects of continuous 24h white light (CL) at two DLIs (~14 and 21 mol m-2 d-1) on plant growth, yield, and antioxidant content on 4 types of microgreens - amaranth, collard greens, green basil, and purple basil to see if it compromises microgreen production. It was found that amaranth and green basil had larger fresh biomass when grown under CL compared to 16h when the DLIs were the same. In addition, purple basil had higher biomass at higher DLI, but was unaffected by photoperiods. Plants grown under the CL treatments had higher energy-use-efficiencies for lighting (10-42%) than plants grown under the 16h photoperiods at the same DLI. Notably, the electricity cost per unit of fresh biomass ($ g-1) was reduced (8-38%) in all microgreens studied when plants were grown under CL lighting at the same DLIs. Amaranth and collard greens also had higher antioxidant content. Taken together, growing microgreens under CL can reduce electricity costs and increase yield while maintaining or improving nutritional content.
Collapse
Affiliation(s)
| | | | | | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON, Canada
| |
Collapse
|
27
|
Jin W, Formiga Lopez D, Heuvelink E, Marcelis LFM. Light use efficiency of lettuce cultivation in vertical farms compared with greenhouse and field. Food Energy Secur 2022. [DOI: 10.1002/fes3.391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Wenqing Jin
- Horticulture and Product Physiology, Department of Plant Sciences Wageningen University and Research Wageningen The Netherlands
- Priva De Lier The Netherlands
| | - David Formiga Lopez
- Horticulture and Product Physiology, Department of Plant Sciences Wageningen University and Research Wageningen The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Department of Plant Sciences Wageningen University and Research Wageningen The Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
28
|
Sender M, Huber FL, Moersch MCG, Kowalczyk D, Hniopek J, Klingler S, Schmitt M, Kaufhold S, Siewerth K, Popp J, Mizaikoff B, Ziegenbalg D, Rau S. Boosting Efficiency in Light-Driven Water Splitting by Dynamic Irradiation through Synchronizing Reaction and Transport Processes. CHEMSUSCHEM 2022; 15:e202200708. [PMID: 35415957 PMCID: PMC9322455 DOI: 10.1002/cssc.202200708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
This work elaborates the effect of dynamic irradiation on light-driven molecular water oxidation to counteract deactivation. It highlights the importance of overall reaction engineering to overcome limiting factors in artificial photosynthesis reactions. Systematic investigation of a homogeneous three-component ruthenium-based water oxidation system revealed significant potential to enhance the overall catalytic efficiency by synchronizing the timescales of photoreaction and mass transport in a capillary flow reactor. The overall activity could be improved by a factor of more than 10 with respect to the turnover number and a factor of 31 referring to the external energy efficiency by controlling the local availability of photons. Detailed insights into the mechanism of light driven water oxidation could be obtained using complementary methods of investigation like Raman, IR, and UV/Vis/emission spectroscopy, unraveling the importance of avoiding high concentrations of excited photosensitizers.
Collapse
Affiliation(s)
- Maximilian Sender
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Fabian L. Huber
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Maximilian C. G. Moersch
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Daniel Kowalczyk
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Julian Hniopek
- Department Spectroscopy & ImagingLeibniz Institute of Photonic TechnologyAlbert-Einstein-Str. 907745JenaGermany
- Institute of Physical Chemistry & Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Sarah Klingler
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Michael Schmitt
- Institute of Physical Chemistry & Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Simon Kaufhold
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Kevin Siewerth
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Jürgen Popp
- Department Spectroscopy & ImagingLeibniz Institute of Photonic TechnologyAlbert-Einstein-Str. 907745JenaGermany
- Institute of Physical Chemistry & Abbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Dirk Ziegenbalg
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Sven Rau
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
29
|
de Carbonnel M, Stormonth-Darling JM, Liu W, Kuziak D, Jones MA. Realising the Environmental Potential of Vertical Farming Systems through Advances in Plant Photobiology. BIOLOGY 2022; 11:922. [PMID: 35741444 PMCID: PMC9220163 DOI: 10.3390/biology11060922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Intensive agriculture is essential to feed increasing populations, yet requires large amounts of pesticide, fertiliser, and water to maintain productivity. One solution to mitigate these issues is the adoption of Vertical Farming Systems (VFS). The self-contained operation of these facilities offers the potential to recycle agricultural inputs, as well as sheltering crops from the effects of climate change. Recent technological advancements in light-emitting diode (LED) lighting technology have enabled VFS to become a commercial reality, although high electrical consumption continues to tarnish the environmental credentials of the industry. In this review, we examine how the inherent use of electricity by VFS can be leveraged to deliver commercial and environmental benefits. We propose that an understanding of plant photobiology can be used to vary VFS energy consumption in coordination with electrical availability from the grid, facilitating demand-side management of energy supplies and promoting crop yield.
Collapse
Affiliation(s)
| | | | - Weiqi Liu
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Dmytro Kuziak
- Oxfarm Developments, 4125 Riehen, Switzerland; (M.d.C.); (D.K.)
| | - Matthew Alan Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, UK;
| |
Collapse
|
30
|
Chen XL, Li YL, Wang LC, Yang QC, Guo WZ. Responses of butter leaf lettuce to mixed red and blue light with extended light/dark cycle period. Sci Rep 2022; 12:6924. [PMID: 35484294 PMCID: PMC9051091 DOI: 10.1038/s41598-022-10681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
To investigate the effects of extended light/dark (L/D) cycle period (relative to the diurnal L/D cycle) on lettuce and explore potential advantages of abnormal L/D cycles, butter leaf lettuce were grown in a plant factory with artificial light (PFAL) and exposed to mixed red (R) and blue (B) LED light with different L/D cycles that were respectively 16 h light/8 h dark (L16/D8, as control), L24/D12, L48/D24, L96/D48 and L120/D60. The results showed that, all the abnormal L/D cycles increased shoot dry weight (DW) of lettuce (by 34-83%) compared with the control, and lettuce DW increased with the L/D cycle period prolonged. The contents of soluble sugar and crude fiber in lettuce showed an overall upward trend with the length of L/D cycle extended, and the highest vitamin C content as well as low nitrate content were both detected in lettuce treated with L120/D60. The light use efficiency (LUE) and electric use efficiency (EUE) of lettuce reached the maximum (respectively 5.37% and 1.76%) under L120/D60 treatment and so were DW, Assimilation rate (A), RC/CS, ABS/CS, TRo/CS and DIo/CS, indicating that longer L/D cycle period was beneficial for the assimilation efficiency and dry matter accumulation in lettuce leaves. The highest shoot fresh weight (FW) and nitrate content detected in lettuce subjected to L24/D12 may be related to the vigorous growth of root, specific L/D cycle seemed to strengthen root growth and water absorption of lettuce. The openness level of RC in PSII (Ψo), ETo/CS, and PIabs were all the highest in lettuce treated with L24/D12, implying that slightly extending the L/D cycle period might promote the energy flowing to the final electron transfer chain. In general, irradiation modes with extended L/D cycle period had the potential to improve energy use efficiency and biomass of lettuce in PFAL. No obvious stress or injury was detected in lettuce subjected to prolonged L/D cycles in terms of plant growth and production. From the perspective of shoot FW, the optimal treatment in this study was L24/D12, while L120/D60 was the recommended treatment as regards of the energy use efficiency and nutritional quality.
Collapse
Affiliation(s)
- Xiao-Li Chen
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - You-Li Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Li-Chun Wang
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qi-Chang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Wen-Zhong Guo
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
31
|
Lanoue J, Little C, Hao X. The Power of Far-Red Light at Night: Photomorphogenic, Physiological, and Yield Response in Pepper During Dynamic 24 Hour Lighting. FRONTIERS IN PLANT SCIENCE 2022; 13:857616. [PMID: 35557729 PMCID: PMC9087831 DOI: 10.3389/fpls.2022.857616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 05/27/2023]
Abstract
Supplemental light is needed during the winter months in high latitude regions to achieve the desired daily light integral (DLI) (photoperiod × intensity) for greenhouse pepper (Capsicum annuum) production. Peppers tend to have short internodes causing fruit stacking and higher labor time for plant maintenance when grown under supplemental light. Far-red light can increase internode length, and our previous study on tomatoes (Solanum lycopersicum) also discovered monochromatic blue light at night during continuous lighting (CL, 24 h) increased stem elongation. Furthermore, the use of low-intensity, long photoperiod lighting can reduce light fixture costs and overall electricity costs due to lower power prices during the night. Therefore, we investigated the use of blue and/or far-red light during the night period of CL to increase stem elongation. Three pepper cultivars with different internode lengths/growing characteristics ('Maureno,' 'Gina,' and 'Eurix') were used to investigate the effects on plant morphology in a short experiment, and one cultivar 'Maureno' was used in a long experiment to assess the impact on fruit yield. The five lighting treatments that were used are as follows: 16 h of white light during the day followed by either 8 h of darkness (16W - control), white light (24W), blue light only (16W + 8B), blue + far-red light (16W + 8BFR), or far-red light only (16W + 8FR). Calculated nighttime phytochrome photostationary state (PSS) was 0.833, 0.566, 0.315, and 0.186 for 24W, 16W + 8B, 16W + 8BFR, and 16W + 8FR respectively. All five treatments had the same DLI in photosynthetically active radiation (PAR) and far-red light. The 16W + 8BFR and 16W + 8FR treatments significantly increased internode length compared to 16W and 24W but neither was more impactful than the other. The 16W + 8B treatment also increased internode length but to a lesser extent than 16W + 8BFR and 16W + 8FR. This indicates that a nighttime PSS of 0.315 is sufficient to maximize stem elongation. Both 16W + 8B and 16W + 8BFR drove photosynthesis during the nighttime supporting a similar yield compared to 16W. Therefore, 16W + 8BFR is the most potential lighting strategy as it can lead to a greater reduction in the light fixture and electrical costs while maintaining yield and enhancing internode length.
Collapse
|
32
|
Haroon M, Wang X, Afzal R, Zafar MM, Idrees F, Batool M, Khan AS, Imran M. Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1052. [PMID: 35448780 PMCID: PMC9025237 DOI: 10.3390/plants11081052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 06/01/2023]
Abstract
Cereals are the main source of human food on our planet. The ever-increasing food demand, continuously changing environment, and diseases of cereal crops have made adequate production a challenging task for feeding the ever-increasing population. Plant breeders are striving their hardest to increase production by manipulating conventional breeding methods based on the biology of plants, either self-pollinating or cross-pollinating. However, traditional approaches take a decade, space, and inputs in order to make crosses and release improved varieties. Recent advancements in genome editing tools (GETs) have increased the possibility of precise and rapid genome editing. New GETs such as CRISPR/Cas9, CRISPR/Cpf1, prime editing, base editing, dCas9 epigenetic modification, and several other transgene-free genome editing approaches are available to fill the lacuna of selection cycles and limited genetic diversity. Over the last few years, these technologies have led to revolutionary developments and researchers have quickly attained remarkable achievements. However, GETs are associated with various bottlenecks that prevent the scaling development of new varieties that can be dealt with by integrating the GETs with the improved conventional breeding methods such as speed breeding, which would take plant breeding to the next level. In this review, we have summarized all these traditional, molecular, and integrated approaches to speed up the breeding procedure of cereals.
Collapse
Affiliation(s)
- Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Rabail Afzal
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Abdul Saboor Khan
- Institute of Plant Sciences, University of Cologne, 50667 Cologne, Germany
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
33
|
Wang C, Ding Y, Wang W, Zhao X, Liu Y, Timko MP, Zhang Z, Zhang H. Insights into Gene Regulation of Jasmonate-Induced Whole-Plant Senescence of Tobacco under Non-Starvation Conditions. PLANT & CELL PHYSIOLOGY 2022; 63:45-56. [PMID: 34523687 DOI: 10.1093/pcp/pcab140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Jasmonate (JA)-induced plant senescence has been mainly studied with a dark/starvation-promoted system using detached leaves; yet, the induction of whole-plant senescence by JA remains largely unclear. This work reports the finding of a JA-induced whole-plant senescence of tobacco under light/non-starvation conditions and the investigation of underlying regulations. Methyl jasmonate (MeJA) treatment induces the whole-plant senescence of tobacco in a light-intensity-dependent manner, which is suppressed by silencing of NtCOI1 that encodes the receptor protein of JA-Ile (the bioactive derivative of JA). MeJA treatment could induce the senescence-specific cysteine protease gene SAG12 and another cysteine protease gene SAG-L1 to high expression levels in the detached leaf patches under dark conditions but failed to induce their expression in tobacco whole plants under light conditions. Furthermore, MeJA attenuates the RuBisCo activase (RCA) level in the detached leaves but has no effect on this protein in the whole plant under light conditions. A genome-wide transcriptional assay also supports the presence of a differential regulatory pattern of senescence-related genes during MeJA-induced whole-plant senescence under non-starvation conditions and results in the finding of a chlorophylase activity increase in this process. We also observed that the MeJA-induced senescence of tobacco whole plants is reversible, which is accompanied by a structural change of chloroplasts. This work provides novel insights into JA-induced plant senescence under non-starvation conditions and is helpful to dissect the JA-synchronized process of whole-plant senescence.
Collapse
Affiliation(s)
- Chunkai Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Fourth Keyuan Road, Laoshan District, Qingdao 266101, China
| | - Yongqiang Ding
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Fourth Keyuan Road, Laoshan District, Qingdao 266101, China
| | - Wenjing Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Fourth Keyuan Road, Laoshan District, Qingdao 266101, China
| | - Xue Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Fourth Keyuan Road, Laoshan District, Qingdao 266101, China
| | - Yanhua Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Fourth Keyuan Road, Laoshan District, Qingdao 266101, China
| | - Michael P Timko
- Department of Biology, University of Virginia, Gilmer Hall, 485 McCormick Road, Charlottesville, VA 22904, USA
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Fourth Keyuan Road, Laoshan District, Qingdao 266101, China
| | - Hongbo Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Fourth Keyuan Road, Laoshan District, Qingdao 266101, China
| |
Collapse
|
34
|
Shibaeva TG, Sherudilo EG, Rubaeva AA, Titov AF. Continuous LED Lighting Enhances Yield and Nutritional Value of Four Genotypes of Brassicaceae Microgreens. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020176. [PMID: 35050064 PMCID: PMC8781578 DOI: 10.3390/plants11020176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 05/04/2023]
Abstract
The effect of continuous lighting (CL, 24 h) and light spectrum on growth and nutritional quality of arugula (Eruca sativa), broccoli (Brassica oleracea var. italic), mizuna (Brassica rapa. var. nipposinica), and radish (Raphanus sativus var. radicula) were investigated in growth chambers under light-emitting diode (LED) and fluorescent lighting. Microgreens were grown under four combinations of two photoperiods (16 h and 24 h) providing daily light integral (DLI) of 15.6 and 23.3 mol m-2 day-1, correspondingly) with two light spectra: LED lamps and fluorescent lamps (FLU). The results show that fresh and dry weights as well as leaf mass per area and robust index of harvested arugula, broccoli, mizuna, and radish seedlings were significantly higher under CL compared to 16 h photoperiod regardless of light quality. There were no visible signs of leaf photodamage. In all CL-treated plants higher chlorophyll a/b and carotenoid-to-chlorophyll ratios were observed in all plants except mizuna. CL treatment was beneficial for anthocyanin, flavonoid, and proline accumulation. Higher activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase) were also observed in CL-treated plants. In most cases, the effects were more pronounced under LED lighting. These results indicate that plants under mild oxidative stress induced by CL accumulated more non-enzymatic antioxidants and increased the activities of antioxidant enzymes. This added nutritional value to microgreens that are used as functional foods providing health benefits. We suggest that for arugula, broccoli, mizuna, and radish, an LED CL production strategy is possible and can have economic and nutritional benefits.
Collapse
|
35
|
Kumar D, Singh H, Bhatt U, Soni V. Effect of continuous light on antioxidant activity, lipid peroxidation, proline and chlorophyll content in Vigna radiata L. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:145-154. [PMID: 34813420 DOI: 10.1071/fp21226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/31/2021] [Indexed: 05/28/2023]
Abstract
Longer photoperiod in form of continuous light (24-h photoperiod without dark interruption) can alter the various physiological and biochemical processes of the plant. This study aimed to evaluate the effects of continuous light on various biochemical parameters associated with the growth and development of Vigna radiata L. (mung bean). The findings showed that leaf size and chlorophyll content of seedlings grown under continuous light were significantly greater than control plants subjected to 12h light/12h dark (12/12h). The activity of antioxidant enzymes superoxide dismutase (SOD, 30.81%), catalase (CAT, 16.86%), guaiacol peroxidase (GPOD, 12.27%), malondialdehyde, (MDA, 39.31) and proline (14.81%) were notably higher in 24/0h light period than 12/12h light period grown seedling at an early stage (on Day 6) while they were constant at the later stage of development. Increased activity of amylase and invertase reveals higher assimilation and consumption of photosynthetic products. This study revealed that plants were stressed at first. However, they gradually became acclimated to continuous light and efficiently used the excess light in carbon assimilation.
Collapse
Affiliation(s)
- Deepak Kumar
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Hanwant Singh
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
36
|
Evaluating the Effects of the Circadian Clock and Time of Day on Plant Gravitropic Responses. Methods Mol Biol 2022; 2368:301-319. [PMID: 34647263 DOI: 10.1007/978-1-0716-1677-2_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Circadian rhythms are regular oscillations of an organism's physiology with a period of approximately 24 h. In the model plant Arabidopsis thaliana, circadian rhythms regulate a suite of physiological processes, including transcription, photosynthesis, growth, and flowering. The circadian clock and external rhythmic factors have extensive control of the underlying biochemistry and physiology. Therefore, it is critical to consider the time of day when performing gravitropism experiments, even if the circadian clock is not a focus of study. We describe the critical factors and methods to be considered and methods to investigate the possible circadian regulation of gravitropic responses.
Collapse
|
37
|
Proietti S, Moscatello S, Riccio F, Downey P, Battistelli A. Continuous Lighting Promotes Plant Growth, Light Conversion Efficiency, and Nutritional Quality of Eruca vesicaria (L.) Cav. in Controlled Environment With Minor Effects Due to Light Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:730119. [PMID: 34712255 PMCID: PMC8546256 DOI: 10.3389/fpls.2021.730119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/09/2021] [Indexed: 05/17/2023]
Abstract
Light-emitting diode lamps can allow for the optimization of lighting conditions in artificial growing environments, with respect to light quality, quantity, and photoperiod extension, to precisely manage resources and crop performance. Eruca vesicaria (L.) Cav. was hydroponically cultured under three light treatments to investigate the effect on yield and nutritional properties of rocket plants. A treatment of (W-12h) having a12/12 h light/dark at 600 μmol m-2 s-1 provided by LEDs W:FR:R:B = 12:2:71:15 was compared with two treatments of continuous lighting (CL), 24 h light at 300 μmol m-2 s-1 provided by cool white LEDs (W-CL), and by LED R:B = 73:27 (RB-CL). CL enhanced the growth of the rocket plants: total fresh biomass, leaf fresh weight, and shoot/root ratio increased in W-CL, and leaf dry weight, leaf dry matter %, root fresh and dry weight, and specific leaf dry weight (SLDW) increased in RB-CL. Total carbon content was higher in RB-CL, whereas total nitrogen and proteins content increased in W-12h. Both W-CL and RB-CL increased carbohydrate content in the rocket leaves, while W-CL alone increased the sugar content in the roots. Fibers, pigments, antioxidant compounds, and malic acid were increased by CL regardless of the light spectrum applied. Nitrate was significantly reduced in the rocket leaves grown both in W-CL and RB-CL. Thus, the application of CL with low light intensity can increase the yield and quality value of rocket, highlighting that careful scheduling of light spectrum, intensity, and photoperiod can improve the performance of the crop.
Collapse
Affiliation(s)
- Simona Proietti
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Stefano Moscatello
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Francesca Riccio
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| | - Peter Downey
- Department of Applied Science, Limerick Institute of Technology, Limerick, Ireland
| | - Alberto Battistelli
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Porano, Italy
| |
Collapse
|
38
|
Dong MY, Lei L, Fan XW, Li YZ. Analyses of open-access multi-omics data sets reveal genetic and expression characteristics of maize ZmCCT family genes. AOB PLANTS 2021; 13:plab048. [PMID: 34567492 PMCID: PMC8459886 DOI: 10.1093/aobpla/plab048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Flowering in maize (Zea mays) is influenced by photoperiod. The CO, CO-like/COL and TOC1 (CCT) domain protein-encoding genes in maize, ZmCCTs, are particularly important for photoperiod sensitivity. However, little is known about CCT protein-encoding gene number across plant species or among maize inbred lines. Therefore, we analysed CCT protein-encoding gene number across plant species, and characterized ZmCCTs in different inbred lines, including structural variations (SVs), copy number variations (CNVs), expression under stresses, dark-dark (DD) and dark-light (DL) cycles, interaction network and associations with maize quantitative trait loci (QTLs) by referring to the latest v4 genome data of B73. Gene number varied greatly across plant species, more in polyploids than in diploids. The numbers of ZmCCTs identified were 58 in B73, 59 in W22, 48 in Mo17, and 57 in Huangzao4 for temperate maize inbred lines, and 68 in tropical maize inbred line SK. Some ZmCCTs underwent duplications and presented chromosome collinearity. Structural variations and CNVs were found but they had no germplasm specificity. Forty-two ZmCCTs responded to stresses. Expression of 37 ZmCCTs in embryonic leaves during seed germination of maize under DD and DL cycles was roughly divided into five patterns of uphill pattern, downhill-pattern, zigzag-pattern, └-pattern and ⅃-pattern, indicating some of them have a potential to perceive dark and/or dark-light transition. Thirty-three ZmCCTs were co-expressed with 218 other maize genes; and 24 ZmCCTs were associated with known QTLs. The data presented in this study will help inform further functions of ZmCCTs.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
39
|
Lanoue J, Thibodeau A, Little C, Zheng J, Grodzinski B, Hao X. Light Spectra and Root Stocks Affect Response of Greenhouse Tomatoes to Long Photoperiod of Supplemental Lighting. PLANTS 2021; 10:plants10081674. [PMID: 34451719 PMCID: PMC8398429 DOI: 10.3390/plants10081674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022]
Abstract
Plant biomass and yield are largely dictated by the total amount of light intercepted by the plant (daily light integral (DLI)—intensity × photoperiod). It is more economical to supply the desired DLI with a long photoperiod of low-intensity light because it uses fewer light fixtures, reducing capital costs. Furthermore, heat released by the light fixtures under a long photoperiod extended well into the night helps to meet the heating requirement during the night. However, extending the photoperiod beyond a critical length (>17 h) may be detrimental to production and lead to leaf chlorosis and a reduction in leaf growth and plant vigor in greenhouse tomato production. It is known that red light can increase leaf growth and plant vigor, as can certain rootstocks, which could compensate for the loss in plant vigor and leaf growth from long photoperiods. Therefore, this study investigated the response of tomatoes grafted onto different rootstocks to a long photoperiod of lighting under red and other light spectra. Tomato plants ‘Trovanzo’ grafted onto ‘Emperator’ or ‘Kaiser’ were subjected to two spectral compositions—100% red or a mix of red (75%), blue (20%), and green (5%) light for 17 h or 23 h. The four treatments supplied similar DLI. Leaf chlorosis appeared in all plants under 23 h lighting regardless of spectral compositions between 20 and 54 days into the treatment. The yield for 23 h mixed lighting treatment was lower than both 17 h lighting treatments. However, the 23 h red lighting treatment resulted in less leaf chlorosis and the plants grafted onto ‘Emperator’ produced a similar yield as both 17 h lighting treatments. Therefore, both spectral compositions and rootstocks affected the response of greenhouse tomatoes to long photoperiods of lighting. With red light and proper rootstock, the negative yield impact from long photoperiod lighting can be eliminated.
Collapse
Affiliation(s)
- Jason Lanoue
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R1G0, Canada; (J.L.); (A.T.); (C.L.); (J.Z.)
| | - Alyssa Thibodeau
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R1G0, Canada; (J.L.); (A.T.); (C.L.); (J.Z.)
| | - Celeste Little
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R1G0, Canada; (J.L.); (A.T.); (C.L.); (J.Z.)
| | - Jingming Zheng
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R1G0, Canada; (J.L.); (A.T.); (C.L.); (J.Z.)
| | - Bernard Grodzinski
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R1G0, Canada; (J.L.); (A.T.); (C.L.); (J.Z.)
- Correspondence:
| |
Collapse
|
40
|
The Effect of Photoperiod on Necrosis Development, Photosynthetic Efficiency and 'Green Islands' Formation in Brassica juncea Infected with Alternaria brassicicola. Int J Mol Sci 2021; 22:ijms22168435. [PMID: 34445145 PMCID: PMC8395102 DOI: 10.3390/ijms22168435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/06/2023] Open
Abstract
The main goal of growing plants under various photoperiods is to optimize photosynthesis for using the effect of day length that often acts on plants in combination with biotic and/or abiotic stresses. In this study, Brassica juncea plants were grown under four different day-length regimes, namely., 8 h day/16 h night, 12 h day/12 h night, 16 h day/8 h night, and continuous light, and were infected with a necrotrophic fungus Alternaria brassicicola. The development of necroses on B. juncea leaves was strongly influenced by leaf position and day length. The largest necroses were formed on plants grown under a 16 h day/8 h night photoperiod at 72 h post-inoculation (hpi). The implemented day-length regimes had a great impact on leaf morphology in response to A. brassicicola infection. They also influenced the chlorophyll and carotenoid contents and photosynthesis efficiency. Both the 1st (the oldest) and 3rd infected leaves showed significantly higher minimal fluorescence (F0) compared to the control leaves. Significantly lower values of other investigated chlorophyll a fluorescence parameters, e.g., maximum quantum yield of photosystem II (Fv/Fm) and non-photochemical quenching (NPQ), were observed in both infected leaves compared to the control, especially at 72 hpi. The oldest infected leaf, of approximately 30% of the B. juncea plants, grown under long-day and continuous light conditions showed a ‘green island’ phenotype in the form of a green ring surrounding an area of necrosis at 48 hpi. This phenomenon was also reflected in changes in the chloroplast’s ultrastructure and accelerated senescence (yellowing) in the form of expanding chlorosis. Further research should investigate the mechanism and physiological aspects of ‘green islands’ formation in this pathosystem.
Collapse
|
41
|
Abstract
In rice, a small increase in nighttime temperature reduces grain yield and quality. How warm nighttime temperatures (WNT) produce these detrimental effects is not well understood, especially in field conditions where the typical day-to-night temperature fluctuation exceeds the mild increase in nighttime temperature. We observed genome-wide disruption of gene expression timing during the reproductive phase in field-grown rice panicles acclimated to 2 to 3 °C WNT. Transcripts previously identified as rhythmically expressed with a 24-h period and circadian-regulated transcripts were more sensitive to WNT than were nonrhythmic transcripts. The system-wide perturbations in transcript levels suggest that WNT disrupt the tight temporal coordination between internal molecular events and the environment, resulting in reduced productivity. We identified transcriptional regulators whose predicted targets are enriched for sensitivity to WNT. The affected transcripts and candidate regulators identified through our network analysis explain molecular mechanisms driving sensitivity to WNT and identify candidates that can be targeted to enhance tolerance to WNT.
Collapse
|
42
|
Continuous Lighting and High Daily Light Integral Enhance Yield and Quality of Mass-Produced Nasturtium ( Tropaeolum majus L.) in Plant Factories. PLANTS 2021; 10:plants10061203. [PMID: 34204820 PMCID: PMC8231634 DOI: 10.3390/plants10061203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Nasturtium (Tropaeolum majus L.), as a medicinal plant, has a high phenolic content in its leaves and flowers. It is often used in salads as a dietary vegetable. Attracting strong demand, it could be a good candidate crop for a plant factory with artificial lighting (PFAL) that can achieve the mass production of high-quality crops with high productivity by regulating environmental conditions such as light. In this study, two experiments were conducted to investigate the effects of continuous lighting (CL) and different daily light integrals (DLIs) under CL on the growth, secondary metabolites, and light use efficiency (LUE) of nasturtium, all of which are essential in the successful cultivation in PFALs. In Experiment 1, two lighting models, the same DLI of 17.3 mol m−2 d−1 but different light periods (24 and 16 h) with different light intensities (200 and 300 µmol m−2 s−1, respectively), were applied to nasturtium. The results showed that leaf production, secondary metabolites, and LUE were higher under the 24-h CL treatment than under the 16-h non-CL treatment. In Experiment 2, three DLI levels (17.3, 25.9, and 34.6 mol m−2 d−1) under the CL condition were applied. The results showed that the growth parameters were positively correlated with the DLI levels under CL. The lowest DLI had the highest LUE. We conclude that the mass production of nasturtium under CL in PFALs is feasible, and the yield increases as DLI increases from 17.3 to 34.6 mol m−2 d−1 under CL without causing physiological stress on plants.
Collapse
|
43
|
Yao XC, Tu HQ, Wang XL, Wang J. The effect of supplemental LED night lighting on the growth and physiology of the Para rubber tree. J RUBBER RES 2021. [DOI: 10.1007/s42464-021-00095-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Paponov M, Arakelyan A, Dobrev PI, Verheul MJ, Paponov IA. Nitrogen Deficiency and Synergism between Continuous Light and Root Ammonium Supply Modulate Distinct but Overlapping Patterns of Phytohormone Composition in Xylem Sap of Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:573. [PMID: 33803638 PMCID: PMC8003008 DOI: 10.3390/plants10030573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022]
Abstract
Continuous light (CL) or a predominant nitrogen supply as ammonium (NH4+) can induce leaf chlorosis and inhibit plant growth. The similarity in injuries caused by CL and NH4+ suggests involvement of overlapping mechanisms in plant responses to these conditions; however, these mechanisms are poorly understood. We addressed this topic by conducting full factorial experiments with tomato plants to investigate the effects of NO3- or NH4+ supply under diurnal light (DL) or CL. We used plants at ages of 26 and 15 days after sowing to initiate the treatments, and we modulated the intensity of the stress induced by CL and an exclusive NH4+ supply from mild to strong. Under DL, we also studied the effect of nitrogen (N) deficiency and mixed application of NO3- and NH4+. Under strong stress, CL and exclusive NH4+ supply synergistically inhibited plant growth and reduced chlorophyll content. Under mild stress, when no synergetic effect between CL and NH4+ was apparent on plant growth and chlorophyll content, we found a synergetic effect of CL and NH4+ on the accumulation of several plant stress hormones, with an especially strong effect for jasmonic acid (JA) and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, in xylem sap. This modulation of the hormonal composition suggests a potential role for these plant hormones in plant growth responses to the combined application of CL and NH4+. No synergetic effect was observed between CL and NH4+ for the accumulation of soluble carbohydrates or of mineral ions, indicating that these plant traits are less sensitive than the modulation of hormonal composition in xylem sap to the combined CL and NH4+ application. Under diurnal light, NH4+ did not affect the hormonal composition of xylem sap; however, N deficiency strongly increased the concentrations of phaseic acid (PA), JA, and salicylic acid (SA), indicating that decreased N concentration rather than the presence of NO3- or NH4+ in the nutrient solution drives the hormone composition of the xylem sap. In conclusion, N deficiency or a combined application of CL and NH4+ induced the accumulation of JA in xylem sap. This accumulation, in combination with other plant hormones, defines the specific plant response to stress conditions.
Collapse
Affiliation(s)
- Martina Paponov
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
| | - Aleksandr Arakelyan
- Department of Agronomy, Armenian National Agrarian University, Yerevan 0009, Armenia;
| | - Petre I. Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic;
| | - Michel J. Verheul
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
| | - Ivan A. Paponov
- NIBIO, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, P.O. Box 115, NO 1431 Ås, Norway; (M.P.); (M.J.V.)
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
45
|
Yavari N, Tripathi R, Wu BS, MacPherson S, Singh J, Lefsrud M. The effect of light quality on plant physiology, photosynthetic, and stress response in Arabidopsis thaliana leaves. PLoS One 2021; 16:e0247380. [PMID: 33661984 PMCID: PMC7932170 DOI: 10.1371/journal.pone.0247380] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
The impacts of wavelengths in 500-600 nm on plant response and their underlying mechanisms remain elusive and required further investigation. Here, we investigated the effect of light quality on leaf area growth, biomass, pigments content, and net photosynthetic rate (Pn) across three Arabidopsis thaliana accessions, along with changes in transcription, photosynthates content, and antioxidative enzyme activity. Eleven-leaves plants were treated with BL; 450 nm, AL; 595 nm, RL; 650 nm, and FL; 400-700 nm as control. RL significantly increased leaf area growth, biomass, and promoted Pn. BL increased leaf area growth, carotenoid and anthocyanin content. AL significantly reduced leaf area growth and biomass, while Pn remained unaffected. Petiole elongation was further observed across accessions under AL. To explore the underlying mechanisms under AL, expression of key marker genes involved in light-responsive photosynthetic reaction, enzymatic activity of antioxidants, and content of photosynthates were monitored in Col-0 under AL, RL (as contrast), and FL (as control). AL induced transcription of GSH2 and PSBA, while downregulated NPQ1 and FNR2. Photosynthates, including proteins and starches, showed lower content under AL. SOD and APX showed enhanced enzymatic activity under AL. These results provide insight into physiological and photosynthetic responses to light quality, in addition to identifying putative protective-mechanisms that may be induced to cope with lighting-stress in order to enhance plant stress tolerance.
Collapse
Affiliation(s)
- Nafiseh Yavari
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (ML); (NY)
| | - Rajiv Tripathi
- Department of Plant Science, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Bo-Sen Wu
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jaswinder Singh
- Department of Plant Science, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, McGill University–Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (ML); (NY)
| |
Collapse
|
46
|
Lanoue J, Zheng J, Little C, Grodzinski B, Hao X. Continuous Light Does Not Compromise Growth and Yield in Mini-Cucumber Greenhouse Production with Supplemental LED Light. PLANTS (BASEL, SWITZERLAND) 2021; 10:378. [PMID: 33671143 PMCID: PMC7921946 DOI: 10.3390/plants10020378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
Continuous lighting (CL, 24 h) can reduce the light intensity/light capital costs used to achieve the desired amount of light for year-round greenhouse vegetable production in comparison to short photoperiods of lighting. However, growth under CL has led to leaf injury characterized by chlorosis unless a thermoperiod or alternating light spectrum during CL is used. To date, there is no literature relating to how cucumbers (Cucumissativus) respond to CL with LEDs in a full production cycle. Here, we evaluated a mini-cucumber cv. "Bonwell" grown under 4 supplemental lighting strategies: Treatment 1 (T1, the control) was 16 h of combined red light and blue light followed by 8 h of darkness. Treatment 2 (T2) had continuous (24 h) red light and blue light. Treatment 3 (T3) was 16 h of red light followed by 8 h of blue light. Treatment 4 (T4) was 12 h of red light followed by 12 h of blue light. All treatments had a supplemental daily light integral (DLI) of ~10 mol m-2 d-1. Plants from all treatments showed similar growth characteristics throughout the production cycle. However, plants grown under all three CL treatments had higher chlorophyll concentrations from leaves at the top of the canopy when compared to T1. The overall photosynthetic capacity, light use efficiency, and photosynthetic parameters related to light response curves (i.e., dark respiration, light compensation point, quantum yield, and photosynthetic maximum), as well as the quantum yield of photosystem II (PSII; Fv/Fm) were similar among the treatments. Plants grown under all CL treatments produced a similar yield compared to the control treatment (T1). These results indicate that mini-cucumber cv. "Bonwell" is tolerant to CL, and CL is a viable and economical lighting strategy for mini-cucumber production.
Collapse
Affiliation(s)
- Jason Lanoue
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R 1G0, Canada; (J.L.); (J.Z.); (C.L.)
| | - Jingming Zheng
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R 1G0, Canada; (J.L.); (J.Z.); (C.L.)
| | - Celeste Little
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R 1G0, Canada; (J.L.); (J.Z.); (C.L.)
| | - Bernard Grodzinski
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Xiuming Hao
- Harrow Research and Development Centre, Agriculture & Agri-Food Canada, Harrow, ON N0R 1G0, Canada; (J.L.); (J.Z.); (C.L.)
| |
Collapse
|
47
|
Wen Y, Zha L, Liu W. Dynamic Responses of Ascorbate Pool and Metabolism in Lettuce to Light Intensity at Night Time under Continuous Light Provided by Red and Blue LEDs. PLANTS (BASEL, SWITZERLAND) 2021; 10:214. [PMID: 33498607 PMCID: PMC7911886 DOI: 10.3390/plants10020214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
To understand the dynamic changes of hydroponic lettuce growth, ascorbate (AsA) pool and metabolism under two different dark period light intensities (LL, 20 μmol·m-2·s-1; CL, 200 μmol·m-2·s-1) of continuous light and normal light (NL, 0 μmol·m-2·s-1) provided by red (R) and blue (B) LEDs, the chlorophyll fluorescence parameters, ascorbate pool size, AsA metabolism-related enzyme activities, and H2O2 contents of lettuce were measured at 0, 8, 16, 24, 32, 40, 48, 56, 64, and 72 h after light treatment and the lettuce growth parameters were measured on the 9th day after light treatment. The results showed that compared with the NL, CL treatment for 9 days significantly increased the biomass, dry matter content, and specific leaf weight of lettuce, but had no significant effect on the leaf area and root-to-shoot ratio; LL had no significant effect on lettuce biomass, but it would reduce the root-shoot ratio. Compared with the NL, the AsA content of CL increased significantly within 8 h after light treatment (at the end of first dark period), and then maintained at a relatively stable level with a slight increase; there was no significant difference in AsA contents between NL and LL showing the same circadian rhythm characteristics. Overall, the activities of L-galactono-1,4-lactone dehydrogenase (GalLDH), ascorbate peroxidase(APX), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) under CL were the highest among the three treatments, and the differences with the other two treatments reached significant levels at several time points; there was almost no significant difference in the activities of GalLDH, APX, MDHAR, and GR between NL and LL; there was no significant difference in the activities of dehydroascorbate reductase (DHAR) under different treatments. Compared with the NL, CL caused a sharp decrease of PSⅡ maximal photochemical efficiency (Fv/Fm) in lettuce within 0-8 h after treatment, which then stabilized at a relatively stable level; the Fv/Fm value under the LL was almost the same as the NL. Except for 32 h, the H2O2 content of lettuce under CL was the highest among the three treatments during the entire experimental period, and was significantly higher than that of NL at several time points; the H2O2 content of LL was almost the same as NL. In summary, lettuce biomass, AsA contents, AsA metabolism-related enzyme activities, chlorophyll fluorescence parameters, and H2O2 contents were regulated by the dark period light intensities of continuous light rather than continuous light signals.
Collapse
Affiliation(s)
- Yuan Wen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.Z.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lingyan Zha
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.Z.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (L.Z.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
48
|
Zhang Y, Zha L, Liu W, Zhou C, Shao M, Yang Q. LED Light Quality of Continuous Light before Harvest Affects Growth and AsA Metabolism of Hydroponic Lettuce Grown under Increasing Doses of Nitrogen. PLANTS (BASEL, SWITZERLAND) 2021; 10:176. [PMID: 33477815 PMCID: PMC7832877 DOI: 10.3390/plants10010176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
To study the effects of light quality of continuous light before harvest on the growth and ascorbic acid (AsA) metabolism of lettuce (Lactuca sativa L.) grown under relative high nitrogen level, lettuce plants grown under different nitrogen levels (8, 10 and 12 mmol·L-1) were subjected to continuous light with different red: blue light ratios (2R:1B and 4R:1B) before harvest. The results showed that the shoot fresh weight of lettuce under 12 mmol·L-1 nitrogen level was significantly higher than that under other treatments. There were no significant differences in shoot dry weight, root fresh weight, root dry weight, soluble sugar content, nitrate content and AsA content in leaves among the treatments at different nitrogen levels. The content of AsA in leaves was significantly higher than that in petioles before and after continuous light. Under the same nitrogen level, the fresh weight of lettuce under continuous light quality 4R:1B was significantly higher than that under other treatments. The content of AsA in lettuce leaves increased in different degrees after continuous light before harvest. High yield and AsA content could be obtained by 72 h continuous light with red and blue light 4R:1B at 12 mmol·L-1 nitrogen level. After continuous light, the content of AsA increased significantly due to the increase of the ratio of red light and nitrogen level, which increased the activities of L-galactono-1,4-lactone dehydrogenase (GalLDH) and dehydroascorbic acid reductase (DHAR) involved in AsA synthesis and in the recycling of DHAR to AsA respectively.
Collapse
Affiliation(s)
- Yubin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lingyan Zha
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Wenke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Chengbo Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Mingjie Shao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.Z.); (L.Z.); (C.Z.); (M.S.); (Q.Y.)
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
- Institute of Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu 610213, China
| |
Collapse
|
49
|
Kumar D, Singh H, Raj S, Soni V. Chlorophyll a fluorescence kinetics of mung bean ( Vigna radiata L.) grown under artificial continuous light. Biochem Biophys Rep 2020; 24:100813. [PMID: 32984559 PMCID: PMC7494449 DOI: 10.1016/j.bbrep.2020.100813] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
Continuous light can be used as a tool to understand the diurnal rhythm of plants and it can also be used to increase the plant production. In the present research, we aimed to investigate the photosynthetic performance of V. radiata under continuous light as compared with the plants grown under normal light duration. Chlorophyll a fluorescence transient (OJIP test) technique was used to understand the effect on various stages of photosynthesis and their consequences under continuous light condition. Various Chl a Fluorescence kinetic parameters such as Specific energy fluxes (per QA-reducing PSII reaction center (RC)) (ABS /RC; TR0/RC; ET0/RC; DI0/RC), phenomenological fluxes, leaf model, (ABS/CSm; TR/CSm; ETo/CSm), Quantum yields and efficiencies (φPo; φEo; Ψo) and Performance index (PIabs) was extracted and analysed in our investigation. Conclusively, our study has revealed that continuous light alters the photosynthetic performance of V. radiata at a different point but also improve plant productivity. Effect of continuous light on V. radiata photosynthetic performance with comparison of plant grow under normal light period. Chlorophyll a fluorescence kinetic (OJIP test) technique was used in present study. Various technical fluorescence parameter were analysed using Handy PEA (Plant efficiency analyzer). The study reveals that continuous light increase the density of active reaction centers and performance index in V. radiata.
Collapse
Affiliation(s)
- Deepak Kumar
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Hanwant Singh
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Shani Raj
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
50
|
Bian Z, Wang Y, Zhang X, Li T, Grundy S, Yang Q, Cheng R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020; 9:E732. [PMID: 32503134 PMCID: PMC7353485 DOI: 10.3390/foods9060732] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive accumulation of nitrates in vegetables is a common issue that poses a potential threat to human health. The absorption, translocation, and assimilation of nitrates in vegetables are tightly regulated by the interaction of internal cues (expression of related genes and enzyme activities) and external environmental factors. In addition to global food security, food nutritional quality is recognized as being of strategic importance by most governments and other agencies. Therefore, the identification and development of sustainable, innovative, and inexpensive approaches for increasing vegetable production and concomitantly reducing nitrate concentration are extremely important. Under controlled environmental conditions, optimal fertilizer/nutrient element management and environmental regulation play vital roles in producing vegetables with low nitrate content. In this review, we present some of the recent findings concerning the effects of environmental factors (e.g., light, temperature, and CO2) and fertilizer/nutrient solution management strategies on nitrate reduction in vegetables grown under controlled environments and discuss the possible molecular mechanisms. We also highlight several perspectives for future research to optimize the yield and nutrition quality of leafy vegetables grown in controlled environments.
Collapse
Affiliation(s)
- Zhonghua Bian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Yu Wang
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Xiaoyan Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
| | - Steven Grundy
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0QF, UK; (Y.W.); (S.G.)
| | - Qichang Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Ruifeng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.B.); (T.L.); (Q.Y.)
| |
Collapse
|