1
|
Miryeganeh M, Armitage DW. Epigenetic responses of trees to environmental stress in the context of climate change. Biol Rev Camb Philos Soc 2025; 100:131-148. [PMID: 39192567 PMCID: PMC11718629 DOI: 10.1111/brv.13132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In long-lived tree populations, when environmental change outpaces rates of evolutionary adaptation, plasticity in traits related to stress tolerance, dormancy, and dispersal may be vital for preventing extinction. While a population's genetic background partly determines its ability to adapt to a changing environment, so too do the many types of epigenetic modifications that occur within and among populations, which vary on timescales orders of magnitude faster than the emergence of new beneficial alleles. Consequently, phenotypic plasticity driven by epigenetic modification may be especially critical for sessile, long-lived organisms such as trees that must rely on this plasticity to keep pace with rapid anthropogenic environmental change. While studies have reported large effects of DNA methylation, histone modification, and non-coding RNAs on the expression of stress-tolerance genes and resulting phenotypic responses, little is known about the role of these effects in non-model plants and particularly in trees. Here, we review new findings in plant epigenetics with particular relevance to the ability of trees to adapt to or escape stressors associated with rapid climate change. Such findings include specific epigenetic influences over drought, heat, and salinity tolerance, as well as dormancy and dispersal traits. We also highlight promising findings concerning transgenerational inheritance of an epigenetic 'stress memory' in plants. As epigenetic information is becoming increasingly easy to obtain, we close by outlining ways in which ecologists can use epigenetic information better to inform population management and forecasting efforts. Understanding the molecular mechanisms behind phenotypic plasticity and stress memory in tree species offers a promising path towards a mechanistic understanding of trees' responses to climate change.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawa904‐0495Japan
| | - David W. Armitage
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawa904‐0495Japan
| |
Collapse
|
2
|
Chao S, Lu J, Li LJ, Guo HY, Xu K, Wang N, Zhao SX, Jin XW, Wang SG, Yin S, Shen W, Zhao MH, Huang GA, Sun QY, Ge ZJ. Maternal obesity may disrupt offspring metabolism by inducing oocyte genome hyper-methylation via increased DNMTs. eLife 2024; 13:RP97507. [PMID: 39642055 PMCID: PMC11623932 DOI: 10.7554/elife.97507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Maternal obesity has deleterious effects on the process of establishing oocyte DNA methylation; yet the underlying mechanisms remain unclear. Here, we found that maternal obesity disrupted the genomic methylation of oocytes using a high-fat diet (HFD) induced mouse model, at least a part of which was transmitted to the F2 oocytes and livers via females. We further examined the metabolome of serum and found that the serum concentration of melatonin was reduced. Exogenous melatonin treatment significantly reduced the hyper-methylation of HFD oocytes, and the increased expression of DNMT3a and DNMT1 in HFD oocytes was also decreased. These suggest that melatonin may play a key role in the disrupted genomic methylation in the oocytes of obese mice. To address how melatonin regulates the expression of DNMTs, the function of melatonin was inhibited or activated upon oocytes. Results revealed that melatonin may regulate the expression of DNMTs via the cAMP/PKA/CREB pathway. These results suggest that maternal obesity induces genomic methylation alterations in oocytes, which can be partly transmitted to F2 in females, and that melatonin is involved in regulating the hyper-methylation of HFD oocytes by increasing the expression of DNMTs via the cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Shuo Chao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Jun Lu
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Li-Jun Li
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Hong-Yan Guo
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Kuipeng Xu
- College of Horticulture, Qingdao Agricultural UniversityQingdaoChina
| | - Ning Wang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Shu-Xian Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Xiao-Wen Jin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Shao-Ge Wang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Ming-Hui Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Gui-An Huang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
3
|
Jo L, Nodine MD. "To remember or forget: Insights into the mechanisms of epigenetic reprogramming and priming in early plant embryos". CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102612. [PMID: 39098309 DOI: 10.1016/j.pbi.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Chromatin is dynamically modified throughout the plant life cycle to regulate gene expression in response to environmental and developmental cues. Although such epigenetic information can be inherited across generations in plants, chromatin features that regulate gene expression are typically reprogrammed during plant gametogenesis and directly after fertilization. Nevertheless, environmentally induced epigenetic marks on genes can be transmitted across generations. Moreover, epigenetic information installed on early embryonic chromatin can be stably inherited during subsequent growth and influence how plants respond to environmental conditions much later in development. Here, we review recent breakthroughs towards deciphering mechanisms underlying epigenetic reprogramming and transcriptional priming during early plant embryogenesis.
Collapse
Affiliation(s)
- Leonardo Jo
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Michael D Nodine
- Laboratory of Molecular Biology, Cluster of Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Xie H, Li X, Sun Y, Lin L, Xu K, Lu H, Cheng B, Xue S, Cheng D, Qiang S. DNA Methylation of the Autonomous Pathway Is Associated with Flowering Time Variations in Arabidopsis thaliana. Int J Mol Sci 2024; 25:7478. [PMID: 39000585 PMCID: PMC11242178 DOI: 10.3390/ijms25137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Plant flowering time is affected by endogenous and exogenous factors, but its variation patterns among different populations of a species has not been fully established. In this study, 27 Arabidopsis thaliana accessions were used to investigate the relationship between autonomous pathway gene methylation, gene expression and flowering time variation. DNA methylation analysis, RT-qPCR and transgenic verification showed that variation in the flowering time among the Arabidopsis populations ranged from 19 to 55 days and was significantly correlated with methylation of the coding regions of six upstream genes in the autonomous pathway, FLOWERING LOCUS VE (FVE), FLOWERING LOCUS Y (FY), FLOWERING LOCUS D (FLD), PEPPER (PEP), HISTONE DEACETYLASE 5 (HAD5) and Pre-mRNA Processing Protein 39-1 (PRP39-1), as well as their relative expression levels. The expression of FVE and FVE(CS) was modified separately through degenerate codon substitution of cytosine and led to earlier flowering of transgenic plants by 8 days and 25 days, respectively. An accurate determination of methylated sites in FVE and FVE(CS) among those transgenic plants and the recipient Col-0 verified the close relationship between the number of methylation sites, expression and flowering time. Our findings suggest that the methylation variation of these six key upstream transcription factors was associated with the gene expression level of the autonomous pathway and flowering time in Arabidopsis. The FVE(CS) and FVE genes in transgenic plants tended to be hypermethylated, which could be a protective mechanism for plants. However, modification of gene sequences through degenerate codon substitution to reduce cytosine can avoid hypermethylated transferred genes in transgenic plants. It may be possible to partially regulate the flowering of plants by modified trans-epigenetic technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sheng Qiang
- Weed Research Laboratory, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; (H.X.); (X.L.); (Y.S.); (L.L.); (K.X.); (H.L.); (B.C.); (S.X.); (D.C.)
| |
Collapse
|
5
|
Bajpai SK, Nisha, Pandita S, Bahadur A, Verma PC. Recent advancements in the role of histone acetylation dynamics to improve stress responses in plants. Mol Biol Rep 2024; 51:413. [PMID: 38472555 DOI: 10.1007/s11033-024-09300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Collapse
Affiliation(s)
- Sanjay Kumar Bajpai
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nisha
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shivali Pandita
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Anand Bahadur
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Fresnedo-Ramírez J, Anderson ES, D'Amico-Willman K, Gradziel TM. A review of plant epigenetics through the lens of almond. THE PLANT GENOME 2023; 16:e20367. [PMID: 37434488 DOI: 10.1002/tpg2.20367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023]
Abstract
While genomes were originally seen as static entities that stably held and organized genetic information, recent advances in sequencing have uncovered the dynamic nature of the genome. New conceptualizations of the genome include complex relationships between the environment and gene expression that must be maintained, regulated, and sometimes even transmitted over generations. The discovery of epigenetic mechanisms has allowed researchers to understand how traits like phenology, plasticity, and fitness can be altered without changing the underlying deoxyribonucleic acid sequence. While many discoveries were first made in animal systems, plants provide a particularly complex set of epigenetic mechanisms due to unique aspects of their biology and interactions with human selective breeding and cultivation. In the plant kingdom, annual plants have received the most attention; however, perennial plants endure and respond to their environment and human management in distinct ways. Perennials include crops such as almond, for which epigenetic effects have long been linked to phenomena and even considered relevant for breeding. Recent discoveries have elucidated epigenetic phenomena that influence traits such as dormancy and self-compatibility, as well as disorders like noninfectious bud failure, which are known to be triggered by the environment and influenced by inherent aspects of the plant. Thus, epigenetics represents fertile ground to further understand almond biology and production and optimize its breeding. Here, we provide our current understanding of epigenetic regulation in plants and use almond as an example of how advances in epigenetics research can be used to understand biological fitness and agricultural performance in crop plants.
Collapse
Affiliation(s)
| | - Elizabeth S Anderson
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, USA
| | | | - Thomas M Gradziel
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
7
|
Rehman S, Ahmad Z, Ramakrishnan M, Kalendar R, Zhuge Q. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Funct Integr Genomics 2023; 23:298. [PMID: 37700098 DOI: 10.1007/s10142-023-01219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions. DNA methylation and post-translational modifications of histone proteins influence gene expression during plant developmental stages and under stress conditions, including cold and heat stress. While short-term modifications are common, some modifications may persist and result in stress memory that can be inherited by subsequent generations. Understanding the mechanisms of epigenomes responding to stress and the factors that trigger stress memory is crucial for developing climate-resilient agriculture, but such an integrated view is currently limited. This review focuses on the plant epigenetic stress memory during cold and heat stress. It also discusses the potential of machine learning to modify stress memory through epigenetics to develop climate-resilient crops.
Collapse
Affiliation(s)
- Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland.
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China.
| |
Collapse
|
8
|
Švorcová J. Transgenerational Epigenetic Inheritance of Traumatic Experience in Mammals. Genes (Basel) 2023; 14:120. [PMID: 36672861 PMCID: PMC9859285 DOI: 10.3390/genes14010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years, we have seen an increasing amount of evidence pointing to the existence of a non-genetic heredity of the effects of events such as separation from parents, threat to life, or other traumatising experiences such as famine. This heredity is often mediated by epigenetic regulations of gene expression and may be transferred even across several generations. In this review, we focus on studies which involve transgenerational epigenetic inheritance (TEI), with a short detour to intergenerational studies focused on the inheritance of trauma or stressful experiences. The reviewed studies show a plethora of universal changes which stress exposure initiates on multiple levels of organisation ranging from hormonal production and the hypothalamic-pituitary-adrenal (HPA) axis modulation all the way to cognition, behaviour, or propensity to certain psychiatric or metabolic disorders. This review will also provide an overview of relevant methodology and difficulties linked to implementation of epigenetic studies. A better understanding of these processes may help us elucidate the evolutionary pathways which are at work in the course of emergence of the diseases and disorders associated with exposure to trauma, either direct or in a previous generation.
Collapse
Affiliation(s)
- Jana Švorcová
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
9
|
Buerstmayr H, Dreccer MF, Miladinović D, Qiu L, Rajcan I, Reif J, Varshney RK, Vollmann J. Plant breeding for increased sustainability: challenges, opportunities and progress. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3679-3683. [PMID: 36355071 DOI: 10.1007/s00122-022-04238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Hermann Buerstmayr
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria.
| | - Maria Fernanda Dreccer
- Commonwealth Scientific and Industrial Research Organisation - Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, National Institute of Republic of Serbia, Novi Sad, Serbia
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Jochen Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Stadt Seeland, Germany
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Australia
| | - Johann Vollmann
- University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
10
|
Rajpal VR, Rathore P, Mehta S, Wadhwa N, Yadav P, Berry E, Goel S, Bhat V, Raina SN. Epigenetic variation: A major player in facilitating plant fitness under changing environmental conditions. Front Cell Dev Biol 2022; 10:1020958. [PMID: 36340045 PMCID: PMC9628676 DOI: 10.3389/fcell.2022.1020958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Recent research in plant epigenetics has increased our understanding of how epigenetic variability can contribute to adaptive phenotypic plasticity in natural populations. Studies show that environmental changes induce epigenetic switches either independently or in complementation with the genetic variation. Although most of the induced epigenetic variability gets reset between generations and is short-lived, some variation becomes transgenerational and results in heritable phenotypic traits. The short-term epigenetic responses provide the first tier of transient plasticity required for local adaptations while transgenerational epigenetic changes contribute to stress memory and help the plants respond better to recurring or long-term stresses. These transgenerational epigenetic variations translate into an additional tier of diversity which results in stable epialleles. In recent years, studies have been conducted on epigenetic variation in natural populations related to various biological processes, ecological factors, communities, and habitats. With the advent of advanced NGS-based technologies, epigenetic studies targeting plants in diverse environments have increased manifold to enhance our understanding of epigenetic responses to environmental stimuli in facilitating plant fitness. Taking all points together in a frame, the present review is a compilation of present-day knowledge and understanding of the role of epigenetics and its fitness benefits in diverse ecological systems in natural populations.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | | | - Sahil Mehta
- School of Agricultural Sciences, K.R. Mangalam University, Gurugram, Haryana, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Eapsa Berry
- Maharishi Kanad Bhawan, Delhi School of Climate Change and Sustainability, University of Delhi, Delhi, India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Vishnu Bhat
- Department of Botany, University of Delhi, Delhi, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- *Correspondence: Vijay Rani Rajpal, , ; Shailendra Goel, ; Vishnu Bhat, ; Soom Nath Raina,
| |
Collapse
|
11
|
Lempe J, Flachowsky H, Peil A. Exploring epigenetic variation for breeding climate resilient apple crops. PHYSIOLOGIA PLANTARUM 2022; 174:e13782. [PMID: 36151889 DOI: 10.1111/ppl.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Climate change with warmer winter and spring temperatures poses major challenges to apple fruit production. Long-term observations confirm the trend toward earlier flowering, which leads to an increased risk of frost damage. New breeding strategies are needed to generate cultivars that are able to stay largely unaffected by warmer temperatures. Recently, epigenetic variation has been proposed as a new resource for breeding purposes and seems suitable in principle for apple breeding. However, to serve as a new resource for apple breeding, it is necessary to clarify whether epigenetic variation can be induced by the environment, whether it can create phenotypic variation, and whether this variation is stable across generations. In this brief review, we summarize the impact of climate change on the timing of apple phenology, highlight how epigenetic variation can potentially support novel breeding strategies, and point out important features of epigenetic variation that are required for its application in breeding programs.
Collapse
Affiliation(s)
- Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Andreas Peil
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
12
|
A review on CRISPR/Cas-based epigenetic regulation in plants. Int J Biol Macromol 2022; 219:1261-1271. [DOI: 10.1016/j.ijbiomac.2022.08.182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
|
13
|
Tirot L, Bonnet DMV, Jullien PE. DNA Methyltransferase 3 (MET3) is regulated by Polycomb group complex during Arabidopsis endosperm development. PLANT REPRODUCTION 2022; 35:141-151. [PMID: 35088155 PMCID: PMC9110472 DOI: 10.1007/s00497-021-00436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Complex epigenetic changes occur during plant reproduction. These regulations ensure the proper transmission of epigenetic information as well as allowing for zygotic totipotency. In Arabidopsis, the main DNA methyltransferase is called MET1 and is responsible for methylating cytosine in the CG context. The Arabidopsis genome encodes for three additional reproduction-specific homologs of MET1, namely MET2a, MET2b and MET3. In this paper, we show that the DNA methyltransferase MET3 is expressed in the seed endosperm and its expression is later restricted to the chalazal endosperm. MET3 is biallelically expressed in the endosperm but displays a paternal expression bias. We found that MET3 expression is regulated by the Polycomb complex proteins FIE and MSI1. Seed development is not impaired in met3 mutant, and we could not observe significant transcriptional changes in met3 mutant. MET3 might regulates gene expression in a Polycomb mutant background suggesting a further complexification of the interplay between H3K27me3 and DNA methylation in the seed endosperm. KEY MESSAGE: The DNA METHYLTRANSFERASE MET3 is controlled by Polycomb group complex during endosperm development.
Collapse
Affiliation(s)
- Louis Tirot
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Diane M V Bonnet
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | |
Collapse
|
14
|
Can Forest Trees Cope with Climate Change?-Effects of DNA Methylation on Gene Expression and Adaptation to Environmental Change. Int J Mol Sci 2021; 22:ijms222413524. [PMID: 34948318 PMCID: PMC8703565 DOI: 10.3390/ijms222413524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, including chromatin modifications and DNA methylation, play key roles in regulating gene expression in both plants and animals. Transmission of epigenetic markers is important for some genes to maintain specific expression patterns and preserve the status quo of the cell. This article provides a review of existing research and the current state of knowledge about DNA methylation in trees in the context of global climate change, along with references to the potential of epigenome editing tools and the possibility of their use for forest tree research. Epigenetic modifications, including DNA methylation, are involved in evolutionary processes, developmental processes, and environmental interactions. Thus, the implications of epigenetics are important for adaptation and phenotypic plasticity because they provide the potential for tree conservation in forest ecosystems exposed to adverse conditions resulting from global warming and regional climate fluctuations.
Collapse
|
15
|
Singh D, Chaudhary P, Taunk J, Kumar Singh C, Sharma S, Singh VJ, Singh D, Chinnusamy V, Yadav R, Pal M. Plant epigenomics for extenuation of abiotic stresses: challenges and future perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6836-6855. [PMID: 34302734 DOI: 10.1093/jxb/erab337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Climate change has escalated abiotic stresses, leading to adverse effects on plant growth and development, eventually having deleterious consequences on crop productivity. Environmental stresses induce epigenetic changes, namely cytosine DNA methylation and histone post-translational modifications, thus altering chromatin structure and gene expression. Stable epigenetic changes are inheritable across generations and this enables plants to adapt to environmental changes (epipriming). Hence, epigenomes serve as a good source of additional tier of variability for development of climate-smart crops. Epigenetic resources such as epialleles, epigenetic recombinant inbred lines (epiRILs), epigenetic quantitative trait loci (epiQTLs), and epigenetic hybrids (epihybrids) can be utilized in epibreeding for improving stress tolerance of crops. Epigenome engineering is also gaining momentum for developing sustainable epimarks associated with important agronomic traits. Different epigenome editing tools are available for creating, erasing, and reading such epigenetic codes in plant genomes. However, epigenome editing is still understudied in plants due to its complex nature. Epigenetic interventions such as epi-fingerprinting can be exploited in the near future for health and quality assessment of crops under stress conditions. Keeping in view the challenges and opportunities associated with this important technology, the present review intends to enhance understanding of stress-induced epigenetic changes in plants and its prospects for development of climate-ready crops.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Priya Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Jyoti Taunk
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chandan Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Shristi Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Vikram Jeet Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Deepti Singh
- Department of Botany, Meerut College, Meerut, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi,India
| | - Madan Pal
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
16
|
In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. PLANTS 2021; 10:plants10061096. [PMID: 34070712 PMCID: PMC8227271 DOI: 10.3390/plants10061096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Epigenetics involves the heritable changes in patterns of gene expression determined by developmental and abiotic stresses, i.e., drought, cold, salinity, trace metals, and heat. Gene expression is driven by changes in DNA bases, histone proteins, the biogenesis of ncRNA, and changes in the nucleotide sequence. To cope with abiotic stresses, plants adopt certain changes driven by a sophisticated biological system. DNA methylation is a primary mechanism for epigenetic variation, which can induce phenotypic alterations in plants under stress. Some of the stress-driven changes in plants are temporary, while some modifications may be stable and inheritable to the next generations to allow them to cope with such extreme stress challenges in the future. In this review, we discuss the pivotal role of epigenetically developed phenotypic characteristics in plants as an evolutionary process participating in adaptation and tolerance responses to abiotic and biotic stresses that alter their growth and development. We emphasize the molecular process underlying changes in DNA methylation, differential variation for different species, the roles of non-coding RNAs in epigenetic modification, techniques for studying DNA methylation, and its role in crop improvement in tolerance to abiotic stress (drought, salinity, and heat). We summarize DNA methylation as a significant future research priority for tailoring crops according to various challenging environmental issues.
Collapse
|
17
|
Tian W, Wang R, Bo C, Yu Y, Zhang Y, Shin GI, Kim WY, Wang L. SDC mediates DNA methylation-controlled clock pace by interacting with ZTL in Arabidopsis. Nucleic Acids Res 2021; 49:3764-3780. [PMID: 33675668 PMCID: PMC8053106 DOI: 10.1093/nar/gkab128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Molecular bases of eukaryotic circadian clocks mainly rely on transcriptional-translational feedback loops (TTFLs), while epigenetic codes also play critical roles in fine-tuning circadian rhythms. However, unlike histone modification codes that play extensive and well-known roles in the regulation of circadian clocks, whether DNA methylation (5mC) can affect the circadian clock, and the associated underlying molecular mechanisms, remains largely unexplored in many organisms. Here we demonstrate that global genome DNA hypomethylation can significantly lengthen the circadian period of Arabidopsis. Transcriptomic and genetic evidence demonstrate that SUPPRESSOR OF drm1 drm2 cmt3 (SDC), encoding an F-box containing protein, is required for the DNA hypomethylation-tuned circadian clock. Moreover, SDC can physically interact with another F-box containing protein ZEITLUPE (ZTL) to diminish its accumulation. Genetic analysis further revealed that ZTL and its substrate TIMING OF CAB EXPRESSION 1 (TOC1) likely act downstream of DNA methyltransferases to control circadian rhythm. Together, our findings support the notion that DNA methylation is important to maintain proper circadian pace in Arabidopsis, and further established that SDC links DNA hypomethylation with a proteolytic cascade to assist in tuning the circadian clock.
Collapse
Affiliation(s)
- Wenwen Tian
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruyi Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Cunpei Bo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21Plus), Research Institute of Life Sciences (RILS) and Institute of Agricultural and Life Science(IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Research Institute of Life Sciences (RILS) and Institute of Agricultural and Life Science(IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
18
|
Epigenetic Mechanisms of Plant Adaptation to Biotic and Abiotic Stresses. Int J Mol Sci 2020; 21:ijms21207457. [PMID: 33050358 PMCID: PMC7589735 DOI: 10.3390/ijms21207457] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 01/17/2023] Open
Abstract
Unlike animals, plants are immobile and could not actively escape the effects of aggressive environmental factors, such as pathogenic microorganisms, insect pests, parasitic plants, extreme temperatures, drought, and many others. To counteract these unfavorable encounters, plants have evolved very high phenotypic plasticity. In a rapidly changing environment, adaptive phenotypic changes often occur in time frames that are too short for the natural selection of adaptive mutations. Probably, some kind of epigenetic variability underlines environmental adaptation in these cases. Indeed, isogenic plants often have quite variable phenotypes in different habitats. There are examples of successful “invasions” of relatively small and genetically homogenous plant populations into entirely new habitats. The unique capability of quick environmental adaptation appears to be due to a high tendency to transmit epigenetic changes between plant generations. Multiple studies show that epigenetic memory serves as a mechanism of plant adaptation to a rapidly changing environment and, in particular, to aggressive biotic and abiotic stresses. In wild nature, this mechanism underlies, to a very significant extent, plant capability to live in different habitats and endure drastic environmental changes. In agriculture, a deep understanding of this mechanism could serve to elaborate more effective and safe approaches to plant protection.
Collapse
|
19
|
Genetic and Methylome Variation in Turkish Brachypodium Distachyon Accessions Differentiate Two Geographically Distinct Subpopulations. Int J Mol Sci 2020; 21:ijms21186700. [PMID: 32933168 PMCID: PMC7556024 DOI: 10.3390/ijms21186700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Brachypodium distachyon (Brachypodium) is a non-domesticated model grass species that can be used to test if variation in genetic sequence or methylation are linked to environmental differences. To assess this, we collected seeds from 12 sites within five climatically distinct regions of Turkey. Seeds from each region were grown under standardized growth conditions in the UK to preserve methylated sequence variation. At six weeks following germination, leaves were sampled and assessed for genomic and DNA methylation variation. In a follow-up experiment, phenomic approaches were used to describe plant growth and drought responses. Genome sequencing and population structure analysis suggested three ancestral clusters across the Mediterranean, two of which were geographically separated in Turkey into coastal and central subpopulations. Phenotypic analyses showed that the coastal subpopulation tended to exhibit relatively delayed flowering and the central, increased drought tolerance as indicated by reduced yellowing. Genome-wide methylation analyses in GpC, CHG and CHH contexts also showed variation which aligned with the separation into coastal and central subpopulations. The climate niche modelling of both subpopulations showed a significant influence from the “Precipitation in the Driest Quarter” on the central subpopulation and “Temperature of the Coldest Month” on the coastal subpopulation. Our work demonstrates genetic diversity and variation in DNA methylation in Turkish accessions of Brachypodium that may be associated with climate variables and the molecular basis of which will feature in ongoing analyses.
Collapse
|
20
|
Sasaki E, Kawakatsu T, Ecker JR, Nordborg M. Common alleles of CMT2 and NRPE1 are major determinants of CHH methylation variation in Arabidopsis thaliana. PLoS Genet 2019; 15:e1008492. [PMID: 31887137 PMCID: PMC6953882 DOI: 10.1371/journal.pgen.1008492] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/10/2020] [Accepted: 12/03/2019] [Indexed: 01/05/2023] Open
Abstract
DNA cytosine methylation is an epigenetic mark associated with silencing of transposable elements (TEs) and heterochromatin formation. In plants, it occurs in three sequence contexts: CG, CHG, and CHH (where H is A, T, or C). The latter does not allow direct inheritance of methylation during DNA replication due to lack of symmetry, and methylation must therefore be re-established every cell generation. Genome-wide association studies (GWAS) have previously shown that CMT2 and NRPE1 are major determinants of genome-wide patterns of TE CHH methylation. Here we instead focus on CHH methylation of individual TEs and TE-families, allowing us to identify the pathways involved in CHH methylation simply from natural variation and confirm the associations by comparing them with mutant phenotypes. Methylation at TEs targeted by the RNA-directed DNA methylation (RdDM) pathway is unaffected by CMT2 variation, but is strongly affected by variation at NRPE1, which is largely responsible for the longitudinal cline in this phenotype. In contrast, CMT2-targeted TEs are affected by both loci, which jointly explain 7.3% of the phenotypic variation (13.2% of total genetic effects). There is no longitudinal pattern for this phenotype, however, because the geographic patterns appear to compensate for each other in a pattern suggestive of stabilizing selection. DNA methylation is a major component of transposon silencing, and essential for genomic integrity. Recent studies revealed large-scale geographic variation as well as the existence of major trans-acting polymorphisms that partly explained this variation. In this study, we re-analyze previously published data (The 1001 Epigenomes), focusing on CHH methylation patterns of individual TEs and TE families rather than on genome-wide averages (as was done in previous studies). GWAS of the patterns reveals the underlying regulatory networks, and allowed us to comprehensively characterize trans-regulation of CHH methylation and its role in the striking geographic pattern for this phenotype.
Collapse
Affiliation(s)
- Eriko Sasaki
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Taiji Kawakatsu
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization. Tsukuba, Ibaraki, Japan
| | - Joseph R. Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
- * E-mail:
| |
Collapse
|
21
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
22
|
Advances in metabolic flux analysis toward genome-scale profiling of higher organisms. Biosci Rep 2018; 38:BSR20170224. [PMID: 30341247 PMCID: PMC6250807 DOI: 10.1042/bsr20170224] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 10/06/2018] [Accepted: 10/14/2018] [Indexed: 11/25/2022] Open
Abstract
Methodological and technological advances have recently paved the way for metabolic flux profiling in higher organisms, like plants. However, in comparison with omics technologies, flux profiling has yet to provide comprehensive differential flux maps at a genome-scale and in different cell types, tissues, and organs. Here we highlight the recent advances in technologies to gather metabolic labeling patterns and flux profiling approaches. We provide an opinion of how recent local flux profiling approaches can be used in conjunction with the constraint-based modeling framework to arrive at genome-scale flux maps. In addition, we point at approaches which use metabolomics data without introduction of label to predict either non-steady state fluxes in a time-series experiment or flux changes in different experimental scenarios. The combination of these developments allows an experimentally feasible approach for flux-based large-scale systems biology studies.
Collapse
|
23
|
Shen Y, Zhang J, Liu Y, Liu S, Liu Z, Duan Z, Wang Z, Zhu B, Guo YL, Tian Z. DNA methylation footprints during soybean domestication and improvement. Genome Biol 2018; 19:128. [PMID: 30201012 PMCID: PMC6130073 DOI: 10.1186/s13059-018-1516-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In addition to genetic variation, epigenetic variation plays an important role in determining various biological processes. The importance of natural genetic variation to crop domestication and improvement has been widely investigated. However, the contribution of epigenetic variation in crop domestication at population level has rarely been explored. RESULTS To understand the impact of epigenetics on crop domestication, we investigate the variation of DNA methylation during soybean domestication and improvement by whole-genome bisulfite sequencing of 45 soybean accessions, including wild soybeans, landraces, and cultivars. Through methylomic analysis, we identify 5412 differentially methylated regions (DMRs). These DMRs exhibit characters distinct from those of genetically selected regions. In particular, they have significantly higher genetic diversity. Association analyses suggest only 22.54% of DMRs can be explained by local genetic variations. Intriguingly, genes in the DMRs that are not associated with any genetic variation are enriched in carbohydrate metabolism pathways. CONCLUSIONS This study provides a valuable map of DNA methylation across diverse accessions and dissects the relationship between DNA methylation variation and genetic variation during soybean domestication, thus expanding our understanding of soybean domestication and improvement.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| |
Collapse
|
24
|
Comparison of the Relative Potential for Epigenetic and Genetic Variation To Contribute to Trait Stability. G3-GENES GENOMES GENETICS 2018; 8:1733-1746. [PMID: 29563187 PMCID: PMC5940164 DOI: 10.1534/g3.118.200127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The theoretical ability of epigenetic variation to influence the heritable variation of complex traits is gaining traction in the study of adaptation. This theory posits that epigenetic marks can control adaptive phenotypes but the relative potential of epigenetic variation in comparison to genetic variation in these traits is not presently understood. To compare the potential of epigenetic and genetic variation in adaptive traits, we analyzed the influence of DNA methylation variation on the accumulation of chemical defense compounds glucosinolates from the order Brassicales. Several decades of work on glucosinolates has generated extensive knowledge about their synthesis, regulation, genetic variation and contribution to fitness establishing this pathway as a model pathway for complex adaptive traits. Using high-throughput phenotyping with a randomized block design of ddm1 derived Arabidopsis thaliana epigenetic Recombinant Inbred Lines, we measured the correlation between DNA methylation variation and mean glucosinolate variation and within line stochastic variation. Using this information, we identified epigenetic Quantitative Trait Loci that contained specific Differentially Methylated Regions associated with glucosinolate traits. This showed that variation in DNA methylation correlates both with levels and variance of glucosinolates and flowering time with trait-specific loci. By conducting a meta-analysis comparing the results to different genetically variable populations, we conclude that the influence of DNA methylation variation on these adaptive traits is much lower than the corresponding impact of standing genetic variation. As such, selective pressure on these traits should mainly affect standing genetic variation to lead to adaptation.
Collapse
|
25
|
Ma K, Sun L, Cheng T, Pan H, Wang J, Zhang Q. Epigenetic Variance, Performing Cooperative Structure with Genetics, Is Associated with Leaf Shape Traits in Widely Distributed Populations of Ornamental Tree Prunus mume. FRONTIERS IN PLANT SCIENCE 2018; 9:41. [PMID: 29441078 PMCID: PMC5797549 DOI: 10.3389/fpls.2018.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/09/2018] [Indexed: 05/23/2023]
Abstract
Increasing evidence shows that epigenetics plays an important role in phenotypic variance. However, little is known about epigenetic variation in the important ornamental tree Prunus mume. We used amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques, and association analysis and sequencing to investigate epigenetic variation and its relationships with genetic variance, environment factors, and traits. By performing leaf sampling, the relative total methylation level (29.80%) was detected in 96 accessions of P. mume. And the relative hemi-methylation level (15.77%) was higher than the relative full methylation level (14.03%). The epigenetic diversity (I∗ = 0.575, h∗ = 0.393) was higher than the genetic diversity (I = 0.484, h = 0.319). The cultivated population displayed greater epigenetic diversity than the wild populations in both southwest and southeast China. We found that epigenetic variance and genetic variance, and environmental factors performed cooperative structures, respectively. In particular, leaf length, width and area were positively correlated with relative full methylation level and total methylation level, indicating that the DNA methylation level played a role in trait variation. In total, 203 AFLP and 423 MSAP associated markers were detected and 68 of them were sequenced. Homologous analysis and functional prediction suggested that the candidate marker-linked genes were essential for leaf morphology development and metabolism, implying that these markers play critical roles in the establishment of leaf length, width, area, and ratio of length to width.
Collapse
Affiliation(s)
- Kaifeng Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
26
|
Tamiru M, Hardcastle TJ, Lewsey MG. Regulation of genome-wide DNA methylation by mobile small RNAs. THE NEW PHYTOLOGIST 2018; 217:540-546. [PMID: 29105762 DOI: 10.1111/nph.14874] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/20/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 540 I. Introduction 540 II. There are different types of sRNA mobility 541 III. Mechanisms of sRNA movement 541 IV. Long-distance, shoot-root, mobile siRNAs influence DNA methylation in recipient tissues 541 V. Classes of interactions between shoot-root mobile siRNAs and DNA methylation 542 VI. Loci targeted directly and indirectly by shoot-root mobile siRNAs are associated with different histone modifications 543 VII. Is mobile siRNA-regulated DNA methylation important in specific tissues or under specific conditions? 543 VIII. Mobile sRNAs can be used to modify plant traits 544 IX. Conclusions 544 Acknowledgements 544 References 544 SUMMARY: RNA-directed DNA methylation (RdDM) at cytosine residues regulates gene expression, silences transposable elements and influences genome stability. The mechanisms responsible for RdDM are guided to target loci by small RNAs (sRNAs) that can move within plants cell to cell and long distance. Here we discuss recent advances in the understanding of interactions between mobile sRNAs and DNA methylation. We describe the mechanisms of sRNA movement, the differences between known classes of mobile sRNA-DNA methylation interactions and the limits of current knowledge. Finally, we discuss potential applications of mobile sRNAs in modifying plant traits.
Collapse
Affiliation(s)
- Muluneh Tamiru
- Centre for AgriBioscience, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Thomas J Hardcastle
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Mathew G Lewsey
- Centre for AgriBioscience, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Vic., 3086, Australia
| |
Collapse
|
27
|
|
28
|
Comparative Analysis of Genome Wide DNA Methylation Profiles for the Genic Male Sterile Cabbage Line 01-20S and Its Maintainer Line. Genes (Basel) 2017. [PMID: 28621722 PMCID: PMC5485523 DOI: 10.3390/genes8060159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Methylation modifications play an important role in multiple biological processes. Several studies have reported altered methylation patterns in male sterile plants such as rice and wheat, but little is known about the global methylation profiles and their possible roles in the cabbage (Brassicaoleracea) male sterile line. In this study, single-base-resolution bisulfite sequencing (BS-Seq) was adopted to identify the pattern and degree of cytosine methylation in the male sterile line 01-20S and its near-isogenic fertile line 01-20F. Similar methylation patterns were profiled, with some changes observed in local positions. In total, 505 differentially methylated genomic regions (DMRs) and 106 DMR-associated genes were detected. Nine genes related to pollen development were discovered and further validated by a quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Among these, four were downregulated in 01-20S. In particular, Bol039180 (an invertase/pectin methylesterase inhibitor family protein) is likely involved in pectin degradation, and might play an important role in the pollen separation defects of 01-20S. This study facilitates a better understanding of DNA methylation alterations and their possible roles in genic male sterility in cabbages.
Collapse
|
29
|
Araki KS, Kubo T, Kudoh H. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population. PLoS One 2017; 12:e0178145. [PMID: 28542457 PMCID: PMC5439711 DOI: 10.1371/journal.pone.0178145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/08/2017] [Indexed: 12/21/2022] Open
Abstract
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Collapse
Affiliation(s)
- Kiwako S. Araki
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuya Kubo
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| |
Collapse
|
30
|
Ingouff M, Selles B, Michaud C, Vu TM, Berger F, Schorn AJ, Autran D, Van Durme M, Nowack MK, Martienssen RA, Grimanelli D. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev 2017; 31:72-83. [PMID: 28115468 PMCID: PMC5287115 DOI: 10.1101/gad.289397.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Mathieu Ingouff
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Benjamin Selles
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Caroline Michaud
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Thiet M Vu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Andrea J Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Daphné Autran
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Robert A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Daniel Grimanelli
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
31
|
Kang YJ, Bae A, Shim S, Lee T, Lee J, Satyawan D, Kim MY, Lee SH. Genome-wide DNA methylation profile in mungbean. Sci Rep 2017; 7:40503. [PMID: 28084412 PMCID: PMC5233969 DOI: 10.1038/srep40503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022] Open
Abstract
DNA methylation on cytosine residues is known to affect gene expression and is potentially responsible for the phenotypic variations among different crop cultivars. Here, we present the whole-genome DNA methylation profiles and assess the potential effects of single nucleotide polymorphisms (SNPs) for two mungbean cultivars, Sunhwanogdu (VC1973A) and Kyunggijaerae#5 (V2984). By measuring the DNA methylation levels in leaf tissue with the bisulfite sequencing (BSseq) approach, we show both the frequencies of the various types of DNA methylation and the distribution of weighted gene methylation levels. SNPs that cause nucleotide changes from/to CHH – where C is cytosine and H is any other nucleotide – were found to affect DNA methylation status in VC1973A and V2984. In order to better understand the correlation between gene expression and DNA methylation levels, we surveyed gene expression in leaf tissues of VC1973A and V2984 using RNAseq. Transcript expressions of paralogous genes were controlled by DNA methylation within the VC1973A genome. Moreover, genes that were differentially expressed between the two cultivars showed distinct DNA methylation patterns. Our mungbean genome-wide methylation profiles will be valuable resources for understanding the phenotypic variations between different cultivars, as well as for molecular breeding.
Collapse
Affiliation(s)
- Yang Jae Kang
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Ahra Bae
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sangrea Shim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Jayern Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Dani Satyawan
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.,Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Bogor 16111, Indonesia
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
32
|
Kawakatsu T, Huang SSC, Jupe F, Sasaki E, Schmitz RJ, Urich MA, Castanon R, Nery JR, Barragan C, He Y, Chen H, Dubin M, Lee CR, Wang C, Bemm F, Becker C, O'Neil R, O'Malley RC, Quarless DX, Schork NJ, Weigel D, Nordborg M, Ecker JR. Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions. Cell 2017; 166:492-505. [PMID: 27419873 PMCID: PMC5172462 DOI: 10.1016/j.cell.2016.06.044] [Citation(s) in RCA: 445] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022]
Abstract
The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Shao-Shan Carol Huang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Florian Jupe
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eriko Sasaki
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Robert J Schmitz
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Mark A Urich
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rosa Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Cesar Barragan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yupeng He
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Manu Dubin
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Cheng-Ruei Lee
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Congmao Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, PR China
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Claude Becker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ryan O'Neil
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ronan C O'Malley
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
|
34
|
Xu J, Tanino KK, Horner KN, Robinson SJ. Quantitative trait variation is revealed in a novel hypomethylated population of woodland strawberry (Fragaria vesca). BMC PLANT BIOLOGY 2016; 16:240. [PMID: 27809774 PMCID: PMC5095969 DOI: 10.1186/s12870-016-0936-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/27/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Phenotypic variation is determined by a combination of genotype, environment and their interactions. The realization that allelic diversity can be both genetic and epigenetic allows the environmental component to be further separated. Partitioning phenotypic variation observed among inbred lines with an altered epigenome can allow the epigenetic component controlling quantitative traits to be estimated. To assess the contribution of epialleles on phenotypic variation and determine the fidelity with which epialleles are inherited, we have developed a novel hypomethylated population of strawberry (2n = 2x = 14) using 5-azacytidine from which individuals with altered phenotypes can be identified, selected and characterized. RESULTS The hypomethylated population was generated using an inbred strawberry population in the F. vesca ssp. vesca accession Hawaii 4. Analysis of whole genome sequence data from control and hypomethylated lines indicate that 5-azacytidine exposure does not increase SNP above background levels. The populations contained only Hawaii 4 alleles, removing introgression of alternate F. vesca alleles as a potential source of variation. Although genome sequencing and genetic marker data are unable to rule out 5-azacytidine induced chromosomal rearrangements as a potential source of the trait variation observed, none were detected in our survey. Quantitative trait variation focusing on flowering time and rosette diameter was scored in control and treated populations where expanded levels of variation were observed among the hypomethylated lines. Methylation sensitive molecular markers indicated that 5-azacytidine induced alterations in DNA methylation patterns and inheritance of methylation patterns were confirmed by bisulfite sequencing of targeted regions. It is possible that methylation polymorphisms might underlie or have induced genetic changes underlying the observable differences in quantitative phenotypes. CONCLUSIONS This population developed in a uniform genetic background provides a resource for the discovery of new variation controlling quantitative traits. Genome sequence analysis indicates that 5-azacytidine did not induce point mutations and the induced variation is largely restricted to DNA methylation. Using this resource, we have identified new variation and demonstrated the inheritance of both variant trait and methylation patterns. Although direct associations remain to be determined, these data suggest epigenetic variation might be subject to selection.
Collapse
Affiliation(s)
- Jihua Xu
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan Canada
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan Canada
| | - Karen K. Tanino
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan Canada
| | - Kyla N. Horner
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan Canada
| | - Stephen J. Robinson
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan Canada
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan Canada
| |
Collapse
|
35
|
Schalk C, Drevensek S, Kramdi A, Kassam M, Ahmed I, Cognat V, Graindorge S, Bergdoll M, Baumberger N, Heintz D, Bowler C, Genschik P, Barneche F, Colot V, Molinier J. DNA DAMAGE BINDING PROTEIN2 Shapes the DNA Methylation Landscape. THE PLANT CELL 2016; 28:2043-2059. [PMID: 27531226 PMCID: PMC5059809 DOI: 10.1105/tpc.16.00474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 05/22/2023]
Abstract
In eukaryotes, DNA repair pathways help to maintain genome integrity and epigenomic patterns. However, the factors at the nexus of DNA repair and chromatin modification/remodeling remain poorly characterized. Here, we uncover a previously unrecognized interplay between the DNA repair factor DNA DAMAGE BINDING PROTEIN2 (DDB2) and the DNA methylation machinery in Arabidopsis thaliana Loss-of-function mutation in DDB2 leads to genome-wide DNA methylation alterations. Genetic and biochemical evidence indicate that at many repeat loci, DDB2 influences de novo DNA methylation by interacting with ARGONAUTE4 and by controlling the local abundance of 24-nucleotide short interfering RNAs (siRNAs). We also show that DDB2 regulates active DNA demethylation mediated by REPRESSOR OF SILENCING1 and DEMETER LIKE3. Together, these findings reveal a role for the DNA repair factor DDB2 in shaping the Arabidopsis DNA methylation landscape in the absence of applied genotoxic stress.
Collapse
Affiliation(s)
- Catherine Schalk
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Stéphanie Drevensek
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Amira Kramdi
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Mohamed Kassam
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Ikhlak Ahmed
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Valérie Cognat
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Fredy Barneche
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Vincent Colot
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Jean Molinier
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| |
Collapse
|
36
|
Taudt A, Colomé-Tatché M, Johannes F. Genetic sources of population epigenomic variation. Nat Rev Genet 2016; 17:319-32. [DOI: 10.1038/nrg.2016.45] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Yang M, Wang X, Huang H, Ren D, Su Y, Zhu P, Zhu D, Fan L, Chen L, He G, Deng XW. Natural variation of H3K27me3 modification in two Arabidopsis accessions and their hybrid. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:466-74. [PMID: 26497803 DOI: 10.1111/jipb.12443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 05/25/2023]
Abstract
Histone modifications affect gene expression, but the mechanism and biological consequence of natural variation in histone modifications remain unclear. Here, we generated genome-wide integrated maps of H3K27me3 modification and transcriptome for Col, C24 and their F1 hybrid. A total of 1,828 genomic regions showing variation in H3K27me3 modification between Col and C24 were identified, most of which were associated with genic regions. Natural variation of H3K27me3 modification between parents could result in allelic bias of H3K27me3 in hybrids. Furthermore, we found that H3K27me3 variation between Col and C24 was negatively correlated with gene expression differences between two accessions, especially with those arising from the cis-effect. Importantly, mutation of CLF, an Arabidopsis methyltransferase for H3K27, altered gene expression patterns between the parents. Together, these data provide insights into natural variation of histone modifications and their association with gene expression differences between Arabidopsis ecotypes.
Collapse
Affiliation(s)
- Mei Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuncheng Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Huang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Diqiu Ren
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan'e Su
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Pan Zhu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Liumin Fan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Liangbi Chen
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Guangming He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Giovannoni J. Harnessing epigenome modifications for better crops. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2535-7. [PMID: 27162274 PMCID: PMC4861033 DOI: 10.1093/jxb/erw143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- James Giovannoni
- US Department of Agriculture Robert W. Holley Center and Boyce Thompson Institute, Tower Road, Cornell University campus, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Abstract
A fundamental initiative for evolutionary biologists is to understand the molecular basis underlying phenotypic diversity. A long-standing hypothesis states that species-specific traits may be explained by differences in gene regulation rather than differences at the protein level. Over the past few years, evolutionary studies have shifted from mere sequence comparisons to integrative analyses in which gene regulation is key to understanding species evolution. DNA methylation is an important epigenetic modification involved in the regulation of numerous biological processes. Nevertheless, the evolution of the human methylome and the processes driving such changes are poorly understood. Here, we review the close interplay between Cytosine-phosphate-Guanine (CpG) methylation and the underlying genome sequence, as well as its evolutionary impact. We also summarize the latest advances in the field, revisiting the main literature on human and nonhuman primates. We hope to encourage the scientific community to address the many challenges posed by the field of comparative epigenomics.
Collapse
|
40
|
Preite V, Snoek LB, Oplaat C, Biere A, van der Putten WH, Verhoeven KJF. The epigenetic footprint of poleward range-expanding plants in apomictic dandelions. Mol Ecol 2015. [DOI: 10.1111/mec.13329] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- V. Preite
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - L. B. Snoek
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - C. Oplaat
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| | - A. Biere
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| | - W. H. van der Putten
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
- Laboratory of Nematology; Wageningen University; Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - K. J. F. Verhoeven
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 NL-6708PB Wageningen The Netherlands
| |
Collapse
|
41
|
Avramova Z. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:149-59. [PMID: 25788029 DOI: 10.1111/tpj.12832] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 05/17/2023]
Abstract
Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
42
|
Valledor L, Pascual J, Meijón M, Escandón M, Cañal MJ. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata. PLoS One 2015; 10:e0126405. [PMID: 25965766 PMCID: PMC4429063 DOI: 10.1371/journal.pone.0126405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/01/2015] [Indexed: 11/28/2022] Open
Abstract
Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA) and competence and stress response (PrCSDP2 and PrSHMT4) during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP). The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.
Collapse
Affiliation(s)
- Luis Valledor
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain
- Department of Biology and CESAM, University of Aveiro, Campus Universitario de Santiago, P-3810-193, Aveiro, Portugal
- * E-mail: (LV); (MJC)
| | - Jesús Pascual
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain
| | - Mónica Meijón
- Regional Institute for Research and Agro-Food Development (SERIDA), Finca Experimental La Mata s/n, E-33825, Grado, Spain
| | - Mónica Escandón
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain
| | - María Jesús Cañal
- Plant Physiology, Faculty of Biology, University of Oviedo, Cat. Rodrígo Uría s/n, E-33071, Oviedo, Spain
- * E-mail: (LV); (MJC)
| |
Collapse
|
43
|
Alonso C, Pérez R, Bazaga P, Herrera CM. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms. Front Genet 2015; 6:4. [PMID: 25688257 PMCID: PMC4310347 DOI: 10.3389/fgene.2015.00004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/07/2015] [Indexed: 01/17/2023] Open
Abstract
DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value). Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis) and 39.2% (Narcissus). Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages.
Collapse
Affiliation(s)
| | - Ricardo Pérez
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, CSIC-US Sevilla, Spain
| | - Pilar Bazaga
- Estación Biológica de Doñana, CSIC Sevilla, Spain
| | | |
Collapse
|
44
|
The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences. Nat Commun 2014; 5:5195. [PMID: 25327398 PMCID: PMC4300104 DOI: 10.1038/ncomms6195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure.
Collapse
|
45
|
Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res 2014; 24:1821-9. [PMID: 25314969 PMCID: PMC4216923 DOI: 10.1101/gr.177659.114] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Evolution is fueled by phenotypic diversity, which is in turn due to underlying heritable genetic (and potentially epigenetic) variation. While environmental factors are well known to influence the accumulation of novel variation in microorganisms and human cancer cells, the extent to which the natural environment influences the accumulation of novel variation in plants is relatively unknown. Here we use whole-genome and whole-methylome sequencing to test if a specific environmental stress (high-salinity soil) changes the frequency and molecular profile of accumulated mutations and epimutations (changes in cytosine methylation status) in mutation accumulation (MA) lineages of Arabidopsis thaliana. We first show that stressed lineages accumulate ∼100% more mutations, and that these mutations exhibit a distinctive molecular mutational spectrum (specific increases in relative frequency of transversion and insertion/deletion [indel] mutations). We next show that stressed lineages accumulate ∼45% more differentially methylated cytosine positions (DMPs) at CG sites (CG-DMPs) than controls, and also show that while many (∼75%) of these CG-DMPs are inherited, some can be lost in subsequent generations. Finally, we show that stress-associated CG-DMPs arise more frequently in genic than in nongenic regions of the genome. We suggest that commonly encountered natural environmental stresses can accelerate the accumulation and change the profiles of novel inherited variants in plants. Our findings are significant because stress exposure is common among plants in the wild, and they suggest that environmental factors may significantly alter the rates and patterns of incidence of the inherited novel variants that fuel plant evolution.
Collapse
|
46
|
Abstract
Some species exhibit very high levels of DNA sequence variability; there is also evidence for the existence of heritable epigenetic variants that experience state changes at a much higher rate than sequence variants. In both cases, the resulting high diversity levels within a population (hyperdiversity) mean that standard population genetics methods are not trustworthy. We analyze a population genetics model that incorporates purifying selection, reversible mutations, and genetic drift, assuming a stationary population size. We derive analytical results for both population parameters and sample statistics and discuss their implications for studies of natural genetic and epigenetic variation. In particular, we find that (1) many more intermediate-frequency variants are expected than under standard models, even with moderately strong purifying selection, and (2) rates of evolution under purifying selection may be close to, or even exceed, neutral rates. These findings are related to empirical studies of sequence and epigenetic variation.
Collapse
|
47
|
Groszmann M, Gonzalez-Bayon R, Greaves IK, Wang L, Huen AK, Peacock WJ, Dennis ES. Intraspecific Arabidopsis hybrids show different patterns of heterosis despite the close relatedness of the parental genomes. PLANT PHYSIOLOGY 2014; 166:265-80. [PMID: 25073707 PMCID: PMC4149712 DOI: 10.1104/pp.114.243998] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/24/2014] [Indexed: 05/03/2023]
Abstract
Heterosis is important for agriculture; however, little is known about the mechanisms driving hybrid vigor. Ultimately, heterosis depends on the interactions of specific alleles and epialleles provided by the parents, which is why hybrids can exhibit different levels of heterosis, even within the same species. We characterize the development of several intraspecific Arabidopsis (Arabidopsis thaliana) F1 hybrids that show different levels of heterosis at maturity. We identify several phases of heterosis beginning during embryogenesis and culminating in a final phase of vegetative maturity and seed production. During each phase, the hybrids show different levels and patterns of growth, despite the close relatedness of the parents. For instance, during the vegetative phases, the hybrids develop larger leaves than the parents to varied extents, and they do so by exploiting increases in cell size and cell numbers in different ratios. Consistent with this finding, we observed changes in the expression of genes known to regulate leaf size in developing rosettes of the hybrids, with the patterns of altered expression differing between combinations. The data show that heterosis is dependent on changes in development throughout the growth cycle of the hybrid, with the traits of mature vegetative biomass and reproductive yield as cumulative outcomes of heterosis at different levels, tissues, and times of development.
Collapse
Affiliation(s)
- Michael Groszmann
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2600, Australia (M.G., R.G.-B., I.K.G., L.W., A.K.H., W.J.P., E.S.D.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (E.S.D., W.J.P.)
| | - Rebeca Gonzalez-Bayon
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2600, Australia (M.G., R.G.-B., I.K.G., L.W., A.K.H., W.J.P., E.S.D.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (E.S.D., W.J.P.)
| | - Ian K Greaves
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2600, Australia (M.G., R.G.-B., I.K.G., L.W., A.K.H., W.J.P., E.S.D.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (E.S.D., W.J.P.)
| | - Li Wang
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2600, Australia (M.G., R.G.-B., I.K.G., L.W., A.K.H., W.J.P., E.S.D.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (E.S.D., W.J.P.)
| | - Amanda K Huen
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2600, Australia (M.G., R.G.-B., I.K.G., L.W., A.K.H., W.J.P., E.S.D.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (E.S.D., W.J.P.)
| | - W James Peacock
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2600, Australia (M.G., R.G.-B., I.K.G., L.W., A.K.H., W.J.P., E.S.D.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (E.S.D., W.J.P.)
| | - Elizabeth S Dennis
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2600, Australia (M.G., R.G.-B., I.K.G., L.W., A.K.H., W.J.P., E.S.D.); andUniversity of Technology, Sydney, New South Wales 2007, Australia (E.S.D., W.J.P.)
| |
Collapse
|
48
|
Eichten SR, Schmitz RJ, Springer NM. Epigenetics: Beyond Chromatin Modifications and Complex Genetic Regulation. PLANT PHYSIOLOGY 2014; 165:933-947. [PMID: 24872382 PMCID: PMC4081347 DOI: 10.1104/pp.113.234211] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chromatin modifications and epigenetics may play important roles in many plant processes, including developmental regulation, responses to environmental stimuli, and local adaptation. Chromatin modifications describe biochemical changes to chromatin state, such as alterations in the specific type or placement of histones, modifications of DNA or histones, or changes in the specific proteins or RNAs that associate with a genomic region. The term epigenetic is often used to describe a variety of unexpected patterns of gene regulation or inheritance. Here, we specifically define epigenetics to include the key aspects of heritability (stable transmission of gene expression states through mitotic or meiotic cell divisions) and independence from DNA sequence changes. We argue against generically equating chromatin and epigenetics; although many examples of epigenetics involve chromatin changes, those chromatin changes are not always heritable or may be influenced by genetic changes. Careful use of the terms chromatin modifications and epigenetics can help separate the biochemical mechanisms of regulation from the inheritance patterns of altered chromatin states. Here, we also highlight examples in which chromatin modifications and epigenetics affect important plant processes.
Collapse
Affiliation(s)
- Steven R Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| | - Robert J Schmitz
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| | - Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 (S.R.E., N.M.S.); andDepartment of Genetics, University of Georgia, Athens, Georgia 30602 (R.J.S.)
| |
Collapse
|
49
|
Abstract
Since the human genome was sequenced, the term "epigenetics" is increasingly being associated with the hope that we are more than just the sum of our genes. Might what we eat, the air we breathe, or even the emotions we feel influence not only our genes but those of descendants? The environment can certainly influence gene expression and can lead to disease, but transgenerational consequences are another matter. Although the inheritance of epigenetic characters can certainly occur-particularly in plants-how much is due to the environment and the extent to which it happens in humans remain unclear.
Collapse
|
50
|
Blevins T, Pontvianne F, Cocklin R, Podicheti R, Chandrasekhara C, Yerneni S, Braun C, Lee B, Rusch D, Mockaitis K, Tang H, Pikaard CS. A two-step process for epigenetic inheritance in Arabidopsis. Mol Cell 2014; 54:30-42. [PMID: 24657166 DOI: 10.1016/j.molcel.2014.02.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 12/08/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
In Arabidopsis, multisubunit RNA polymerases IV and V orchestrate RNA-directed DNA methylation (RdDM) and transcriptional silencing, but what identifies the loci to be silenced is unclear. We show that heritable silent locus identity at a specific subset of RdDM targets requires HISTONE DEACETYLASE 6 (HDA6) acting upstream of Pol IV recruitment and siRNA biogenesis. At these loci, epigenetic memory conferring silent locus identity is erased in hda6 mutants such that restoration of HDA6 activity cannot restore siRNA biogenesis or silencing. Silent locus identity is similarly lost in mutants for the cytosine maintenance methyltransferase, MET1. By contrast, pol IV or pol V mutants disrupt silencing without erasing silent locus identity, allowing restoration of Pol IV or Pol V function to restore silencing. Collectively, these observations indicate that silent locus specification and silencing are separable steps that together account for epigenetic inheritance of the silenced state.
Collapse
Affiliation(s)
- Todd Blevins
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Frédéric Pontvianne
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Ross Cocklin
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Chinmayi Chandrasekhara
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Satwica Yerneni
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Chris Braun
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Brandon Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Doug Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Keithanne Mockaitis
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Haixu Tang
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|