1
|
Han D, Lin C, Xia S, Zheng X, Zhu C, Shen Y, Chen Y, Peng C, Wang C, He J, Lai J, Yang C. The Role of Carnosic Acid in the UV-B Stress Resistance Signalling Pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1232-1241. [PMID: 39440524 DOI: 10.1111/pce.15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Carnosic acid (CA) is recognized as an antioxidant that confers protection to plants against various forms of oxidative stress, including UV-B stress. However, limited research has been conducted to elucidate the molecular mechanisms underlying its defence against UV-B stress. In this study, we demonstrated that CA exhibits more efficacy compared to other antioxidants in UV-B resistance. Moreover, CA was found to enhance the accumulation of secondary metabolites in Arabidopsis leaves. Through the analysis of differentially expressed genes in response to UV-B stress with or without CA treatment, we uncovered that the exogenous application of CA effectively activates the flavonoid biosynthesis pathway in Arabidopsis to improve resistance of Arabidopsis to UV-B stress.
Collapse
Affiliation(s)
- Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Chufang Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Simin Xia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengluo Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Changlian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Caijuan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
2
|
Huebner DS, Batarshin M, Beck S, König L, Mewis I, Ulrichs C. Influence of different UV spectra and intensities on yield and quality of cannabis inflorescences. FRONTIERS IN PLANT SCIENCE 2024; 15:1480876. [PMID: 39741668 PMCID: PMC11685020 DOI: 10.3389/fpls.2024.1480876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025]
Abstract
The raising economic importance of cannabis arouses interest in positively influencing the secondary plant constituents through external stimuli. One potential possibility to enhance the secondary metabolite profile is the use of UV light. In this study, the influence of spectral UV quality at different intensity levels on photomorphogenesis, growth, inflorescence yield, and secondary metabolite composition was investigated. Three UV spectra with five different intensities were considered: L1 (UVA:B = 67:33, 4.2 W/m2), L2 (UVA:B = 94:6, 4.99 W/m2), L3_1 (UVA:B = 99:1, 1.81 W/m2), L3_2 (UVA:B = 99:1, 4.12 W/m2) and L3_3 (UVA:B = 99:1, 8.36 W/m2). None of the investigated UV treatments altered the cannabinoid profile. Regarding the terpenes investigated, light variant L3_1 was able to positively influence the terpene profile. Especially linalool (+29%), limonene (+25%) and myrcene (+22%) showed an increase, compared to the control group without UV treatment. Growth and leaf morphology also showed significant changes compared to the control. While a high UVA share increased the leaf area, a higher UVB share led to a smaller leaf area. Of the UV sources examined, only L3_1 with 1.81 W/m2 and a radiation dose of 117.3 kJ m2 d-1 is suitable for practical use in commercial cannabis cultivation. The terpene concentration for this group was in part significantly increased with constant yield and cannabinoid concentration.
Collapse
Affiliation(s)
- Daniel Stefan Huebner
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marat Batarshin
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Beck
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leon König
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Inga Mewis
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Ulrichs
- Division Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Csepregi K, Rácz A, Czégény G, Hideg É. Possible lessons of a model experiment: To what extent can UV activate the production of leaf phenolics in indoor plant cultivation? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109333. [PMID: 39608338 DOI: 10.1016/j.plaphy.2024.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Tobacco (Nicotiana tabacum L.) plants were grown outdoors (N°46.07, E°18.18) under either natural or UV-deprived sunlight for 25 days in the summer. High PAR resulted in high polyphenol content, which was selectively affected by solar UV-A and UV-B irradiation. Solar UV-A irradiation increased anthocyanins, but not flavonoids, in the epidermis, and this additional protection resulted in higher photochemical yields and lower NPQ. The simultaneous presence of UV-B overrode the effects of UV-A, increased epidermal flavonoids, and decreased anthocyanins. Leaves grown in full sunlight had the same photochemical yields of NPQ as those grown under a UV-excluding filter. A combination of these effects can falsely dismiss the effects of UV-B on outdoor photosynthesis. Phenolic acid content, corresponding to approximately 80% of phenolic compounds, did not depend on solar UV, and total flavonoids increased under full solar UV irradiation, but not under UV-A only. The polyphenol content in outdoor leaves also served as a reference point for an indoor experiment, which showed that even a short, 4-day exposure of low PAR grown plants to UV from an artificial source increased the amount of some, although not all, components close to or even above outdoor levels. In indoor leaves, a selective increase in quercetin glycosides (to 62-85% of outdoor levels) supports both enzymatic and non-enzymatic antioxidant functions, and the increase in crypto- and neochlorogenic acids (to 76% and 117% of outdoor levels, respectively) suggests a redistribution among biosynthesis pathways. These results demonstrate the potential and efficiency of cultivation systems without sunlight.
Collapse
Affiliation(s)
| | - Arnold Rácz
- Department of Plant Biology, University of Pécs, Hungary
| | - Gyula Czégény
- Department of Plant Biology, University of Pécs, Hungary
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Hungary.
| |
Collapse
|
4
|
Thongtip A, Mosaleeyanon K, Janta S, Wanichananan P, Chutimanukul P, Thepsilvisut O, Chutimanukul P. Assessing light spectrum impact on growth and antioxidant properties of basil family microgreens. Sci Rep 2024; 14:27875. [PMID: 39538013 PMCID: PMC11561104 DOI: 10.1038/s41598-024-79529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the influence of light spectra on plant growth and antioxidant activities is crucial for optimizing cultivation practices and enhancing crop quality. In this study, we investigated the effects of different light treatments on growth parameters and antioxidant activities in five plant species: peppermint, Thai basil, cumin, lemon basil, and green holy basil. Our results revealed distinct responses to varying light spectra, with green light consistently promoting taller plant heights across all species. Additionally, blue light induced notable increases in plant width for certain species. Analysis of antioxidant activities demonstrated dynamic fluctuations in Total Phenolic Content (TPC) and Flavonoid Content (TFC) among different light treatments and plant species. While white and red light generally promoted higher TPC levels, blue light unexpectedly exhibited the highest TPC levels at specific time points. Moreover, investigation into DPPH Radical Scavenging activity revealed diverse temporal responses to light spectra, with blue light demonstrating exceptional activity at early stages and white and red light showing heightened activity at later time points. These findings underscore the importance of tailored light regimes in optimizing growth parameters and enhancing antioxidant activities in cultivated plants, thereby offering promising avenues for sustainable agriculture and food production practices.
Collapse
Affiliation(s)
- Akira Thongtip
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathum Thani, 12120, Thailand
| | - Kriengkrai Mosaleeyanon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathum Thani, 12120, Thailand
| | - Supattana Janta
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathum Thani, 12120, Thailand
| | - Praderm Wanichananan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathum Thani, 12120, Thailand
| | - Preuk Chutimanukul
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Center, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ornprapa Thepsilvisut
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Center, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Panita Chutimanukul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
5
|
Zhang F, Sun M, Li D, You M, Yan J, Bai S. Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules 2024; 29:5133. [PMID: 39519780 PMCID: PMC11548012 DOI: 10.3390/molecules29215133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Plants cultivated on the Qinghai-Tibet Plateau (QTP) are exposed to high ultraviolet radiation intensities, so they require effective mechanisms to adapt to these stress conditions. UV-B radiation is an abiotic stress factor that affects plant growth, development, and environmental adaptation. Elymus sibiricus is a common species in the alpine meadows of the QTP, with high-stress resistance, large biomass, and high nutritional value. This species plays an important role in establishing artificial grasslands and improving degraded grasslands. In this study, UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes were subjected to simulated short-term (5 days, 10 days) and long-term (15 days, 20 days) UV-B radiation stress and the metabolite profiles evaluated to explore the mechanism underlying UV-B radiation resistance in E. sibiricus. A total of 699 metabolites were identified, including 11 primary metabolites such as lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and their derivatives, and organic oxygen compounds. Principal component analysis distinctly clustered the samples according to the cultivar, indicating that the two genotypes exhibit distinct response mechanisms to UV-B radiation stress. The results showed that 14 metabolites, including linoleic acid, LPC 18:2, xanthosine, and 23 metabolites, including 2-one heptamethoxyflavone, glycyrrhizin, and caffeic acid were differentially expressed under short-term and long-term UV-B radiation stress, respectively. Therefore, these compounds are potential biomarkers for evaluating E. sibiricus response to UV-B radiation stress. Allantoin specific and consistent expression was up-regulated in the UV-B radiation-tolerant genotype, thereby it can be used to identify varieties resistant to UV-B radiation. Different metabolic profiles and UV-B radiation response mechanisms were observed between the UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes. A model for the metabolic pathways and metabolic profiles was constructed for the two genotypes. This metabolomic study on the E. sibiricus response to UV-B radiation stress provides a reference for the breeding of new UV-B radiation-tolerant E. sibiricus cultivars.
Collapse
Affiliation(s)
- Fei Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Sun
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Daxu Li
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Minghong You
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Jiajun Yan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiqie Bai
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
6
|
Leonardelli M, Tissot N, Podolec R, Ares-Orpel F, Glauser G, Ulm R, Demarsy E. Photoreceptor-induced sinapate synthesis contributes to photoprotection in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1518-1533. [PMID: 38918833 PMCID: PMC11444301 DOI: 10.1093/plphys/kiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Plants must balance light capture for photosynthesis with protection from potentially harmful ultraviolet (UV) radiation. Photoprotection is mediated by concerted action of photoreceptors, but the underlying molecular mechanisms are not fully understood. In this study, we provide evidence that UV RESISTANCE LOCUS 8 (UVR8) UV-B, phytochrome red, and cryptochrome blue-light photoreceptors converge on the induction of FERULIC ACID 5-HYDROXYLASE 1 (FAH1) that encodes a key enzyme in the phenylpropanoid biosynthesis pathway, leading to the accumulation of UV-absorbing sinapate esters in Arabidopsis (Arabidopsis thaliana). FAH1 induction depends on the basic leucine zipper transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG that function downstream of all 3 photoreceptors. Noticeably, mutants with hyperactive UVR8 signaling rescue fah1 UV sensitivity. Targeted metabolite profiling suggests that this phenotypic rescue is due to the accumulation of UV-absorbing metabolites derived from precursors of sinapate synthesis, namely, coumaroyl glucose and feruloyl glucose. Our genetic dissection of the phenylpropanoid pathway combined with metabolomic and physiological analyses show that both sinapate esters and flavonoids contribute to photoprotection with sinapates playing a major role for UV screening. Our findings indicate that photoreceptor-mediated regulation of FAH1 and subsequent accumulation of sinapate "sunscreen" compounds are key protective mechanisms to mitigate damage, preserve photosynthetic performance, and ensure plant survival under UV.
Collapse
Affiliation(s)
- Manuela Leonardelli
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Florence Ares-Orpel
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
7
|
Leksin I, Shelyakin M, Zakhozhiy I, Kozlova O, Beckett R, Minibayeva F. Ultraviolet-induced melanisation in lichens: physiological traits and transcriptome profile. PHYSIOLOGIA PLANTARUM 2024; 176:e14512. [PMID: 39221518 DOI: 10.1111/ppl.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lichens are important components of high-latitude boreal and Arctic habitats. While stress tolerant, they are among the most sensitive ecosystem components to climate change, in particular, an increase in ultraviolet light (UV) arising from polar ozone depletion and deforestation. This study is the first to explore the effects of UV-B on gene expression in lichens to predict metabolic pathways involved in tolerance. Using transcriptome profiling and bioinformatic analyses, here we studied the effects of UV-B on gene expression in lichens using Lobaria pulmonaria (L.) Hoff. as a model species. UV-B exposure causes significant browning of the upper cortex of the thallus, which correlates to an increased expression of biosynthetic gene clusters involved in the synthesis of eu- and allomelanins and melanin precursors. Based on transcriptome analyses, we suggest that the biosynthesis of melanins and other secondary metabolites, such as naphthalene derivates, tropolones, anthraquinones, and xanthones, is a trade-off that lichens pay to protect essential metabolic processes such as photosynthesis and respiration. Expression profiles of general stress-associated genes, in particular, related to reactive oxygen species scavenging, protection of proteins, and DNA repair, clearly indicate that the mycobiont is the more UV-B-responsive and susceptible partner in lichen symbiosis. Our findings demonstrate that UV-B stress activates an intricate gene network involved in tolerance mechanisms of lichen symbionts. Knowledge obtained here may enable the prediction of likely effects on lichen biodiversity caused by climate change and pollution.
Collapse
Affiliation(s)
- Ilya Leksin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Mikhail Shelyakin
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
| | - Ilya Zakhozhiy
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
| | - Olga Kozlova
- Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Richard Beckett
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
- University of KwaZulu-Natal, Scottsville, South Africa
| | - Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
8
|
Yu W, Zhou X, Xu H, Zhou X. UV-B Stress-Triggered Amino Acid Reprogramming and ABA-Mediated Hormonal Crosstalk in Rhododendron chrysanthum Pall. PLANTS (BASEL, SWITZERLAND) 2024; 13:2232. [PMID: 39204669 PMCID: PMC11359875 DOI: 10.3390/plants13162232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA increased UV-B resistance; however, the effect of JA was not as strong as that of ABA. Metabolomic analysis using UPLC-MS/MS (ultra-performance liquid chromatography and tandem mass spectrometry) revealed significant fluctuations in metabolites under UV-B and ABA application. UV-B decreased amino acids and increased phenolics, suggesting antioxidant defense activation. ABA treatment upregulated lipids and phenolic acids, highlighting its protective role. Multivariate analysis showed distinct metabolic clusters and pathways responding to UV-B and ABA, which impacted amino acid metabolism and hormone signal transduction. Exogenous ABA negatively regulated the JA signaling pathway in UV-B-exposed R. chrysanthum, as shown by KEGG enrichment. This study deepens understanding of plant stress-tolerance mechanisms and has implications for enhancing plant stress tolerance through metabolic and hormonal interventions.
Collapse
Affiliation(s)
| | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
9
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
10
|
Banerjee S, Mitra M, Roy S. Study of changes in folding/unfolding properties and stability of Arabidopsis thaliana MYB12 transcription factor following UV-B exposure in vitro. Heliyon 2024; 10:e34189. [PMID: 39071576 PMCID: PMC11279800 DOI: 10.1016/j.heliyon.2024.e34189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Centre for Advance Study, The University of Burdwan, Golapbag Campus, Burdwan, 713104, West Bengal, India
| | | | - Sujit Roy
- Department of Botany, UGC Centre for Advance Study, The University of Burdwan, Golapbag Campus, Burdwan, 713104, West Bengal, India
| |
Collapse
|
11
|
Cunningham N, Crestani G, Csepregi K, Coughlan NE, Jansen MAK. Exploring the complexities of plant UV responses; distinct effects of UV-A and UV-B wavelengths on Arabidopsis rosette morphology. Photochem Photobiol Sci 2024; 23:1251-1264. [PMID: 38736023 PMCID: PMC11224116 DOI: 10.1007/s43630-024-00591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
UV-B radiation can substantially impact plant growth. To study UV-B effects, broadband UV-B tubes are commonly used. Apart from UV-B, such tubes also emit UV-A wavelengths. This study aimed to distinguish effects of different UV-B intensities on Arabidopsis thaliana wildtype and UVR8 mutant rosette morphology, from those by accompanying UV-A. UV-A promotes leaf-blade expansion along the proximal-distal, but not the medio-lateral, axis. Consequent increases in blade length: width ratio are associated with increased light capture. However, petiole length is not affected by UV-A exposure. This scenario is distinct from the shade avoidance driven by low red to far-red ratios, whereby leaf blade elongation is impeded but petiole elongation is promoted. Thus, the UV-A mediated elongation response is phenotypically distinct from classical shade avoidance. UV-B exerts inhibitory effects on petiole length, blade length and leaf area, and these effects are mediated by UVR8. Thus, UV-B antagonises aspects of both UV-A mediated elongation and classical shade avoidance. Indeed, this study shows that accompanying UV-A wavelengths can mask effects of UV-B. This may lead to potential underestimates of the magnitude of the UV-B induced morphological response using broadband UV-B tubes.
Collapse
Affiliation(s)
- Natalie Cunningham
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Gaia Crestani
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Kristóf Csepregi
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság u. 6, 7624, Pecs, Hungary
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, Ireland.
| |
Collapse
|
12
|
Zhao Z, Liu S, Yun C, Liu J, Yao L, Wang H. Melatonin alleviates UV-B stress and enhances phenolic biosynthesis in rosemary (Rosmarinus officinalis) callus. PHYSIOLOGIA PLANTARUM 2024; 176:e14453. [PMID: 39091124 DOI: 10.1111/ppl.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 μM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.
Collapse
Affiliation(s)
- Zhuowen Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
- Department of Agriculture and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou, Hebei, China
| | - Siyu Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
| | - Cholil Yun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- College of Forest Science, Kim Il Sung University, Pyongyang, DPR of Korea
| | - Jianing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Liuyang Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China
| |
Collapse
|
13
|
Liu M, Gong F, Yu W, Cao K, Xu H, Zhou X. The Rhododendron Chrysanthum Pall.s' Acetylation Modification of Rubisco Enzymes Controls Carbon Cycling to Withstand UV-B Stress. Biomolecules 2024; 14:732. [PMID: 38927135 PMCID: PMC11201758 DOI: 10.3390/biom14060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Rhododendron chrysanthum Pall. (R. chrysanthum). We analyzed the molecular mechanisms of photosynthesis and stress resistance in R. chrysanthum under UV-B stress. We measured chlorophyll fluorescence parameters of R. chrysanthum under UV-B stress and performed a multi-omics analysis. Based on the determination of chlorophyll fluorescence parameters, R. chrysanthum Y(NO) (Quantum yield of non-photochemical quenching) increased under UV-B stress, indicating that the plant was damaged and photosynthesis decreased. In the analysis of acetylated proteomics data, acetylated proteins were found to be involved in a variety of biological processes. Notably, acetylated proteins were significantly enriched in the pathways of photosynthesis and carbon fixation, suggesting that lysine acetylation modifications have an important role in these activities. Our findings suggest that R. chrysanthum has decreased photosynthesis and impaired photosystems under UV-B stress, but NPQ shows that plants are resistant to UV-B. Acetylation proteomics revealed that up- or down-regulation of acetylation modification levels alters protein expression. Acetylation modification of key enzymes of the Calvin cycle (Rubisco, GAPDH) regulates protein expression, making Rubisco and GAPDH proteins expressed as significantly different proteins, which in turn affects the carbon fixation capacity of R. chrysanthum. Thus, Rubisco and GAPDH are significantly differentially expressed after acetylation modification, which affects the carbon fixation capacity and thus makes the plant resistant to UV-B stress. Lysine acetylation modification affects biological processes by regulating the expression of key enzymes in photosynthesis and carbon fixation, making plants resistant to UV-B stress.
Collapse
Affiliation(s)
| | | | | | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
14
|
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, Chen J, Abdelrahman M. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. STRESS BIOLOGY 2024; 4:31. [PMID: 38880851 PMCID: PMC11180647 DOI: 10.1007/s44154-024-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Elsisi
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Moaz Elshiekh
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Nourine Sabry
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Mark Aziz
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Kotb Attia
- College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | | |
Collapse
|
15
|
Xie Y, Miao T, Lyu S, Huang Y, Shu M, Li S, Xiong T. Arabidopsis ERD15 regulated by BBX24 plays a positive role in UV-B signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112077. [PMID: 38552846 DOI: 10.1016/j.plantsci.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
Ultraviolet-B (UV-B, 280-315 nm) is a minor component of solar radiation, but it has a major regulatory impact on plant growth and development. Solar UV-B regulates numerous aspects of plant metabolism, morphology and physiology through altering the expression of hundreds of genes. EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) is a drought-induced rapid response gene, formerly known as a negative regulator of the abscisic acid (ABA) signaling pathway. It is unclear whether ERD15 is involved in UV-B-induced photomorphogenesis. Previously, we reported that the BBX24 transcriptional factor negatively regulated UV-B signaling. In the present study, we identified that ERD15 is involved in UV-B photomorphogenesis as a positive regulator at phenotypic, physiological and molecular levels. Our results indicated that ERD15 expression is suppressed by UV-B, inhibited the elongation of Arabidopsis hypocotyls in a UV-B-dependent manner, promoted the expression of related UV-B signaling genes and increased the total antioxidant capacity of Arabidopsis under UV-B. Genetic hybridization results show that ERD15 acts downstream of BBX24, and BBX24 protein mediated the expression of ERD15 by binding to its promoter. Thus, ERD15 is a novel positive regulator of the UV-B signaling pathway, which is downstream of BBX24 and regulated by BBX24 protein to participate in UV-B photomorphogenesis.
Collapse
Affiliation(s)
- Yuxin Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tingting Miao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Suihua Lyu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuewei Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shaoshan Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
16
|
Liu Q, Wang T, Ke M, Qian C, Li J, Huang X, Gao Z, Chen X, Tu T. UV-B Radiation Disrupts Membrane Lipid Organization and Suppresses Protein Mobility of GmNARK in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1536. [PMID: 38891343 PMCID: PMC11174901 DOI: 10.3390/plants13111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While it is well known that plants interpret UV-B as an environmental cue and a potential stressor influencing their growth and development, the specific effects of UV-B-induced oxidative stress on the dynamics of membrane lipids and proteins remain underexplored. Here, we demonstrate that UV-B exposure notably increases the formation of ordered lipid domains on the plasma membrane (PM) and significantly alters the behavior of the Glycine max nodule autoregulation receptor kinase (GmNARK) protein in Arabidopsis leaves. The GmNARK protein was located on the PM and accumulated as small particles in the cytoplasm. We found that UV-B irradiation interrupted the lateral diffusion of GmNARK proteins on the PM. Furthermore, UV-B light decreases the efficiency of surface molecule internalization by clathrin-mediated endocytosis (CME). In brief, UV-B irradiation increased the proportion of the ordered lipid phase and disrupted clathrin-dependent endocytosis; thus, the endocytic trafficking and lateral mobility of GmNARK protein on the plasma membrane are crucial for nodule formation tuning. Our results revealed a novel role of low-intensity UV-B stress in altering the organization of the plasma membrane and the dynamics of membrane-associated proteins.
Collapse
Affiliation(s)
- Qiulin Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiyu Ke
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.H.)
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China;
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.H.)
| | - Zhen Gao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chen
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianli Tu
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Kirova E, Moskova I, Manova V, Koycheva Y, Tsekova Z, Borisova D, Nikolov H, Dimitrov V, Sergiev I, Kocheva K. Exogenous Cytokinin 4PU-30 Modulates the Response of Wheat and Einkorn Seedlings to Ultraviolet B Radiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1401. [PMID: 38794471 PMCID: PMC11125444 DOI: 10.3390/plants13101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Abiotic stress is responsible for a significant reduction in crop plant productivity worldwide. Ultraviolet (UV) radiation is a natural component of sunlight and a permanent environmental stimulus. This study investigated the distinct responses of young wheat and einkorn plants to excessive UV-B radiation (180 min at λmax 312 nm) following foliar pretreatment with 1 µM synthetic cytokinin 4PU-30. Results demonstrated that UV radiation significantly amplified hydrogen peroxide levels in both wheat and einkorn, with einkorn exhibiting a more pronounced increase compared to wheat. This elevation indicated the induction of oxidative stress by UV radiation in the two genotypes. Intensified antioxidant enzyme activities and the increased accumulation of typical stress markers and non-enzyme protectants were evidenced. Transcriptional activity of genes encoding the key antioxidant enzymes POX, GST, CAT, and SOD was also investigated to shed some light on their genetic regulation in both wheat and einkorn seedlings. Our results suggested a role for POX1 and POX7 genes in the UV-B tolerance of the two wheat species as well as a cytokinin-stimulated UV-B stress response in einkorn involving the upregulation of the tau subfamily gene GSTU6. Based on all our findings, it could be concluded that 4PU-30 had the potential of alleviating oxidative stress by attenuating the symptoms of superfluous UV-B illumination in the two examined plant species.
Collapse
Affiliation(s)
- Elisaveta Kirova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Irina Moskova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Vasilissa Manova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Yana Koycheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Zoia Tsekova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Denitsa Borisova
- Space Research and Technology Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 1, 1113 Sofia, Bulgaria; (D.B.); (H.N.); (V.D.)
| | - Hristo Nikolov
- Space Research and Technology Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 1, 1113 Sofia, Bulgaria; (D.B.); (H.N.); (V.D.)
| | - Ventzeslav Dimitrov
- Space Research and Technology Institute, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 1, 1113 Sofia, Bulgaria; (D.B.); (H.N.); (V.D.)
| | - Iskren Sergiev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| | - Konstantina Kocheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (E.K.); (I.M.); (Y.K.); (Z.T.); (I.S.)
| |
Collapse
|
18
|
Su-Zhou C, Durand M, Aphalo PJ, Martinez-Abaigar J, Shapiguzov A, Ishihara H, Liu X, Robson TM. Weaker photosynthetic acclimation to fluctuating than to corresponding steady UVB radiation treatments in grapevines. PHYSIOLOGIA PLANTARUM 2024; 176:e14383. [PMID: 38859677 DOI: 10.1111/ppl.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.
Collapse
Affiliation(s)
- Chenxing Su-Zhou
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - Maxime Durand
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Alexey Shapiguzov
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Finland
| | - Hirofumi Ishihara
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Xu Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, China
| | - T Matthew Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, UK
| |
Collapse
|
19
|
Anić M, Kontić JK, Rendulić N, Čarija M, Osrečak M, Karoglan M, Andabaka Ž. Evolution of Leaf Chlorophylls, Carotenoids and Phenolic Compounds during Vegetation of Some Croatian Indigenous Red and White Grape Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:971. [PMID: 38611500 PMCID: PMC11013110 DOI: 10.3390/plants13070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
During the ripening process of grapes, the grapevine leaves are the most active green organs that are important for photosynthesis, which is closely linked to the development and metabolism of the plant. The detection of plant pigments and phenolic compounds in grapevine leaves can be a good indicator of the ageing process, vine vigor and the plant's ability to respond to fungal attack. In a one-year study, the development of leaf chlorophylls, carotenoids and phenolic compounds during the ripening of six indigenous Croatian grape cultivars and the international cultivars Merlot and Chardonnay was investigated. The chlorophyll a/b ratio and total chlorophyll and total carotenoid concentrations were also investigated. PCA was used to highlight relevant information from the data with the aim of distinguishing individual compounds based on the cultivar and phenological stage. The leaf total hydroxycinnamic acid and flavan-3-ol concentrations decreased slowly during grape development, with the highest concentration immediately after flowering and the lowest during grape ripening. The concentrations of β-carotene, lutein and xanthophylls tended to decrease during bunch closure or veraison, while the concentration of chlorophylls a and b peaked during veraison and then decreased during grape ripening. This research will provide an opportunity to select cultivars with the physiological adaptation to synthesize secondary metabolites that are important for managing stress conditions.
Collapse
Affiliation(s)
- Marina Anić
- Division of Horticulture and Landscape Architecture, Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.A.); (J.K.K.); (N.R.); (M.O.); (Ž.A.)
| | - Jasminka Karoglan Kontić
- Division of Horticulture and Landscape Architecture, Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.A.); (J.K.K.); (N.R.); (M.O.); (Ž.A.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Nera Rendulić
- Division of Horticulture and Landscape Architecture, Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.A.); (J.K.K.); (N.R.); (M.O.); (Ž.A.)
| | - Mate Čarija
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia;
| | - Mirela Osrečak
- Division of Horticulture and Landscape Architecture, Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.A.); (J.K.K.); (N.R.); (M.O.); (Ž.A.)
| | - Marko Karoglan
- Division of Horticulture and Landscape Architecture, Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.A.); (J.K.K.); (N.R.); (M.O.); (Ž.A.)
| | - Željko Andabaka
- Division of Horticulture and Landscape Architecture, Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.A.); (J.K.K.); (N.R.); (M.O.); (Ž.A.)
| |
Collapse
|
20
|
Yu W, Gong F, Zhou X, Xu H, Lyu J, Zhou X. Comparative Metabolomics and Transcriptome Studies of Two Forms of Rhododendron chrysanthum Pall. under UV-B Stress. BIOLOGY 2024; 13:211. [PMID: 38666823 PMCID: PMC11048268 DOI: 10.3390/biology13040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Rhododendron chrysanthum Pall. (R. chrysanthum), a plant with UV-B resistance mechanisms that can adapt to alpine environments, has gained attention as an important plant resource with the ability to cope with UV-B stress. In this experiment, R. chrysanthums derived from the same origin were migrated to different culture environments (artificial climate chamber and intelligent artificial incubator) to obtain two forms of R. chrysanthum. After UV-B irradiation, 404 metabolites and 93,034 unigenes were detected. Twenty-six of these different metabolites were classified as UV-B-responsive metabolites. Glyceric acid is used as a potential UV-B stress biomarker. The domesticated Rhododendron chrysanthum Pall. had high amino acid and SOD contents. The study shows that the domesticated Rhododendron chrysanthum Pall. has significant UV-B resistance. The transcriptomics results show that the trends of DEGs after UV-B radiation were similar for both forms of R. chrysanthum: cellular process and metabolic process accounted for a higher proportion in biological processes, cellular anatomical entity accounted for the highest proportion in the cellular component, and catalytic activity and binding accounted for the highest proportion in the molecular function category. Through comparative study, the forms of metabolites resistant to UV-B stress in plants can be reflected, and UV-B radiation absorption complexes can be screened for application in future specific practices. Moreover, by comparing the differences in response to UV-B stress between the two forms of R. chrysanthum, references can be provided for cultivating domesticated plants with UV-B stress resistance characteristics. Research on the complex mechanism of plant adaptation to UV-B will be aided by these results.
Collapse
Affiliation(s)
- Wang Yu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| | - Fushuai Gong
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| | - Xiangru Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| | - Jie Lyu
- Faculty of Biological Science and Technology, Baotou Teachers’ College, Baotou 014030, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China (X.Z.)
| |
Collapse
|
21
|
Lee DY, Kang SW, Kim JS, Bae JY, Lee HL, Lee H, Seo WD, Jang YS, Kim JH. Effect of Abiotic Signals on the Accumulation of Saponarin in Barley Leaves in Hydroponics Under Artificial Lights. ACS OMEGA 2024; 9:10852-10859. [PMID: 38463256 PMCID: PMC10918822 DOI: 10.1021/acsomega.3c09809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Functional flavonoid production is a new agenda in the agricultural industry, and young barley leaves (YBL) are one of the highlighted crops due to their health-beneficial flavonoid, saponarin. For the year-round cultivation of a high saponarin content of YBL, abiotic signal effects on the biosynthesis and metabolism in YBL need to be understood clearly. In this research, the effects of reactive oxygen species (ROS)-related abiotic signals, such as light, potassium, and sodium, were investigated on the biosynthetic metabolism in YBL cultivation under artificial lights. A higher quantity of blue-rich white light (6500 K of light temperature) irradiation enhanced ROS levels and the related enzyme activities (APX and CAT), as well as photosynthesis and saponarin amount, while red-rich white light (3000 K of light temperature) increased the photosynthesis only. In addition, 1.0 g L-1 K+ treatment in water slightly reduced ROS levels and increased saponarin accumulation in YBL. These blue-rich light and K+ supplemental conditions relatively increased OGT expression and reduced 4-coumaric acid and isovitexin as saponarin precursors. Furthermore, the relative ratio of lutonarin as an oxidized product of saponarin increased in increments of light quantity. Finally, the abiotic conditions for saponarin production were optimized with the mixture solution treatment of 1.0 g L-1 Na+ and 1.0 g L-1 K+ under 500 PPFD of 6500 K light, and the saponarin amount per leaf was 219.5 μg plant-1; it was comparable amount with that under sunlight condition.
Collapse
Affiliation(s)
- Deuk-Yeong Lee
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang-Woo Kang
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Seong Kim
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Yeon Bae
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Haeng-Lim Lee
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - HanGyeol Lee
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Woo-Duck Seo
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yu-Sin Jang
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Hyo Kim
- Department
of Agricultural Chemistry, Division of Applied Life Science (BK21
plus), Institutes of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
22
|
Liu X, Xie Z, Xin J, Yuan S, Liu S, Sun Y, Zhang Y, Jin C. OsbZIP18 Is a Positive Regulator of Phenylpropanoid and Flavonoid Biosynthesis under UV-B Radiation in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:498. [PMID: 38502046 PMCID: PMC10893026 DOI: 10.3390/plants13040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
In plants exposed to ultraviolet B radiation (UV-B; 280-315 nm), metabolic responses are activated, which reduce the damage caused by UV-B. Although several metabolites responding to UV-B stress have been identified in plants, the accumulation of these metabolites at different time points under UV-B stress remains largely unclear, and the transcription factors regulating these metabolites have not been well characterized. Here, we explored the changes in metabolites in rice after UV-B treatment for 0 h, 6 h, 12 h, and 24 h and identified six patterns of metabolic change. We show that the rice transcription factor OsbZIP18 plays an important role in regulating phenylpropanoid and flavonoid biosynthesis under UV-B stress in rice. Metabolic profiling revealed that the contents of phenylpropanoid and flavonoid were significantly reduced in osbzip18 mutants compared with the wild-type plants (WT) under UV-B stress. Further analysis showed that the expression of many genes involved in the phenylpropanoid and flavonoid biosynthesis pathways was lower in osbzip18 mutants than in WT plants, including OsPAL5, OsC4H, Os4CL, OsCHS, OsCHIL2, and OsF3H. Electrophoretic mobility shift assays (EMSA) revealed that OsbZIP18 bind to the promoters of these genes, suggesting that OsbZIP18 function is an important positive regulator of phenylpropanoid and flavonoid biosynthesis under UV-B stress. In conclusion, our findings revealed that OsbZIP18 is an essential regulator for phenylpropanoid and flavonoid biosynthesis and plays a crucial role in regulating UV-B stress responses in rice.
Collapse
Affiliation(s)
- Xueqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziyang Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jiajun Xin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shiqing Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shuo Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangyang Sun
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
23
|
Che G, Chen M, Li X, Xiao J, Liu L, Guo L. Effect of UV-A Irradiation on Bioactive Compounds Accumulation and Hypoglycemia-Related Enzymes Activities of Broccoli and Radish Sprouts. PLANTS (BASEL, SWITZERLAND) 2024; 13:450. [PMID: 38337982 PMCID: PMC10857714 DOI: 10.3390/plants13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In the present study, different intensities of UV-A were applied to compare their effects on growth, bioactive compounds and hypoglycemia-related enzyme activities in broccoli and radish sprouts. The growth of sprouts was decreased after UV-A irradiation. A total of 12 W of UV-A irradiation resulted in the highest content of anthocyanin, chlorophyll, polyphenol and ascorbic acid in broccoli and radish sprouts. The highest soluble sugar content was recorded in sprouts under 8 W of UV-A irradiation, while no significant difference was obtained in soluble protein content among different UV-A intensities. Furthermore, 12 W of UV-A irradiation induced the highest glucosinolate accumulation, especially glucoraphanin and glucoraphenin in broccoli and radish sprouts, respectively; thus, it enhanced sulforaphane and sulforaphene formation. The α-amylase, α-glucosidase and pancrelipase inhibitory rates of two kinds of sprouts were enhanced significantly after UV-A irradiation, indicating UV-A-irradiation-treated broccoli and radish sprouts have new prospects as hypoglycemic functional foods.
Collapse
Affiliation(s)
- Gongheng Che
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Mingmei Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| |
Collapse
|
24
|
Shoaib N, Pan K, Mughal N, Raza A, Liu L, Zhang J, Wu X, Sun X, Zhang L, Pan Z. Potential of UV-B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. PLANT, CELL & ENVIRONMENT 2024; 47:387-407. [PMID: 38058262 DOI: 10.1111/pce.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.
Collapse
Affiliation(s)
- Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nishbah Mughal
- Engineering Research Centre for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liling Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
25
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
He Y, Li H, Wu J, Li X, Zu Y, Zhan F, Li Y. Enhanced ultraviolet-B radiation alleviates structural damages on rice leaf caused by Magnaporthe oryzae infection. PROTOPLASMA 2024; 261:161-171. [PMID: 37428235 DOI: 10.1007/s00709-023-01867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/27/2022] [Indexed: 07/11/2023]
Abstract
Enhanced ultraviolet-B (UV-B) radiation can change the interaction between crops and pathogens. The effects of single and compound stresses of enhanced UV-B radiation (5.0 kJ·m-2) and Magnaporthe oryzae on the morphology, anatomy, and ultrastructure of rice leaves were investigated. M. oryzae infection decreased the leaf area and thickness, reduced the stomatal area and density, and caused damages to the leaf ultrastructure, such as cytoplasm-cell wall separation, atrophy and sinking of fan-shaped bulliform cells, and chloroplast deformation. The enhanced UV-B radiation supplied before or during M. oryzae infection remarkably decreased the mycelia number of M. oryzae in leaf epidermis, increased the leaf area, leaf thickness, stomatal density, and mastoid number; and alleviated the ultrastructural damages induced by M. oryzae to keep an integral chloroplast. While the UV-B radiation was supplied after M. oryzae infection, its alleviation effects on the damages induced by M. oryzae infection on the morphology and structure of rice leaf were attenuated. Thus, the alleviation of enhanced UV-B radiation on damages induced by M. oryzae infection on rice leaves was related to its application period. The enhanced UV-B radiation supplied before or during M. oryzae infection allowed the rice leaf to resist M. oryzae infection.
Collapse
Affiliation(s)
- Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Hongru Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiong Wu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiang Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
27
|
Mmbando GS. The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses. PLANT SIGNALING & BEHAVIOR 2023; 18:2191463. [PMID: 36934364 PMCID: PMC10730183 DOI: 10.1080/15592324.2023.2191463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet-B radiation (UVB; 280-315 nm) is a significant environmental factor that alters plant development, changes interactions between species, and reduces the prevalence of pests and diseases. While UVB radiation has negative effects on plant growth and performance at higher doses, at lower and ambient doses, UVB radiation acts as a non-chemical method for managing biotic stresses by having positive effects on disease resistance and genes that protect plants from pests. Understanding the recent relationship between UVB radiation and plants' biotic stresses is crucial for the development of crops that are resistant to UVB and biotic stresses. However, little is known about the recent interactions between UVB radiation and biotic stresses in plants. This review discusses the most recent connections between UVB radiation and biotic stresses in crops, including how UVB radiation affects a plant's resistance to disease and pests. The interaction of UVB radiation with pathogens and herbivores has been the subject of the most extensive research of these. This review also discusses additional potential strategies for conferring multiple UVB-biotic stress resistance in crop plants, such as controlling growth inhibition, miRNA 396 and 398 modulations, and MAP kinase. This study provides crucial knowledge and methods for scientists looking to develop multiple resistant crops that will improve global food security.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma (UDOM), Dodoma, Tanzania
| |
Collapse
|
28
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
29
|
de Souza M, Sammarro Silva KJ, Garbuio M, Inada NM, Bagnato VS, Lima AR. Photon spectra effects tested on the vegetal model Allium cepa. JOURNAL OF BIOPHOTONICS 2023; 16:e202300168. [PMID: 37679880 DOI: 10.1002/jbio.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The use of artificial light sources in plants is considered a type of photobiomodulation (PBM), a trend in agriculture and food industries, aiming at decontamination, pest control, and increased production yield. However, literature lacks a broader assessment to address the effects of photon light spectra on plant characteristics. Here, we aimed to describe the effects of visible light, infrared, and ultraviolet light upon Allium cepa, a known bioindicator, under various light doses. Samples irradiated under visible and infrared light did not show cytotoxicity, genotoxicity, or mutagenicity in any of the evaluated doses. Light induction at 460 and 635 nm significantly stimulated root development of the test organism. In contrast, 254 nm irradiation proved to be cytotoxic, genotoxic, and mutagenic. This work reveals and quantifies the spectral response of A. cepa seeds, suggesting that it can be proposed as a model for future research on mechanisms of PBM in plants.
Collapse
Affiliation(s)
- Mariana de Souza
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Central Paulista University, São Paulo, São Carlos, SP, Brazil
| | | | - Matheus Garbuio
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- PPG Biotec, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
30
|
Fitzner M, Schreiner M, Baldermann S. Between eustress and distress: UVB induced changes in carotenoid accumulation in halophytic Salicornia europaea. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154124. [PMID: 37944241 DOI: 10.1016/j.jplph.2023.154124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Halophytes are potential future crops with a valuable nutritional profile. Produced in indoor farming, they are considered to contribute to sustainable and resilient food systems. Indoor farms operate using artificial light. In this context narrowband and low dose UVB radiation can be used to increase plant secondary metabolites, such as carotenoids, and provide an improved nutritional profile for a human diet. UVB radiation can cause eustress or distress in the plant depending on the lighting situation. The aim of this study was to identify the doses of UVB that lead to either eustress or distress and to analyze these responses in Salicornia europaea. Therefore, S. europaea plants were exposed to different UVB radiation levels, low, medium and high, and analyzed for reactive oxygen species (ROS), plant hormones, amino acids, and photosynthetic pigments. High UVB treatment was found to affect phenotype and growth, and the metabolite profile was affected in a UVB dose-dependent manner. Specifically, medium UVB radiation resulted in an increase in carotenoids, whereas high UVB resulted in a decrease. We also observed an altered oxidative stress status and increased SA and decreased ABA contents in response to UVB treatment. This was supported by the results of menadione treatment that induces oxidative stress in plants, which also indicated an altered oxidative stress status in combination with altered carotenoid content. Thus, we show that a moderate dose of UVB can increase the carotenoid content of S. europaea. Furthermore, the UVB stress-dependent response led to a better understanding of carotenoid accumulation upon UVB exposure, which can be used to improve lighting systems and in turn the nutritional profile of future crops in indoor farming.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Institute of Nutritional Science, Food Chemistry, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany.
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Faculty of Life Science: Food, Nutrition and Health, Food Metabolome, University of Bayreuth, Fritz-Hornschuch-Straße 13, 95326, Kulmbach, Germany; Food4Future (F4F), C/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| |
Collapse
|
31
|
Sharma M, Sidhu AK, Samota MK, Gupta M, Koli P, Choudhary M. Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants. Proteomes 2023; 11:38. [PMID: 38133152 PMCID: PMC10747722 DOI: 10.3390/proteomes11040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants' ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Collapse
Affiliation(s)
- Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Amanpreet K. Sidhu
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar 143009, India; (M.S.); (A.K.S.)
| | - Mahesh Kumar Samota
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Regional Station, Abohar 152116, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
| | - Pushpendra Koli
- Plant Animal Relationship Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India;
- Post-Harvest Biosecurity, Murdoch University, Perth, WA 6150, Australia
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, Ludhiana 141001, India;
- School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
32
|
Sommer SG, Castro-Alves V, Hyötyläinen T, Strid Å, Rosenqvist E. The light spectrum differentially influences morphology, physiology and metabolism of Chrysanthemum × morifolium without affecting biomass accumulation. PHYSIOLOGIA PLANTARUM 2023; 175:e14080. [PMID: 38148199 DOI: 10.1111/ppl.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 12/28/2023]
Abstract
The development of light emitting diodes (LED) gives new possibilities to use the light spectrum to manipulate plant morphology and physiology in plant production and research. Here, vegetative Chrysanthemum × morifolium were grown at a photosynthetic photon flux density of 230 μmol m-2 s-1 under monochromatic blue, cyan, green, and red, and polychromatic red:blue or white light with the objective to investigate the effect on plant morphology, gas exchange and metabolic profile. After 33 days of growth, branching and leaf number increased from blue to red light, while area per leaf, leaf weight fraction, flavonol index, and stomatal density and conductance decreased, while dry matter production was mostly unaffected. Plants grown under red light had decreased photosynthesis performance compared with blue or white light-grown plants. The primary and secondary metabolites, such as organic acids, amino acids and phenylpropanoids (measured by non-targeted metabolomics of polar metabolites), were regulated differently under the different light qualities. Specifically, the levels of reduced ascorbic acid and its oxidation products, and the total ascorbate pool, were significantly different between blue light-grown plants and plants grown under white or red:blue light, which imply photosynthesis-driven alterations in oxidative pressure under different light regimens. The overall differences in plant phenotype, inflicted by blue, red:blue or red light, are probably due to a shift in balance between regulatory pathways controlled by blue light receptors and/or phytochrome. Although morphology, physiology, and metabolism differed substantially between plants grown under different qualities of light, these changes had limited effects on biomass accumulation.
Collapse
Affiliation(s)
- Søren Gjedde Sommer
- Department of Plant and Environmental Sciences, Crop Sciences, University of Copenhagen, Taastrup, Denmark
| | - Victor Castro-Alves
- School of Science and Technology, MTM Research Center, Örebro University, Örebro, Sweden
| | - Tuulia Hyötyläinen
- School of Science and Technology, MTM Research Center, Örebro University, Örebro, Sweden
| | - Åke Strid
- School of Science and Technology, Örebro Life Science Centre, Örebro University, Örebro, Sweden
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, Crop Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
33
|
Shao L, Wang W, Gong X, Yu Y, Xue J, Zeng X, Liu J. The Toxicity Differences of Fluralaner against the Red Imported Fire Ant ( Solenopsis invicta) at Different Developmental Stages. Int J Mol Sci 2023; 24:15627. [PMID: 37958611 PMCID: PMC10649654 DOI: 10.3390/ijms242115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The red imported fire ant (RIFA), Solenopsis invicta, is an invasive pest that causes damage to agricultural and ecological environments worldwide. Fluralaner is a new isoxazoline pesticide with the potential to become a control agent against RIFA. However, it is not clear whether S. invicta responds the same way to fluralaner at different reproductive stages. The present study firstly evaluated the toxicity of fluralaner to S. invicta at different developmental stages, finding that fourth instar larvae (LD50, 1744.23 mg/kg) and worker ants (LD50, 8.62 mg/kg) were differently susceptible to fluralaner, while the mortality rate of fourth instar larvae was significantly lower at the same concentration of 10 mg/L (5.56 ± 3.14%) than that of worker ants (62.22 ± 3.14%), demonstrating a greater tolerance to fluralaner. Subsequently, the metabolic responses of worker and larval ants to fluralaner stress (10 mg/L) were investigated using non-targeted metabolomics, which indicated that the amount of differential metabolites and the KEGG metabolic pathways enriched were different between workers and larvae when exposed to the same dose (10 mg/L) of fluralaner. Differential metabolites of larvae and worker ants under fluralaner stress were mainly concentrated in organic acids and their derivatives, lipids and lipid-like molecules, nucleosides, nucleotides, and analogues, combined with the enriched metabolic pathways, revealed that the differential metabolic responses of larvae and worker ants were mainly in energy metabolism, detoxification metabolism, and neurotransmitter ligands. Workers consumed more substrates in the arginine synthesis pathway (l-glutamic acid, l-aspartic acid, and fumaric acid) to provide energy for the detoxification (glutathione) of pesticides when exposed to fluralaner stress, and the high accumulation of l-aspartic acid induced excitotoxicity in the worker ants. Larval ants consumed more arachidonic acid to synthesize PG D2, and changes in the metabolism of antioxidants such as catechins, hesperidin, and l-ascorbic acid suggested that larvae were more capable of scavenging the ROS response than worker ants. The results of non-targeted metabolomics successfully revealed differences in the sensitivity of larvae and workers to fluralaner agents, providing insights into the fluralaner control of Solenopsis invicta.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiali Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (L.S.); (W.W.); (X.G.); (Y.Y.); (J.X.); (X.Z.)
| |
Collapse
|
34
|
Milić Komić S, Živanović B, Dumanović J, Kolarž P, Sedlarević Zorić A, Morina F, Vidović M, Veljović Jovanović S. Differential Antioxidant Response to Supplemental UV-B Irradiation and Sunlight in Three Basil Varieties. Int J Mol Sci 2023; 24:15350. [PMID: 37895033 PMCID: PMC10607338 DOI: 10.3390/ijms242015350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Three basil plant varieties (Ocimum basilicum var. Genovese, Ocimum × citriodorum, and Ocimum basilicum var. purpurascens) were grown under moderate light (about 300 µmol photons m-2 s-1) in a glasshouse or growth chamber and then either transferred to an open field (average daily dose: 29.2 kJ m-2 d-1) or additionally exposed to UV-B irradiation in a growth chamber (29.16 kJ m-2 d-1), to reveal the variety-specific and light-specific acclimation responses. Total antioxidant capacity (TAC), phenolic profile, ascorbate content, and class III peroxidase (POD) activity were used to determine the antioxidant status of leaves under all four light regimes. Exposure to high solar irradiation at the open field resulted in an increase in TAC, total hydroxycinnamic acids (HCAs, especially caffeic acid), flavonoids, and epidermal UV-absorbing substances in all three varieties, as well as a two-fold increase in the leaf dry/fresh weight ratio. The supplemental UV-B irradiation induced preferential accumulation of HCAs (rosmarinic acid) over flavonoids, increased TAC and POD activity, but decreased the ascorbate content in the leaves, and inhibited the accumulation of epidermal flavonoids in all basil varieties. Furthermore, characteristic leaf curling and UV-B-induced inhibition of plant growth were observed in all basil varieties, while a pro-oxidant effect of UV-B was indicated with H2O2 accumulation in the leaves and spotty leaf browning. The extent of these morphological changes, and oxidative damage depended on the basil cultivar, implies a genotype-specific tolerance mechanism to high doses of UV-B irradiation.
Collapse
Affiliation(s)
- Sonja Milić Komić
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Bojana Živanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Jelena Dumanović
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia;
| | - Predrag Kolarž
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia;
| | - Ana Sedlarević Zorić
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| | - Filis Morina
- Biology Center of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovska 31/1160, 370 05 Ceske Budejovice, Czech Republic;
| | - Marija Vidović
- Institute of Molecular Genetics and Genetic Engineering, Laboratory for Plant Molecular Biology, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Sonja Veljović Jovanović
- Institute for Multidisciplinary Research, Department of Life Science, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia; (S.M.K.); (B.Ž.); (A.S.Z.)
| |
Collapse
|
35
|
Sáenz-de la O D, Morales LO, Strid Å, Feregrino-Perez AA, Torres-Pacheco I, Guevara-González RG. Antioxidant and drought-acclimation responses in UV-B-exposed transgenic Nicotiana tabacum displaying constitutive overproduction of H 2O 2. Photochem Photobiol Sci 2023; 22:2373-2387. [PMID: 37486529 DOI: 10.1007/s43630-023-00457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Hydrogen peroxide (H2O2) is an important molecule that regulates antioxidant responses that are crucial for plant stress resistance. Exposure to low levels of ultraviolet-B radiation (UV-B, 280-315 nm) can also activate antioxidant defenses and acclimation responses. However, how H2O2 and UV-B interact to promote stress acclimation remains poorly understood. In this work, a transgenic model of Nicotiana tabacum cv Xanthi nc, with elevated Mn-superoxide dismutase (Mn-SOD) activity, was used to study the interaction between the constitutive overproduction of H2O2 and a 14-day UV-B treatment (1.75 kJ m-2 d-1 biologically effective UV-B). Subsequently, these plants were subjected to a 7-day moderate drought treatment to evaluate the impact on drought resistance of H2O2- and UV-dependent stimulation of the plants' antioxidant system. The UV-B treatment enhanced H2O2 levels and altered the antioxidant status by increasing the epidermal flavonol index, Trolox Equivalent Antioxidant Capacity, and catalase, peroxidase and phenylalanine ammonia lyase activities in the leaves. UV-B also retarded growth and suppressed acclimation responses in highly H2O2-overproducing transgenic plants. Plants not exposed to UV-B had a higher drought resistance in the form of higher relative water content of leaves. Our data associate the interaction between Mn-SOD transgene overexpression and the UV-B treatment with a stress response. Finally, we propose a hormetic biphasic drought resistance response curve as a function of leaf H2O2 content in N. tabacum cv Xanthi.
Collapse
Affiliation(s)
- Diana Sáenz-de la O
- School of Engineering, National Technological Institute of Mexico-Campus Roque, Guanajuato, México
| | - Luis O Morales
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Åke Strid
- School of Science and Technology, Örebro University, Örebro, Sweden.
| | - A Angélica Feregrino-Perez
- Basic and Applied Bioengineering Group, School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, México
| | - Irineo Torres-Pacheco
- Center for Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, Mexico
| | - Ramón G Guevara-González
- Center for Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Querétaro, Mexico.
| |
Collapse
|
36
|
Crestani G, Cunningham N, Csepregi K, Badmus UO, Jansen MAK. From stressor to protector, UV-induced abiotic stress resistance. Photochem Photobiol Sci 2023; 22:2189-2204. [PMID: 37270745 PMCID: PMC10499975 DOI: 10.1007/s43630-023-00441-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Plants are continuously exposed to combinations of abiotic and biotic stressors. While much is known about responses to individual stressors, understanding of plant responses to combinations of stressors is limited. The effects of combined exposure to drought and UV radiation are particularly relevant in the context of climate change. In this study it was explored whether UV-exposure can be used as a tool to prime stress-resistance in plants grown under highly protected culture conditions. It was hypothesised that priming mint plantlets (Mentha spicata L.) with a low-dose of UV irradiance can alleviate the drought effect caused by a change in humidity upon transplanting. Plants were grown for 30 days on agar in sealed tissue culture containers. During this period, plants were exposed to ~ 0.22 W m-2 UV-B for 8 days, using either UV-blocking or UV- transmitting filters. Plants were then transplanted to soil and monitored for a further 7 days. It was found that non-UV exposed mint plants developed necrotic spots on leaves, following transfer to soil, but this was not the case for plants primed with UV. Results showed that UV induced stress resistance is associated with an increase in antioxidant capacity, as well as a decrease in leaf area. UV-induced stress resistance can be beneficial in a horticultural setting, where priming plants with UV-B can be used as a tool in the production of commercial crops.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland.
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| | - Kristóf Csepregi
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság u. 6, Pécs, 7624, Hungary
| | - Uthman O Badmus
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| |
Collapse
|
37
|
Qian M, Kalbina I, Rosenqvist E, Jansen MAK, Strid Å. Supplementary UV-A and UV-B radiation differentially regulate morphology in Ocimum basilicum. Photochem Photobiol Sci 2023; 22:2219-2230. [PMID: 37310640 DOI: 10.1007/s43630-023-00443-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
UV-A- or UV-B-enriched growth light was given to basil plants at non-stress-inducing intensities. UV-A-enriched growth light gave rise to a sharp rise in the expression of PAL and CHS genes in leaves, an effect that rapidly declined after 1-2 days of exposure. On the other hand, leaves of plants grown in UV-B-enriched light had a more stable and long-lasting increase in the expression of these genes and also showed a stronger increase in leaf epidermal flavonol content. UV supplementation of growth light also led to shorter more compact plants with a stronger UV effect the younger the tissue. The effect was more prominent in plants grown under UV-B-enriched light than in those grown under UV-A. Parameters particularly affected were internode lengths, petiole lengths and stem stiffness. In fact, the bending angle of the 2nd internode was found to increase as much as 67% and 162% for plants grown in the UV-A- and UV-B-enriched treatments, respectively. The decreased stem stiffness was probably caused by both an observed smaller internode diameter and a lower specific stem weight, as well as a possible decline in lignin biosynthesis due to competition for precursors by the increased flavonoid biosynthesis. Overall, at the intensities used, UV-B wavelengths are stronger regulators of morphology, gene expression and flavonoid biosynthesis than UV-A wavelengths.
Collapse
Affiliation(s)
- Minjie Qian
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182, Örebro, Sweden
- School of Horticulture, Hainan University, Haikou, 570228, China
| | - Irina Kalbina
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182, Örebro, Sweden
| | - Eva Rosenqvist
- Section of Crop Sciences, Department of Plant and Environmental Sciences, University of Copenhagen, Hoejbakkegaard Allé 9, 2630, Taastrup, Denmark
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, T23 TK30, Ireland
| | - Åke Strid
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|
38
|
Abramova A, Vereshchagin M, Kulkov L, Kreslavski VD, Kuznetsov VV, Pashkovskiy P. Potential Role of Phytochromes A and B and Cryptochrome 1 in the Adaptation of Solanum lycopersicum to UV-B Radiation. Int J Mol Sci 2023; 24:13142. [PMID: 37685948 PMCID: PMC10488226 DOI: 10.3390/ijms241713142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
UV-B causes both damage to the photosynthetic apparatus (PA) and the activation of specific mechanisms that protect the PA from excess energy and trigger a cascade of regulatory interactions with different photoreceptors, including phytochromes (PHYs) and cryptochromes (CRYs). However, the role of photoreceptors in plants' responses to UV-B radiation remains undiscovered. This study explores some of these responses using tomato photoreceptor mutants (phya, phyb1, phyab2, cry1). The effects of UV-B exposure (12.3 µmol (photons) m-2 s-1) on photosynthetic rates and PSII photochemical activity, the contents of photosynthetic and UV-absorbing pigments and anthocyanins, and the nonenzymatic antioxidant capacity (TEAC) were studied. The expression of key light-signaling genes, including UV-B signaling and genes associated with the biosynthesis of chlorophylls, carotenoids, anthocyanins, and flavonoids, was also determined. Under UV-B, phyab2 and cry1 mutants demonstrated a reduction in the PSII effective quantum yield and photosynthetic rate, as well as a reduced value of TEAC. At the same time, UV-B irradiation led to a noticeable decrease in the expression of the ultraviolet-B receptor (UVR8), repressor of UV-B photomorphogenesis 2 (RUP2), cullin 4 (CUL4), anthocyanidin synthase (ANT), phenylalanine ammonia-lease (PAL), and phytochrome B2 (PHYB2) genes in phyab2 and RUP2, CUL4, ANT, PAL, and elongated hypocotyl 5 (HY5) genes in the cry1 mutant. The results indicate the mutual regulation of UVR8, PHYB2, and CRY1 photoreceptors, but not PHYB1 and PHYA, in the process of forming a response to UV-B irradiation in tomato.
Collapse
Affiliation(s)
- Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Leonid Kulkov
- Department of Technologies for the Production of Vegetable, Medicinal and Essential Oils, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127550, Russia;
| | - Vladimir D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| |
Collapse
|
39
|
Song Y, Liu W, Wang Z, He S, Jia W, Shen Y, Sun Y, Xu Y, Wang H, Shang W. Effect of Different Monochromatic LEDs on the Environmental Adaptability of Spathiphyllum floribundum and Chrysanthemum morifolium. PLANTS (BASEL, SWITZERLAND) 2023; 12:2964. [PMID: 37631175 PMCID: PMC10459178 DOI: 10.3390/plants12162964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Light-emitting diodes (LEDs) can be programmed to provide specialized light sources and spectra for plant growth. UV-A (397.6 nm), blue (460.6 nm), green (520.7 nm), and red (661.9 nm) LED light sources were used to study the effects of different monochromatic lights on the growth, antioxidant system, and photosynthetic characteristics of Spathiphyllum floribundum 'Tian Jiao' (a shade-loving species) and Chrysanthemum morifolium 'Huang Xiu Qiu' (a sun-loving species). This research revealed that green and blue light could enhance the morphological indicators, Chl a/b, photosynthetic electron transfer chain performance, and photosystem activity of S. floribundum, blue and red light could enhance the solution protein, Chl a, and photosynthetic electron transfer chain performance of C. morifolium, red and UV-A light viewed the highest SOD and CAT activities of S. floribundum (275.56 U·min·g-1; 148.33 U·min·g-1) and C. morifolium (587.03 U·min·g-1; 98.33 U·min·g-1), respectively. Blue and green light were more suitable for the growth and development of the shade-loving plant S. floribundum, while red and blue light were more suitable for the sun-loving plant C. morifolium. UV-A light could be used for their stress research. The research revealed the different adaptation mechanism of different plants to light environmental conditions.
Collapse
Affiliation(s)
- Yinglong Song
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
| | - Weichao Liu
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
| | - Zheng Wang
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
| | - Songlin He
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Wenqing Jia
- School of Horticulture Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Yuxiao Shen
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
| | - Yuke Sun
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
| | - Yufeng Xu
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
| | - Hongwei Wang
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
| | - Wenqian Shang
- Zhengzhou Key Laboratory for Research and Development of Regional Plants, College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (W.L.); (Z.W.); (Y.S.); (Y.S.); (Y.X.); (H.W.)
| |
Collapse
|
40
|
Long L, Zhao XT, Feng YM, Fan ZH, Zhao JR, Wu JF, Xu FC, Yuan M, Gao W. Profile of cotton flavonoids: Their composition and important roles in development and adaptation to adverse environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107866. [PMID: 37392667 DOI: 10.1016/j.plaphy.2023.107866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Cotton is a commercial crop that is cultivated in more than 50 countries. The production of cotton has severely diminished in recent years owing to adverse environments. Thus, it is a high priority of the cotton industry to produce resistant cultivars to prevent diminished cotton yields and quality. Flavonoids comprise one of the most important groups of phenolic metabolites in plants. However, the advantage and biological roles of flavonoids in cotton have yet not been studied in depth. In this study, we performed a widely targeted metabolic study and identified 190 flavonoids in cotton leaves that span seven different classes with flavones and flavonols as the dominant groups. Furthermore, flavanone-3-hydroxylase was cloned and silenced to knock down flavonoid production. The results show that the inhibition of flavonoid biosynthesis affects the growth and development of cotton and causes semi-dwarfing in cotton seedlings. We also revealed that the flavonoids contribute to cotton defense against ultraviolet radiation and Verticillium dahliae. Moreover, we discuss the promising role of flavonoids in cotton development and defense against biotic and abiotic stresses. This study provides valuable information to study the variety and biological functions of flavonoids in cotton and will help to profile the advantages of flavonoids in cotton breeding.
Collapse
Affiliation(s)
- Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Henan, 475004, PR China
| | - Xiao-Tong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Ya-Mei Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Zhi-Hao Fan
- School of Life Science, Henan University, Henan, 4750004, PR China
| | - Jing-Ruo Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Jian-Feng Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China
| | - Fu-Chun Xu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; Changzhi Medical College, Shanxi, 046000, PR China
| | - Man Yuan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization (Henan University), Henan, 475004, PR China; School of Life Science, Henan University, Henan, 4750004, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Henan, 475004, PR China.
| |
Collapse
|
41
|
Zhao Z, Yun C, Gu L, Liu J, Yao L, Wang W, Wang H. Melatonin enhances biomass, phenolic accumulation, and bioactivities of rosemary (Rosmarinus officinalis) in vitro shoots under UV-B stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13956. [PMID: 37327069 DOI: 10.1111/ppl.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Melatonin is a stress-related hormone that plays a critical role in triggering the plant defence system and regulating secondary metabolism when plants are exposed to stress. To explore the potential roles of melatonin in response to Ultraviolet-B (UV-B) radiation, we examined the effects of exogenous melatonin on rosemary in vitro shoots under UV-B stress. The application of melatonin (50 μM) alleviated the adverse effects of UV-B stress on the biomass, photosynthetic pigment contents, and membrane lipids of the rosemary in vitro shoots. Melatonin significantly increased superoxide dismutase (1.15.1.1, SOD), peroxidase (1.11.1.7, POD), and catalase (1.11.1.6, CAT) activities by 62%, 99%, and 53%, respectively. The contents of total phenols, rosmarinic acid, and carnosic acid increased under UV-B stress, and they further increased by the melatonin treatment by 41%, 68%, and 67%, respectively, compared with the control group. Under UV-B stress, the increased total phenol content in melatonin-pretreated plants could be attributed to the activation of phenylalanine ammonia-lyase (4.3.1.5, PAL) and tyrosine aminotransferase (2.6.1.5, TAT). In addition, melatonin enhanced the antioxidant and antibacterial activities of the rosemary in vitro shoots under UV-B stress. These results suggest that melatonin can alleviate the damage caused by UV-B stress and also enhance the secondary metabolism and bioactivity of rosemary in vitro shoots.
Collapse
Affiliation(s)
- Zhuowen Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Cholil Yun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- College of Forest Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Lin Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Jianing Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Liuyang Yao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Wenjie Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Kantharaj V, Yoon YE, Lee KA, Choe H, Chohra H, Seo WD, Kim YN, Lee YB. Saponarin, a Di-glycosyl Flavone from Barley ( Hordeum vulgare L.): An Effective Compound for Plant Defense and Therapeutic Application. ACS OMEGA 2023; 8:22285-22295. [PMID: 37396229 PMCID: PMC10308553 DOI: 10.1021/acsomega.3c00267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Saponarin (SA) is a major di-C-glycosyl-O-glycosyl flavone, which is predominantly accumulated in the young green leaves of barley (Hordeum vulgare L.), with numerous biological functions in plants, such as protection against environmental stresses. Generally, SA synthesis and its localization in the mesophyll vacuole or leaf epidermis are largely stimulated in response to biotic and abiotic stresses to participate in a plant's defense response. In addition, SA is also credited for its pharmacological properties, such as the regulation of signaling pathways associated with antioxidant and anti-inflammatory responses. In recent years, many researchers have shown the potential of SA to treat oxidative and inflammatory disorders, such as in protection against liver diseases, and reducing blood glucose, along with antiobesity effects. This review aims to highlight natural variations of SA in plants, biosynthesis pathway, and SA's role in response to environmental stress and implications in various therapeutic applications. In addition, we also discuss the challenges and knowledge gaps concerning SA use and commercialization.
Collapse
Affiliation(s)
- Vimalraj Kantharaj
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Young-Eun Yoon
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Keum-Ah Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeonji Choe
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Hadjer Chohra
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Woo Duck Seo
- Division
of Crop Foundation, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Young-Nam Kim
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| | - Yong Bok Lee
- Institute
of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
- Division
of Applied Life Science (BK21), Gyeongsang
National University, Jinju 52828, Republic
of Korea
| |
Collapse
|
43
|
Sun M, Jordan B, Creasy G, Zhu YF. UV-B Radiation Induced the Changes in the Amount of Amino Acids, Phenolics and Aroma Compounds in Vitis vinifera cv. Pinot Noir Berry under Field Conditions. Foods 2023; 12:2350. [PMID: 37372561 DOI: 10.3390/foods12122350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
High UV-B radiation can challenge Pinot noir growth in the wine-making region of the Southern Hemisphere. The aim of this work was to determine UV-B effects on amino acids, phenolic composition and aroma compounds of Pinot noir fruit. Sunlight exposure with or without UV-B did not affect fruit production capacity, °Brix and total amino acids in the vineyard over the two years. This research reported increased contents of skin anthocyanin and skin total phenolics in berry skins under UV-B. The research showed that there were no changes in C6 compounds. Some monoterpenes concentrations were decreased by UV-B. The information also indicated how important leaf canopy management was for vineyard management. Therefore, UV radiation potentially affected fruit ripeness and crop load, and even stimulated the accumulation of phenolic compounds that may affect Pinot noir quality. This research reported that canopy management (UV-B exposure) may be a good way for vineyard management to increase the accumulation of anthocyanins and tannins in berry skins.
Collapse
Affiliation(s)
- Meng Sun
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, No. 50 Zhongling Street, Nanjing 210014, China
| | - Brian Jordan
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand
| | - Glen Creasy
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand
- SCEA Terre des 2 Sources, La Plaine, 34190 Montoulieu, France
| | - Yi-Fan Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch 7647, New Zealand
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
44
|
Xiao L, Ma W, Zhang J, Pu X, Rengel Z, Song Z, Chen Q. Phytomelatonin interferes with flavonols biosynthesis to regulate ROS production and stomatal closure in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153977. [PMID: 37062233 DOI: 10.1016/j.jplph.2023.153977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Flavonols are well-known antioxidants that prevent stomatal closure via interfering with ROS signaling. Phytomelatonin regulates stomatal closure, but the signaling pathways are still largely unknown. Here, we investigated the role of flavonols in phytomelatonin-mediated stomatal closure in tobacco plants. The application of melatonin induced stomatal closure through NADPH oxidase-mediated ROS production. Transgenic tobacco plants overexpressing soybean GmSNAT1 (coding for serotonin N-acetyltransferase that catalyzes the penultimate step in phytomelatonin biosynthesis) had higher phytomelatonin concentration, accumulated more ROS in guard cells and were more sensitive to melatonin-induced stomatal closure than the wild-type plants, which was associated with the higher expression of PMTR1-homologous genes. Exogenous melatonin decreased flavonol concentrations in guard cells and the expression of flavonoid-related genes in wild-type and transgenic tobacco plants, and these inhibitory effects were more obvious in GmSNAT1-overexpressing plants than the wild type. However, the melatonin-mediated stomatal closure and ROS production were diminished by the application of kaempferol (a type of flavonol). Additionally, transgenic tobacco plants with increased expression of NtFLS (encoding flavonol synthase) were less sensitive to melatonin-induced stomatal closure. In conclusion, phytomelatonin hampers the biosynthesis of flavonols in guard cells, which results in high concentration of ROS and induces stomatal closure in tobacco plants.
Collapse
Affiliation(s)
- Lin Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Wenna Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Jiarong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China; Yunnan Modern Professional Technology College, 675000, Chuxiong, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia; Institute for Adriatic Crops and Karst Reclamation, 21000, Split, Croatia
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China.
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
45
|
Santin M, Simoni S, Vangelisti A, Giordani T, Cavallini A, Mannucci A, Ranieri A, Castagna A. Transcriptomic Analysis on the Peel of UV-B-Exposed Peach Fruit Reveals an Upregulation of Phenolic- and UVR8-Related Pathways. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091818. [PMID: 37176875 PMCID: PMC10180693 DOI: 10.3390/plants12091818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
UV-B treatment deeply influences plant physiology and biochemistry, especially by activating the expression of responsive genes involved in UV-B acclimation through a UV-B-specific perception mechanism. Although the UV-B-related molecular responses have been widely studied in Arabidopsis, relatively few research reports deepen the knowledge on the influence of post-harvest UV-B treatment on fruit. In this work, a transcriptomic approach is adopted to investigate the transcriptional modifications occurring in the peel of UV-B-treated peach (Prunus persica L., cv Fairtime) fruit after harvest. Our analysis reveals a higher gene regulation after 1 h from the irradiation (88% of the differentially expressed genes-DEGs), compared to 3 h recovery. The overexpression of genes encoding phenylalanine ammonia-lyase (PAL), chalcone syntase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) revealed a strong activation of the phenylpropanoid pathway, resulting in the later increase in the concentration of specific flavonoid classes, e.g., anthocyanins, flavones, dihydroflavonols, and flavanones, 36 h after the treatment. Upregulation of UVR8-related genes (HY5, COP1, and RUP) suggests that UV-B-triggered activation of the UVR8 pathway occurs also in post-harvest peach fruit. In addition, a regulation of genes involved in the cell-wall dismantling process (PME) is observed. In conclusion, post-harvest UV-B exposure deeply affects the transcriptome of the peach peel, promoting the activation of genes implicated in the biosynthesis of phenolics, likely via UVR8. Thus, our results might pave the way to a possible use of post-harvest UV-B treatments to enhance the content of health-promoting compounds in peach fruits and extending the knowledge of the UVR8 gene network.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Samuel Simoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alessia Mannucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood ''Nutraceuticals and Food for Health'', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
46
|
Liaqat W, Altaf MT, Barutçular C, Nawaz H, Ullah I, Basit A, Mohamed HI. Ultraviolet-B radiation in relation to agriculture in the context of climate change: a review. CEREAL RESEARCH COMMUNICATIONS 2023; 52:1-24. [PMID: 37361481 PMCID: PMC10099031 DOI: 10.1007/s42976-023-00375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 06/28/2023]
Abstract
Over the past few decades, the amount of ultraviolet-B radiation (UV-B) reaching the earth's surface has been altered due to climate change and stratospheric ozone dynamics. This narrow but highly biologically active spectrum of light (280-320 nm) can affect plant growth and development. Depletion of ozone and climate change are interlinked in a very complicated manner, i.e., significantly contributing to each other. The interaction of climate change, ozone depletion, and changes in UV-B radiation negatively affects the growth, development, and yield of plants. Furthermore, this interaction will become more complex in the coming years. The ozone layer reduction is paving a path for UV-B radiation to impact the surface of the earth and interfere with the plant's normal life by negatively affecting the plant's morphology and physiology. The nature and degree of the future response of the agricultural ecosystem to the decreasing or increasing UV-B radiation in the background of climate change and ozone dynamics are still unclear. In this regard, this review aims to elucidate the effects of enhanced UV-B radiation reaching the earth's surface due to the depletion of the ozone layer on plants' physiology and the performance of major cereals.
Collapse
Affiliation(s)
- Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330 Adana, Turkey
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technology, Department of Plant Protection, Sivas University of Science and Technology, 58140 Sivas, Turkey
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330 Adana, Turkey
| | - Hira Nawaz
- Department of Plant Protection, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330 Adana, Turkey
| | - Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566 South Korea
| | - Heba I. Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341 Egypt
| |
Collapse
|
47
|
Santin M, Zeni V, Grassi A, Ricciardi R, Pieracci Y, Di Giovanni F, Panzani S, Frasconi C, Agnolucci M, Avio L, Turrini A, Giovannetti M, Ruffini Castiglione M, Ranieri A, Canale A, Lucchi A, Agathokleous E, Benelli G. Do changes in Lactuca sativa metabolic performance, induced by mycorrhizal symbionts and leaf UV-B irradiation, play a role towards tolerance to a polyphagous insect pest? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56207-56223. [PMID: 36917375 PMCID: PMC10121541 DOI: 10.1007/s11356-023-26218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemical adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi (AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) inoculation as well as the role of a major insect pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbuscules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Arianna Grassi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Filippo Di Giovanni
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Sofia Panzani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Christian Frasconi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Monica Ruffini Castiglione
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126, Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Science & Technology (NUIST), Nanjing University of Information, Nanjing, 210044, China
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
48
|
Li N, Ji X, Mukherjee S, Yang B, Ren Y, Wang C, Chen Y. A Bioinspired Skin UV Filter with Broadband UV Protection, Photostability, and Resistance to Oxidative Damage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10383-10397. [PMID: 36800210 DOI: 10.1021/acsami.2c19773] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, sunscreens' adverse impacts on the environment and biology have gained wide attention. The improvement of sunscreen safety has become one of the major priorities in skin photoprotection research. It is an effective strategy to develop bionic photoprotective materials by simulating the photoprotective mechanism existing in nature. Inspired by the photoprotective mechanisms of skin and plant leaves, the bionic photoprotective material CS-SA-PDA nanosheet was developed using the free radical grafting method and Michael addition, with natural melanin analogue polydopamine (PDA) nanoparticles and plant sunscreen molecular sinapic acid (SA) as sun protection factors and natural polymer chitosan (CS) as the connecting arm. The results show that CS-SA-PDA can effectively shield UVB and UVA due to the possible synergistic effect between PDA and SA. The introduction of polymer CS significantly improved the photostability of SA and reduced the skin permeability of PDA nanoparticles. The CS-SA-PDA nanosheet can also effectively scavenge photoinduced free radicals. Furthermore, in vivo toxicity and anti-UV evaluations confirm that CS-SA-PDA has no skin irritation and is excellent against skin photodamage, which makes it an ideal skin photoprotective material.
Collapse
Affiliation(s)
- Nini Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
| | - Xiaohong Ji
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Somnath Mukherjee
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yuqing Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
49
|
Pandey A, Agrawal M, Agrawal SB. Ultraviolet-B and Heavy Metal-Induced Regulation of Secondary Metabolites in Medicinal Plants: A Review. Metabolites 2023; 13:metabo13030341. [PMID: 36984781 PMCID: PMC10058376 DOI: 10.3390/metabo13030341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Despite a rich history and economic importance, the potential of medicinal plants has not been fully explored under different abiotic stress conditions. Penetration of UV-B radiation and contamination of heavy metals are two important environmental stress for plants with remarkable influence on the defense-related and pharmaceutically important secondary metabolites of medicinal plants. UV-B and heavy metal contamination may become a critical issue that either positively or negatively affects the quality and quantity of secondary metabolites. Such effects may result from changes in the expression level of genes that encode the corresponding enzymes or the inactivation and/or stimulation of specific enzymes involved in the different biosynthetic pathways of the secondary metabolites. Therefore, a comprehensive study of the impact of UV-B and heavy metals individually and in combination on the biosynthesis and accumulation of secondary metabolites in medicinal plants is discussed in the present review.
Collapse
|
50
|
Li X, Sheng J, Li Z, He Y, Zu Y, Li Y. Enhanced UV-B Radiation Induced the Proanthocyanidins Accumulation in Red Rice Grain of Traditional Rice Cultivars and Increased Antioxidant Capacity in Aging Mice. Int J Mol Sci 2023; 24:ijms24043397. [PMID: 36834809 PMCID: PMC9960751 DOI: 10.3390/ijms24043397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Proanthocyanidins are major UV-absorbing compounds. To clarify the effect of enhanced UV-B radiation on the proanthocyanidin synthesis and antioxidant capacity of traditional rice varieties in Yuanyang terraced fields, we studied the effects of enhanced UV-B radiation (0, 2.5, 5.0, 7.5 kJ·m-2·d-1) on the rice grain morphology, proanthocyanidins content, and synthesis. The effects of UV-B radiation on the antioxidant capacity of rice were evaluated by feeding aging model mice. The results showed that UV-B radiation significantly affected the grain morphology of red rice and increased the compactness of starch grains in the starch storage cells of central endosperm. The content of proanthocyanidin B2 and C1 in the grains was significantly increased by 2.5 and 5.0 kJ·m-2·d-1 UV-B radiation. The activity of leucoanthocyanidin reductase was higher in rice treated by 5.0 kJ·m-2·d-1 than other treatments. The number of neurons in the hippocampus CA1 of mice brain fed red rice increased. After 5.0 kJ·m-2·d-1 treatment, red rice has the best antioxidant effect on aging model mice. UV-B radiation induces the synthesis of rice proanthocyanidins B2 and C1, and the antioxidant capacity of rice is related to the content of proanthocyanidins.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
- National Engineering Research Center for Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650231, China
| | - Jianjun Sheng
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
- Correspondence:
| |
Collapse
|