1
|
Wang Y, Zhan E, Lu H, Chen Y, Duan F, Wang Y, Tang T, Zhao C. Control efficacy and joint toxicity of broflanilide mixed with commercial insecticides to an underground pest, the black cutworm in highland barley. PEST MANAGEMENT SCIENCE 2024; 80:6150-6158. [PMID: 39096093 DOI: 10.1002/ps.8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The highland barley, Hordeum vulgare L., is a staple food crop with superior nutritional functions in Xizang, China. It is often damaged by the black cutworm, Agrotis ipsilon (Hufnagel), which is an underground pest and difficult to effectively manage. To introduce a novel insecticide with unique mode of action, broflanilide (BFL) and its binary mixtures with chlorantraniliprole (CAP), fluxametamide, β-cypermethrin or imidacloprid were screened out as seed treatment to control black cutworm in highland barley in the present study. RESULTS In the laboratory bioassays, BFL had outstanding insecticidal activity to black cutworm with a median lethal dose (LD50) of 0.07 mg kg-1. The mixture of BFL × CAP at the concentration ratio of 7:40 exhibited the highest synergistic effect with a co-toxicity coefficient of 280.48. In the greenhouse pot experiments, BFL and BFL × CAP seed treatments at 8 g a.i. kg-1 seed could effectively control black cutworm, with a low percentage of injured seedlings <20% and high control efficacies of 93.33-100% during a period of 3-12 days after seed emergence. Moreover, BFL and BFL × CAP seed treatments could promote the seed germination and seedling growth of highland barley at the tested temperatures of 15, 20 and 25 °C. CONCLUSION Our results indicated that BFL and BFL × CAP were effective and promising insecticides as seed treatment to control black cutworm in highland barley. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingnan Wang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Enling Zhan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Hui Lu
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Yiqu Chen
- College of Plant Science, Tibet Agricultural and Animal Husbandry University, Nyingchi, PR China
| | - Fenglei Duan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Ying Wang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Tao Tang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, PR China
| | - Chunqing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
2
|
Shelar A, Singh AV, Chaure N, Jagtap P, Chaudhari P, Shinde M, Nile SH, Chaskar M, Patil R. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175118. [PMID: 39097019 DOI: 10.1016/j.scitotenv.2024.175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Abiotic and biotic stresses during seed germination are typically managed with conventional agrochemicals, known to harm the environment and reduce crop yields. Seeking sustainable alternatives, nanotechnology-based agrochemicals leverage unique physical and chemical properties to boost seed health and alleviate stress during germination. Nanoprimers in seed priming treatment are advanced nanoscale materials designed to enhance seed germination, growth, and stress tolerance by delivering bioactive compounds and nutrients directly to seeds. Present review aims to explores the revolutionary potential of nanoprimers in sustainable seed treatment, focusing on their ability to enhance crop productivity by improving tolerance to abiotic and biotic stresses. Key objectives include understanding the mechanisms by which nanoprimers confer resistance to stresses such as drought, salinity, pests, and diseases, and assessing their impact on plant physiological and biochemical pathways. Key findings reveal that nanoprimers significantly enhance seedling vigor and stress resilience, leading to improved crop yields. These advancements are attributed to the precise delivery of nanomaterials that optimize plant growth conditions and activate stress tolerance mechanisms. However, the study also highlights the importance of comprehensive toxicity and risk assessments. Current review presents a novel contribution, highlighting both the advantages and potential risks of nanoprimers by offering a comprehensive overview of advancements in seed priming with metal and metal oxide nanomaterials, addressing a significant gap in the existing literature. By delivering advanced molecular insights, the study underscores the transformative potential of nanoprimers in fostering sustainable agricultural practices and responsibly meeting global food demands.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589 Berlin, Germany
| | - Nandu Chaure
- Department of Physics, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Pramod Jagtap
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Pramod Chaudhari
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET), Panchawati, Pune 411008, MH, India
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 140306, PB, India.
| | - Manohar Chaskar
- Swami Ramanand Teerth Marathwada University, Nanded 431606 (MS) India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India.
| |
Collapse
|
3
|
Abdukerim R, Li L, Li JH, Xiang S, Shi YX, Xie XW, Chai AL, Fan TF, Li BJ. Coating seeds with biocontrol bacteria-loaded sodium alginate/pectin hydrogel enhances the survival of bacteria and control efficacy against soil-borne vegetable diseases. Int J Biol Macromol 2024; 279:135317. [PMID: 39245117 DOI: 10.1016/j.ijbiomac.2024.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Microbial seed coatings serve as effective, labor-saving, and ecofriendly means of controlling soil-borne plant diseases. However, the survival of microbial agents on seed surfaces and in the rhizosphere remains a crucial challenge. In this work, we embedded a biocontrol bacteria (Bacillus subtilis ZF71) in sodium alginate (SA)/pectin (PC) hydrogel as a seed coating agent to control Fusarium root rot in cucumber. The formula of SA/PC hydrogel was optimized with the highest coating uniformity of 90 % in cucumber seeds. SA/PC hydrogel was characterized using rheological, gel content, and water content tests, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. Bacillus subtilis ZF71 within the SA/PC hydrogel network formed a biofilm-like structure with a high viable cell content (8.30 log CFU/seed). After 37 days of storage, there was still a high number of Bacillus subtilis ZF71 cells (7.23 log CFU/seed) surviving on the surface of cucumber seeds. Pot experiments revealed a higher control efficiency against Fusarium root rot in ZF71-SA/PC cucumber seeds (53.26 %) compared with roots irrigated with a ZF71 suspension. Overall, this study introduced a promising microbial seed coating strategy based on biofilm formation that improved performance against soil-borne plant diseases.
Collapse
Affiliation(s)
- Rizwangul Abdukerim
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun-Hui Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Xia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A-Li Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Teng-Fei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bao-Ju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Akpor O, Ajinde A, Ogunnusi T. Effects of priming duration and rhizosphere bacteria metabolite concentration on the germinability of cowpea, soybean, sesame, and okra seeds. F1000Res 2024; 12:781. [PMID: 39372259 PMCID: PMC11450368 DOI: 10.12688/f1000research.137322.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Seed priming enhances germination and growth, which are important determinants of crop yield. This study was carried out to assess the effect of priming duration and metabolite concentration on the priming of five (5) different crops, using the metabolites of five (5) bacterial isolates. The crop seeds were treated in the cold-extracted metabolites of the five isolates at five (5) different priming durations (1, 2, 3, 4, and 5 h) and then in five metabolite concentrations (200, 400, 600, 800, and 1000 mg/L) of the five extracted metabolites at the optimal priming duration determined in the first experiment. Characterization of the cold-extracted metabolites was also carried out using gas-chromatography-mass spectrometry (GC-MS). Results revealed that priming cowpea and soybean for longer durations (< 3 h) could hinder their growth and development. Lower concentrations were observed to be optimal for cowpea and soybean, but for sesame and okra, there was no detectable pattern with metabolite concentration. The GC-MS revealed the presence of some molecules (e.g. hexadecanoic acid) that have shown plant growth promotion potential in other studies. This study showed that seeds with large endosperm, such as, cowpea and soybean, are more prone to the deleterious effects of treatment for longer durations. Further experiments should be carried out to isolate and purify the bioactive moieties for further studies and onward application.
Collapse
Affiliation(s)
- Oghenerobor Akpor
- Department of Biological Sciences, Afe Babalola University, Ado Ekiti, Ekiti, 360102, Nigeria
| | - Ayotunde Ajinde
- Department of Biological Sciences, Afe Babalola University, Ado Ekiti, Ekiti, 360102, Nigeria
| | - Tolulope Ogunnusi
- Department of Biological Sciences, Afe Babalola University, Ado Ekiti, Ekiti, 360102, Nigeria
| |
Collapse
|
5
|
Riseh RS, Vazvani MG, Vatankhah M, Kennedy JF. Chitosan coating of seeds improves the germination and growth performance of plants: A Rreview. Int J Biol Macromol 2024; 278:134750. [PMID: 39218713 DOI: 10.1016/j.ijbiomac.2024.134750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This review article explores the fascinating world of chitosan coating applied to seeds and its profound impacts on enhancing the germination process and growth performance of plants. Chitosan, a biodegradable and non-toxic polysaccharide derived from chitin, has shown remarkable potential in seed treatment due to its bioactive properties. The review discusses the mechanisms of chitosan's effect on plant germination including promoting water uptake, enhancing nutrient absorption, and protecting seeds from biotic and abiotic stresses. Moreover, it evaluates the effects of chitosan on plant growth parameters such as root development, shoot growth, chlorophyll content, and overall yield. The review also discusses the sustainable aspects of chitosan coatings in agriculture, emphasizing their eco-friendly nature and potential for reducing reliance on synthetic chemicals. Overall, the findings underscore the significant benefits of chitosan-coated seeds in improving the overall performance of plants, paving the way for a greener and more productive agricultural future. Finally, the article will conclude with a SWOT analysis discussing the strengths, weaknesses, opportunities, and threats of this technology.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
6
|
Jimenez M, L'Heureux J, Kolaya E, Liu GW, Martin KB, Ellis H, Dao A, Yang M, Villaverde Z, Khazi-Syed A, Cao Q, Fabian N, Jenkins J, Fitzgerald N, Karavasili C, Muller B, Byrne JD, Traverso G. Synthetic extremophiles via species-specific formulations improve microbial therapeutics. NATURE MATERIALS 2024; 23:1436-1443. [PMID: 38969782 DOI: 10.1038/s41563-024-01937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Microorganisms typically used to produce food and pharmaceuticals are now being explored as medicines and agricultural supplements. However, maintaining high viability from manufacturing until use remains an important challenge, requiring sophisticated cold chains and packaging. Here we report synthetic extremophiles of industrially relevant gram-negative bacteria (Escherichia coli Nissle 1917, Ensifer meliloti), gram-positive bacteria (Lactobacillus plantarum) and yeast (Saccharomyces boulardii). We develop a high-throughput pipeline to define species-specific materials that enable survival through drying, elevated temperatures, organic solvents and ionizing radiation. Using this pipeline, we enhance the stability of E. coli Nissle 1917 by more than four orders of magnitude over commercial formulations and demonstrate its capacity to remain viable while undergoing tableting and pharmaceutical processing. We further show, in live animals and plants, that synthetic extremophiles remain functional against enteric pathogens and as nitrogen-fixing plant supplements even after exposure to elevated temperatures. This synthetic, material-based stabilization enhances our capacity to apply microorganisms in extreme environments on Earth and potentially during exploratory space travel.
Collapse
Affiliation(s)
- Miguel Jimenez
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Johanna L'Heureux
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Kolaya
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gary W Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle B Martin
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Husna Ellis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfred Dao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Yang
- Department of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zachary Villaverde
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Afeefah Khazi-Syed
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qinhao Cao
- Department of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niora Fabian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joshua Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nina Fitzgerald
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Karavasili
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin Muller
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James D Byrne
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
7
|
Fan TF, Luan YY, Xiang S, Shi YX, Xie XW, Chai AL, Li L, Li BJ. Seed coating with biocontrol bacteria encapsulated in sporopollenin exine capsules for the control of soil-borne plant diseases. Int J Biol Macromol 2024; 281:136093. [PMID: 39341327 DOI: 10.1016/j.ijbiomac.2024.136093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Coating seeds with biocontrol agents represents an effective approach for managing soil-borne plant diseases. However, improving the viability of biocontrol microorganisms on the seed surface or in the rhizosphere remains a big challenge due to biotic and abiotic stresses. In this work, we developed a microbial seed coating strategy that uses sporopollenin exine capsules (SECs) as carriers for the encapsulation of the biofilm-like biocontrol bacteria. SECs was extracted from camellia bee pollen, and then characterized by Fourier Transform infrared spectroscopy (FTIR), elemental analysis and thermal gravity analysis (TG). The Paenibacillus polymyxa ZF129, a biocontrol bacterium, was introduced into SECs using the vacuum-incubation method and characterized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Notably, the ZF129 cell formed a biofilm-like structure inside the SECs, which enhanced their tolerance to acidic stress. As a proof of concept, we applied ZF129-loaded SECs to coat pak choi seeds using a straightforward plate-shaking technique. The coated seeds demonstrated a high control efficacy of up to 60.46 % against clubroot disease. Overall, this study sheds light on the application of SECs as promising carrier for the encapsulation of biofilm-like biocontrol bacteria, further augmenting the biocontrol functionality of microbial seed coating.
Collapse
Affiliation(s)
- Teng-Fei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; National South Breeding Research Institute of the Chinese Academy of Agricultural Sciences in Sanya, Sanya 572000, China.
| | - Yu-Yang Luan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Xia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue-Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A-Li Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bao-Ju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Yan W, Zheng Q, Zhu S, Miao X, Yang L, Wu J, Wang B, Zhang Z, Xu H. Coating of maize seeds with acephate for precision agriculture: Safety assessment in earthworms, bees, and soil microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173761. [PMID: 38851355 DOI: 10.1016/j.scitotenv.2024.173761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Acephate is commonly used as a seed treatment (ST) in precision agriculture, but its impact on pollinators, earthworms, and soil microorganisms remains unclear. This study aimed to compare the fate of acephate seed dressing (SD) and seed coating (SC) treatments and assess potential risks to bees, earthworms, and soil microorganisms. Additionally, a follow-up study on maize seeds treated with acephate in a greenhouse was conducted to evaluate the maize growth process and the dissipation dynamics of the insecticide. The results indicated that acephate SC led to greater uptake and translocation in maize plants, resulting in lower residue levels in the soil. However, high concentrations of acephate metabolites in the soil had a negative impact on the body weight of earthworms, whereas acephate itself did not. The potential risk to bees from exposure to acephate ST was determined to be low, but dose-dependent effects were observed. Furthermore, acephate ST had no significant effect on soil bacterial community diversity and abundance compared to a control. This study provides valuable insights into the uptake and translocation of acephate SD and SC, and indicates that SC is safer than SD in terms of adverse effects on bees and nontarget soil organisms.
Collapse
Affiliation(s)
- Wenjuan Yan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Qun Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shiqi Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Xiaoran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Liupeng Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Botong Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
9
|
Qing B, Jiang Y, Wang Z, Li W, Li Y, Sun F, Pan S, Tian H, Duan M, Tang X, Mo Z. Exogenous metabolite application is a potential strategy for expanding the use of direct rice seeding with the aim of reducing seeding costs. Commun Biol 2024; 7:1096. [PMID: 39242665 PMCID: PMC11379971 DOI: 10.1038/s42003-024-06766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Rice is a staple food for over half of the global population, necessitates efficient and cost-effective production methods to ensure food security. However, direct seeding of rice often encounters challenges due to adverse environmental conditions, resulting in increased seeding costs. In this study, we analyzed the germination and physiological data of sixty-six rice varieties under cold and submergence conditions. Our results demonstrate that selecting rice varieties with superior germination capacity in these adverse conditions can improve germination rates by 39.43%. Transcriptomic and metabolomic analyses of two contrasting varieties revealed potential regulatory mechanisms involving hormonal pathways and the glycerophospholipid metabolism pathway. Furthermore, we found that the exogenous application of specific metabolites provides a cost-effective seed enhancement strategy for varieties with poor germination capacity. These findings suggest that combining suitable variety selection with seed enhancement treatments can significantly reduce seeding costs in rice production. This research offers valuable insights for developing resilient rice varieties and cost-effective seeding strategies, potentially contributing to improved rice cultivation practices and enhanced global food security.
Collapse
Affiliation(s)
- Bowen Qing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ye Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zaiman Wang
- Key Laboratory of Key Technology for South Agricultural Machine and Equipment, Ministry of Education, College of Engineering, South China Agricultural University, Guangzhou, China
| | - Wu Li
- Guangdong province key laboratory of crop genetic improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanhong Li
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feiyang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China.
| |
Collapse
|
10
|
Kangsopa J, Hynes RK, Siri B. Lettuce seed pelleting with Pseudomonas sp. 31-12: plant growth promotion under laboratory and greenhouse conditions. Can J Microbiol 2024. [PMID: 39116456 DOI: 10.1139/cjm-2024-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Plant growth promotion by Pseudomonas sp. 31-12 incorporated into a lettuce seed pelleting matrix was studied. We examined (1) the effect of five rhizosphere derived bacterial strains on green oak lettuce (Lactuca sativa L.) seed germination, root and shoot growth, as a strain selection step for seed coating and seed pelletizing studies, (2) population stability of Pseudomonas sp. 31-12 incorporated into a pelleting matrix on lettuce seed stored three months at 4 °C, and (3) lettuce growth promotion in the laboratory and greenhouse by Pseudomonas sp. 31-12 coated and pelletized seed. A spontaneous streptomycin mutant of Pseudomonas sp. 31-12 (str) was used to determine population size on seed and roots of 15- and 30-day-old lettuce. The population of Pseudomonas sp. 31-12str on coated and pelleted seed decreased from 104 cfu/seed to 103 cfu/seed after 3 months storage at 4 °C. However, the population exceeded 104 cfu/g root dry mass and 105/g root dry mass after 15 days and 30 days in the greenhouse. Leaf fresh mass was significantly increased (P ≤ 0.05) with Pseudomonas sp. 31-12 seed treatment as compared to noninoculated seed. In conclusion, pelletized lettuce seed with Pseudomonas sp. 31-12 promoted growth and yield in the greenhouse.
Collapse
Affiliation(s)
| | - Russell K Hynes
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada
| | - Boonmee Siri
- Department of Plant Science and Agricultural Resources, Faculty of Agriculture, KhonKaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Langlet R, Valentin R, Morard M, Raynaud CD. Transitioning to Microplastic-Free Seed Coatings: Challenges and Solutions. Polymers (Basel) 2024; 16:1969. [PMID: 39065285 PMCID: PMC11280678 DOI: 10.3390/polym16141969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This review addresses the issue of replacing manufactured microplastics in seed coatings used in agriculture. Firstly, it focuses on the policy and regulatory actions taken on microplastics at a global level. There is no consensus within the scientific community on the definition of a microplastic and, more generally, on the classification of plastic debris. Nevertheless, several decision schemes have been proposed in an attempt to define the notion of microplastics. The different criteria relevant to this definition, such as the size, physical state, chemical structure, origin, and persistence of microplastics, are discussed, with a comparison being made between the REACH regulation and the scientific literature. Seed production and processing are also discussed, with the functions of seed coatings being explained in order to gain a better understanding of the properties to be considered in a substitution strategy for currently used microplastics. The main challenges are multiple; substitutes must provide the same performance as microplastics: (i) improving the adherence of the treatment to the seed, (ii) distributing the treatment more evenly over the seed, (iii) reducing the amount of dust-off when handling treated seed, and (iv) improving the seed flowability, which is particularly important during the sowing stage, all while preserving the physiological properties of the seed. Substitute polymers are proposed according to the desired performance and functional properties: two main chemical families of biopolymers were identified in the literature: polysaccharides and proteins. Among them, 13 and 6 polymers, respectively, complied with REACH regulation, demonstrating adhesion, dust reduction performances, and preservation of seed physiological quality in particular. This work aims to guide future studies on microplastic substitution in seed coatings, and to highlight research needs in this area. It is based on an analysis and discussion of the literature, identifying and listing potential substitutes.
Collapse
Affiliation(s)
- Rozenn Langlet
- Laboratoire de Chimie Agro-Industrielle (LCA), Univeristé de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France; (R.L.); (R.V.)
- Bois Valor, OLMIX, 13 rue Jean Mermoz, 81160 Saint-Juéry, France;
| | - Romain Valentin
- Laboratoire de Chimie Agro-Industrielle (LCA), Univeristé de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France; (R.L.); (R.V.)
| | - Marie Morard
- Bois Valor, OLMIX, 13 rue Jean Mermoz, 81160 Saint-Juéry, France;
| | - Christine Delgado Raynaud
- Laboratoire de Chimie Agro-Industrielle (LCA), Univeristé de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France; (R.L.); (R.V.)
- Centre d’Application et de Traitement des Agro-Ressources (CATAR), Toulouse INP, 31030 Toulouse, France
| |
Collapse
|
12
|
Gallegos-Cedillo VM, Nájera C, Signore A, Ochoa J, Gallegos J, Egea-Gilabert C, Gruda NS, Fernández JA. Analysis of global research on vegetable seedlings and transplants and their impacts on product quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4950-4965. [PMID: 38294182 DOI: 10.1002/jsfa.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Previous research has established that using high-quality planting material during the early phase of vegetable production significantly impacts success and efficiency, leading to improved crop performance, faster time to harvest and better profitability. In the present study, we conducted a global analysis of vegetable seedlings and transplants, providing a comprehensive overview of research trends in seedling and transplant production to enhance the nutritional quality of vegetables. RESULTS The analysis involved reviewing and quantitatively analysing 762 articles and 5248 keywords from the Scopus database from 1971 to 2022. We used statistical, mathematical and clustering tools to analyse bibliometrics and visualise the most relevant research topics. A visualisation map was generated to identify the evolution of keywords used in the articles, resulting in five clusters for further analysis. Our study highlights the importance of the size of seed trays for the type of crop, the mechanical seeder used and the greenhouse facilities to produce desirable transplants. We identified grafting and light-emitting diode (LED) lighting technology as rapidly expanding technologies in vegetable seedlings and transplant production used to promote plant qualitative profile. CONCLUSION There is a need for sustainable growing media to optimise resources and reduce input use. Thus, applying grafting, LED artificial lighting, biostimulants, biofortification and plant growth-promoting microorganisms in seedling production can enhance efficiency and promote sustainable vegetable nutritional quality by accumulating biocompounds. Further research is needed to explore the working mechanisms and devise novel strategies to enhance the product quality of vegetables, commencing from the early stages of food production. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Victor M Gallegos-Cedillo
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Engineering, CIAIMBITAL Research Centre, University of Almería, Almería, Spain
| | - Cinthia Nájera
- Department of Agronomy, University of Almería, Almería, Spain
- Department of Soil and Water Conservation and Organic Wastes Management, CEBAS-CSIC, Murcia, Spain
| | - Angelo Signore
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jesús Ochoa
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Jesús Gallegos
- Department of Engineering, CIAIMBITAL Research Centre, University of Almería, Almería, Spain
| | - Catalina Egea-Gilabert
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Nazim S Gruda
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Horticultural Sciences, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Juan A Fernández
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| |
Collapse
|
13
|
Tritean N, Trică B, Dima ŞO, Capră L, Gabor RA, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Mechanistic insights into the plant biostimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. FRONTIERS IN PLANT SCIENCE 2024; 15:1349573. [PMID: 38835865 PMCID: PMC11148368 DOI: 10.3389/fpls.2024.1349573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Seed coating ensures the targeted delivery of various compounds from the early stages of development to increase crop quality and yield. Silicon and alginate are known to have plant biostimulant effects. Rice husk (RH) is a significant source of biosilica. In this study, we coated mung bean seeds with an alginate-glycerol-sorbitol (AGS) film with embedded biogenic nanosilica (SiNPs) from RH, with significant plant biostimulant activity. After dilute acid hydrolysis of ground RH in a temperature-controlled hermetic reactor, the resulting RH substrate was neutralized and calcined at 650°C. The structural and compositional characteristics of the native RH, the intermediate substrate, and SiNPs, as well as the release of soluble Si from SiNPs, were investigated. The film for seed coating was optimized using a mixture design with three factors. The physiological properties were assessed in the absence and the presence of 50 mM salt added from the beginning. The main parameters investigated were the growth, development, metabolic activity, reactive oxygen species (ROS) metabolism, and the Si content of seedlings. The results evidenced a homogeneous AGS film formation embedding 50-nm amorphous SiNPs having Si-O-Si and Si-OH bonds, 0.347 cm3/g CPV (cumulative pore volume), and 240 m2/g SSA (specific surface area). The coating film has remarkable properties of enhancing the metabolic, proton pump activities and ROS scavenging of mung seedlings under salt stress. The study shows that the RH biogenic SiNPs can be efficiently applied, together with the optimized, beneficial alginate-based film, as plant biostimulants that alleviate saline stress from the first stages of plant development.
Collapse
Affiliation(s)
- Naomi Tritean
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Ştefan-Ovidiu Dima
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Luiza Capră
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Raluca-Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | | | - Florin Oancea
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | | |
Collapse
|
14
|
Yates P, Janiol J, Li C, Song BH. Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management. PLANTS (BASEL, SWITZERLAND) 2024; 13:319. [PMID: 38276776 PMCID: PMC10819391 DOI: 10.3390/plants13020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose growing threats to human and environmental health; therefore, alternative SCN management strategies are urgently needed. Preliminary findings show that phenolic acids are significantly induced during SCN infection and exhibit effective nematocidal activities in vitro. However, it is unclear whether these effects occur in planta or elicit any negative effects on plant growth traits. Here, we employed a phytochemical-based seed coating application on soybean seeds using phenolic acid derivatives (4HBD; 2,3DHBA) at variable concentrations and examined SCN inhibition against two SCN types. Moreover, we also examined plant growth traits under non-infected or SCN infected conditions. Notably, 2,3DHBA significantly inhibited SCN abundance in Race 2-infected plants with increasingly higher chemical doses. Interestingly, neither compound negatively affected soybean growth traits in control or SCN-infected plants. Our findings suggest that a phytochemical-based approach could offer an effective, more environmentally friendly solution to facilitate current SCN management strategies and fast-track the development of biopesticides to sustainably manage devastating pests such as SCN.
Collapse
Affiliation(s)
- Ping Yates
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| | - Juddy Janiol
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| | - Changbao Li
- Syngenta Crop Protection LLC, 9 Davis Drive, Durham, NC 27709, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA; (P.Y.)
| |
Collapse
|
15
|
Jarrar H, El-Keblawy A, Ghenai C, Abhilash PC, Bundela AK, Abideen Z, Sheteiwy MS. Seed enhancement technologies for sustainable dryland restoration: Coating and scarification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166150. [PMID: 37595910 DOI: 10.1016/j.scitotenv.2023.166150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/20/2023]
Abstract
High temperatures, soil salinity, a lack of available water, loose soils with reduced water holding, and low soil fertility are obstacles to restoration efforts in degraded drylands and desert ecosystems. Improved soil physical and chemical properties, seed germination and seedling recruitment, and plant growth are all proposed as outcomes of seed enhancement technologies (SETs). Seed priming, seed coating, and seed scarification are three SETs' methods for promoting seed germination and subsequent plant development under unfavorable environmental conditions. Various subtypes can be further classified within these three broad groups. The goals of this review are to (1) develop a general classification of coating and scarification SETs, (2) facilitate the decision-making process to adopt suitable SETs for arid lands environments, and (3) highlight the benefits of coating and scarification SETs in overcoming biotic and abiotic challenges in ecological restoring degraded dryland. For rehabilitating degraded lands and restoring drylands, it is recommended to 1) optimize SETs that have been used effectively for a long time, particularly those associated with seed physiological enhancement and seed microenvironment, 2) integrate coating and scarification to overcome different biotic and abiotic constraints, and 3) apply SET(s) to a mixture of seeds from various species and sizes. However, more research should be conducted on developing SETs for large-scale use to provide the required seed tonnages for dryland restoration.
Collapse
Affiliation(s)
- Heba Jarrar
- Renewable Energy and Energy Efficiency Research Group, Research Institute for Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Chaouki Ghenai
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - P C Abhilash
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Amit Kumar Bundela
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
16
|
Khan A, Singh AV, Gautam SS, Agarwal A, Punetha A, Upadhayay VK, Kukreti B, Bundela V, Jugran AK, Goel R. Microbial bioformulation: a microbial assisted biostimulating fertilization technique for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1270039. [PMID: 38148858 PMCID: PMC10749938 DOI: 10.3389/fpls.2023.1270039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023]
Abstract
Addressing the pressing issues of increased food demand, declining crop productivity under varying agroclimatic conditions, and the deteriorating soil health resulting from the overuse of agricultural chemicals, requires innovative and effective strategies for the present era. Microbial bioformulation technology is a revolutionary, and eco-friendly alternative to agrochemicals that paves the way for sustainable agriculture. This technology harnesses the power of potential microbial strains and their cell-free filtrate possessing specific properties, such as phosphorus, potassium, and zinc solubilization, nitrogen fixation, siderophore production, and pathogen protection. The application of microbial bioformulations offers several remarkable advantages, including its sustainable nature, plant probiotic properties, and long-term viability, positioning it as a promising technology for the future of agriculture. To maintain the survival and viability of microbial strains, diverse carrier materials are employed to provide essential nourishment and support. Various carrier materials with their unique pros and cons are available, and choosing the most appropriate one is a key consideration, as it substantially extends the shelf life of microbial cells and maintains the overall quality of the bioinoculants. An exemplary modern bioformulation technology involves immobilizing microbial cells and utilizing cell-free filters to preserve the efficacy of bioinoculants, showcasing cutting-edge progress in this field. Moreover, the effective delivery of bioformulations in agricultural fields is another critical aspect to improve their overall efficiency. Proper and suitable application of microbial formulations is essential to boost soil fertility, preserve the soil's microbial ecology, enhance soil nutrition, and support crop physiological and biochemical processes, leading to increased yields in a sustainable manner while reducing reliance on expensive and toxic agrochemicals. This manuscript centers on exploring microbial bioformulations and their carrier materials, providing insights into the selection criteria, the development process of bioformulations, precautions, and best practices for various agricultural lands. The potential of bioformulations in promoting plant growth and defense against pathogens and diseases, while addressing biosafety concerns, is also a focal point of this study.
Collapse
Affiliation(s)
- Amir Khan
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Ajay Veer Singh
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Shiv Shanker Gautam
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Aparna Agarwal
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Arjita Punetha
- School of Environmental Science and Natural Resource, Dehradun, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agriculture University, Samastipur, India
| | - Bharti Kukreti
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Vindhya Bundela
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Garhwal Regional Centre, Srinager, Uttarakhand, India
| | - Reeta Goel
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
17
|
Zhang K, Han X, Fu Y, Zhou Y, Khan Z, Bi J, Hu L, Luo L. Biochar Coating as a Cost-Effective Delivery Approach to Promoting Seed Quality, Rice Germination, and Seedling Establishment. PLANTS (BASEL, SWITZERLAND) 2023; 12:3896. [PMID: 38005793 PMCID: PMC10674834 DOI: 10.3390/plants12223896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The application of high-quality seeds ensures successful crop establishment, healthy growth, and improved production in both quantity and quality. Recently, biochar-based seed coating has been recognized as a new, effective, and environmentally friendly method to enhance seed quality, seedling uniformity, and nutrient availability. To study the impact of biochar coating on the surface mechanical properties of coated seeds, rice emergence and growth, and related physical and physiological metabolic events, laboratory experiments were performed on two water-saving and drought-resistance rice (WDR) varieties (Huhan1512 and Hanyou73) using biochar formulations with varying contents (20%-60%). The results showed that the appropriate concentration of biochar significantly improved emergence traits and seedling performance of the two rice varieties, compared to the uncoated treatment, and that the optimal percentage of biochar coating was 30% (BC30). On average, across both varieties, BC30 enhanced emergence rate (9.5%), emergence index (42.9%), shoot length (19.5%), root length (23.7%), shoot dry weight (25.1%), and root dry weight (49.8%). The improved germination characteristics and vigorous seedling growth induced by biochar coating were strongly associated with higher water uptake by seeds, increased α-amylase activity and respiration rate, and enhanced accumulation of soluble sugar and soluble protein. Moreover, the evaluation results of mechanical properties related to seed coating quality found that increasing the proportion of biochar in the coating blend decreased the integrity and compressive strength of the coated seeds and reduced the time required for coating disintegration. In conclusion, biochar coating is a cost-effective strategy for enhancing crop seed quality and seedling establishment.
Collapse
Affiliation(s)
- Kangkang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Xiaomeng Han
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
| | - Yanfeng Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Yu Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Liyong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
| | - Lijun Luo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (X.H.); (Y.F.); (Y.Z.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| |
Collapse
|
18
|
Hayat HS, Rehman AU, Farooq S, Naveed M, Ali HM, Hussain M. Boron seed coating combined with seed inoculation with boron tolerant bacteria ( Bacillus sp. MN-54) and maize stalk biochar improved growth and productivity of maize ( Zea mays L.) on saline soil. Heliyon 2023; 9:e22075. [PMID: 38034772 PMCID: PMC10682679 DOI: 10.1016/j.heliyon.2023.e22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Salinity exerts significant negative impacts on growth and productivity of crop plants and numerous management practices are used to improve crop performance under saline environments. Micronutrients, plant growth promoting bacteria and biochar are known to improve crop productivity under stressful environments. Maize (Zea mays L.) is an important cereal crop and its productivity is adversely impacted by salinity. Although boron (B) application, seed inoculation with boron-tolerant bacteria (BTB) and biochar are known to improve maize growth under stressful environments, there is less information on their combined impact in enhancing maize productivity on saline soils. This study investigated the impact of B seed coating combined with seed inoculation with BTB + biochar on maize productivity under saline soil. Four B seed coating levels [0.0 (no seed coating), 1.0, 1.5, 2.0 g B kg-1 seed], and individual or combined application of 5 % (w/w) maize stalk biochar, and seed inoculation with Bacillus sp. MN-54 BTB were included in the study. Different growth and yield attributes and grain quality were significantly improved by seed coating with 1.5 B kg-1 seed coupled with biochar + BTB. Seed coating with 1.5 B kg-1 seed combined with biochar + BTB improved stomatal conductance by 32 %, photosynthetic rate by 15 %, and transpiration ratio by 52 % compared to seed coating (0 B kg-1 seed) combined with biochar only. Similarly, the highest plant height (189 cm), number of grain rows cob-1 (15.5), grain yield (54.9 g plant-1), biological yield (95.5 g plant-1), and harvest index (57.6 %) were noted for B seed coating (1.5 g B kg-1 seed) combined with biochar + BTB inoculation. The same treatment resulted in the highest grain protein and B contents. It is concluded that B seed coating at 1.5 g B kg-1 seed combined with biochar + BTB inoculation could significantly improve yield and quality of maize crop on saline soils. However, further field experiments investigating the underlying mechanisms are needed to reach concrete conclusions and large-scale recommendations.
Collapse
Affiliation(s)
- Hafiz Saqib Hayat
- Department of Agronomy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Atique-ur Rehman
- Department of Agronomy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Sanlıurfa, 63050, Turkey
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 37000, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, 60800, Pakistan
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
19
|
Rajamohan R, Raorane CJ, Kim SC, Ramasundaram S, Oh TH, Murugavel K, Lee YR. Encapsulation of tannic acid in polyvinylidene fluoride mediated electrospun nanofibers and its antibiofilm and antibacterial activities. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1911-1927. [PMID: 37042185 DOI: 10.1080/09205063.2023.2201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/08/2023] [Indexed: 04/13/2023]
Abstract
In the past 15 years or more, interest in polymer-mediated nanofibers (NFs), a significant class of nanomaterials, has grown. Although fibers with a diameter of less than 1 mm are frequently commonly referred to as NFs, and are typically defined as having a diameter of less than several hundreds of nanometers. Due to the increased antibiotic resistance of many diseases nowadays, NFs with antibacterial activity are quite important. A flexible technique for creating NFs with the desired characteristics is called electrospinning. This research article describes how to make electrospun NFs of tannic acid (TA) with polyvinylidene fluoride (PVDF) as the template. As a result, the absorbance of the obtained NFs has been raised without forming any additional peaks in the spectral ranges. The obtained NF has a gradual increase in intensity, and the FT-IR data show that the TA is present in the NFs. FE-SEM images show that the NFs are discovered to be completely bead-free. Since TA reduced the viscosity of the spinning solution while marginally increasing solution conductivity, PVDF NFs have a greater average fiber diameter (AFD) than NFs of TA with PVDF, which is likely a result of the TA solutions in it. The findings showed that TA greatly decreased S. aureus and E. coli's ability to attach. The acquired NFs created in this work may have significant potential for reducing the pathogenicity of S. aureus and E. coli as well as their ability to build biofilms.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | | | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kuppusamy Murugavel
- PG and Research Department of Chemistry, Government Arts College, Chidambaram, Tamil Nadu, India
| | - Yong Rok Lee
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
20
|
Talavera-Mateo L, Garcia A, Santamaria ME. A comprehensive meta-analysis reveals the key variables and scope of seed defense priming. FRONTIERS IN PLANT SCIENCE 2023; 14:1208449. [PMID: 37546267 PMCID: PMC10398571 DOI: 10.3389/fpls.2023.1208449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023]
Abstract
Background When encountered with pathogens or herbivores, the activation of plant defense results in a penalty in plant fitness. Even though plant priming has the potential of enhancing resistance without fitness cost, hurdles such as mode of application of the priming agent or even detrimental effects in plant fitness have yet to be overcome. Here, we review and propose seed defense priming as an efficient and reliable approach for pathogen protection and pest management. Methods Gathering all available experimental data to date, we evaluated the magnitude of the effect depending on plant host, antagonist class, arthropod feeding guild and type of priming agent, as well as the influence of parameter selection in measuring seed defense priming effect on plant and antagonist performance. Results Seed defense priming enhances plant resistance while hindering antagonist performance and without a penalty in plant fitness. Specifically, it has a positive effect on crops and cereals, while negatively affecting fungi, bacteria and arthropods. Plant natural compounds and biological isolates have a stronger influence in plant and antagonist performance than synthetic chemicals and volatiles. Discussion This is the first meta-analysis conducted evaluating the effect of seed defense priming against biotic stresses studying both plant and pest/pathogen performance. Here, we proved its efficacy in enhancing both, plant resistance and plant fitness, and its wide range of application. In addition, we offered insight into the selection of the most suitable priming agent and directed the focus of interest for novel research.
Collapse
Affiliation(s)
| | | | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, (UPM-INIA/CSIC), Madrid, Spain
| |
Collapse
|
21
|
Jarecki W. Soybean Response to Seed Inoculation or Coating with Bradyrhizobium japonicum and Foliar Fertilization with Molybdenum. PLANTS (BASEL, SWITZERLAND) 2023; 12:2431. [PMID: 37446991 DOI: 10.3390/plants12132431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Soybean is one of the most important legumes in the world, and its advantages and disadvantages are well known. As a result of symbiosis with the bacterium Bradyrhizobium japonicum, soybean can assimilate nitrogen from the air and is therefore not fertilized with this element, or if it is, only at small doses. In soybean agriculture practice, an important treatment is the inoculation of seeds with symbiotic bacteria and optimal fertilization with selected nutrients. Therefore, a three-year (2019-2021) field experiment was carried out to investigate the effects of soybean in the field to a seed Rhizobium inoculation or coating and molybdenum foliar fertilization. There were no significant interactions between the tested treatments over the years. It was demonstrated that the best variant was seed inoculation before sowing in combination with foliar molybdenum application. As a result of this treatment, a significant increase in nodulation, soil plant analysis development (SPAD) index, leaf area index (LAI) and seed yield (by 0.61 t·ha-1) was obtained compared to the control. In addition, the content of total protein in the seeds increased, while the content of crude fat decreased, which significantly modified the yield of both components. Sowing coated seeds in the Fix Fertig technology was less effective compared to inoculation, but it was significantly better than that in the control. Coating seeds with B. japonicum, in combination with foliar fertilization with molybdenum, could be recommended for agricultural practice, which was confirmed by economic calculations. Future experiments will assess the soybean's response to seed inoculation or coating and fertilization with other micronutrients.
Collapse
Affiliation(s)
- Wacław Jarecki
- Department of Crop Production, University of Rzeszów, Zelwerowicza 4 St., 35-601 Rzeszów, Poland
| |
Collapse
|
22
|
Turkan S, Mierek-Adamska A, Kulasek M, Konieczna WB, Dąbrowska GB. New seed coating containing Trichoderma viride with anti-pathogenic properties. PeerJ 2023; 11:e15392. [PMID: 37283892 PMCID: PMC10239620 DOI: 10.7717/peerj.15392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Background To ensure food security in the face of climate change and the growing world population, multi-pronged measures should be taken. One promising approach uses plant growth-promoting fungi (PGPF), such as Trichoderma, to reduce the usage of agrochemicals and increase plant yield, stress tolerance, and nutritional value. However, large-scale applications of PGPF have been hampered by several constraints, and, consequently, usage on a large scale is still limited. Seed coating, a process that consists of covering seeds with low quantities of exogenous materials, is gaining attention as an efficient and feasible delivery system for PGPF. Methods We have designed a new seed coating composed of chitin, methylcellulose, and Trichoderma viride spores and assessed its effect on canola (Brassica napus L.) growth and development. For this purpose, we analyzed the antifungal activity of T. viride against common canola pathogenic fungi (Botrytis cinerea, Fusarium culmorum, and Colletotrichum sp.). Moreover, the effect of seed coating on germination ratio and seedling growth was evaluated. To verify the effect of seed coating on plant metabolism, we determined superoxide dismutase (SOD) activity and expression of the stress-related RSH (RelA/SpoT homologs). Results Our results showed that the T. viride strains used for seed coating significantly restricted the growth of all three pathogens, especially F. culmorum, for which the growth was inhibited by over 40%. Additionally, the new seed coating did not negatively affect the ability of the seeds to complete germination, increased seedling growth, and did not induce the plant stress response. To summarize, we have successfully developed a cost-effective and environmentally responsible seed coating, which will also be easy to exploit on an industrial scale.
Collapse
Affiliation(s)
- Sena Turkan
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Milena Kulasek
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Wiktoria B. Konieczna
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics/Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
23
|
Chen FB, Feng YC, Huo SP. Seed coating with micronutrients improves germination, growth, yield and microelement nutrients of maize ( Zea mays L.). Biotech Histochem 2023; 98:230-242. [PMID: 37165769 DOI: 10.1080/10520295.2023.2174273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Soil and foliar application are the most widely used methods for adding micronutrients to maize. High quality micronutrient fertilizers, however, are difficult to obtain in developing countries; micronutrient seed coatings are an attractive and practical alternative. We applied this approach to maize (Zea mays L.) to demonstrate the effects of boron (B), iron (Fe), manganese (Mn), molybdenum (Mo) and zinc (Zn) sulfates on maize germination, vigor, seedling growth, seed yield and seed quality as well as on seed microelement concentration. Seed coating was tested on three representative Chinese soil types (sandy, purple and lime soils). Compared to untreated controls, coating maize seeds with micronutrients significantly increased the seed emergence rate, seedling height, leaf length, leaf width, leaf area, main root length, root number, above ground fresh biomass, above ground dry biomass, underground fresh biomass, underground dry biomass, ear thickness and yield in sandy, purple and lime soils. Coating maize seeds with micronutrients also significantly increased the yield and quality of maize seed compared to untreated controls including ear barren tip, ear length, ear thickness, grains/row, hundred seed weigh, and rows/ear. Also, B, Zn, Fe, Mn and Mo microelements accumulated in maize seed after coating the seed with micronutrients. Our findings indicate that micronutrient seed coating may improve nutrient uptake and production of maize hybrids.
Collapse
Affiliation(s)
- Fa-Bo Chen
- Chongqing Three Gorges Academy of Agriculture Science, Wanzhou, China
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, China
| | - Yun-Chao Feng
- Chongqing Three Gorges Academy of Agriculture Science, Wanzhou, China
| | - Shi-Ping Huo
- Chongqing Three Gorges Academy of Agriculture Science, Wanzhou, China
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, China
| |
Collapse
|
24
|
Gohari NR, Modiri S, Yari H, Saffari M, Baghizadeh A. The application of hydrophilic polyvinyl alcohol coatings filled with different loadings of zinc oxide nanoparticles to mitigate salinity stress of the wheat seeds. J Appl Polym Sci 2023. [DOI: 10.1002/app.53742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Nazanin Rostami Gohari
- Polymer Engineering Group, Chemistry and Chemical Engineering Department Graduate University of Advanced Technology Kerman Iran
| | - Sina Modiri
- Polymer Engineering Group, Chemistry and Chemical Engineering Department Graduate University of Advanced Technology Kerman Iran
| | - Hossein Yari
- Department of Surface Coatings and Corrosion Institute for Color Science and Technology (ICST) Tehran Iran
| | - Mahboub Saffari
- Institute of Science and High Technology and Environmental Sciences Graduate University of Advanced Technology Kerman Iran
| | - Amin Baghizadeh
- Institute of Science and High Technology and Environmental Sciences Graduate University of Advanced Technology Kerman Iran
| |
Collapse
|
25
|
Godói CTD, Campos SO, Monteiro SH, Ronchi CP, Silva AA, Guedes RNC. Thiamethoxam in soybean seed treatment: Plant bioactivation and hormesis, besides whitefly control? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159443. [PMID: 36252665 DOI: 10.1016/j.scitotenv.2022.159443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Amid concerns on the myriad of existing chemical stressors in agroecosystems, pesticides and particularly neonicotinoid insecticides are in the forefront. Despite that, these neurotoxic compounds remain the dominant group of insecticides in worldwide use with the added versatility of use in seed coatings. Such use sparks environmental concerns counterbalanced by their reported insecticidal efficacy and potential plant bioactivation. Nonetheless, this alleged double benefit and interconnection expected with neonicotinoids has been little explored particularly when the whole plant phenology is considered. Regardless of the expected efficacy against targeted insect pest species, like whiteflies, neonicotinoids may spark dual effect on plants - negative at higher concentrations, positive at low concentrations, which is consistent with the hormesis phenomenon that may be expressed as a plant bioactivation. This effect may also cascade to the targeted insect species, what deserves attention. Therefore, soybean seeds treated with increasing concentrations of the neonicotinoid thiamethoxam were followed throughout their development in greenhouse, recording the plant response and yield, besides their effect in whiteflies (Bemisia tabaci MEAM1). Thiamethoxam application was correlated to leaf contents of thiamethoxam and its metabolite clothianidin. Plant hormesis was found for leaf area and root growth, but not for other plant morphological or physiological parameters, nor plant yield. The insecticide concentration-dependency compromised whitefly population growth without evidence of cascading any plant-mediated hormesis to the insects. Thus, although plant hormesis was recognized with thiamethoxam in treated soybean seeds in relevant parameters, no evidence of plant bioactivation was observed to justify its use with such a secondary objective, nor did this hormesis impair whitefly control.
Collapse
Affiliation(s)
- C T D Godói
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - S O Campos
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - S H Monteiro
- Unidade de Referência Laboratorial em Análise e Pesquisa de Contaminantes em Alimentos e Ambiente, Instituto Biológico, Av. Conselheiro Rodrigues Alves, 1252, São Paulo, SP 04014-900, Brazil
| | - C P Ronchi
- Instituto de Agronomia, Universidade Federal de Viçosa - Campus Florestal, Florestal, MG 35690-000, Brazil
| | - A A Silva
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - R N C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
26
|
Chiaranunt P, White JF. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:400. [PMID: 36679113 PMCID: PMC9861093 DOI: 10.3390/plants12020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.
Collapse
|
27
|
Paravar A, Piri R, Balouchi H, Ma Y. Microbial seed coating: An attractive tool for sustainable agriculture. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00781. [PMID: 36655147 PMCID: PMC9841043 DOI: 10.1016/j.btre.2023.e00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Seed coating is considered one of the best methods to promote sustainable agriculture where the physical and physiological properties of seeds can be improved to facilitate planting, increase growth indices and alleviate abiotic and biotic stresses. Several methods of seed coating are used to attain good application uniformity and adherence in the seed coating process. Seed coating has been tested in seeds of various plant species with different dimensions, forms, textures, and germination types. Plant beneficial microorganisms (PBM), such as rhizobia, bacteria, and fungi inoculated via seed inoculation can increase seed germination, plant performance and tolerance across biotic (e.g., pathogens and pests) and abiotic stress (e.g., salt, drought, and heavy metals) while reducing the use of agrochemical inputs. In this review, the microbial seed coating process and their ability to increase seed performance and protect plants from biotic and abiotic stresses are well discussed and highlighted in sustainable agricultural systems.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| | - Ramin Piri
- Department of Agronomy and Plant Breeding, College of Agriculture, University of Tehran, Tehran, Iran
| | - Hamidreza Balouchi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Yasouj University, Yasouj, Iran,Corresponding authors.
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China,Corresponding authors.
| |
Collapse
|
28
|
Cortés-Rojas D, Santos-Diaz A, Torres-Torres L, Zapata-Narváez Y, Beltrán-Acosta C, Cruz-Barrera M. Trichoderma koningiopsis Survival on Coated Seeds and Effect on Plant Growth Promotion in Rice (Oryza sativa). Curr Microbiol 2022; 80:22. [PMID: 36460904 DOI: 10.1007/s00284-022-03076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022]
Abstract
Seed coating is an alternative delivery system for beneficial plant microorganisms into the soil. Although seed coats are widely used for the application of agrochemicals, the incorporation of beneficial microorganisms has not been explored deeply and their survival on seeds while in storage is unknown. The study aimed to evaluate the effect of the coating process on microbial survival and on plant growth promotion. Two coating formulations were designed, and assessed by two coating processes: rotating drum and fluidized bed. The rotating drum process resulted in more uniform coatings than in the fluidized bed process. In addition, with this coating technique, lower viability losses over time were observed. The rotatory drum prototype containing a biopolymer and a clay mineral derivate (P90) showed the best behavior at the three temperatures evaluated, with superior viabilities compared to the other prototypes and the lowest loss of viability after 12 months. The formulation of this coating prototype may preserve the viability of Trichoderma koningiopsis Th003 up to 15 months at 8 °C, 9 months at 18 °C, and 3 months at 28 °C, which are very promising shelf-life results. Regarding the effect of seed coating on plant growth, prototypes showed higher yields > 16% than the control, comparable to the conventional use of Tricotec® WG, which may reduce the number of applications and water consumption for dissolution of the inoculant. The results demonstrated that the formulation composition, as well as the coating process may impact the microbial survival on seeds.
Collapse
Affiliation(s)
- Diego Cortés-Rojas
- Bioproducts Department, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Colombia. Km 14 via Mosquera-Bogotá, Mosquera, Colombia
| | - Adriana Santos-Diaz
- Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Colombia. Km 14 via Mosquera-Bogotá, Mosquera, Colombia
| | - Lissette Torres-Torres
- Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Colombia. Km 14 via Mosquera-Bogotá, Mosquera, Colombia
| | - Yimmy Zapata-Narváez
- Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Colombia. Km 14 via Mosquera-Bogotá, Mosquera, Colombia
| | - Camilo Beltrán-Acosta
- Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Colombia. Km 14 via Mosquera-Bogotá, Mosquera, Colombia
| | - Mauricio Cruz-Barrera
- Bioproducts Department, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Colombia. Km 14 via Mosquera-Bogotá, Mosquera, Colombia.
| |
Collapse
|
29
|
Fadiji AE, Orozco-Mosqueda MDC, Santos-Villalobos SDL, Santoyo G, Babalola OO. Recent Developments in the Application of Plant Growth-Promoting Drought Adaptive Rhizobacteria for Drought Mitigation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223090. [PMID: 36432820 PMCID: PMC9698351 DOI: 10.3390/plants11223090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/21/2023]
Abstract
Drought intensity that has increased as a result of human activity and global warming poses a serious danger to agricultural output. The demand for ecologically friendly solutions to ensure the security of the world's food supply has increased as a result. Plant growth-promoting rhizobacteria (PGPR) treatment may be advantageous in this situation. PGPR guarantees the survival of the plant during a drought through a variety of processes including osmotic adjustments, improved phytohormone synthesis, and antioxidant activity, among others and these mechanisms also promote the plant's development. In addition, new developments in omics technology have improved our understanding of PGPR, which makes it easier to investigate the genes involved in colonizing plant tissue. Therefore, this review addresses the mechanisms of PGPR in drought stress resistance to summarize the most current omics-based and molecular methodologies for exploring the function of drought-responsive genes. The study discusses a detailed mechanistic approach, PGPR-based bioinoculant design, and a potential roadmap for enhancing their efficacy in combating drought stress.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | | | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2568
| |
Collapse
|
30
|
Zhang K, Khan Z, Yu Q, Qu Z, Liu J, Luo T, Zhu K, Bi J, Hu L, Luo L. Biochar Coating Is a Sustainable and Economical Approach to Promote Seed Coating Technology, Seed Germination, Plant Performance, and Soil Health. PLANTS (BASEL, SWITZERLAND) 2022; 11:2864. [PMID: 36365318 PMCID: PMC9657824 DOI: 10.3390/plants11212864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Seed germination and stand establishment are the first steps of crop growth and development. However, low seed vigor, improper seedbed preparation, unfavorable climate, and the occurrence of pests and diseases reduces the germination rate and seedling quality, resulting in insufficient crop populations and undesirable plant growth. Seed coating is an effective method that is being developed and applied in modern agriculture. It has many functions, such as improving seed vigor, promoting seedling growth, and reducing the occurrence of pests and diseases. Yet, during seed coating procedures, several factors, such as difficulty in biodegradation of coating materials and hindrance in the application of chemical ingredients to seeds, force us to explore reliable and efficient coating formulations. Biochar, as a novel material, may be expected to enhance seed germination and seedling establishment, simultaneously ensuring agricultural sustainability, environment, and food safety. Recently, biochar-based seed coating has gained much interest due to biochar possessing high porosity and water holding capacity, as well as wealthy nutrients, and has been proven to be a beneficial agent in seed coating formulations. This review presents an extensive overview on the history, methods, and coating agents of seed coating. Additionally, biochar, as a promising seed coating agent, is also synthesized on its physico-chemical properties. Combining seed coating with biochar, we discussed in detail the agricultural applications of biochar-based seed coating, such as the promotion of seed germination and stand establishment, the improvement of plant growth and nutrition, suitable carriers for microbial inoculants, and increase in herbicide selectivity. Therefore, this paper could be a good source of information on the current advance and future perspectives of biochar-based seed coating for modern agriculture.
Collapse
Affiliation(s)
- Kangkang Zhang
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qing Yu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Zhaojie Qu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahuan Liu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Luo
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kunmiao Zhu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Junguo Bi
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| | - Liyong Hu
- MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, No. 2901 Beidi Road, Shanghai 201106, China
| |
Collapse
|
31
|
Sol-Gel Coatings with Azofoska Fertilizer Deposited onto Pea Seeds. Polymers (Basel) 2022; 14:polym14194119. [PMID: 36236067 PMCID: PMC9571079 DOI: 10.3390/polym14194119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
Pure silica sol obtained by hydrolysis of tetraethoxysilane and the same silica sol doped with fertilizer Azofoska were used to cover the surface of pea seeds. The surface state of the coated seeds (layer continuity, thickness, elemental composition) was studied by a scanning electron microscope (SEM) and energy dispersive X-ray (EDX) detector. Different conditions such as sol mixing method, seed immersion time, effect of diluting the sol with water, and ethanol (EtOH) were studied to obtain thin continuous coatings. The coated seeds were subjected to a germination and growth test to demonstrate that the produced SiO2 coating did not inhibit these processes; moreover, the presence of fertilizer in the coating structure facilitates the development of the seedling. The supply of nutrients directly to the grain's vicinity contributes to faster germination and development of seedlings. This may give the developing plants an advantage in growth over other undesirable plant species. These activities are in the line with the trends of searching for technologies increasing yields without creating an excessive burden on the natural environment.
Collapse
|
32
|
Antifungal Activity and Biochemical Profiling of Exudates from Germinating Maize Nostrano di Storo Local Variety. PLANTS 2022; 11:plants11182435. [PMID: 36145846 PMCID: PMC9505497 DOI: 10.3390/plants11182435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Plant pathogens are responsible for important damages to valuable crops causing important economic losses. Agrobiodiversity protection is crucial for the valorization of local varieties that could possess higher resistance to biotic and abiotic stress. At the beginning of germination, seeds are susceptible to pathogens attacks, thus they can release endogenous antimicrobial compounds of different natures in the spermosphere, to contrast proliferation of microorganisms. The work aimed at characterizing the maize of local variety Nostrano di Storo seed exudates secreted during the first phases of germination, to identify compounds active in the defense towards pathogens. Storo seed exudates were proven to inhibit F. verticilloides germination. In order to investigate the cause of the described effect, compositional profiling of the exudates was performed through NMR, lipidomic, and proteomic analyses. This study suggests an important role of microbial endophytic communities in the protection of the seed during the early phases of the germination process and their interplay with fatty acids released by the seeds, rather than a specific antifungal compound. The valorization of agronomically acceptable maize lines with pre-harvest enhanced resistances to pathogens contamination could lead, in the near future, to commercially available varieties potentially requiring more limited chemical protective treatments.
Collapse
|
33
|
Fonseca YBT, Almeida NM, Caldas JC, Morais GN, Silva IMJ, Riatto VB, Santos WNL, Moutinho FLB. Effect of the seed coating with biomass of Dunaliella salina on early plant growth and in the secondary metabolites content of Coriandrum sativum. AN ACAD BRAS CIENC 2022; 94:e20201735. [PMID: 35830071 DOI: 10.1590/0001-3765202220201735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/12/2021] [Indexed: 11/21/2022] Open
Abstract
The environmental and health risks associated with the application of synthetic chemical inputs in agriculture increased the demand for technologies that allow higher performance and quality of vegetable crops by implementing synergistic materials with the principles of sustainability. In this work, the seed coating with the biomass of Dunaliella salina incorporated in a bioplastic film of Manihot esculenta (cassava) was evaluated as an initial growth and secondary compounds stimulator of Coriandrum sativum (coriander) plants. The obtained results demonstrated that the coating stimulated an increase in the germination percentage (28.75%) and also in concentration of bioactive compounds, such as the six-fold increment of caffeic acid (13.33 mg 100 g-1). The carbohydrates, lipids, and proteins present in the microalgae biomass seem to be responsible for these increments once they are known for providing energy to the seedling development and coordinating the secondary metabolites synthesis. As conclusion, we consider the coating with biomass of D. salina an alternative for crop improvement that contributes to the development of sustainable agricultural practices.
Collapse
Affiliation(s)
- Yasmin B T Fonseca
- Serviço Nacional de Aprendizagem Industrial (SENAI), Centro Integrado de Manufatura e Tecnologia (CIMATEC), Av. Orlando Gomes, 1845, 41650-010 Salvador, BA, Brazil.,Serviço Social da Indústria (SESI), Av. Orlando Gomes, 1737, 41650-010 Salvador, BA, Brazil
| | - Nicole M Almeida
- Serviço Nacional de Aprendizagem Industrial (SENAI), Centro Integrado de Manufatura e Tecnologia (CIMATEC), Av. Orlando Gomes, 1845, 41650-010 Salvador, BA, Brazil.,Serviço Social da Indústria (SESI), Av. Orlando Gomes, 1737, 41650-010 Salvador, BA, Brazil
| | - Jamile C Caldas
- Serviço Social da Indústria (SESI), Av. Orlando Gomes, 1737, 41650-010 Salvador, BA, Brazil.,Universidade do Estado da Bahia, Departamento de Ciências Exatas, Rua Silveira Martins, 2555, 41195-001 Salvador, BA, Brazil
| | - Gabriel N Morais
- Universidade de São Paulo, Departamento de Química, Rua da Reitoria, 374, 05508-220 São Paulo, SP, Brazil
| | - Isaac M J Silva
- Universidade do Estado da Bahia, Departamento de Ciências Exatas, Rua Silveira Martins, 2555, 41195-001 Salvador, BA, Brazil
| | - Valéria B Riatto
- Universidade Federal da Bahia, Departamento de Química Orgânica, Av. Adhemar de Barros, 147, 40170-115 Salvador, BA, Brazil.,Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente (INCT E&A), Universidade Federal da Bahia, Av. Adhemar de Barros, 147, 40170-115 Salvador, BA, Brazil
| | - Walter N L Santos
- Universidade do Estado da Bahia, Departamento de Ciências Exatas, Rua Silveira Martins, 2555, 41195-001 Salvador, BA, Brazil
| | - Fernando L B Moutinho
- Serviço Social da Indústria (SESI), Av. Orlando Gomes, 1737, 41650-010 Salvador, BA, Brazil.,Universidade Federal da Bahia, Departamento de Química Orgânica, Av. Adhemar de Barros, 147, 40170-115 Salvador, BA, Brazil
| |
Collapse
|
34
|
Korbecka-Glinka G, Piekarska K, Wiśniewska-Wrona M. The Use of Carbohydrate Biopolymers in Plant Protection against Pathogenic Fungi. Polymers (Basel) 2022; 14:2854. [PMID: 35890629 PMCID: PMC9322042 DOI: 10.3390/polym14142854] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Fungal pathogens cause significant yield losses of many important crops worldwide. They are commonly controlled with fungicides which may have negative impact on human health and the environment. A more sustainable plant protection can be based on carbohydrate biopolymers because they are biodegradable and may act as antifungal compounds, effective elicitors or carriers of active ingredients. We reviewed recent applications of three common polysaccharides (chitosan, alginate and cellulose) to crop protection against pathogenic fungi. We distinguished treatments dedicated for seed sowing material, field applications and coating of harvested fruits and vegetables. All reviewed biopolymers were used in the three types of treatments, therefore they proved to be versatile resources for development of plant protection products. Antifungal activity of the obtained polymer formulations and coatings is often enhanced by addition of biocontrol microorganisms, preservatives, plant extracts and essential oils. Carbohydrate polymers can also be used for controlled-release of pesticides. Rapid development of nanotechnology resulted in creating new promising methods of crop protection using nanoparticles, nano-/micro-carriers and electrospun nanofibers. To summarize this review we outline advantages and disadvantages of using carbohydrate biopolymers in plant protection.
Collapse
Affiliation(s)
- Grażyna Korbecka-Glinka
- Department of Plant Breeding and Biotechnology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Klaudia Piekarska
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| | - Maria Wiśniewska-Wrona
- Biomedical Engineering Center, Łukasiewicz Research Network-Łódź Institute of Technology, Skłodowskiej-Curie 19/27, 90-570 Łódź, Poland; (K.P.); (M.W.-W.)
| |
Collapse
|
35
|
Baughman OW, Kerby JD, Boyd CS, Madsen MD, Svejcar TJ. Can delaying germination reduce barriers to successful emergence for early‐germinating, fall‐sown native bunchgrass seeds in cold deserts? Restor Ecol 2022. [DOI: 10.1111/rec.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Chad S. Boyd
- US Department of Agriculture ‐ Agricultural Research Service Eastern Oregon Agricultural Research Center, 67826‐A Hwy 205 Burns OR 97720 U.S.A
| | - Matthew D. Madsen
- Department of Plant and Wildlife Sciences Brigham Young University Provo UT 84602 U.S.A
| | - Tony J. Svejcar
- US Department of Agriculture ‐ Agricultural Research Service Eastern Oregon Agricultural Research Center, 67826‐A Hwy 205 Burns OR 97720 U.S.A
| |
Collapse
|
36
|
Grainge G, Nakabayashi K, Iza F, Leubner-Metzger G, Steinbrecher T. Gas-Plasma-Activated Water Impact on Photo-Dependent Dormancy Mechanisms in Nicotiana tabacum Seeds. Int J Mol Sci 2022; 23:6709. [PMID: 35743152 PMCID: PMC9223463 DOI: 10.3390/ijms23126709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Seeds sense temperature, nutrient levels and light conditions to inform decision making on the timing of germination. Limited light availability for photoblastic species results in irregular germination timing and losses of population germination percentage. Seed industries are therefore looking for interventions to mitigate this risk. A growing area of research is water treated with gas plasma (GPAW), in which the formed solution is a complex consisting of reactive oxygen and nitrogen species. Gas plasma technology is widely used for sterilisation and is an emerging technology in the food processing industry. The use of the GPAW on seeds has previously led to an increase in germination performance, often attributed to bolstered antioxidant defence mechanisms. However, there is a limited understanding of how the solution may influence the mechanisms that govern seed dormancy and whether photoreceptor-driven germination mechanisms are affected. In our work, we studied how GPAW can influence the mechanisms that govern photo-dependent dormancy, isolating the effects at low fluence response (LFR) and very low fluence response (VLFR). The two defined light intensity thresholds affect germination through different phytochrome photoreceptors, PHYB and PHYA, respectively; we found that GPAW showed a significant increase in population germination percentage under VLFR and further described how each treatment affects key physiological regulators.
Collapse
Affiliation(s)
- Giles Grainge
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (G.G.); (K.N.); (G.L.-M.)
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (G.G.); (K.N.); (G.L.-M.)
| | - Felipe Iza
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, UK;
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (G.G.); (K.N.); (G.L.-M.)
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (G.G.); (K.N.); (G.L.-M.)
| |
Collapse
|
37
|
Xi L, Zhang M, Zhang L, Lew TTS, Lam YM. Novel Materials for Urban Farming. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105009. [PMID: 34668260 DOI: 10.1002/adma.202105009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Indexed: 05/27/2023]
Abstract
Scarcity of natural resources, shifting demographics, climate change, and increasing waste are four major challenges in the quest to feed the exploding world population. These challenges serve as the impetus to harness novel technologies to improve agriculture, productivity, and sustainability. Urban farming has several advantages over conventional farming: higher productivity, improved sustainability, and the ability to provide fresh food all year round. Novel materials are key to accelerating the evolution of urban farming - with their ability to facilitate controlled release of nutrients and pesticides, improved seed health, substrates with better water retention capability, more efficient recycling of agricultural waste, and precise plant health monitoring. Materials science enables environmental sustainability and higher harvest yields in urban farms. Here, Singapore is used as an example of a land-scarce city where urban farming may be the solution for future food production. Potential research directions and challenges in urban farming are highlighted, and how material optimization and innovation drive the development of urban farming to meet national and global food demands is briefly discussed. This review serves as a guide for researchers and a reference for stakeholders of urban farms, policy makers, and other interested parties.
Collapse
Affiliation(s)
- Lifei Xi
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, Singapore, 639798, Singapore
| | - Mengyuan Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Liling Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tedrick T S Lew
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
38
|
Noman M, Ahmed T, Ijaz U, Hameed A, Shahid M, Azizullah, Li D, Song F. Microbe-oriented nanoparticles as phytomedicines for plant health management: An emerging paradigm to achieve global food security. Crit Rev Food Sci Nutr 2022; 63:7489-7509. [PMID: 35254111 DOI: 10.1080/10408398.2022.2046543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biotic and abiotic environmental stresses affect the production and quality of agricultural products worldwide. The extensive use of traditional preventive measures comprising toxic chemicals has become more problematic due to severe ecotoxicological challenges. To address this issue, engineered nanoparticles (NPs) with their distinct physical and chemical properties has gained scientific attention and can help plants to confront environmental challenges. Despite their ameliorative and beneficial effects, toxicological concerns have been raised about NPs. The recent development of biogenic NPs (bio-NPs) is getting attention in agriculture due to their diverse biocompatibility, better functional efficacy, and eco-friendly nature compared to the recalcitrant NPs, providing a promising strategy for increased crop protection against biotic and abiotic environmental stresses, with the ultimate goal of ensuring global food security. This review summarizes the recent advances in the engineering of bio-NPs with particular emphasis on the functions of bio-NPs in protecting plants from biotic and abiotic environmental stresses, delivery and entry routes of NPs to plant systems, nanotoxicity, and plant physiological/biochemical responses to nanotoxicity. Future perspectives of bio-NP-enabled strategies, remaining pitfalls, and possible solutions to combat environmental challenges via advanced nanotechnology to achieve global food security and a sustainable agricultural system are also discussed.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Amir Hameed
- Plant Breeding and Acclimatization Institute, National Research Institute, Blonie, Poland
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Oliveira C, Orozco-Restrepo SM, Alves AC, Pinto BS, Miranda MS, Barbosa MH, Picanço MC, Pereira EJ. Seed treatment for managing fall armyworm as a defoliator and cutworm on maize: plant protection, residuality, and the insect life history. PEST MANAGEMENT SCIENCE 2022; 78:1240-1250. [PMID: 34850531 DOI: 10.1002/ps.6741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The highly polyphagous and invasive fall armyworm (FAW, Spodoptera frugiperda) can feed on different plant parts of host crops, damaging whorls and stalks in early maize growth stages. Systemic insecticide seed treatment (IST) could minimize this damage, although the residual efficacy may vary with the plant tissue damaged. Using damage rating scales and artificial infestation in controlled conditions, we determined the potential of IST against FAW attacking maize whorl leaves or the stalk base. RESULTS Chlorantraniliprole, cyantraniliprole, or thiodicarb + imidacloprid IST similarly killed > 80% FAWs for 1 or 2 weeks after plant emergence depending on the plant tissue attacked. The residual efficacy (i.e. time after plant emergence sustaining > 80% larval mortality) lasted from the first to the eleventh day (VE-V3 maize growth stages), while for cutworm on the maize stalk base, it lasted 3-7 days after plant emergence (V1-V2 stages). In terms of damage, the ISTs lasted 15 days after emergence (V4 stage) for FAW on whorl leaves and 10 days (V3 stage) for FAW feeding on the stalk base. The larvae surviving on the seed-treated plants underwent sublethal effects in growth and development, reducing insect fitness. CONCLUSION Diamide or carbamate + neonicotinoid seed treatments kill FAW larvae on maize whorls or stalks in favorable edaphoclimatic and insecticide-susceptibility conditions. The cumulative impacts of systemic IST on aboveground insect pests go beyond mortality. The ISTs studied can be valuable against FAW in maize, for instance, to help protect varieties that may not express sufficient insect resistance in maize early growth stages.
Collapse
Affiliation(s)
- Camila Oliveira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Silvana M Orozco-Restrepo
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Antônio Cl Alves
- Department of Plant Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Braullio S Pinto
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Morgana S Miranda
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Márcio Hp Barbosa
- Department of Plant Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marcelo C Picanço
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Eliseu Jg Pereira
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Brazil
- Bioagro, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
40
|
Jia J, Ford E, Hobbs SM, Baird SM, Lu SE. Occidiofungin Is the Key Metabolite for Antifungal Activity of the Endophytic Bacterium Burkholderia sp. MS455 Against Aspergillus flavus. PHYTOPATHOLOGY 2022; 112:481-491. [PMID: 34433293 DOI: 10.1094/phyto-06-21-0225-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aflatoxin is a secondary metabolite produced by Aspergillus fungi and presents a major food safety concern globally. Among the available methods for prevention and control of aflatoxin, the application of antifungal bacteria has gained favor in recent years. An endophytic bacterium MS455, isolated from soybean, exhibited broad-spectrum antifungal activity against economically important pathogens, including Aspergillus flavus. MS455 was identified as a strain of Burkholderia based on genomic analysis. Random and site-specific mutations were used in discovery of the genes that share high homology to the ocf gene cluster of Burkholderia contaminans strain MS14, which is responsible for production of the antifungal compound occidiofungin. RNA sequencing analysis demonstrated that ORF1, a homolog to the ambR1 LuxR-type regulatory gene, regulates occidiofungin biosynthesis in MS455. Additionally, 284 differentially expressed genes, including 138 upregulated and 146 downregulated genes, suggesting that, in addition to its role in occidiofungin production, ORF1 is involved in expression of multiple genes, especially those involved in ornibactin biosynthesis. Plate bioassays showed the growth of A. flavus was significantly inhibited by the wild-type strain MS455 as compared with the ORF1 mutant. Similarly, corn kernel assays showed that growth of A. flavus and aflatoxin production were reduced significantly by MS455 as compared with buffer control and the ORF1 mutant. Collectively, the results demonstrated that production of occidiofungin is essential for antifungal activity of the endophytic bacterium MS455. This research has provided insights about antifungal mechanisms of MS455 and development of biological approaches to prevent aflatoxin contamination in plant production.
Collapse
Affiliation(s)
- Jiayuan Jia
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Emerald Ford
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Sarah M Hobbs
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Sonya M Baird
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
41
|
Nedved EL, Kalatskaja JN, Ovchinnikov IA, Rybinskaya EI, Kraskouski AN, Nikalaichuk VV, Hileuskaya KS, Kulikouskaya VI, Agabekov VE, Laman NA. Growth Parameters and Antioxidant Activity in Cucumber Seedlings with the Application of Chitosan and Hydroxycinnamic Acids Conjugates under Salt Stress. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Chen F, Gao J, Li W, Fang P. Transcriptome profiles reveal the protective role of seed coating with zinc against boron toxicity in maize (Zea mays L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127105. [PMID: 34530280 DOI: 10.1016/j.jhazmat.2021.127105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Despite its low abundance during biological growth, excessive boron (B) is potentially toxic to both plants and humans. Cultivation of maize (Zea mays L.), one of the most important crops worldwide, has been severely affected by B toxicity, thereby threatening human and animal food security. The effects of coating maize seed with B, zinc (Zn), and B+Zn were evaluated using transcriptome analysis. It was found that Zn coating significantly reduce B accumulation and toxicity in maize. Compared to the uncoated control, expression of 10871, 2844, and 1347 genes demonstrated alterations in response to coating with B, Zn, and B+Zn, respectively. Of the differentially expressed genes (DEGs), the expression of 7529, 1056, and 357 DEGs was found to be specific for coating with B, Zn, and B+Zn, respectively. Additionally, 132 co-modulated DEGs were found to primarily encode stress resistance- and membrane-related proteins. These genes were primarily involved in plant hormone signal transduction, ribosome assembly, carbon metabolism, phenylpropanoid biosynthesis, and oxidative phosphorylation pathways. Overall, our results suggested that seed coating with Zn significantly alleviates B accumulation and toxicity in maize by changing the expression of selected genes and constitutes a simple and effective strategy for alleviating B toxicity in high-B soils.
Collapse
Affiliation(s)
- Fabo Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, China.
| | - Jian Gao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, China
| | - Wenbo Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, China
| | - Ping Fang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, China
| |
Collapse
|
43
|
Ayed S, Bouhaouel I, Jebari H, Hamada W. Use of Biostimulants: Towards Sustainable Approach to Enhance Durum Wheat Performances. PLANTS (BASEL, SWITZERLAND) 2022; 11:133. [PMID: 35009136 PMCID: PMC8747104 DOI: 10.3390/plants11010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The use of biostimulant (BS) holds a promising and environmental-friendly innovation to address current needs of sustainable agriculture. The aim of the present study is twofold: (i) assess the potential of durum wheat seed coating with microbial BS ('Panoramix', Koppert), a mix of Bacillus spp., Trichoderma spp., and endomycorrhiza, compared to two chemical products ('Spectro' and 'Mycoseeds') through germination bioassay, pot and field trials under semi-arid conditions, and (ii) identify the most effective method of BS supply ('seed coating', 'foliar spray', and 'seed coating + foliar spray') under field conditions. For this purpose, three modern durum wheat cultivars were tested. 'Panoramix' was the most efficient treatment and enhanced all germination (germination rate, and coleoptile and radicle length), physiological (relative water content, chlorophyll content, and leaf area), and agro-morphological (plant height, biomass, seed number per spike, thousand kernel weight, and grain yield) attributes. Unexpectedly, the individual application of 'Panoramix' showed better performance than the combined treatment 'Panoramix + Spectro'. Considering the physiological and agro-morphological traits, the combined method 'seed coating + foliar spray' displayed the best results. Principal component analysis confirmed the superiority of 'Panoramix' treatment or 'seed coating + foliar spray' method. Among tested durum wheat cultivars, 'Salim' performed better especially under 'Panoramix' treatment, but in some case 'Karim' valorized better this BS showing the highest increase rates. Based on these study outcomes, 'Panoramix' might be used as promising sustainable approach to stimulate durum wheat performance.
Collapse
Affiliation(s)
- Sourour Ayed
- Field Crops Laboratory, LR20-INRAT-02, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 2049, Tunisia;
| | - Imen Bouhaouel
- Genetics and Cereal Breeding Laboratory, LR14AGR01, National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia; (I.B.); (W.H.)
| | - Hayet Jebari
- Field Crops Laboratory, LR20-INRAT-02, National Agricultural Research Institute of Tunisia, University of Carthage, Ariana 2049, Tunisia;
| | - Walid Hamada
- Genetics and Cereal Breeding Laboratory, LR14AGR01, National Agronomic Institute of Tunisia, University of Carthage, Tunis 1082, Tunisia; (I.B.); (W.H.)
| |
Collapse
|
44
|
Brown VS, Erickson TE, Merritt DJ, Madsen MD, Hobbs RJ, Ritchie AL. A global review of seed enhancement technology use to inform improved applications in restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149096. [PMID: 34340083 DOI: 10.1016/j.scitotenv.2021.149096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Seed-based restoration often experiences poor success due to a range of edaphic and biotic issues. Seed enhancement technologies (SETs) are a novel approach that can alleviate these pressures and improve restoration success. Broadly, SETs have been reviewed for agricultural and horticultural purposes, for specific types of SETs such as coating or priming, or for focal ecosystems. However, information is lacking for SETs within a restoration focused context, and how they are being used to alleviate certain barriers. This review aimed to synthesise the current literature on SETs to understand what SETs are being tested, in which sectors and locations they are being tested, what issues are faced within restoration using SETs, and how SETs are being used to approach these issues. Priming was highlighted as the main SET investigated. Inoculation, pesticide application and magnetic fields were also commonly tested (SETs we termed 'prospective techniques'). SET research mainly occurred in the agricultural sector. More recently, other sectors, such as restoration and rangeland management, have increased efforts into SET research. The restoration sector has focused on extruded pelleting and coating (with activated carbon), in combination with herbicide application, to overcome invasive species, and coating with certain additives to alleviate edaphic issues. Other sectors outside restoration were largely focused on evaluating priming for overcoming these barriers. The majority of priming research has been completed on crop species and differences between these species and ecosystems must be considered in future restoration efforts that focus on native seed use. Generally, SETs require further refinement, including identifying ideal additives and their optimum concentrations to target certain issues, refining formulations for coating and extruded pelleting and developing flash flaming. A bet-hedging approach using multiple SETs and/or combinations of SETs may be advantageous in overcoming a wide range of barriers in seed-based restoration.
Collapse
Affiliation(s)
- Vanessa S Brown
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia; Kings Park Science, Department of Biodiversity Conservation and Attractions, 2 Kattidj Close, Kings Park, Western Australia, 6005, Australia.
| | - Todd E Erickson
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia; Kings Park Science, Department of Biodiversity Conservation and Attractions, 2 Kattidj Close, Kings Park, Western Australia, 6005, Australia
| | - David J Merritt
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia; Kings Park Science, Department of Biodiversity Conservation and Attractions, 2 Kattidj Close, Kings Park, Western Australia, 6005, Australia
| | - Matthew D Madsen
- Department of Plant and Wildlife Sciences, Brigham Young University, 701 East University Parkway, Provo, UT 84602, United States of America
| | - Richard J Hobbs
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia
| | - Alison L Ritchie
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009, Australia; Kings Park Science, Department of Biodiversity Conservation and Attractions, 2 Kattidj Close, Kings Park, Western Australia, 6005, Australia
| |
Collapse
|
45
|
Stoll A, Salvatierra-Martínez R, González M, Cisternas J, Rodriguez Á, Vega-Gálvez A, Bravo J. Importance of crop phenological stages for the efficient use of PGPR inoculants. Sci Rep 2021; 11:19548. [PMID: 34599247 PMCID: PMC8486824 DOI: 10.1038/s41598-021-98914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/06/2021] [Indexed: 11/08/2022] Open
Abstract
During the last decades, the incorporation of beneficial microorganisms in agriculture crop management has become a common practice. Seed coating of these microorganisms still faces technical issues, which limit its implementation in conventional agriculture. An adaption to widely established agricultural practices, e.g. fertigation, could help to overcome these issues. Here, using Bacillus velezensis strain BBC047, we show the influence of the crop phenological stages on the efficiency and success of microbial inoculation under agricultural conditions. In the commercial nursery, strain BBC047 improved growth in a variety of horticulture crops like basil, cabbage, tomato and bell pepper, the latter with the strongest effects in strengthening and accelerating the seedling growth (root and aerial biomass). For a field trial under productive conditions, different application strategies were compared, using bell pepper (Capsicum annuum L.) as crop under fertigation: conventional management (T1), application to the seedling (only nursery, T2), only post-transplant application (field, T3) and a combination of both (T4). In T2 and T4, the post-transplantation survival rate (p < 0.05) improved and the productivity of the plants increased (> 100%). Applications of BBC047 post-transplantation (T3) caused a lower increase in productivity (25%). Fruits from all three application strategies contained significantly more Vitamin C. We conclude that in conventional agriculture, the applications of PGPR inoculants to early crop phenological stages like nurseries are a viable alternative for the efficient use of PGPR inoculants. In comparison, a late introduction of a PGPR reduces its beneficial effect on crop productivity. We highlight that an appropriate timing in the use of PGPR inoculants is crucial for product development and success in sustainable agriculture.
Collapse
Affiliation(s)
- Alexandra Stoll
- CEAZA, Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile.
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de la Serena, La Serena, Chile.
| | - Ricardo Salvatierra-Martínez
- CEAZA, Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile
- Programa de Doctorado en Biología y Ecología Aplicada, Universidad De La Serena, La Serena, Chile
| | - Máximo González
- CEAZA, Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile
| | - Jonathan Cisternas
- Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad Santo Tomás, Ruta 5 Norte 1068, La Serena, Chile
| | - Ángela Rodriguez
- Departamento de Ingeniería en Alimentos, Universidad de la Serena, Av. Raúl Bitrán 1305, Casilla 599, La Serena, Chile
| | - Antonio Vega-Gálvez
- Departamento de Ingeniería en Alimentos, Universidad de la Serena, Av. Raúl Bitrán 1305, Casilla 599, La Serena, Chile
| | - Jaime Bravo
- Microbiología Aplicada e Innovación Agroalimentaria, Universidad Tecnológica de la Costa, Stgo Ixcuintla, Nayarit, México
| |
Collapse
|
46
|
Gelatin Reinforced with CNCs as Nanocomposite Matrix for Trichoderma harzianum KUEN 1585 Spores in Seed Coatings. Molecules 2021; 26:molecules26195755. [PMID: 34641299 PMCID: PMC8510327 DOI: 10.3390/molecules26195755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Increasing interest on sustainable agriculture has led to the development of new materials which can be used as seed coating agents. In this study, a new material was developed based on gelatin film reinforced with cellulose nanocrystals (CNC) which was further used as nanocomposite matrix for Trichoderma harzianum KUEN 1585 spores. The nanocomposite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), showing the formation of new hydrogen bonds between the components with a good compatibility between them. Measurements of water contact angles and tests of water vapor sorption and swelling degree revealed an improvement in the water vapor absorption properties of the films as a result of their reinforcement with CNC. Furthermore, by adding the Trichoderma harzianum KUEN 1585 spp. in the seed coating material, the germination percentage, speed of germination and roots length of the corn seeds improved. The polymeric coating did not inhibit the growth of T. harzianum KUEN 1585, with this material being a good candidate in modern agriculture.
Collapse
|
47
|
Mhada M, Zvinavashe AT, Hazzoumi Z, Zeroual Y, Marelli B, Kouisni L. Bioformulation of Silk-Based Coating to Preserve and Deliver Rhizobium tropici to Phaseolus vulgaris Under Saline Environments. FRONTIERS IN PLANT SCIENCE 2021; 12:700273. [PMID: 34408761 PMCID: PMC8366584 DOI: 10.3389/fpls.2021.700273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Seed priming has been for a long time an efficient application method of biofertilizers and biocontrol agents. Due to the quick degradation of the priming agents, this technique has been limited to specific immediate uses. With the increase of awareness of the importance of sustainable use of biofertilizers, seed coating has presented a competitive advantage regarding its ability to adhere easily to the seed, preserve the inoculant, and decompose in the soil. This study compared primed Phaseolus vulgaris seeds with Rhizobium tropici and trehalose with coated seeds using a silk solution mixed with R. tropici and trehalose. We represented the effect of priming and seed coating on seed germination and the development of seedlings by evaluating physiological and morphological parameters under different salinity levels (0, 20, 50, and 75 mM). Results showed that germination and morphological parameters have been significantly enhanced by applying R. tropici and trehalose. Seedlings of coated seeds show higher root density than the freshly primed seeds and the control. The physiological response has been evaluated through the stomatal conductance, the chlorophyll content, and the total phenolic compounds. The stability of these physiological traits indicated the role of trehalose in the protection of the photosystems of the plant under low and medium salinity levels. R. tropici and trehalose helped the plant mitigate the negative impact of salt stress on all traits. These findings represent an essential contribution to our understanding of stress responses in coated and primed seeds. This knowledge is essential to the design of coating materials optimized for stressed environments. However, further progress in this area of research must anticipate the development of coatings adapted to different stresses using micro and macro elements, bacteria, and fungi with a significant focus on biopolymers for sustainable agriculture and soil microbiome preservation.
Collapse
Affiliation(s)
- Manal Mhada
- African Integrated Plant and Soil Research Group, AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Augustine T. Zvinavashe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Zakaria Hazzoumi
- Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science Innovation and Research (MAScIR), Rabat, Morocco
| | | | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI–UM6P), Laayoune, Morocco
| |
Collapse
|
48
|
Ayesha MS, Suryanarayanan TS, Nataraja KN, Prasad SR, Shaanker RU. Seed Treatment With Systemic Fungicides: Time for Review. FRONTIERS IN PLANT SCIENCE 2021; 12:654512. [PMID: 34408757 PMCID: PMC8365024 DOI: 10.3389/fpls.2021.654512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/06/2021] [Indexed: 05/27/2023]
Abstract
Pre-sowing seed treatment with systemic fungicides is a firmly entrenched practice for most agricultural crops worldwide. The treatment is intended to protect the crop against seed- and soil-borne diseases. In recent years, there is increasing evidence that fungicidal applications to manage diseases might inadvertently also affect non-target organisms, such as endophytes. Endophytes are ubiquitously present in plants and contribute to plant growth and development besides offering resistance to biotic and abiotic stresses. In seeds, endophytes may play a role in seed development, seed germination, seedling establishment and crop performance. In this paper, we review the recent literature on non-target effects of fungicidal applications on endophytic fungal community and discuss the possible consequences of indiscriminate seed treatment with systemic fungicide on seed endophytes. It is now well recognized that endophytes are ubiquitously present in all parts of the plant, including the seeds. They may be transmitted vertically from seed to seed as in many grasses and/or acquired horizontally from the soil and the environment. Though the origins and evolution of these organisms in plants are a matter of conjecture, numerous studies have shown that they symbiotically aid in plant growth and development, in nutrient acquisition as well in protecting the plants from abiotic and biotic stresses. Against this background, it is reasonable to assume that the use of systemic fungicides in seed treatment may not only affect the seed endophytes but also their attendant benefits to seedling growth and establishment. While there is evidence to indicate that fungicidal applications to manage plant diseases also affect foliar endophytes, there are only few studies that have documented the effect of seed treatment on seed-borne endophytes. Some of the convincing examples of the latter come from studies on the effect of fungicide application on rye grass seed endophyte AR37. More recently, experiments have shown that removal of seed endophytes by treatment with systemic fungicides leads to significant loss of seedling vigour and that such losses could be partially restored by enriching the seedlings with the lost endophytes. Put together, these studies reinforce the importance of seed endophytes to seedling growth and establishment and draw attention on how to trade the balance between the benefits of seed treatments and the direct and indirect costs incurred due to loss of endophytes. Among several approaches, use of reduced-risk fungicides and identifying fungicide-resistant endophytes are suggested to sustain the endophyte contribution to early seedling growth.
Collapse
Affiliation(s)
- Mulla S. Ayesha
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
| | | | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
| | | | - Ramanan Uma Shaanker
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
- School of Ecology and Conservation, University of Agricultural Sciences, Bangalore, India
| |
Collapse
|
49
|
Pedrini S, Stevens JC, Dixon KW. Seed encrusting with salicylic acid: A novel approach to improve establishment of grass species in ecological restoration. PLoS One 2021; 16:e0242035. [PMID: 34106919 PMCID: PMC8189473 DOI: 10.1371/journal.pone.0242035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
To achieve global ambitions in large scale ecological restoration, there is a need for approaches that improve the efficiency of seed-based interventions, particularly in overcoming the bottleneck in the transition from germination to seedling establishment. In this study, we tested a novel seed-based application of the plant stress modulator compound salicylic acid as a means to reduce seedling losses in the seed-to-seedling phase. Seed coating technology (encrusting) was developed as a precursor for optimising field sowing for three grass species commonly used in restoration programs, Austrostipa scabra, Microlaena stipoides, and Rytidosperma geniculatum. Salicylic acid (SA, 0.1mM) was delivered to seeds via imbibition and seed encrusting. The effects of SA on seed germination were examined under controlled water-limited conditions (drought resilience) in laboratory setting and on seed germination, seedling emergence, seedling growth and plant survival in field conditions. Salicylic acid did not impact germination under water stress in controlled laboratory conditions and did not affect seedling emergence in the field. However, seedling survival and growth were improved in plants grown from SA treated seeds (imbibed and encrusted) under field conditions. When SA delivery methods of imbibing and coating were compared, there was no significant difference in survival and growth, showing that seed coating has potential to deliver SA. Effect of intraspecific competition as a result of seedling density was also considered. Seedling survival over the dry summer season was more than double at low seedling density (40 plants/m2) compared to high seedling density (380 plants/m2). Overall, adjustment of seeding rate according to expected emergence combined with the use of salicylic acid via coating could improve seed use efficiency in seed-based restoration.
Collapse
Affiliation(s)
- Simone Pedrini
- ARC Centre for Mine Site Restoration, School of Molecular and Life Science, Curtin University, Bentley, Western Australia, Australia
- * E-mail:
| | - Jason C. Stevens
- Department of Biodiversity, Kings Park Science, Conservation and Attractions, Kings Park, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kingsley W. Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Science, Curtin University, Bentley, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
50
|
Huss JC, Gierlinger N. Functional packaging of seeds. THE NEW PHYTOLOGIST 2021; 230:2154-2163. [PMID: 33629369 PMCID: PMC8252473 DOI: 10.1111/nph.17299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/16/2021] [Indexed: 05/28/2023]
Abstract
The encapsulation of seeds in hard coats and fruit walls (pericarp layers) fulfils protective and dispersal functions in many plant families. In angiosperms, packaging structures possess a remarkable range of different morphologies and functionalities, as illustrated by thermo and hygro-responsive seed pods and appendages, as well as mechanically strong and water-impermeable shells. Key to these different functionalities are characteristic structural arrangements and chemical modifications of the underlying sclerenchymatous tissues. Although many ecological aspects of hard seed encapsulation have been well documented, a detailed understanding of the relationship between tissue structure and function only recently started to emerge, especially in the context of environmentally driven fruit opening and seed dispersal (responsive encapsulations) and the outstanding durability of some seed coats and indehiscent fruits (static encapsulations). In this review, we focus on the tissue properties of these two systems, with particular consideration of water interactions, mechanical resistance, and force generation. Common principles, as well as unique adaptations, are discussed in different plant species. Understanding how plants integrate a broad range of functions and properties for seed protection during storage and dispersal plays a central role for seed conservation, population dynamics, and plant-based material developments.
Collapse
Affiliation(s)
- Jessica C. Huss
- Department of NanobiotechnologyInstitute of BiophysicsUniversity of Natural Resources and Life Sciences (BOKU) ViennaMuthgasse 11/IIVienna1900Austria
| | - Notburga Gierlinger
- Department of NanobiotechnologyInstitute of BiophysicsUniversity of Natural Resources and Life Sciences (BOKU) ViennaMuthgasse 11/IIVienna1900Austria
| |
Collapse
|