1
|
Deng H, Pei Y, Xu X, Du X, Xue Q, Gao Z, Shu P, Wu Y, Liu Z, Jian Y, Wu M, Wang Y, Li Z, Pirrello J, Bouzayen M, Deng W, Hong Y, Liu M. Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening. THE NEW PHYTOLOGIST 2024; 242:592-609. [PMID: 38402567 DOI: 10.1111/nph.19632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The plant hormone ethylene plays a critical role in fruit defense against Botrytis cinerea attack, but the underlying mechanisms remain poorly understood. Here, we showed that ethylene response factor SlERF.C1 acts as a key regulator to trigger the ethylene-mediated defense against B. cinerea in tomato fruits without compromising ripening. Knockout of SlERF.C1 increased fruit susceptibility to B. cinerea with no effect on ripening process, while overexpression enhanced resistance. RNA-Seq, transactivation assays, EMSA and ChIP-qPCR results indicated that SlERF.C1 activated the transcription of PR genes by binding to their promoters. Moreover, SlERF.C1 interacted with the mitogen-activated protein kinase SlMPK8 which allowed SlMPK8 to phosphorylate SlERF.C1 at the Ser174 residue and increases its transcriptional activity. Knocking out of SlMPK8 increased fruit susceptibility to B. cinerea, whereas overexpression enhanced resistance without affecting ripening. Furthermore, genetic crosses between SlMPK8-KO and SlERF.C1-OE lines reduced the resistance to B. cinerea attack in SlERF.C1-OE fruits. In addition, B. cinerea infection induced ethylene production which in turn triggered SlMPK8 transcription and enhanced the phosphorylation of SlERF.C1. Overall, our findings reveal the regulatory mechanism of the 'Ethylene-MPK8-ERF.C1-PR' module in resistance against B. cinerea and provide new insight into the manipulation of gray mold disease in fruits.
Collapse
Affiliation(s)
- Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qihan Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhuo Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhaoqiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Wang F, Liang S, Wang G, Wang Q, Xu Z, Li B, Fu C, Fan Y, Hu T, Alariqi M, Hussain A, Cao J, Li J, Zhang X, Jin S. Comprehensive analysis of MAPK gene family in upland cotton (Gossypium hirsutum) and functional characterization of GhMPK31 in regulating defense response to insect infestation. PLANT CELL REPORTS 2024; 43:102. [PMID: 38499710 PMCID: PMC10948490 DOI: 10.1007/s00299-024-03167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024]
Abstract
KEY MESSAGE The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of H2O2 burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G. hirsutum) is the most widely cultivated cotton species with high economic value. To gain a better understanding of the role of the MAPK gene family, we conducted a comprehensive analysis of the MAPK gene family in cotton. In this study, a total of 55 GhMPK genes were identified from the whole genome of G. hirsutum. Through an investigation of the expression patterns under diverse stress conditions, we discovered that the majority of GhMPK family members demonstrated robust responses to abiotic stress, pathogen stress and pest stress. Furthermore, the overexpression of GhMPK31 in cotton leaves led to a hypersensitive response (HR)-like cell death phenotype and impaired the defense capability of cotton against herbivorous insects. Transcriptome and metabolomics data analysis showed that overexpression of GhMPK31 enhanced the expression of H2O2-related genes and reduced the accumulation of defensive related metabolites. The direct evidence of GhMPK31 interacting with GhRBOHB (H2O2-generating protein) were found by Y2H, BiFC, and LCI. Therefore, we propose that the increase of H2O2 content caused by overexpression of GhMPK31 resulted in HR-like cell death in cotton leaves while reducing the accumulation of defensive metabolites, ultimately leading to a decrease in the defense ability of cotton against herbivorous insects. This study provides valuable insights into the function of MAPK genes in plant resistance to herbivorous insects.
Collapse
Affiliation(s)
- Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianyu Hu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muna Alariqi
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Amjad Hussain
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinglin Cao
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, Hubei, People's Republic of China.
| | - Jian Li
- The Southern Xinjiang Research Institute of Shihezi University, TuMu ShuKe, Xinjiang, 843900, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Shen T, Xu F, Chen D, Yan R, Wang Q, Li K, Zhang G, Ni L, Jiang M. A B-box transcription factor OsBBX17 regulates saline-alkaline tolerance through the MAPK cascade pathway in rice. THE NEW PHYTOLOGIST 2024; 241:2158-2175. [PMID: 38098211 DOI: 10.1111/nph.19480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/24/2023] [Indexed: 02/09/2024]
Abstract
Rice OsBBX17 encodes a B-box zinc finger transcription factor in which the N-terminal B-box structural domain interacts with OsMPK1. In addition, it directly binds to the G-box of OsHAK2 and OsHAK7 promoters and represses their transcription. Under saline-alkaline conditions, the expression of OsBBX17 was inhibited. Meanwhile, activation of the OsMPK1-mediated mitogen-activated protein kinase cascade pathway caused OsMPK1 to interact with OsBBX17 and phosphorylate OsBBX17 at the Thr-95 site. It reduced OsBBX17 DNA-binding activity and enhanced saline-alkaline tolerance by deregulating transcriptional repression of OsHAK2 and OsHAK7. Genetic assays showed that the osbbx17-KO had an excellent saline-alkaline tolerance, whereas the opposite was in OsBBX17-OE. In addition, overexpression of OsMPK1 significantly improved saline-alkaline tolerance, but knockout of OsMPK1 caused an increased sensitivity. Further overexpression of OsBBX17 in the osmpk1-KO caused extreme saline-alkaline sensitivity, even a quick death. OsBBX17 was validated in saline-alkaline tolerance from two independent aspects, transcriptional level and post-translational protein modification, unveiling a mechanistic framework by which OsMPK1-mediated phosphorylation of OsBBX17 regulates the transcription of OsHAK2 and OsHAK7 to enhance the Na+ /K+ homeostasis, which partially explains light on the molecular mechanisms of rice responds to saline-alkaline stress via B-box transcription factors for the genetic engineering of saline-alkaline tolerant crops.
Collapse
Affiliation(s)
- Tao Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengjuan Xu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Chen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Runjiao Yan
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingwen Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Kaiyue Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gang Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Qiao S, Ma J, Wang Y, Chen J, Kang Z, Bian Q, Chen J, Yin Y, Cao G, Zhao G, Yang G, Sun H, Yang Y. Integrated Transcriptome and Metabolome Analyses Reveal Details of the Molecular Regulation of Resistance to Stem Nematode in Sweet Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2052. [PMID: 37653969 PMCID: PMC10221022 DOI: 10.3390/plants12102052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Stem nematode disease can seriously reduce the yield of sweet potato (Ipomoea batatas (L.) Lam). To explore resistance mechanism to stem nematode in sweet potato, transcriptomes and metabolomes were sequenced and compared between two sweet potato cultivars, the resistant Zhenghong 22 and susceptible Longshu 9, at different times after stem nematode infection. In the transcriptional regulatory pathway, mitogen-activated protein kinase signaling was initiated in Zhenghong 22 at the early stage of infection to activate genes related to ethylene production. Stem nematode infection in Zhenghong 22 also triggered fatty acid metabolism and the activity of respiratory burst oxidase in the metabolic pathway, which further stimulated the glycolytic and shikimic pathways to provide raw materials for secondary metabolite biosynthesis. An integrated analysis of the secondary metabolic regulation pathway in the resistant cultivar Zhenghong 22 revealed the accumulation of tryptophan, phenylalanine, and tyrosine, leading to increased biosynthesis of phenylpropanoids and salicylic acid and enhanced activity of the alkaloid pathway. Stem nematode infection also activated the biosynthesis of terpenoids, abscisic acid, zeatin, indole, and brassinosteroid, resulting in improved resistance to stem nematode. Finally, analyses of the resistance regulation pathway and a weighted gene co-expression network analysis highlighted the importance of the genes itf14g17940 and itf12g18840, encoding a leucine-rich receptor-like protein and 1-aminocyclopropane-1-carboxylate synthase, respectively. These are candidate target genes for increasing the strength of the defense response. These results provide new ideas and a theoretical basis for understanding the mechanism of resistance to stem nematode in sweet potato.
Collapse
Affiliation(s)
- Shouchen Qiao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Jukui Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221000, China; (J.M.); (J.C.)
| | - Yannan Wang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Jingwei Chen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221000, China; (J.M.); (J.C.)
| | - Zhihe Kang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Qianqian Bian
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Jinjin Chen
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Yumeng Yin
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Guozheng Cao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Guorui Zhao
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Guohong Yang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| | - Houjun Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221000, China; (J.M.); (J.C.)
| | - Yufeng Yang
- Cereal Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (S.Q.); (Y.W.); (Z.K.); (Q.B.); (Y.Y.); (G.Y.)
| |
Collapse
|
5
|
Zhou F, Singh S, Zhang J, Fang Q, Li C, Wang J, Zhao C, Wang P, Huang CF. The MEKK1-MKK1/2-MPK4 cascade phosphorylates and stabilizes STOP1 to confer aluminum resistance in Arabidopsis. MOLECULAR PLANT 2023; 16:337-353. [PMID: 36419357 DOI: 10.1016/j.molp.2022.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Aluminum (Al) toxicity can seriously restrict crop production on acidic soils, which comprise 40% of the world's potentially arable land. The zinc finger transcription factor STOP1 has a conserved and essential function in mediating plant Al resistance. Al stress induces STOP1 accumulation via post-transcriptional regulatory mechanisms. However, the upstream signaling pathway involved in Al-triggered STOP1 accumulation remains unclear. Here, we report that the MEKK1-MKK1/2-MPK4 cascade positively regulates STOP1 phosphorylation and stability. Mutations of MEKK1, MKK1/2, or MPK4 lead to decreased STOP1 stability and Al resistance. Al stress induces the kinase activity of MPK4, which interacts with and phosphorylates STOP1. The phosphorylation of STOP1 reduces its interaction with the F-box protein RAE1 that mediates STOP1 degradation, thereby leading to enhanced STOP1 stability and Al resistance. Taken together, our results suggest that the MEKK1-MKK1/2-MPK4 cascade is important for Al signaling and confers Al resistance through phosphorylation-mediated enhancement of STOP1 accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Fanglin Zhou
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Somesh Singh
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jie Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiu Fang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chongyang Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiawen Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunzhao Zhao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pengcheng Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Sun K, Zhang X, Wei Z, Wang Z, Liu J, Liu J, Gao J, Guo J, Zhao X. Analysis of metabolic and transcription levels provides insights into the interactions of plant hormones and crosstalk with MAPKs in the early signaling response of cherry tomato fruit induced by the yeast cell wall. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 6:100160. [PMID: 36619895 PMCID: PMC9816665 DOI: 10.1016/j.fochms.2022.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Yeast cell walls (YCW) are promising bio-based elicitors for controlling post-harvest fruit decay. In this study, 1% YCW induction increased the resistance of cherry tomato fruits, reducing disease incidence by 66%. This study aimed to explore the interaction of hormones and crosstalk with MAPKs (mitogen-activated protein kinases) in the early response of resistance regulation in cherry tomato fruits treated with YCW and U0126. We analyzed the temporal changes in hormone content, the expression of critical genes involved in phytohormone biosynthesis, and signal transduction in cherry tomato fruits response to the induction. Results revealed that jasmonic acid (JA) and brassinosteroids (BR) significantly regulated early resistance response in fruit induced by 1% YCW. The salicylic acid (SA) pathway is inhibited by the activation of the JA pathway. JA and SA signaling pathway crosstalk with the MAPK3 pathway. BR plays an essential role in the regulation of fruit resistance. The BR pathway may function independently when JA/SA and MAPK3 pathways are inhibited.
Collapse
Affiliation(s)
- Keyu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xue Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ze Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ziwuzhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jian Liu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China,Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi, Xinjiang 830011, China
| | - Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Jun Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China,Corresponding authors.
| | - Xin Zhao
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China,Corresponding authors.
| |
Collapse
|
7
|
Liu Y, Yu T, Li Y, Zheng L, Lu Z, Zhou Y, Chen J, Chen M, Zhang J, Sun G, Cao X, Liu Y, Ma Y, Xu Z. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilising TaPYL4 receptor in wheat. THE NEW PHYTOLOGIST 2022; 236:114-131. [PMID: 35719110 PMCID: PMC9544932 DOI: 10.1111/nph.18326] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/10/2022] [Indexed: 06/01/2023]
Abstract
Abscisic acid (ABA) receptors are considered as the targeted manipulation of ABA sensitivity and water productivity in plants. Regulation of their stability or activity will directly affect ABA signalling. Mitogen-activated protein kinase (MAPK) cascades link multiple environmental and plant developmental cues. However, the molecular mechanism of ABA signalling and MAPK cascade interaction remains largely elusive. TaMPK3 overexpression decreases drought tolerance and wheat sensitivity to ABA, significantly weakening ABA's inhibitory effects on growth. Under drought stress, overexpression lines show lower survival rates, shoot fresh weight and proline content, but higher malondialdehyde levels at seedling stage, as well as decreased grain width and 1000 grain weight in both glasshouse and field conditions at the adult stage. TaMPK3-RNAi increases drought tolerance. TaMPK3 interaction with TaPYL4 leads to decreased TaPYL4 levels by promoting its ubiquitin-mediated degradation, whereas ABA treatment diminishes TaMPK3-TaPYL interactions. In addition, the expression of ABA signalling proteins is impaired in TaMPK3-overexpressing wheat plants under ABA treatment. The MPK3-PYL interaction module was found to be conserved across monocots and dicots. Our results suggest that the MPK3-PYL module could serve as a negative regulatory mechanism for balancing appropriate drought stress response with normal plant growth signalling in wheat.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Tai‐Fei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Yi‐Tong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Lei Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Zhi‐Wei Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Yong‐Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Jin‐Peng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Guo‐Zhong Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Xin‐You Cao
- National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement, Crop Research InstituteShandong Academy of Agricultural SciencesJinan250100China
| | - Yong‐Wei Liu
- Institute of Biotechnology and Food ScienceHebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei ProvinceShijiazhuang050051China
| | - You‐Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
| | - Zhao‐Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae CropsMinistry of AgricultureBeijing100081China
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural Sciences/Hainan Yazhou Bay Seed LaboratorySanya572024China
| |
Collapse
|
8
|
Mirza Z, Haque MM, Gupta M. WRKY transcription factors: a promising way to deal with arsenic stress in rice. Mol Biol Rep 2022; 49:10895-10904. [PMID: 35941412 DOI: 10.1007/s11033-022-07772-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Arsenic (As) is a global carcinogenic contaminant, and is one of the significant environmental constraints that limits the development and yield of crop plants. It is always tagged along with rice as rice takes up As and tends to accumulate it in grains. This amassment makes a way for As to get into the food chain that leads to unforeseen human health risks. Being viewed as parallel with toxicity, As in rice is an important global risk that calls for an urgent solution. WRKY Transcription Factors (TFs) seems to be promising in this area. The classical and substantial progress in the molecular mechanism of WRKY TFs, strengthened the understanding of innovative solutions for dealing with As in rice. Here, we review the potential of WRKY TFs under As stressed rice as a genetic solution and also provide insights into As and rice. Further, we develop an understanding of WRKY TF gene family and its regulation in rice. To date, studies on the role of WRKY TFs under As stressed rice are lacking. This area needs to be explored more so that this gene family can be utilized as an effective genetic tool that can break the As cycle to develop low or As free rice cultivar.
Collapse
Affiliation(s)
- Zainab Mirza
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Mohammad Mahfuzul Haque
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India.
| |
Collapse
|
9
|
Ding ZH, Gao Q, Tong X, Xu WY, Ma L, Zhang ZJ, Wang Y, Wang XB. MAPKs trigger antiviral immunity by directly phosphorylating a rhabdovirus nucleoprotein in plants and insect vectors. THE PLANT CELL 2022; 34:3110-3127. [PMID: 35567529 PMCID: PMC9338794 DOI: 10.1093/plcell/koac143] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/22/2022] [Indexed: 05/16/2023]
Abstract
Signaling by the evolutionarily conserved mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) plays critical roles in converting extracellular stimuli into immune responses. However, whether MAPK/ERK signaling induces virus immunity by directly phosphorylating viral effectors remains largely unknown. Barley yellow striate mosaic virus (BYSMV) is an economically important plant cytorhabdovirus that is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a propagative manner. Here, we found that the barley (Hordeum vulgare) MAPK MPK3 (HvMPK3) and the planthopper ERK (LsERK) proteins interact with the BYSMV nucleoprotein (N) and directly phosphorylate N protein primarily on serine 290. The overexpression of HvMPK3 inhibited BYSMV infection, whereas barley plants treated with the MAPK pathway inhibitor U0126 displayed greater susceptibility to BYSMV. Moreover, knockdown of LsERK promoted virus infection in SBPHs. A phosphomimetic mutant of the N Ser290 (S290D) completely abolished virus infection because of impaired self-interaction of BYSMV N and formation of unstable N-RNA complexes. Altogether, our results demonstrate that the conserved MAPK and ERK directly phosphorylate the viral nucleoprotein to trigger immunity against cross-kingdom infection of BYSMV in host plants and its insect vectors.
Collapse
Affiliation(s)
- Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Tong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
10
|
Wang L, Chen J, Zhao Y, Wang S, Yuan M. OsMAPK6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1116-1130. [PMID: 35293133 DOI: 10.1111/jipb.13249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Rice OsLIC encoding a CCCH zinc finger transcription factor plays an important role in immunity. However, the immune signaling pathways that OsLIC-involved and the underlying mechanisms that OsLIC-conferred resistance against pathogens are largely unclear. Here, we show that OsLIC, as a substrate for OsMAPK6, negatively regulates resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) by directly suppressing OsWRKY30 transcription. Biochemical assays showed that OsLIC bound to OsWRKY30 promoter and suppressed its transcription. Genetic assays confirmed that the osilc knockout mutants and OsWRKY30-overexpressing plants exhibited enhanced resistance to Xoo and Xoc, knocking out OsWRKY30 in the oslic mutants attenuated the resistance against bacterial pathogens. OsMAPK6 physically interacted with and phosphorylated OsLIC leading to decreased OsLIC DNA-binding activity, therefore, overexpression of OsLIC partially suppressed OsMAPK6-mediated rice resistance. In addition, both OsMAPK6-phosphorylated activation of OsLIC and phosphorylation-mimic OsLIC5D had reduced DNA-binding activity towards OsWRKY30 promoter, thereby promoting OsWRKY30 transcription. Collectively, these results reveal that OsMAPK6-mediated phosphorylation of OsLIC positively regulates rice resistance to Xoo and Xoc by modulating OsWRKY30 transcription, suggesting that OsMAPK6-OsLIC-OsWRKY30 module is an immune signaling pathway in response to the bacterial pathogens.
Collapse
Affiliation(s)
- Lihan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqin Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
11
|
Lang J, Genot B, Bigeard J, Colcombet J. MPK3 and MPK6 control salicylic acid signaling by up-regulating NLR receptors during pattern- and effector-triggered immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2190-2205. [PMID: 35032388 DOI: 10.1093/jxb/erab544] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis thaliana mitogen-activated protein kinases 3 and 6 (MPK3/6) are activated transiently during pathogen-associated molecular pattern-triggered immunity (PTI) and durably during effector-triggered immunity (ETI). The functional differences between these two kinds of activation kinetics and how they coordinate the two layers of plant immunity remain poorly understood. Here, by suppressor analyses, we demonstrate that ETI-mediating nucleotide-binding domain leucine-rich repeat receptors (NLRs) and the NLR signaling components NDR1 and EDS1 can promote the salicylic acid sector of defense downstream of MPK3 activity. Moreover, we provide evidence that both sustained and transient MPK3/6 activities positively control the expression of several NLR genes, including AT3G04220 and AT4G11170. We further show that NDR1 and EDS1 contribute to the up-regulation of these two NLRs in both an ETI and a PTI context. Remarkably, whereas in ETI MPK3/6 activities are dependent on NDR1 and EDS1, they are not in PTI, suggesting crucial differences in the two signaling pathways. Finally, we demonstrate that expression of the NLR AT3G04220 is sufficient to induce expression of defense genes from the salicylic acid branch. Overall, this study expands our knowledge of MPK3/6 functions during immunity and provides new insights into the intricate interplay of PTI and ETI.
Collapse
Affiliation(s)
- Julien Lang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Baptiste Genot
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Jean Bigeard
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| | - Jean Colcombet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
- Université de Paris, Institute of Plant Sciences Paris Saclay (IPS2), 91405 Orsay, France
| |
Collapse
|
12
|
Mao W, Han Y, Chen Y, Sun M, Feng Q, Li L, Liu L, Zhang K, Wei L, Han Z, Li B. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. THE PLANT CELL 2022; 34:1226-1249. [PMID: 35018459 PMCID: PMC8972286 DOI: 10.1093/plcell/koac006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/05/2022] [Indexed: 05/07/2023]
Abstract
Low temperature causes poor coloration of strawberry (Fragaria sp.) fruits, thus greatly reducing their commercial value. Strawberry fruits accumulate anthocyanins during ripening, but how low temperature modulates anthocyanin accumulation in plants remains largely unknown. We identified MITOGEN-ACTIVATED PROTEIN KINASE3 (FvMAPK3) as an important negative regulator of anthocyanin accumulation that mediates the poor coloration of strawberry fruits in response to low temperature. FvMAPK3 activity was itself induced by low temperature, leading to the repression of anthocyanin accumulation via two mechanisms. Activated FvMAPK3 acted as the downstream target of MAPK KINASE4 (FvMKK4) and SUCROSE NONFERMENTING1-RELATED KINASE2.6 (FvSnRK2.6) to phosphorylate the transcription factor FvMYB10 and reduce its transcriptional activity. In parallel, FvMAPK3 phosphorylated CHALCONE SYNTHASE1 (FvCHS1) to enhance its proteasome-mediated degradation. These results not only provide an important reference to elucidate the molecular mechanisms underlying low-temperature-mediated repression of anthocyanin accumulation in plants, but also offer valuable candidate genes for generating strawberry varieties with high tolerance to low temperature and good fruit quality.
Collapse
Affiliation(s)
- Wenwen Mao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yating Chen
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Mingzhu Sun
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qianqian Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Li Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liping Liu
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kaikai Zhang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lingzhi Wei
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Bingbing Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
- Author for correspondence:
| |
Collapse
|
13
|
Wu CJ, Shan W, Liu XC, Zhu LS, Wei W, Yang YY, Guo YF, Bouzayen M, Chen JY, Lu WJ, Kuang JF. Phosphorylation of transcription factor bZIP21 by MAP kinase MPK6-3 enhances banana fruit ripening. PLANT PHYSIOLOGY 2022; 188:1665-1685. [PMID: 34792564 PMCID: PMC8896643 DOI: 10.1093/plphys/kiab539] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Ripening of fleshy fruits involves both diverse post-translational modifications (PTMs) and dynamic transcriptional reprogramming, but the interconnection between PTMs, such as protein phosphorylation and transcriptional regulation, in fruit ripening remains to be deciphered. Here, we conducted a phosphoproteomic analysis during banana (Musa acuminata) ripening and identified 63 unique phosphopeptides corresponding to 49 proteins. Among them, a Musa acuminata basic leucine zipper transcription factor21 (MabZIP21) displayed elevated phosphorylation level in the ripening stage. MabZIP21 transcript and phosphorylation abundance increased during banana ripening. Genome-wide MabZIP21 DNA binding assays revealed MabZIP21-regulated functional genes contributing to banana ripening, and electrophoretic mobility shift assay, chromatin immunoprecipitation coupled with quantitative polymerase chain reaction, and dual-luciferase reporter analyses demonstrated that MabZIP21 stimulates the transcription of a subset of ripening-related genes via directly binding to their promoters. Moreover, MabZIP21 can be phosphorylated by MaMPK6-3, which plays a role in banana ripening, and T318 and S436 are important phosphorylation sites. Protein phosphorylation enhanced MabZIP21-mediated transcriptional activation ability, and transient overexpression of the phosphomimetic form of MabZIP21 accelerated banana fruit ripening. Additionally, MabZIP21 enlarges its role in transcriptional regulation by activating the transcription of both MaMPK6-3 and itself. Taken together, this study reveals an important machinery of protein phosphorylation in banana fruit ripening in which MabZIP21 is a component of the complex phosphorylation pathway linking the upstream signal mediated by MaMPK6-3 with transcriptional controlling of a subset of ripening-associated genes.
Collapse
Affiliation(s)
- Chao-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Xun-Cheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Li-Sha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Fan Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Mondher Bouzayen
- Génomique et Biotechnologie des Fruits, Université de Toulouse, INRA, Castanet-Tolosan 31320, France
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education/Guangdong Laboratory of Lingnan Modern Agriculture, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Wang K, Shao Z, Guo F, Wang K, Zhang Z. The mitogen-activated protein kinase kinase TaMKK5 mediates immunity via the TaMKK5-TaMPK3-TaERF3 module. PLANT PHYSIOLOGY 2021; 187:2323-2337. [PMID: 34015126 PMCID: PMC8644495 DOI: 10.1093/plphys/kiab227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/25/2021] [Indexed: 06/02/2023]
Abstract
Sharp eyespot disease, caused by the soil-borne fungus Rhizoctonia cerealis, seriously threatens production of wheat (Triticum aestivum). Despite considerable advances in understanding the mechanisms of mitogen-activated protein kinase (MAPK) cascades in innate immunity in model plant species, the roles of MAPK cascades in wheat are unknown. In this study, we identified a wheat MAPK kinase TaMKK5, located on chromosome 6B, and deciphered its functional role in the innate immune responses to R. cerealis attack. The TaMKK5-6B transcript level was elevated after R. cerealis infection and was higher in resistant wheat genotypes compared to susceptible genotypes. Overexpressing TaMKK5-6B increased resistance to sharp eyespot and upregulated the expression of multiple defense-related genes in wheat, including the MAPK gene TaMPK3, the ethylene response factor gene TaERF3, the calcium-dependent protein kinase gene TaCPK7-D, the glutathione s-transferase-1 gene TaGST1, Defensin, and Chitinase 2, while TaMKK5 knock-down compromised the resistance and repressed the expression of these defense-related genes. Bimolecular fluorescence complementation, yeast two-hybrid, pull-down, and phosphorylation assays showed that TaMKK5 physically interacted with TaMPK3, and phosphorylated and activated TaMPK3, and that TaMPK3 interacted with and phosphorylated TaERF3. The TaMKK5-TaMPK3 cascade modulates the expression of TaGST1, Defensin, and Chitinase 2 through TaERF3. Collectively, TaMKK5 mediates resistance to sharp eyespot through the TaMKK5-TaMPK3-TaERF3 module and by upregulating the expression of defense-related genes in wheat. This study provides insights into the role of the wheat MAPK cascades in innate immunity. TaMKK5-6B is a promising gene for breeding wheat cultivars that are resistant to sharp eyespot.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhengyu Shao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feilong Guo
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ke Wang
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zengyan Zhang
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Xiang Y, Bian X, Wei T, Yan J, Sun X, Han T, Dong B, Zhang G, Li J, Zhang A. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. THE NEW PHYTOLOGIST 2021; 232:2400-2417. [PMID: 34618923 DOI: 10.1111/nph.17761] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/17/2021] [Indexed: 05/16/2023]
Abstract
Mitogen-activated protein kinase (MPK) is a critical regulator of the antioxidant defence system in response to various stimuli. However, how MPK directly and exactly regulates antioxidant enzyme activities is still unclear. Here, we demonstrated that a NAC transcription factor ZmNAC49 mediated the regulation of antioxidant enzyme activities by ZmMPK5. ZmNAC49 expression is induced by oxidative stress. ZmNAC49 enhances oxidative stress tolerance in maize, and it also reduces superoxide anion generation and increases superoxide dismutase (SOD) activity. A detailed study showed that ZmMPK5 directly interacts with and phosphorylates ZmNAC49 in vitro and in vivo. ZmMPK5 directly phosphorylates Thr-26 in NAC subdomain A of ZmNAC49. Mutation at Thr-26 of ZmNAC49 does not affect the interaction with ZmMPK5 and its subcellular localisation. Further analysis found that ZmNAC49 activates the ZmSOD3 expression by directly binding to its promoter. ZmMPK5-mediated ZmNAC49 phosphorylation improves its ability to bind to the ZmSOD3 promoter. Thr-26 of ZmNAC49 is essential for its transcriptional activity. In addition, ZmSOD3 enhances oxidative stress tolerance in maize. Our results show that phosphorylation of Thr-26 in ZmNAC49 by ZmMPK5 increased its DNA-binding activity to the ZmSOD3 promoter, enhanced SOD activity and thereby improved oxidative stress tolerance in maize.
Collapse
Affiliation(s)
- Yang Xiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiangli Bian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tianhui Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiujuan Sun
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tong Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Baicheng Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Gaofeng Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
16
|
Chen M, Ni L, Chen J, Sun M, Qin C, Zhang G, Zhang A, Jiang M. Rice calcium/calmodulin-dependent protein kinase directly phosphorylates a mitogen-activated protein kinase kinase to regulate abscisic acid responses. THE PLANT CELL 2021; 33:1790-1812. [PMID: 33630095 PMCID: PMC8254507 DOI: 10.1093/plcell/koab071] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+)/calmodulin (CaM)-dependent protein kinase (CCaMK) is an important positive regulator of abscisic acid (ABA) and abiotic stress signaling in plants and is believed to act upstream of mitogen-activated protein kinase (MAPK) in ABA signaling. However, it is unclear how CCaMK activates MAPK in ABA signaling. Here, we show that OsDMI3, a rice (Oryza sativa) CCaMK, directly interacts with and phosphorylates OsMKK1, a MAPK kinase (MKK) in rice, in vitro and in vivo. OsDMI3 was found to directly phosphorylate Thr-25 in the N-terminus of OsMKK1, and this Thr-25 phosphorylation is OsDMI3-specific in ABA signaling. The activation of OsMKK1 and its downstream kinase OsMPK1 is dependent on Thr-25 phosphorylation of OsMKK1 in ABA signaling. Moreover, ABA treatment induces phosphorylation in the activation loop of OsMKK1, and the two phosphorylations, in the N-terminus and in the activation loop, are independent. Further analyses revealed that OsDMI3-mediated phosphorylation of OsMKK1 positively regulates ABA responses in seed germination, root growth, and tolerance to both water stress and oxidative stress. Our results indicate that OsMKK1 is a direct target of OsDMI3, and OsDMI3-mediated phosphorylation of OsMKK1 plays an important role in activating the MAPK cascade and ABA signaling.
Collapse
Affiliation(s)
- Min Chen
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Ni
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Manman Sun
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Caihua Qin
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Zhang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aying Zhang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyi Jiang
- College of Life Sciences, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China
- Author for correspondence:
| |
Collapse
|
17
|
Update on the Roles of Rice MAPK Cascades. Int J Mol Sci 2021; 22:ijms22041679. [PMID: 33562367 PMCID: PMC7914530 DOI: 10.3390/ijms22041679] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascades have been validated playing critical roles in diverse aspects of plant biology, from growth and developmental regulation, biotic and abiotic stress responses, to phytohormone signal transduction or responses. A classical MAPK cascade consists of a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK), and a MAPK. From the 75 MAPKKKs, eight MAPKKs, and 15 MAPKs of rice, a number of them have been functionally deciphered. Here, we update recent advances in knowledge of the roles of rice MAPK cascades, including their components and complicated action modes, their diversified functions controlling rice growth and developmental responses, coordinating resistance to biotic and abiotic stress, and conducting phytohormone signal transduction. Moreover, we summarize several complete MAPK cascades that harbor OsMAPKKK-OsMAPKK-OsMAPK, their interaction with different upstream components and their phosphorylation of diverse downstream substrates to fulfill their multiple roles. Furthermore, we state a comparison of networks of rice MAPK cascades from signal transduction crosstalk to the precise selection of downstream substrates. Additionally, we discuss putative concerns for elucidating the underlying molecular mechanisms and molecular functions of rice MAPK cascades in the future.
Collapse
|
18
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Deng X, Xu X, Liu Y, Zhang Y, Yang L, Zhang S, Xu J. Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1797-1812. [PMID: 32458527 PMCID: PMC7689811 DOI: 10.1111/jipb.12974] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/24/2020] [Indexed: 05/11/2023]
Abstract
Gamma-aminobutyric acid (GABA) is an important metabolite which functions in plant growth, development, and stress responses. However, its role in plant defense and how it is regulated are largely unknown. Here, we report a detailed analysis of GABA induction during the resistance response to Pseudomonas syringae in Arabidopsis thaliana. While searching for the mechanism underlying the pathogen-responsive mitogen-activated protein kinase (MPK)3/MPK6 signaling cascade in plant immunity, we found that activation of MPK3/MPK6 greatly induced GABA biosynthesis, which is dependent on the glutamate decarboxylase genes GAD1 and GAD4. Inoculation with Pseudomonas syringae pv tomato DC3000 (Pst) and Pst-avrRpt2 expressing the avrRpt2 effector gene induced GAD1 and GAD4 gene expression and increased the levels of GABA. Genetic evidence revealed that GAD1, GAD2, and GAD4 play important roles in both GABA biosynthesis and plant resistance in response to Pst-avrRpt2 infection. The gad1/2/4 triple and gad1/2/4/5 quadruple mutants, in which the GABA levels were extremely low, were more susceptible to both Pst and Pst-avrRpt2. Functional loss of MPK3/MPK6, or their upstream MKK4/MKK5, or their downstream substrate WRKY33 suppressed the induction of GAD1 and GAD4 expression after Pst-avrRpt2 treatment. Our findings shed light on both the regulation and role of GABA in the plant immunity to a bacterial pathogen.
Collapse
Affiliation(s)
- Xiangxiong Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Xuwen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Shuqun Zhang
- Division of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
20
|
Sustained Incompatibility between MAPK Signaling and Pathogen Effectors. Int J Mol Sci 2020; 21:ijms21217954. [PMID: 33114762 PMCID: PMC7672596 DOI: 10.3390/ijms21217954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
In plants, Mitogen-Activated Protein Kinases (MAPKs) are important signaling components involved in developemental processes as well as in responses to biotic and abiotic stresses. In this review, we focus on the roles of MAPKs in Effector-Triggered Immunity (ETI), a specific layer of plant defense responses dependent on the recognition of pathogen effector proteins. Having inspected the literature, we synthesize the current state of knowledge concerning this topic. First, we describe how pathogen effectors can manipulate MAPK signaling to promote virulence, and how in parallel plants have developed mechanisms to protect themselves against these interferences. Then, we discuss the striking finding that the recognition of pathogen effectors can provoke a sustained activation of the MAPKs MPK3/6, extensively analyzing its implications in terms of regulation and functions. In line with this, we also address the question of how a durable activation of MAPKs might affect the scope of their substrates, and thereby mediate the emergence of possibly new ETI-specific responses. By highlighting the sometimes conflicting or missing data, our intention is to spur further research in order to both consolidate and expand our understanding of MAPK signaling in immunity.
Collapse
|
21
|
Winnicki K. The Winner Takes It All: Auxin-The Main Player during Plant Embryogenesis. Cells 2020; 9:E606. [PMID: 32138372 PMCID: PMC7140527 DOI: 10.3390/cells9030606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, the first asymmetrical division of a zygote leads to the formation of two cells with different developmental fates. The establishment of various patterns relies on spatial and temporal gene expression, however the precise mechanism responsible for embryonic patterning still needs elucidation. Auxin seems to be the main player which regulates embryo development and controls expression of various genes in a dose-dependent manner. Thus, local auxin maxima and minima which are provided by polar auxin transport underlie cell fate specification. Diverse auxin concentrations in various regions of an embryo would easily explain distinct cell identities, however the question about the mechanism of cellular patterning in cells exposed to similar auxin concentrations still remains open. Thus, specification of cell fate might result not only from the cell position within an embryo but also from events occurring before and during mitosis. This review presents the impact of auxin on the orientation of the cell division plane and discusses the mechanism of auxin-dependent cytoskeleton alignment. Furthermore, close attention is paid to auxin-induced calcium fluxes, which regulate the activity of MAPKs during postembryonic development and which possibly might also underlie cellular patterning during embryogenesis.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lódź, Poland
| |
Collapse
|
22
|
Grissett L, Ali A, Coble AM, Logan K, Washington B, Mateson A, McGee K, Nkrumah Y, Jacobus L, Abraham E, Hann C, Bequette CJ, Hind SR, Schmelz EA, Stratmann JW. Survey of Sensitivity to Fatty Acid-Amino Acid Conjugates in the Solanaceae. J Chem Ecol 2020; 46:330-343. [PMID: 31989490 DOI: 10.1007/s10886-020-01152-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Plants perceive insect herbivores via a sophisticated surveillance system that detects a range of alarm signals, including herbivore-associated molecular patterns (HAMPs). Fatty acid-amino acid conjugates (FACs) are HAMPs present in oral secretions (OS) of lepidopteran larvae that induce defense responses in many plant species. In contrast to eggplant (Solanum melongena), tomato (S. lycopersicum) does not respond to FACs present in OS from Manduca sexta (Lepidoptera). Since both plants are found in the same genus, we tested whether loss of sensitivity to FACs in tomato may be a domestication effect. Using highly sensitive MAP kinase (MAPK) phosphorylation assays, we demonstrate that four wild tomato species and the closely related potato (S. tuberosum) do not respond to the FACs N-linolenoyl-L-glutamine and N-linolenoyl-L-glutamic acid, excluding a domestication effect. Among other genera within the Solanaceae, we found that bell pepper (Capsicum annuum) is responsive to FACs, while there is a differential responsiveness to FACs among tobacco (Nicotiana) species, ranging from strong responsiveness in N. benthamiana to no responsiveness in N. knightiana. The Petunia lineage is one of the oldest lineages within the Solanaceae and P. hybrida was responsive to FACs. Collectively, we demonstrate that plant responsiveness to FACs does not follow simple phylogenetic relationships in the family Solanaceae. Instead, sensitivity to FACs is a dynamic ancestral trait present in monocots and eudicots that was repeatedly lost during the evolution of Solanaceae species. Although tomato is insensitive to FACs, we found that other unidentified factors in M. sexta OS induce defenses in tomato.
Collapse
Affiliation(s)
- Laquita Grissett
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Fred Hutchinson Cancer Research Center, University of Washington School of Dentistry, Seattle, WA, USA
| | - Azka Ali
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Anne-Marie Coble
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Khalilah Logan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Brandon Washington
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Abigail Mateson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Kelsey McGee
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Yaw Nkrumah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Leighton Jacobus
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evelyn Abraham
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Department of Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Claire Hann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,R.J. Reynolds Tobacco, Winston-Salem, NC, USA
| | - Sarah R Hind
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
23
|
Shan W, Guo YF, Wei W, Chen JY, Lu WJ, Yuan DB, Su XG, Kuang JF. Banana MaBZR1/2 associate with MaMPK14 to modulate cell wall modifying genes during fruit ripening. PLANT CELL REPORTS 2020; 39:35-46. [PMID: 31501956 DOI: 10.1007/s00299-019-02471-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Banana MaBZR1/2 interact with MaMPK14 to enhance the transcriptional inhibition of cell wall modifying genes including MaEXP2, MaPL2 and MaXET5. Fruit ripening and softening, the major attributes to perishability in fleshy fruits, are modulated by various plant hormones and gene expression. Banana MaBZR1/2, the central transcription factors of brassinosteroid (BR) signaling, mediate fruit ripening through regulation of ethylene biosynthesis, but their possible roles in fruit softening as well as the underlying mechanisms remain to be determined. In this work, we found that MaBZR1/2 directly bound to and repressed the promoters of several cell wall modifying genes such as MaEXP2, MaPL2 and MaXET5, whose transcripts were elevated concomitant with fruit ripening. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that MaBZR1/2 physically interacted with a mitogen-activated protein kinase MaMPK14, and this interaction strengthened the MaBZR1/2-mediated transcriptional inhibitory abilities. Collectively, our study provides insight into the mechanism of MaBZR1/2 contributing to fruit ripening and softening, which may have potential for banana molecular improvement.
Collapse
Affiliation(s)
- Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yu-Fan Guo
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jian-Ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wang-Jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - De-Bao Yuan
- Hainan Key Laboratory of Banana Genetic Improvement, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102, People's Republic of China
| | - Xin-Guo Su
- Guangdong Food and Drug Vocational College, Longdongbei Road 321, Tianhe District, Guangzhou, 510520, People's Republic of China.
| | - Jian-Fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
24
|
Yang J, Xie MY, Yang XL, Liu BH, Lin HH. Phosphoproteomic Profiling Reveals the Importance of CK2, MAPKs and CDPKs in Response to Phosphate Starvation in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2785-2796. [PMID: 31424513 DOI: 10.1093/pcp/pcz167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus is one of the most important macronutrients required for plant growth and development. The importance of phosphorylation modification in regulating phosphate (Pi) homeostasis in plants is emerging. We performed phosphoproteomic profiling to characterize proteins whose degree of phosphorylation is altered in response to Pi starvation in rice root. A subset of 554 proteins, including 546 down-phosphorylated and eight up-phosphorylated proteins, exhibited differential phosphorylation in response to Pi starvation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the differentially phosphorylated proteins indicated that RNA processing, transport, splicing and translation and carbon metabolism played critical roles in response to Pi starvation in rice. Levels of phosphorylation of four mitogen-activated protein kinases (MAPKs), including OsMAPK6, five calcium-dependent protein kinases (CDPKs) and OsCK2β3 decreased in response to Pi starvation. The decreased phosphorylation level of OsMAPK6 was confirmed by Western blotting. Mutation of OsMAPK6 led to Pi accumulation under Pi-sufficient conditions. Motif analysis indicated that the putative MAPK, casein kinase 2 (CK2) and CDPK substrates represented about 54.4%, 21.5% and 4.7%, respectively, of the proteins exhibiting differential phosphorylation. Based on the motif analysis, 191, 151 and 46 candidate substrates for MAPK, CK2 and CDPK were identified. These results indicate that modification of phosphorylation profiles provides complementary information on Pi-starvation-induced processes, with CK2, MAPK and CDPK protein kinase families playing key roles in these processes in rice.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Meng-Yang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Xiao-Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Bao-Hui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| |
Collapse
|
25
|
Zhang W, Cochet F, Ponnaiah M, Lebreton S, Matheron L, Pionneau C, Boudsocq M, Resentini F, Huguet S, Blázquez MÁ, Bailly C, Puyaubert J, Baudouin E. The MPK8-TCP14 pathway promotes seed germination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:677-692. [PMID: 31325184 DOI: 10.1111/tpj.14461] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 05/25/2023]
Abstract
The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting dormancy release, although the identity of the MPK involved and the downstream events remain unclear. In this work, we characterized mutants for Arabidopsis thaliana MAP kinase 8 (MPK8). Mpk8 seeds presented a deeper dormancy than wild-type (WT) at harvest that was less efficiently alleviated by after-ripening and gibberellic acid treatment. We identified Teosinte Branched1/Cycloidea/Proliferating cell factor 14 (TCP14), a transcription factor regulating germination, as a partner of MPK8. Mpk8 tcp14 double-mutant seeds presented a deeper dormancy at harvest than WT and mpk8, but similar to that of tcp14 seeds. MPK8 interacted with TCP14 in the nucleus in vivo and phosphorylated TCP14 in vitro. Furthermore, MPK8 enhanced TCP14 transcriptional activity when co-expressed in tobacco leaves. Nevertheless, the stimulation of TCP14 transcriptional activity by MPK8 could occur independently of TCP14 phosphorylation. The comparison of WT, mpk8 and tcp14 transcriptomes evidenced that whereas no effect was observed in dry seeds, mpk8 and tcp14 mutants presented dramatic transcriptomic alterations after imbibition with a sustained expression of genes related to seed maturation. Moreover, both mutants exhibited repression of genes involved in cell wall remodeling and cell cycle G1/S transition. As a whole, this study unraveled a role for MPK8 in promoting seed germination, and suggested that its interaction with TCP14 was critical for regulating key processes required for germination completion.
Collapse
Affiliation(s)
- Wei Zhang
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Françoise Cochet
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Maharajah Ponnaiah
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, 75005, France
| | - Lucrèce Matheron
- Sorbonne Université, Institut de Biologie Paris-Seine, Paris, 75005, France
| | - Cédric Pionneau
- Sorbonne Université, INSERM, UMS 37 PASS, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), F-75013, Paris, France
| | - Marie Boudsocq
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Université Paris-Saclay, Univ Paris-Diderot, Sorbonne Paris-Cite, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Francesca Resentini
- Instituto de Biología Molecular y Celular de Plantas, CSIC-U Politécnica de Valencia, 46022, Valencia, Spain
| | - Stéphanie Huguet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Université Paris-Saclay, Univ Paris-Diderot, Sorbonne Paris-Cite, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Miguel Á Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-U Politécnica de Valencia, 46022, Valencia, Spain
| | - Christophe Bailly
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Juliette Puyaubert
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Emmanuel Baudouin
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| |
Collapse
|
26
|
Andrási N, Rigó G, Zsigmond L, Pérez-Salamó I, Papdi C, Klement E, Pettkó-Szandtner A, Baba AI, Ayaydin F, Dasari R, Cséplő Á, Szabados L. The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4903-4918. [PMID: 31086987 PMCID: PMC6760271 DOI: 10.1093/jxb/erz217] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/04/2019] [Indexed: 05/21/2023]
Abstract
Heat shock factors regulate responses to high temperature, salinity, water deprivation, or heavy metals. Their function in combinations of stresses is, however, not known. Arabidopsis HEAT SHOCK FACTOR A4A (HSFA4A) was previously reported to regulate responses to salt and oxidative stresses. Here we show, that the HSFA4A gene is induced by salt, elevated temperature, and a combination of these conditions. Fast translocation of HSFA4A tagged with yellow fluorescent protein from cytosol to nuclei takes place in salt-treated cells. HSFA4A can be phosphorylated not only by mitogen-activated protein (MAP) kinases MPK3 and MPK6 but also by MPK4, and Ser309 is the dominant MAP kinase phosphorylation site. In vivo data suggest that HSFA4A can be the substrate of other kinases as well. Changing Ser309 to Asp or Ala alters intramolecular multimerization. Chromatin immunoprecipitation assays confirmed binding of HSFA4A to promoters of target genes encoding the small heat shock protein HSP17.6A and transcription factors WRKY30 and ZAT12. HSFA4A overexpression enhanced tolerance to individually and simultaneously applied heat and salt stresses through reduction of oxidative damage. Our results suggest that this heat shock factor is a component of a complex stress regulatory pathway, connecting upstream signals mediated by MAP kinases MPK3/6 and MPK4 with transcription regulation of a set of stress-induced target genes.
Collapse
Affiliation(s)
- Norbert Andrási
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Laura Zsigmond
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Imma Pérez-Salamó
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Surrey, UK
| | - Csaba Papdi
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Surrey, UK
| | - Eva Klement
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | | | - Abu Imran Baba
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Ferhan Ayaydin
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - Ramakrishna Dasari
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Department of Biotechnology, Kakatiya University, Warangal, India
| | - Ágnes Cséplő
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
| | - László Szabados
- Biological Research Centre, Temesvári krt 62,Szeged, Hungary
- Correspondence:
| |
Collapse
|
27
|
Larue H, Zhang S. SCREAM in the making of stomata. NATURE PLANTS 2019; 5:648-649. [PMID: 31235875 DOI: 10.1038/s41477-019-0460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Huachun Larue
- Global Breeding, Bayer Crop Science, Bayer, Chesterfield, MO, USA.
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
28
|
Kalapos B, Hlavová M, Nádai TV, Galiba G, Bišová K, Dóczi R. Early Evolution of the Mitogen-Activated Protein Kinase Family in the Plant Kingdom. Sci Rep 2019; 9:4094. [PMID: 30858468 PMCID: PMC6411719 DOI: 10.1038/s41598-019-40751-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are central cellular signalling mechanisms in all eukaryotes. They are key regulators of the cell cycle and stress responses, yet evolution of MAPK families took markedly different paths in the animal and plant kingdoms. Instead of the characteristic divergence of MAPK types in animals, in plants an expanded network of ERK-like MAPKs has emerged. To gain insight into the early evolution of the plant MAPK family we identified and analysed MAPKs in 13 representative species across green algae, a large and diverse early-diverging lineage within the plant kingdom. Our results reveal that the plant MAPK gene family emerged from three types of progenitor kinases, which are ubiquitously present in algae, implying their formation in an early ancestor. Low number of MAPKs is characteristic across algae, the few losses or duplications are associated with genome complexity rather than habitat ecology, despite the importance of MAPKs in environmental signalling in flowering plants. ERK-type MAPKs are associated with cell cycle regulation in opisthokont models, yet in plants their stress-signalling function is more prevalent. Unicellular microalgae offer an excellent experimental system to study the cell cycle, and MAPK gene expression profiles show CDKB-like peaks around S/M phase in synchronised Chlamydomonas reinhardtii cultures, suggesting their participation in cell cycle regulation, in line with the notion that the ancestral eukaryotic MAPK was a cell cycle regulator ERK-like kinase. Our work also highlights the scarcity of signalling knowledge in microalgae, in spite of their enormous ecological impact and emerging economic importance.
Collapse
Affiliation(s)
- Balázs Kalapos
- Institute of Agriculture, Centre for Agricultural Research of the Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary.,Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360, Keszthely, Hungary
| | - Monika Hlavová
- Centre Algatech, Institute of Microbiology Academy of Sciences of the Czech Republic, Opatovicky mlyn, CZ 379 81, Třeboň, Czech Republic
| | - Tímea V Nádai
- Institute of Agriculture, Centre for Agricultural Research of the Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary.,Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360, Keszthely, Hungary
| | - Gábor Galiba
- Institute of Agriculture, Centre for Agricultural Research of the Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary.,Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360, Keszthely, Hungary
| | - Kateřina Bišová
- Centre Algatech, Institute of Microbiology Academy of Sciences of the Czech Republic, Opatovicky mlyn, CZ 379 81, Třeboň, Czech Republic
| | - Róbert Dóczi
- Institute of Agriculture, Centre for Agricultural Research of the Hungarian Academy of Sciences, H-2462, Martonvásár, Brunszvik u. 2, Hungary.
| |
Collapse
|