1
|
Dede M, van Dam A. Conjugation of visual enhancers in lateral flow immunoassay for rapid forensic analysis: A critical review. Anal Bioanal Chem 2024:10.1007/s00216-024-05565-6. [PMID: 39384571 DOI: 10.1007/s00216-024-05565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
During crime scene investigations, numerous traces are secured and may be used as evidence for the evaluation of source and/or activity level propositions. The rapid chemical analysis of a biological trace enables the identification of body fluids and can provide significant donor profiling information, including age, sex, drug abuse, and lifestyle. Such information can be used to provide new leads, exclude from, or restrict the list of possible suspects during the investigative phase. This paper reviews the state-of-the-art labelling techniques to identify the most suitable visual enhancer to be implemented in a lateral flow immunoassay setup for the purpose of trace identification and/or donor profiling. Upon comparison, and with reference to the strengths and limitations of each label, the simplistic one-step analysis of noncompetitive lateral flow immunoassay (LFA) together with the implementation of carbon nanoparticles (CNPs) as visual enhancers is proposed for a sensitive, accurate, and reproducible in situ trace analysis. This approach is versatile and stable over different environmental conditions and external stimuli. The findings of the present comparative analysis may have important implications for future forensic practice. The selection of an appropriate enhancer is crucial for a well-designed LFA that can be implemented at the crime scene for a time- and cost-efficient investigation.
Collapse
Affiliation(s)
- Maria Dede
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands.
| | - Annemieke van Dam
- Department Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
- Department Forensic Science, Amsterdam University of Applied Sciences, Tafelbergweg 51, Amsterdam, 1105 BD, Netherlands
- Methodology Research Program, Amsterdam Public Health Research Institute, Amsterdam UMC, Meibergdreef 9, Amsterdam, 1105 AZ, Netherlands
| |
Collapse
|
2
|
Hou M, Liu L, Zhang Y, Pan Y, Ding N, Zhang Y. In vivo study of chelating agent-modified nano zero-valent iron: Biodistribution and toxicity in mice. WATER RESEARCH 2024; 257:121649. [PMID: 38718655 DOI: 10.1016/j.watres.2024.121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
In this study, the distribution and toxicity of nanoscale zero valent iron (nZVI) and nZVIs coated with citric acid and sodium tripolyphosphate (CA-nZVI and STPP-nZVI) in mice were investigated. nZVIs were primarily found in the livers and spleens, followed by the lungs, hearts, and kidneys. Histologic analysis revealed no significant histopathologic abnormalities or lesions in all organs except the liver at 14th d gavage. nZVIs did not have a noticeable impact on the body weight of the mice or the weight of their organs. Compared with the control group, there were no significant changes in hematology indexes in the nZVIs groups. However, the nZVIs groups exhibited varying levels of elevation in alanine aminotransferase, aspartate aminotransferase, and creatinine, suggesting liver and kidney inflammation in mice. The up-regulation of Nuclear Factor erythroid 2-Related Factor 2 and Heme oxygenase 1 in the nZVIs groups may be a response to nZVIs-induced oxidative stress. Immunohistochemical analysis confirmed the inflammatory response induced by the three nZVI groups. Chelating agents did not have a significant impact on the distribution or toxicity of nZVIs in mice. This study contributes to a comprehensive and detailed insight into nZVI toxicity in the environmental field.
Collapse
Affiliation(s)
- Minhui Hou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Linwei Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuqing Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ning Ding
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
4
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Elsaid K, Olabi AG, Abdel-Wahab A, Elkamel A, Alami AH, Inayat A, Chae KJ, Abdelkareem MA. Membrane processes for environmental remediation of nanomaterials: Potentials and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162569. [PMID: 36871724 DOI: 10.1016/j.scitotenv.2023.162569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Nanomaterials have gained huge attention with their wide range of applications. This is mainly driven by their unique properties. Nanomaterials include nanoparticles, nanotubes, nanofibers, and many other nanoscale structures have been widely assessed for improving the performance in different applications. However, with the wide implementation and utilization of nanomaterials, another challenge is being present when these materials end up in the environment, i.e. air, water, and soil. Environmental remediation of nanomaterials has recently gained attention and is concerned with removing nanomaterials from the environment. Membrane filtration processes have been widely considered a very efficient tool for the environmental remediation of different pollutants. Membranes with their different operating principles from size exclusions as in microfiltration, to ionic exclusion as in reverse osmosis, provide an effective tool for the removal of different types of nanomaterials. This work comprehends, summarizes, and critically discusses the different approaches for the environmental remediation of engineered nanomaterials using membrane filtration processes. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) have been shown to effectively remove nanomaterials from the air and aqueous environments. In MF, the adsorption of nanomaterials to membrane material was found to be the main removal mechanism. While in UF and NF, the main mechanism was size exclusion. Membrane fouling, hence requiring proper cleaning or replacement was found to be the major challenge for UF and NF processes. While limited adsorption capacity of nanomaterial along with desorption was found to be the main challenges for MF.
Collapse
Affiliation(s)
- Khaled Elsaid
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - A G Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK
| | - Ahmed Abdel-Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Ali Elkamel
- Chemical Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abrar Inayat
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt.
| |
Collapse
|
6
|
Frazier EA, Patil RP, Mane CB, Sanaei D, Asiri F, Seo SS, Sharifan H. Environmental exposure and nanotoxicity of titanium dioxide nanoparticles in irrigation water with the flavonoid luteolin. RSC Adv 2023; 13:14110-14118. [PMID: 37179991 PMCID: PMC10170238 DOI: 10.1039/d3ra01712e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Different concentrations of titanium oxide nanoparticles (TiO2NPs) have been frequently reported in treated wastewater used for the irrigation of crops. Luteolin is a susceptive anticancer flavonoid in many crops and rare medicinal plants that can be affected by exposure to TiO2NPs. This study investigates the potential transformation of pure luteolin in exposure to TiO2NP-containing water. In an in vitro system, three replicates of 5 mg L-1 of pure luteolin were exposed to TiO2NPs (0, 25, 50, 100 ppm). After 48 h exposure, the samples were extensively analyzed by Raman spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, and dynamic light scattering (DLS). A positive correlation was found between TiO2NPs concentrations and the structural alteration of luteolin content, where over 20% of luteolin structure was allegedly altered in the presence of 100 ppm TiO2NPs. The increase of NPs diameter (∼70 nm) and dominant peaks in Raman spectra revealed that luteolin was adsorbed onto the TiO2NPs surface. Further, the second-order derivative analysis confirmed the transformation of luteolin upon exposure to TiO2NPs. This study provides fundamental insight into agricultural safety measures when exposed to air or water-borne TiO2NPs.
Collapse
Affiliation(s)
| | - Rajendra P Patil
- Department of Chemistry, M. H. Shinde Mahavidyalaya Tisangi-416206 MH India
| | - Chandrakant B Mane
- Department of Chemistry, Shri Vijaysinha Yadav College of Arts and Science Peth Vadgaon MH India
| | - Daryoush Sanaei
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences Tehran Iran
| | - Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research P.O. Box 24885 Safat 13109 Kuwait
| | - Seong S Seo
- Department of Natural Sciences, Albany State University Albany GA USA
| | | |
Collapse
|
7
|
Engelhardt IC, Patko D, Liu Y, Mimault M, de Las Heras Martinez G, George TS, MacDonald M, Ptashnyk M, Sukhodub T, Stanley-Wall NR, Holden N, Daniell TJ, Dupuy LX. Novel form of collective movement by soil bacteria. THE ISME JOURNAL 2022; 16:2337-2347. [PMID: 35798939 PMCID: PMC9478162 DOI: 10.1038/s41396-022-01277-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 04/16/2023]
Abstract
Although migrations are essential for soil microorganisms to exploit scarce and heterogeneously distributed resources, bacterial mobility in soil remains poorly studied due to experimental limitations. In this study, time-lapse images collected using live microscopy techniques captured collective and coordinated groups of B. subtilis cells exhibiting "crowd movement". Groups of B. subtilis cells moved through transparent soil (nafion polymer with particle size resembling sand) toward plant roots and re-arranged dynamically around root tips in the form of elongating and retracting "flocks" resembling collective behaviour usually associated with higher organisms (e.g., bird flocks or fish schools). Genetic analysis reveals B. subtilis flocks are likely driven by the diffusion of extracellular signalling molecules (e.g., chemotaxis, quorum sensing) and may be impacted by the physical obstacles and hydrodynamics encountered in the soil like environment. Our findings advance understanding of bacterial migration through soil matrices and expand known behaviours for coordinated bacterial movement.
Collapse
Affiliation(s)
- I C Engelhardt
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain
| | - D Patko
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain
| | - Y Liu
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- ICS, The James Hutton Institute, Dundee, UK
| | - M Mimault
- ICS, The James Hutton Institute, Dundee, UK
| | | | - T S George
- Ecological Sciences, The James Hutton Institute, Dundee, UK
| | - M MacDonald
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - M Ptashnyk
- School of Mathematical & Computer Sciences, Heriot-Watt University, Edinburgh, UK
| | - T Sukhodub
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - N Holden
- Ecological Sciences, The James Hutton Institute, Dundee, UK
- North Faculty, Scotland's Rural College, Aberdeen, UK
| | - T J Daniell
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, UK.
- Department of Conservation of Natural Resources, Neiker, Bilbao, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
8
|
Xie H, Wei X, Zhao J, He L, Wang L, Wang M, Cui L, Yu YL, Li B, Li YF. Size characterization of nanomaterials in environmental and biological matrices through non-electron microscopic techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155399. [PMID: 35472343 DOI: 10.1016/j.scitotenv.2022.155399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Engineered nanomaterials (ENs) can enter the environment, and accumulate in food chains, thereby causing environmental and health problems. Size characterization of ENs is critical for further evaluating the interactions among ENs in biological and ecological systems. Although electron microscope is a powerful tool in obtaining the size information, it has limitations when studying nanomaterials in complex matrices. In this review, we summarized non-electron microscope-based techniques, including chromatography-based, mass spectrometry-based, synchrotron radiation- and neutron-based techniques for detecting the size of ENs in environmental and biological matrices. The advantages and disadvantages of these techniques were highlighted. The perspectives on size characterization of ENs in complex matrices were also presented.
Collapse
Affiliation(s)
- Hongxin Xie
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lina He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China.
| | - Bai Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Jadhav P, Bin Khalid Z, Mishra P, Bin Abd Wahid Z, Nasrullah M. Challenges and emerging approaches in life cycle assessment of engineered nanomaterials usage in anaerobic bioreactor. TECHNO-ECONOMICS AND LIFE CYCLE ASSESSMENT OF BIOREACTORS 2022:207-222. [DOI: 10.1016/b978-0-323-89848-5.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Bathi JR, Moazeni F, Upadhyayula VKK, Chowdhury I, Palchoudhury S, Potts GE, Gadhamshetty V. Behavior of engineered nanoparticles in aquatic environmental samples: Current status and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148560. [PMID: 34328971 DOI: 10.1016/j.scitotenv.2021.148560] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of engineered nanoparticles (ENPs) in consumer products has led to their increased presence in natural water systems. Here, we present a critical overview of the studies that analyzed the fate and transport behavior of ENPs using real environmental samples. We focused on cerium dioxide, titanium dioxide, silver, carbon nanotubes, and zinc oxide, the widely used ENPs in consumer products. Under field scale settings, the transformation rates of ENPs and subsequently their physicochemical properties (e.g., toxicity and bioavailability) are primarily influenced by the modes of interactions among ENPs and natural organic matter. Other typical parameters include factors related to water chemistry, hydrodynamics, and surface and electronic properties of ENPs. Overall, future nanomanufacturing processes should fully consider the health, safety, and environmental impacts without compromising the functionality of consumer products.
Collapse
Affiliation(s)
- Jejal Reddy Bathi
- 615 McCallie Ave, Civil and Chemical Engineering, University of Tennessee at Chattanooga, TN 37403, United States.
| | - Faegheh Moazeni
- W256K Olmsted Building, School of Science Engineering and Technology, Penn State Harrisburg University, PA 17057, United States
| | | | - Indranil Chowdhury
- PACCAR 346, Civil and Environmental Engineering, Washington State University, Pullman, WA, United States
| | - Soubantika Palchoudhury
- 615 McCallie Ave, Civil and Chemical Engineering, University of Tennessee at Chattanooga, TN 37403, United States
| | - Gretchen E Potts
- 615 McCallie Ave, Department of Chemistry and Physics, University of Tennessee at Chattanooga, TN 37403, United States
| | - Venkataramana Gadhamshetty
- 501 E. St Joseph Street, Civil and Environmental Engineering, South Dakota School of Mines and Technology, SD 57701, United States; 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, 501 E. St. Joseph Street, Rapid City, SD 57701, United States
| |
Collapse
|
11
|
Guimarães ATB, Malafaia G. Multiple toxicity endpoints induced by carbon nanofibers in Amazon turtle juveniles: Outspreading warns about toxicological risks to reptiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146514. [PMID: 34030253 DOI: 10.1016/j.scitotenv.2021.146514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of carbon-based nanomaterials (CNs) has been observed in different organisms; however, little is known about the impact of water polluted with carbon nanofibers (CNFs) on reptiles. Thus, the aim of the current study was to assess the chronic effects (7.5 months) of 1 and 10 mg/L of CNF on Podocnemis expansa (Amazon turtle) juveniles (4 months old) based on different biomarkers. Increased total organic carbon (TOC) concentrations observed in the liver and brain (which suggests CNF uptake) were closely correlated to changes in REDOX systems of turtles exposed to CNFs, mainly to higher nitrite, hydrogen peroxide and lipid peroxidation levels. Increased levels of antioxidants such as total glutathione, catalase and superoxide dismutase in the exposed animals were also observed. The uptake of CNFs and the observed biochemical changes were associated with higher frequency of erythrocyte nuclear abnormalities (assessed through micronucleus assays), as well as with both damage in erythrocyte DNA (assessed through comet assays) and higher apoptosis and necrosis rates in erythrocytes of exposed turtles. Cerebral and hepatic acetylcholinesterase (AChE) increased in turtles exposed to CNFs, and this finding suggested the neurotoxic effect of these nanomaterials. Data in the current study reinforced the toxic potential of CNFs and evidenced the biochemical, mutagenic, genotoxic, cytotoxic, and neurotoxic effects of CNFs on P. expansa.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institute and Federal University of Goiás, GO, Brazil; Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urataí Campus, GO, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| |
Collapse
|
12
|
Kaegi R, Fierz M, Hattendorf B. Quantification of Nanoparticles in Dispersions Using Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-9. [PMID: 33973509 DOI: 10.1017/s1431927621000398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The quantification of the particle size and the number concentration (PNC) of nanoparticles (NPs) is key for the characterization of nanomaterials. Transmission electron microscopy (TEM) is often considered as the gold standard for assessing the size of NPs; however, the TEM sample preparation suitable for estimating the PNC based on deposited NPs is challenging. Here, we use an ultrasonic nebulizer (USN) to transfer NPs from aqueous suspensions into dried aerosols which are deposited on TEM grids in an electrostatic precipitator of an aerosol monitor. The deposition efficiency of the electrostatic precipitator was ≈2%, and the transport efficiency of the USN was ≈7%. Experiments using SiO2 NPs (50–200 nm) confirmed an even deposition of the nebulized particles in the center of the TEM grids. PNCs of the SiO2 NPs derived from TEM images underestimated the expected PNCs of the suspensions by a factor of up to three, most likely resulting from droplet coagulation and NP aggregation in the USN. Nevertheless, single particles still dominated the PNC. Our approach results in reproducible and even deposition of particles on TEM grids suitable for morphological analysis and allows an estimation of the PNC in the suspensions based on the number of particles detected by TEM.
Collapse
Affiliation(s)
- Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600Dübendorf, Switzerland
| | - Martin Fierz
- naneos particle solutions GmbH, Dorfstr. 69, 5210Windisch, Switzerland
| | - Bodo Hattendorf
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Montalvão MF, Guimarães ATB, Rodrigues ASDL, Malafaia G. Carbon nanofibers are bioaccumulated in Aphylla williamsoni (Odonata) larvae and cause REDOX imbalance and changes of acetylcholinesterase activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143991. [PMID: 33302068 DOI: 10.1016/j.scitotenv.2020.143991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Carbon-based materials have been considered very promising for the technological industry due to their unique physical and chemical properties, namely: ability to reduce production costs and to improve the efficiency of several products. However, there is little information on what is the level of exposure that leads to adverse effects and what kind of effects is expected in aquatic biota. Thus, the aim of the present study was to evaluate the toxicity of carbon nanofibers (CNFs) in dragonfly larvae (Aphylla williamsoni) based on predictive oxidative-stress biomarkers, antioxidant activity reduction and neurotoxicity. After ephemeral models' exposure to CNFs (48 h; at 500 μg/L), data have shown that these pollutants did not change larvae's nutritional status given the concentration of total soluble carbohydrates, total proteins and triglycerides in them. However, the levels of both nitric oxide and substances reactive to thiobarbituric acid (lipid peroxidation indicators) have increased and the antioxidant activity based on total thiol levels and on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (%) has reduced, and it suggests REDOX imbalance induction by CNFs. In addition, larvae exposed to these pollutants showed significant acetylcholinesterase activity reduction in comparison to the control group. Thus, the present study has brought further knowledge about how carbon-based materials can affect benthic macroinvertebrates and emphasized their ecotoxicological potential in freshwater environments.
Collapse
Affiliation(s)
- Mateus Flores Montalvão
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Laboratório de Pesquisas Biológicas, Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
14
|
Ahamed A, Liang L, Lee MY, Bobacka J, Lisak G. Too small to matter? Physicochemical transformation and toxicity of engineered nTiO 2, nSiO 2, nZnO, carbon nanotubes, and nAg. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124107. [PMID: 33035908 DOI: 10.1016/j.jhazmat.2020.124107] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Engineered nanomaterials (ENMs) refer to a relatively novel class of materials that are increasingly prevalent in various consumer products and industrial applications - most notably for their superlative physicochemical properties when compared with conventional materials. However, consumer products inevitably degrade over the course of their lifetime, releasing ENMs into the environment. These ENMs undergo physicochemical transformations and subsequently accumulate in the environment, possibly leading to various toxic effects. As a result, a significant number of studies have focused on identifying the possible transformations and environmental risks of ENMs, with the objective of ensuring a safe and responsible application of ENMs in consumer products. This review aims to consolidate the results from previous studies related to each stage of the pathway of ENMs from being embodied in a product to disintegration/transformation in the environment. The scope of this work was defined to include the five most prevalent ENMs based on recent projected production market data, namely: nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. The review focuses on: (i) models developed to estimate environmental concentrations of ENMs; (ii) the possible physicochemical transformations; (iii) cytotoxicity and genotoxicity effects specific to each ENM selected; and (iv) a discussion to identify potential gaps in the studies conducted and recommend areas where further investigation is warranted.
Collapse
Affiliation(s)
- Ashiq Ahamed
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku/Åbo, Finland
| | - Lili Liang
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Interdisciplinary Graduate Program, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore
| | - Ming Yang Lee
- Asian School of the Environment, Nanyang Technological University, Singapore 639798, Singapore
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku/Åbo, Finland
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141 Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
15
|
Gomes AR, Chagas TQ, Silva AM, Sueli de Lima Rodrigues A, Marinho da Luz T, Emmanuela de Andrade Vieira J, Malafaia G. Trophic transfer of carbon nanofibers among eisenia fetida, danio rerio and oreochromis niloticus and their toxicity at upper trophic level. CHEMOSPHERE 2021; 263:127657. [PMID: 32814134 DOI: 10.1016/j.chemosphere.2020.127657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Although the toxicity of carbon-based nanomaterials has already been demonstrated in several studies, their transfer in the food chain and impact on the upper trophic level remain unexplored. Thus, based on the experimental food chain "Eisenia fetida → Danio rerio → Oreochromis niloticus", the current study tested the hypothesis that carbon nanofibers (CNFs) accumulated in animals are transferred to the upper trophic level and cause mutagenic and cytotoxic changes. E. fetida individuals were exposed to CNFs and offered to D. rerio, which were later used to feed O. niloticus. The quantification of total organic carbon provided evidence of CNFs accumulation at all evaluated trophic levels. Such accumulation was associated with higher frequency of erythrocyte nuclear abnormalities such as constricted erythrocyte nuclei, vacuole, blebbed, kidney-shaped and micronucleated erythrocytes in Nile tilapia exposed to CNFs via food chain. The cytotoxic effect was inferred based on the smaller size of the erythrocyte nuclei and on the lower "nuclear/cytoplasmic" area ratio in tilapia exposed to CNFs via food chain. Our study provided pioneering evidence about CNFs accumulation at trophic levels of the experimental chain, as well as about the mutagenic and cytotoxic effect of these materials on O. niloticus.
Collapse
Affiliation(s)
- Alex Rodrigues Gomes
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Julya Emmanuela de Andrade Vieira
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus Urutaí, GO, Brazil.
| |
Collapse
|
16
|
Tian H, Li Z, Lu P, Wang Y, Jia C, Wang H, Liu Z, Zhang M. Starch and castor oil mutually modified, cross-linked polyurethane for improving the controlled release of urea. Carbohydr Polym 2020; 251:117060. [PMID: 33142612 DOI: 10.1016/j.carbpol.2020.117060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/24/2023]
Abstract
Due to the poor controlled release ability, bio-based materials are difficult for large scale application on controlled release fertilizers (CRFs). Starch-based polyol (SP) and castor oil (CO) were mutually modified, and a cross-linked polymer film was formed on the surface of urea by in-situ reaction, which improved the slow release ability of the bio-based material. The results showed that increasing the CO ratio reduced porosity of coating and prolonged the nitrogen (N) release period, while the SP changed the high-temperature wrinkle characteristics and regulated the early N release rate. The mutual modification achieved an ultra-long release period of bio-based CRUs for 7 months. The degradation rate during nine months of bio-based coatings (5.05 %) was significantly higher than that of petroleum-based (3.74 %), and the coating was non-toxic to rice seeds. Mutual modification provided a safe and effective solution for the preparation of bio-based CRFs with long-term controlled release capability.
Collapse
Affiliation(s)
- Hongyu Tian
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, College of Chemistry and Material Science, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China
| | - Zeli Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, College of Chemistry and Material Science, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Panfang Lu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, College of Chemistry and Material Science, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yong Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, College of Chemistry and Material Science, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Cong Jia
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, College of Chemistry and Material Science, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Huaili Wang
- State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, College of Chemistry and Material Science, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China.
| | - Min Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, College of Chemistry and Material Science, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Nutrition Resources Integrated Utilization, Kingenta Ecological Engineering Group Co., Ltd., Linshu, 276700, China.
| |
Collapse
|
17
|
Park J, Ham S, Kim S, Jang M, Lee J, Kim S, Park D, Lee K, Kim H, Kim P, Yoon C. Physicochemical characteristics of colloidal nanomaterial suspensions and aerosolized particulates from nano-enabled consumer spray products. INDOOR AIR 2020; 30:925-941. [PMID: 32201992 DOI: 10.1111/ina.12668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Physicochemical properties between colloidal engineered nanomaterials (ENMs) and aerosols released from consumer spray products were characterized. A dynamic light scattering (DLS), transmission electron microscopy (TEM), and inductively coupled plasma mass spectrometer (ICP-MS) were used to evaluate the suspended ENMs in the products. Direct-reading instruments, TEM, and ICP-MS were used to characterize the properties of aerosolized ENMs. The aerosolized organic compounds with ENMs were assumed to be vaporized for a short time after spraying. The median diameter of ENMs in product solutions measured by DLS was about 200-350 nm, while individual particle was confirmed from 3 to 50 nm by TEM. The size of aerosolized ENMs was ranged from 7 to 44 nm, and their aggregates were about 100-1000 nm in near distance. Some inorganic substances including raw nanomaterials were also found in the aerosol. The particles released from the propellant sprays were identified in far distance, while they were not found in far distance when pump sprays were used. The number concentration from the propellant sprays increased up to 6000 particles/cm3 /g at near distance and dispersed to far distance, while the most of droplets emitted from pump sprays were settled down near sprayer's location. We found other metals besides labeled ENMs are included in each product and the characteristics of the particles are different when they are sprayed.
Collapse
Affiliation(s)
- Jihoon Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Seunghon Ham
- Department of Occupational and Environmental Medicine, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Sunju Kim
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Miyeon Jang
- Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Ulsan, Republic of Korea
| | - Jinho Lee
- Northern Seoul Regional Office, Korea Occupational Safety and Health Agency, Seoul, Republic of Korea
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Donguk Park
- Department of Environmental Health, Korea National Open University, Seoul, Republic of Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Hyunmi Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Pilje Kim
- Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Chungsik Yoon
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Wang X, Sun T, Zhu H, Han T, Wang J, Dai H. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110656. [PMID: 32349960 DOI: 10.1016/j.jenvman.2020.110656] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The effects of pH, cation valence, and ionic strength (IS) on the stability and aggregation behavior of zinc oxide nanoparticles (ZnO NPs) were investigated in this study. Results showed that ZnO NPs were most prone to aggregation at the isoelectric point (pH = 8.7), with an aggregation rate (ΔD/Δt) of 30.1. ZnO NPs showed a greater propensity for dissolution at lower pH (pH < 7), and Zn2+ was more rapidly released into the aqueous phase in acidic solutions than neutral or alkaline conditions. The C/C0 of ZnO NPs was about 21.56% and remained stable in acidic solution of pH 4.0. Additionally, slow sedimentation with a C/C0 ratio of 95.0% was observed due to an increase in repulsive interactions between nanoparticles under pH = 10. The effect of cations on the ΔD/Δt of ZnO NPs decreased in strength as follows: Ca2+ > Mg2+ > K+ > Na+. High-valence metal cations (Ca2+, Mg2+) were more competitively adsorbed onto the surface of ZnO NPs with a hydrogen atom due to Coulomb's law, increasing the zeta potential and stabilizing the suspension of ZnO NPs at IS < 10 mM. Furthermore, compression of the electric double layer (EDL) became stronger than electrostatic adsorption with increasing IS, reaching a maximum ΔD/Δt of 23.3 (Ca2+, pH = 7, IS = 1 M). The C/C0 ratio of ZnO NPs decreased from 100% to 56.5% (Na+), 52.2% (K+), 45.2% (Mg2+), and 40.1% (Ca2+) at pH = 7 and an IS of 0.5 M. In addition to the cation valence, the hydration forces and ionic radii of the metal cations might be other factors that affected the interactions of metal cations with ZnO NPs. Finally, the total interaction energy between ZnO NPs was calculated using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theoretical formula, and the calculated results were in agreement with the experimental outcomes under various aquatic environmental conditions.
Collapse
Affiliation(s)
- Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Tongshuai Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hui Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Ting Han
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Jie Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Jindalai Environmental Protection Co., Ltd, Jiangxi, 330100, China; Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| |
Collapse
|
19
|
Cabral AC, Dauner ALL, Xavier FCB, Garcia MRD, Wilhelm MM, Dos Santos VCG, Netto SA, Martins CC. Tracking the sources of allochthonous organic matter along a subtropical fluvial-estuarine gradient using molecular proxies in view of land uses. CHEMOSPHERE 2020; 251:126435. [PMID: 32169703 DOI: 10.1016/j.chemosphere.2020.126435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Sedimentary sterols and linear alkylbenzenes associated with allochthonous organic matter (AOM) inputs were studied in surface sediments along the Tubarão riverbed, South Brazil. These markers were analysed in terms of concentrations, diagnostic ratios and by using multivariate analyses to identify the main organic matter sources. It was necessary to integrate all these factors to distinguish the sources and determine sewage contamination. Phytosterols predominated over faecal sterols, but the contributions of livestock waste along the river (determined in 50% of the sites) were confirmed by the fingerprint analysis. Raw sewage contamination was verified at one site, according to the increased levels of sewage molecular markers and confirmed by the multivariate analyses and diagnostic ratios calibrated to this region. A possible synergistic effect between inorganic nanoparticles from coal mine waste and organic contaminants related to AOM input was suggested and should not be ignored since both activities severely contribute to the environmental changes in much of this fluvial-estuarine gradient from the South Atlantic.
Collapse
Affiliation(s)
- Ana Caroline Cabral
- Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil; Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | - Ana Lúcia Lindroth Dauner
- Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil; Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | | | - Marina Reback Domingues Garcia
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | - Marines Maria Wilhelm
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil
| | | | - Sergio Antônio Netto
- Laboratório de Ciências Marinhas, Universidade do Sul de Santa Catarina, 88704-900, Tubarão, Santa Catarina, Brazil
| | - César C Martins
- Centro de Estudos do Mar, Universidade Federal do Paraná, Caixa Postal 61, 83255-976, Pontal do Paraná, PR, Brazil.
| |
Collapse
|
20
|
Liu Y, Xu K, Cheng J. Different Nanomaterials for Soil Remediation Affect Avoidance Response and Toxicity Response in Earthworm (Eisenia fetida). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:477-483. [PMID: 32193572 DOI: 10.1007/s00128-020-02823-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The application of nano-level passivating agents in the remediation of soil heavy metal pollution has received widespread attention, but its harm to soil animals should also be addressed. This study explored the effect of three nanomaterials-nanohydroxyapatite apatite (n-HAP), nano zeolite (n-zeolite), and nanometer iron oxide (n-Fe3O4), on catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) activity and malondialdehyde (MDA) content through filter paper contact test. The effects of nanomaterials spiked at 1.5%wt of soils on earthworm avoidance behavior were also be studied, and the crystallinity and surface charge of three nanomaterials were characterized. The results showed that the activities of CAT, SOD and POD and the content of MDA have been changed at different level. And earthworms have obvious avoidance behavior to the three kinds of nanomaterials. Therefore, nanomaterials do have adverse effects on earthworms, and their biological toxicity should be considered when selecting passivating agents for soil heavy metal pollution remediation.
Collapse
Affiliation(s)
- Yaxin Liu
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, Shandong, China
| | - Kun Xu
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, Shandong, China
| | - Jiemin Cheng
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
21
|
Kovač T, Šarkanj B, Borišev I, Djordjevic A, Jović D, Lončarić A, Babić J, Jozinović A, Krska T, Gangl J, Ezekiel CN, Sulyok M, Krska R. Fullerol C 60(OH) 24 Nanoparticles Affect Secondary Metabolite Profile of Important Foodborne Mycotoxigenic Fungi In Vitro. Toxins (Basel) 2020; 12:toxins12040213. [PMID: 32230978 PMCID: PMC7232364 DOI: 10.3390/toxins12040213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the efforts to control mycotoxin contamination worldwide, extensive contamination has been reported to occur in food and feed. The contamination is even more intense due to climate changes and different stressors. This study examined the impact of fullerol C60(OH)24 nanoparticles (FNP) (at 0, 1, 10, 100, and 1000 ng mL-1) on the secondary metabolite profile of the most relevant foodborne mycotoxigenic fungi from genera Aspergillus, Fusarium, Alternaria and Penicillium, during growth in vitro. Fungi were grown in liquid RPMI 1640 media for 72 h at 29 °C, and metabolites were investigated by the LC-MS/MS dilute and shoot multimycotoxin method. Exposure to FNP showed great potential in decreasing the concentrations of 35 secondary metabolites; the decreases were dependent on FNP concentration and fungal genus. These results are a relevant guide for future examination of fungi-FNP interactions in environmental conditions. The aim is to establish the exact mechanism of FNP action and determine the impact such interactions have on food and feed safety.
Collapse
Affiliation(s)
- Tihomir Kovač
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Correspondence: ; Tel.: +385-31-224-341; Fax: +385-31-207-115
| | - Bojan Šarkanj
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Danica Jović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Ante Lončarić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Antun Jozinović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Tamara Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
| | - Johann Gangl
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria;
| | - Chibundu N. Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK
| |
Collapse
|
22
|
Nyoka M, Choonara YE, Kumar P, Kondiah PPD, Pillay V. Synthesis of Cerium Oxide Nanoparticles Using Various Methods: Implications for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E242. [PMID: 32013189 PMCID: PMC7075153 DOI: 10.3390/nano10020242] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Cerium oxide nanoparticles have been used in a number of non-medical products over the years. The therapeutic application of these nanoparticles has mainly been due to their oxidative stress ameliorating abilities. Their enzyme-mimetic catalytic ability to change between the Ce3+ and Ce4+ species makes them ideal for a role as free-radical scavengers for systemic diseases as well as neurodegenerative diseases. In this review, we look at various methods of synthesis (including the use of stabilizing/capping agents and precursors), and how the synthesis method affects the physicochemical properties, their behavior in biological environments, their catalytic abilities as well as their reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (M.N.); (Y.E.C.); (P.K.); (P.P.D.K.)
| |
Collapse
|
23
|
Impact of fullerol C 60(OH) 24 nanoparticles on the production of emerging toxins by Aspergillus flavus. Sci Rep 2020; 10:725. [PMID: 31959903 PMCID: PMC6971017 DOI: 10.1038/s41598-020-57706-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/07/2020] [Indexed: 01/15/2023] Open
Abstract
The impact of fullerene C60 water soluble daughter molecules - fullerols C60(OH)24 nanoparticles (FNP) on emerging (non-aflatoxin biosynthetic pathway) toxins production in mycelia and yeast extract sucrose (YES) media of A. flavus was investigated under growth conditions of 29 °C in the dark for a 168 h period. The FNP solution (10, 100 and 1000 ng mL−1) contained predominantly nanoparticles of 8 nm diameter and with zeta potential mean value of −33 mV. Ten emerging metabolites were produced at concentrations reaching 1,745,035 ng 50 mL−1 YES medium. Seven of the metabolites were found in mycelia and media, while three were only in mycelia. Majority of the metabolites were detected in higher quantity in mycelia than in media, at a ratio of 99:1 (m/m). However, higher metabolite quantities were found in media following FNP application, while FNP caused a decrease of total metabolite quantities in mycelia. The concentrations of the metabolites in media increased in the presence of 1000 ng mL−1 FNP while mycelial quantities of the metabolites decreased with increased applied FNP dose. The impacts of global climate changes on FNP availability in the environment and on mycotoxin occurrence in crops increase the relevance of this study for risk assessment of nanoparticles. Cordycepin is reported for the first time as metabolite of A. flavus.
Collapse
|
24
|
Matos B, Martins M, Samamed AC, Sousa D, Ferreira I, Diniz MS. Toxicity Evaluation of Quantum Dots (ZnS and CdS) Singly and Combined in Zebrafish ( Danio rerio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E232. [PMID: 31905638 PMCID: PMC6981874 DOI: 10.3390/ijerph17010232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/01/2023]
Abstract
The exponential growth of nanotechnology has led to the production of large quantities of nanomaterials for numerous industrial, technological, agricultural, environmental, food and many other applications. However, this huge production has raised growing concerns about the adverse effects that the release of these nanomaterials may have on the environment and on living organisms. Regarding the effects of QDs on aquatic organisms, existing data is scarce and often contradictory. Thus, more information is needed to understand the mechanisms associated with the potential toxicity of these nanomaterials in the aquatic environment. The toxicity of QDs (ZnS and CdS) was evaluated in the freshwater fish Danio rerio. The fishes were exposed for seven days to different concentrations of QDs (10, 100 and 1000 µg/L) individually and combined. Oxidative stress enzymes (catalase, superoxide dismutase and glutathione S-transferase), lipid peroxidation, HSP70 and total ubiquitin were assessed. In general, results suggest low to moderate toxicity as shown by the increase in catalase activity and lipid peroxidation levels. The QDs (ZnS and CdS) appear to cause more adverse effects singly than when tested combined. However, LPO results suggest that exposure to CdS singly caused more oxidative stress in zebrafish than ZnS or when the two QDs were tested combined. Levels of Zn and Cd measured in fish tissues indicate that both elements were bioaccumulated by fish and the concentrations increased in tissues according to the concentrations tested. The increase in HSP70 measured in fish exposed to 100 µg ZnS-QDs/L may be associated with high levels of Zn determined in fish tissues. No significant changes were detected for total ubiquitin. More experiments should be performed to fully understand the effects of QDs exposure to aquatic biota.
Collapse
Affiliation(s)
- Beatriz Matos
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- MARE—Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Marta Martins
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- MARE—Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Antonio Cid Samamed
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
- LAQV/REQUIMTE—Laboratório Associado para a Química Verde, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - David Sousa
- CENIMAT/I3N—Centro de Investigação de Materiais /Institute for Nanostructures, Nanomodelling and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (I.F.)
| | - Isabel Ferreira
- CENIMAT/I3N—Centro de Investigação de Materiais /Institute for Nanostructures, Nanomodelling and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (D.S.); (I.F.)
| | - Mário S. Diniz
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (B.M.); ; (M.M.); (A.C.S.)
| |
Collapse
|
25
|
Dehhaghi M, Tabatabaei M, Aghbashlo M, Kazemi Shariat Panahi H, Nizami AS. A state-of-the-art review on the application of nanomaterials for enhancing biogas production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109597. [PMID: 31563049 DOI: 10.1016/j.jenvman.2019.109597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) of organic wastes is among the most promising approaches used for the simultaneous treatment of various waste streams, environment conservation, and renewable bioenergy generation (biomethane). Among the latest innovations investigated to enhance the overall performance of this process both qualitatively and quantitatively, the application of some nanoparticles (NPs) has attracted a great deal of attention. Typically, the NPs of potential benefit to the AD process could be divided into three groups: (i) zero-valent iron (ZVI) NPs, (ii) metallic and metal oxides NPs, and (iii) carbon-based NPs. The present review focuses on the latest findings reported on the application of these NPs in AD process and presents their various mechanisms of action leading to higher or lower biogas production rates. Among the NPs studies, ZVI NPs could be regarded as the most promising nanomaterials for enhancing biogas production through stabilizing the AD process as well as by stimulating the growth of beneficial microorganisms to the AD process and the enzymes involved. Future research should focus on various attributes of NPs when used as additives in biogas production, including facilitating mixing and pumping operations, enriching the population and diversity of beneficial microorganisms for AD, improving biogas release, and inducing the production and activity of AD-related enzymes. The higher volume of methane-enriched biogas would be translated into higher returns on investment and could therefore, result in further growth of the biogas production industry. Nevertheless, efforts should be devoted to decreasing the price of NPs so that the enhanced biogas and methane production (by over 90%, compared to control) would be more economically justified, facilitating the large-scale application of these compounds. In addition to economic considerations, environmental issues are also regarded as major constraints which should be addressed prior to widespread implementation of NP-augmented AD processes. More specifically, the fate of NPs augmented in AD process should be scrutinized to ensure maximal beneficial impacts while adverse environmental/health consequences are minimized.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Meisam Tabatabaei
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia; Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Biofuel Research Team (BRTeam), Karaj, Iran.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hamed Kazemi Shariat Panahi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Abdul-Sattar Nizami
- Center of Excellence in Environmental Studies, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
26
|
López-Doval JC, Freixa A, Santos LHMLM, Sanchís J, Rodríguez-Mozaz S, Farré M, Barceló D, Sabater S. Exposure to single and binary mixtures of fullerenes and triclosan: Reproductive and behavioral effects in the freshwater snail Radix balthica. ENVIRONMENTAL RESEARCH 2019; 176:108565. [PMID: 31280028 DOI: 10.1016/j.envres.2019.108565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 05/22/2023]
Abstract
Emerging pollutants occur in complex mixtures in rivers and have the potential to interact with freshwater organisms. The chronic effects of nominal exposure to 3 μg/L of fullerenes (C60) and 1 μg/L of triclosan (TCS) alone and in a binary mixture, were evaluated using the freshwater snail Radix balthica. Pollutants accumulation, reproductive output and feeding behavior were selected as sublethal endpoints. After 21 days of exposure, we did not observe interactive effects between TCS and C60 on the studied endpoints, except for the accumulation of C60 in R. balthica in TCS + C60 treatment, which was lower than when the fullerenes were alone. Neither TCS nor C60 caused significant effects on reproduction, expressed as number of eggs per individual, but an increase in the clutch size was observed in treatments with TCS at the third week of exposure, independently of the presence of C60 (16.15 ± 1.67 and 18.9 ± 4.01 eggs/egg mass in TCS and TCS + C60 treatments, respectively, vs. 13.17 ± 4.01 in control). The presence of C60 significantly enhanced the grazing activity of R. balthica during the first seven days (4.95 ± 1.35 and 3.91 ± 0.59% of the area grazed per individual in C60 and TCS + C60 treatments, respectively, vs 2.6 ± 0.39% in control). The accumulation of TCS was quite similar in treatments where this pollutant was present (BAF ≈ 1007 L/kg d.w.); however, the accumulation of C60 was higher when the nanoparticles were alone (BAF = 254.88 L/kg d.w.) than when it was in the binary mixture (BAF = 7.79 L/kg d.w). Overall, although TCS has been listed as an endocrine disrupter compound, no significant effects on reproduction were observed in the assayed conditions. Regarding C60, the limited effects on feeding activity and the low BAF obtained in this experiment indicate that fullerenes do not have ecological consequences of relevance at the studied environmental concentrations in freshwater snails.
Collapse
Affiliation(s)
- J C López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain.
| | - A Freixa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - J Sanchís
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - M Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Institute of Aquatic Ecology, University of Girona, Campus de Montivili, 17071, Girona, Catalonia, Spain
| |
Collapse
|
27
|
Pang C, Gong Y. Current Status and Future Prospects of Semiconductor Quantum Dots in Botany. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7561-7568. [PMID: 31246021 DOI: 10.1021/acs.jafc.9b00730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of botanical applications of nanomaterials has produced a new generation of technologies that can profoundly impact botanical research. Semiconductor quantum dots (QDs) are an archetype nanomaterial and have received significant interest from diverse research communities, owing to their unique and optimizable optical properties. In this review, we describe the most recent progress on QD-based botanical research and discuss the uptake, translocation, and effects of QDs on plants and the potential applications of QDs in botany. A critical evaluation of the current limitations of QD technologies is discussed, along with the future prospects in QD-based botanical research.
Collapse
Affiliation(s)
- Chunhua Pang
- School of Life Sciences , Shanxi Normal University , Linfen , Shanxi 041004 , People's Republic of China
- Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology , Linfen , Shanxi 041004 , People's Republic of China
| | - Yan Gong
- School of Life Sciences , Shanxi Normal University , Linfen , Shanxi 041004 , People's Republic of China
| |
Collapse
|
28
|
Yi X, Yu M, Li Z, Chi T, Jing S, Zhang K, Li W, Wu M. Effect of Multi-walled Carbon Nanotubes on the Toxicity of Triphenyltin to the Marine Copepod Tigriopus japonicus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:789-794. [PMID: 30989279 DOI: 10.1007/s00128-019-02608-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Marine organisms are often exposed to a mixture of various pollutants in marine environment (i.e., nanoparticles, organic pollutants). The present study investigated the potential effects of multi-walled carbon nanotubes (MWCNTs) on the toxicity of triphenyltin chloride (TPTCl). The results revealed an antagonistic interaction between MWCNTs and TPTCl on the copepod through 96 h acute exposure, which was attributed to the adsorption of TPTCl to MWCNTs and aggregation of MWCNTs in the test solutions. Results of 21 days' chronic exposure showed that the effect concentration of MWCNTs could be 100 times lower than that of acute exposure. The exposure to binary mixture of MWCNT (1.0 mg/L) and TPTCl (0.3 µg/L) caused a reduction by 94% for the 3rd time spawning and 83% for the total number of hatched nauplii. The ingestion and exterior attachment of MWCNTs to the copepod might be the main reasons causing the adverse effect in reproduction.
Collapse
Affiliation(s)
- Xianliang Yi
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Mingyue Yu
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Zhaochuan Li
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Tongtong Chi
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Siyuan Jing
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Keke Zhang
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Wentao Li
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Minghuo Wu
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
29
|
Li H, Wei C, Zhang D, Pan B. Adsorption of bisphenol A on dispersed carbon nanotubes: Role of different dispersing agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:807-813. [PMID: 30481707 DOI: 10.1016/j.scitotenv.2018.11.310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Although the adsorption of organic contaminants on carbon nanotubes (CNTs) and the dispersion of CNTs have been extensively investigated separately, the adsorption behavior of organic contaminants on dispersed CNTs, which may be a missing link to understanding their environmental behavior and risks, remain unclear yet rarely studied. In this study, the effect of the dispersing agent structure on the adsorption characteristics of BPA (a representative organic contaminant) on dispersed CNTs were investigated using tannic acid (TA), sodium dodecylbenzenesulfonate (SDBS), and gallic acid (GA) as model dispersing agents. Our results showed that at low dispersing agent concentrations, adsorption of TA could lead to higher CNT suspension than adsorption of SDBS and GA due to greater steric hindrance. However, the presence of TA reduced the adsorption of BPA due to strong competitive adsorption on dispersed CNTs. At high concentrations of TA, the suspension of CNTs was reduced by the "bridging effect," in which adjacent dispersed CNTs form hydrogen bonds and re-aggregate. However, the adsorption of BPA dramatically increased due to the enhanced partition of BPA into pseudomicelles of TA on dispersed CNTs, as indicated by the significantly increased index of heterogeneity at high TA concentration. Transmission electron microscopy images confirmed the formation of TA pseudomicelles. This study highlights the key role of the dispersing agent structure on CNT dispersion and adsorption of organic contaminants. The high mobility and transport of CNT-adsorbed contaminants may lead to higher environmental risks compared with aggregated CNTs.
Collapse
Affiliation(s)
- Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Chaoxian Wei
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Di Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
30
|
Yakout AA, Albishri HM. Solvothermal synthesis of EDTA-functionalized magnetite-carboxylated graphene oxide nanocomposite as a potential magnetic solid phase extractor of p-phenylenediamine from environmental samples. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1469415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amr A. Yakout
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hassan M. Albishri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
A Review on Nanoparticles as Boon for Biogas Producers—Nano Fuels and Biosensing Monitoring. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app9010059] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanotechnology has an increasingly large impact on a broad scope of biotechnological, pharmacological and pure technological applications. Its current use in bioenergy production from biomass is very restricted. The present study is based on the utilization of nanoparticles as an additive to feed bacteria that break down natural substances. The novel notion of dosing ions using modified nanoparticles can be used to progress up biogas production in oxygen free digestion processes. While minute nanoparticles are unstable, they can be designed to provide ions in a controlled approach, so that the maximum enhancement of biogas production that has been reported can be obtained. Nanoparticles are dissolved in a programmed way in an anaerobic atmosphere and are supplied in a sustainable manner to microbiotic organisms responsible for the degradation of organic material, which is a role that fits them well. Therefore, biogas fabrication can be increased up to 200%, thereby increasing the degradation of organic waste.
Collapse
|
32
|
Lahcen AA, Amine A. Recent Advances in Electrochemical Sensors Based on Molecularly Imprinted Polymers and Nanomaterials. ELECTROANAL 2018. [DOI: 10.1002/elan.201800623] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdellatif Ait Lahcen
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| | - Aziz Amine
- Chemical Analysis & Biosensors Group; Laboratory of Process Engineering & Environment; Faculty of Science and Techniques; Hassan II University of Casablanca B.P. 146.; Mohammedia Morocco
| |
Collapse
|
33
|
Encinas D, Gómez-de-Balugera Z. Fullerene C 60 in Atmospheric Aerosol and Its Relationship to Combustion Processes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 75:616-624. [PMID: 29651501 DOI: 10.1007/s00244-018-0524-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/27/2017] [Indexed: 06/08/2023]
Abstract
Fullerenes are emerging pollutants, and it is essential to determine and quantify these compounds to assess environmental risk and environmental flows. The goal of this work was to determine the fullerene C60 emission levels in the atmospheric aerosol and their relationship with combustion processes. To measure the concentration, a fullerene C60 extraction method with toluene was optimized in air samples using ultrasound, followed by analysis using high-pressure, liquid chromatography-diode array detector-mass spectrometry. This method has been applied to outdoor and indoor environmental samples collected in different places in Vitoria-Gasteiz (Spain), with diverse environmental characteristics, as well as at the exhaust outlets of different vehicles with and without catalytic converters. The maximum concentration of fullerene C60 present in the outdoor samples was 2.27 pg/m3, and the maximum concentration was 10.50 pg/m3 in indoor environments. The air samples collected at the exhaust outlets of vehicles without catalytic converters showed fullerene C60 concentrations above 170 pg/m3, while in the case of vehicles with catalytic converters, the detected concentration of fullerene C60 was lower than the limit of quantification.
Collapse
Affiliation(s)
- Dolores Encinas
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, 01006, Vitoria-Gasteiz, Spain.
| | - Zuriñe Gómez-de-Balugera
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, 01006, Vitoria-Gasteiz, Spain
| |
Collapse
|
34
|
Laudadio ED, Bennett JW, Green CM, Mason SE, Hamers RJ. Impact of Phosphate Adsorption on Complex Cobalt Oxide Nanoparticle Dispersibility in Aqueous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10186-10195. [PMID: 30078331 DOI: 10.1021/acs.est.8b02324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A commonly overlooked and largely unknown aspect of assessing the environmental and biological safety of engineered nanomaterials is their transformation in aqueous systems. Complex metal oxides are an important class of materials for catalysis, energy storage, and water purification. However, the potential impact of nano complex metal oxides on the environment upon improper disposal is not well understood. We present a comprehensive analysis of the interaction of an environmentally relevant oxyanion, phosphate, with a complex metal oxide nanomaterial, lithium cobalt oxide. Our results show that adsorption of phosphate to the surface of these materials drastically impacts their surface charge, rendering them more stable in aqueous systems. The adsorbed phosphate remains on the surface over significant periods of time, suggesting that desorption is not kinetically favored. The implications of this interaction may be increased dispersibility and bioavailability of these materials in environmental water systems.
Collapse
Affiliation(s)
- Elizabeth D Laudadio
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Joseph W Bennett
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Curtis M Green
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| | - Sara E Mason
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Robert J Hamers
- Department of Chemistry , University of Wisconsin , Madison , Wisconsin 53706 , United States
| |
Collapse
|
35
|
Freixa A, Acuña V, Gutierrez M, Sanchís J, Santos LHMLM, Rodriguez-Mozaz S, Farré M, Barceló D, Sabater S. Fullerenes Influence the Toxicity of Organic Micro-Contaminants to River Biofilms. Front Microbiol 2018; 9:1426. [PMID: 30018603 PMCID: PMC6037823 DOI: 10.3389/fmicb.2018.01426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/11/2018] [Indexed: 11/17/2022] Open
Abstract
Organic micro-contaminants (OMCs) enter in freshwaters and interact with other contaminants such as carbon nanoparticles, becoming a problem of unknown consequences for river ecosystems. Carbon nanoparticles (as fullerenes C60) are good adsorbents of organic contaminants and their interaction can potentially affect their toxicity to river biofilms. We tested the C60 interactions with selected OMCs and their effects on river biofilms in different short-term experiments. In these, river biofilms were exposed to C60 and three OMCs (triclosan, diuron, or venlafaxine) and their respective mixtures with fullerenes (C60 + each OMC). The effects were evaluated on structural, molecular, and functional descriptors of river biofilms. Our results showed that C60 did not cause toxic effects in river biofilms, whereas diuron and triclosan significantly affected the heterotrophic and phototrophic components of biofilms and venlafaxine affected only the phototrophic component. The joint exposure of C60 with venlafaxine was not producing differences with respect to the former response of the toxicant, but the overall response was antagonistic (i.e., decreased toxicity) with diuron, and synergistic (i.e., increased toxicity) with triclosan. We suggest that differences in the toxic responses could be related to the respective molecular structure of each OMC, to the concentration proportion between OMC and C60, and to the possible competition between C60 pollutants on blocking the receptors of the biological cell membranes. We conclude that the presence of C60 at low concentrations modified the toxicity of OMC to river biofilms. These interactions should therefore be considered when predicting toxicity of OMC in river ecosystems.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research, Girona, Spain
| | - Vicenç Acuña
- Catalan Institute for Water Research, Girona, Spain
| | | | - Josep Sanchís
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, Spanish National Research Council, Barcelona, Spain
| | | | | | - Marinella Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, Spanish National Research Council, Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research, Girona, Spain.,Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, Spanish National Research Council, Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research, Girona, Spain.,Research Group on Ecology of Inland Waters, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
36
|
Guo X, Yin Y, Tan Z, Liu J. Environmentally Relevant Freeze-Thaw Cycles Enhance the Redox-Mediated Morphological Changes of Silver Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6928-6935. [PMID: 29791804 DOI: 10.1021/acs.est.8b00694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Silver nanoparticles (AgNPs) are inevitably released into natural systems, particularly into aquatic environments, where they are oxidized and release Ag+, which is reduced back to AgNPs. Environmental freeze-thaw cycles or freezing may accelerate the dynamic transformation between AgNPs and Ag+. Herein, the significant morphological changes caused by freezing treatments were assessed by UV-vis spectroscopy and high-resolution transmission electron microscopy, which revealed that reductive regeneration, particle fusion, and coalescence of the AgNPs occurred. In addition, a stable Ag isotope was used to track the AgNP redox reaction, which was found to be accelerated under freezing and freeze-thaw cycles relative to the reaction of particles stored at a normal temperature (4 °C, 25 °C). Furthermore, natural organic matter was found to stabilize the particle morphology. Ca2+ and Cl- intensified the morphological changes and redox reaction through Ca2+-induced particle coalescence and Cl--enhanced reduction of Ag+ during the freeze-thaw treatment. These physicochemical changes also occurred for an environmentally relevant concentration of AgNPs (50 ng L-1) in simulated environmental conditions and natural water samples after freeze-thaw cycles. Since the morphological changes and redox acceleration induced by environmental freezing conditions could dramatically influence the mobility, bioavailability, toxicity, and environmental fate of AgNPs, the freeze-thaw-induced effects should be considered in the environmental risk assessment of AgNPs.
Collapse
Affiliation(s)
- Xiaoru Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
37
|
Yang Y, Luo L, Li HP, Wang Q, Yang ZG, Qu ZP, Ding R. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS. Talanta 2018; 182:156-163. [DOI: 10.1016/j.talanta.2018.01.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
38
|
Ouyang S, Hu X, Zhou Q, Li X, Miao X, Zhou R. Nanocolloids in Natural Water: Isolation, Characterization, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4850-4860. [PMID: 29554418 DOI: 10.1021/acs.est.7b05364] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocolloids are widespread in natural water systems, but their characterization and ecological risks are largely unknown. Herein, tangential flow ultrafiltration (TFU) was used to separate and concentrate nanocolloids from surface waters. Unexpectedly, nanocolloids were present in high concentrations ranging from 3.7 to 7.2 mg/L in the surface waters of the Harihe River in Tianjin City, China. Most of the nanocolloids were 10-40 nm in size, contained various trace metals and polycyclic aromatic hydrocarbons, and exhibited fluorescence properties. Envelopment effects and aggregation of Chlorella vulgaris in the presence of nanocolloids were observed. Nanocolloids entered cells and nanocolloid-exposed cells exhibited stronger plasmolysis, chloroplast damage and more starch grains than the control cells. Moreover, nanocolloids inhibited the cell growth, promoted reactive oxygen species (ROS), reduce the chlorophyll a content and increased the cell permeability. The genotoxicity of nanocolloids was also observed. The metabolomics analysis revealed a significant ( p < 0.05) downregulation of amino acids and upregulation of fatty acids contributing to ROS increase, chlorophyll a decrease and plasmolysis. The present work reveals that nanocolloids, which are different from specific, engineered nanoparticles (e.g., Ag nanoparticles), are present at high concentrations, exhibit an obvious toxicity in environments, and deserve more attention in the future.
Collapse
Affiliation(s)
- Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xinyu Miao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Ruiren Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| |
Collapse
|
39
|
Kovač T, Šarkanj B, Klapec T, Borišev I, Kovač M, Nevistić A, Strelec I. Antiaflatoxigenic effect of fullerene C 60 nanoparticles at environmentally plausible concentrations. AMB Express 2018; 8:14. [PMID: 29404802 PMCID: PMC5799089 DOI: 10.1186/s13568-018-0544-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/27/2018] [Indexed: 11/21/2022] Open
Abstract
Increased interest in fullerene C60 and derivatives in recent years implies an intensification of their environmental spread. Yet, the potential risks for living organisms are largely unknown, including the interaction of C60 with fungal organisms. This may be especially relevant for mycotoxigenic fungi since C60 may both scavenge and produce reactive oxygen species (ROS), and oxidative stress induces mycotoxin production in fungi. Therefore, this study examined effects of environmentally plausible concentrations of C60 (0, 10, 50, and 100 ng/mL) on Aspergillus flavus growth and aflatoxin production in culture media. In addition, ROS-dependent oxidative stress biomarkers—thiobarbituric acid reactive substances (TBARS), reduced and oxidised glutathione ratio, superoxide dismutase isoenzymes, catalase, glutathione peroxidase, and glutathione reductase were determined in mycelia. Nanoparticles of fullerene C60 (nC60) did not exhibit strong antifungal activity against A. flavus. At the same time, nC60 caused an antiaflatoxigenic effect at 10–100 ng/mL, and 50 ng/mL unexpectedly enhanced aflatoxin production. The TBARS content, reduced and oxidised glutathione ratio, and copper, zinc superoxide dismutase activity suggest that 10 ng/mL nC60 exerted antioxidative action and reduced aflatoxin B1 production within fungal cells. Detected prooxidative effects of 50 ng/mL fullerene exceeded cellular defenses and consequently enhanced aflatoxin B1 production. Finally, the results obtained with 100 ng/mL nC60 point to prooxidative effects, but the absence of increase in aflatoxin output may indicate additional, presumably cytotoxic effects of nC60. Thus, a range of rather low levels of nC60 in the environment has a potential to modify aflatoxin production in A. flavus. Due to possible implications, further studies should test these results in environmental conditions.
Collapse
|
40
|
Luo M, Huang Y, Zhu M, Tang YN, Ren T, Ren J, Wang H, Li F. Properties of different natural organic matter influence the adsorption and aggregation behavior of TiO 2 nanoparticles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
de Souza JM, Mendes BDO, Guimarães ATB, Rodrigues ASDL, Chagas TQ, Rocha TL, Malafaia G. Zinc oxide nanoparticles in predicted environmentally relevant concentrations leading to behavioral impairments in male swiss mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:653-662. [PMID: 28938207 DOI: 10.1016/j.scitotenv.2017.09.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Although the potential neurotoxic effects from the exposure to zinc oxide nanoparticles (ZnO NPs) on humans and on experimental models have been reported in previous studies, the effects from the exposure to environmentally relevant concentrations of them remain unclear. Thus, the aim of the present study is to investigate the effects from the exposure to environmentally relevant concentrations of ZnO NPs on the behavior of male Swiss mice. The animals were daily exposed to environmentally relevant concentrations of ZnO NPs (5.625×10-5mgkg-1) at toxic level (300mgkg-1) through intraperitoneal injection for five days; a control group was set for comparison purposes. Positive control groups (clonazepam and fluoxetine) and a baseline group were included in the experimental design to help analyzing the behavioral tests (open field, elevated plus maze and forced swim tests). Although we did not observe any behavioral change in the animals subjected to the elevated plus maze and forced swim tests, our data evidence the anxiogenic behavior of animals exposed to the two herein tested ZnO NPs concentrations in the open field test. The animals stayed in the central part of the apparatus and presented lower locomotion ratio in the central quadrants/total of locomotion during this test. It indicates that the anxiogenic behavior was induced by ZnO NP exposure, because it leads to Zn accumulation in the brain. Thus, the current study is the first to demonstrate that the predicted environmentally relevant ZnO NPs concentration induces behavioral changes in mammalian experimental models. Our results corroborate previous studies that have indicated the biological risks related to the water surface contamination by metal-based nanomaterials.
Collapse
Affiliation(s)
- Joyce Moreira de Souza
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institute - Urutaí Campos, GO, Brazil
| | - Bruna de Oliveira Mendes
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institute - Urutaí Campos, GO, Brazil
| | - Abraão Tiago Batista Guimarães
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institute - Urutaí Campos, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Biological Research Laboratory, Goiano Federal Institute - Urutaí Campos, GO, Brazil
| | - Thales Quintão Chagas
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campos, GO, Brazil
| | - Thiago Lopes Rocha
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, GO, Brazil
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Institute of Tropical Pathology and Public Health, Federal University of Goiás, GO, Brazil; Biological Sciences Department, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urutaí Campus, GO, Brazil; Post-Graduation Program in Animal Biodiversity, Federal University of Goiás - Samambaia Campus, Goiânia, GO, Brazil.
| |
Collapse
|
42
|
Lai RWS, Yeung KWY, Yung MMN, Djurišić AB, Giesy JP, Leung KMY. Regulation of engineered nanomaterials: current challenges, insights and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3060-3077. [PMID: 28639026 DOI: 10.1007/s11356-017-9489-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/07/2017] [Indexed: 05/25/2023]
Abstract
Substantial production and wide applications of engineered nanomaterials (ENMs) have raised concerns over their potential influences on the environment and humans. However, regulations of products containing ENMs are scarce, even in countries with the greatest volume of ENMs produced, such as the United States and China. After a comprehensive review of life cycles of ENMs, five major challenges to regulators posed by ENMs are proposed in this review: (a) ENMs exhibit variable physicochemical characteristics, which makes them difficult for regulators to establish regulatory definition; (b) Due to diverse sources and transport pathways for ENMs, it is difficult to monitor or predict their fates in the environment; (c) There is a lack of reliable techniques for quantifying exposures to ENMs; (d) Because of diverse intrinsic properties of ENMs and dynamic environmental conditions, it is difficult to predict bioavailability of ENMs on wildlife and the environment; and (e) There are knowledge gaps in toxicity and toxic mechanisms of ENMs from which to predict their hazards. These challenges are all related to issues in conventional assessments of risks that regulators rely on. To address the fast-growing nanotechnology market with limited resources, four ENMs (nanoparticles of Ag, TiO2, ZnO and Fe2O3) have been prioritized for research. Compulsory reporting schemes (registration and labelling) for commercial products containing ENMs should be adopted. Moreover, to accommodate their potential risks in time, an integrative use of quantitative structure-activity relationship and adverse outcome pathway (QSAR-AOP), together with qualitative alternatives to conventional risk assessment are proposed as tools for decision making of regulators.
Collapse
Affiliation(s)
- Racliffe W S Lai
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Katie W Y Yeung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mana M N Yung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - John P Giesy
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
43
|
Luo M, Qi X, Ren T, Huang Y, Keller AA, Wang H, Wu B, Jin H, Li F. Heteroaggregation of CeO2 and TiO2 engineered nanoparticles in the aqueous phase: Application of turbiscan stability index and fluorescence excitation-emission matrix (EEM) spectra. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Zhang D, Trzcinski AP, Oh HS, Chew E, Liu Y, Tan SK, Ng WJ. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:1073-1081. [PMID: 28841359 DOI: 10.1080/10934529.2017.1338896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO4). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH4+ N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.
Collapse
Affiliation(s)
- Dongqing Zhang
- a Advanced Environmental Biotechnology Centre , Nanyang Environment and Water Research Institute , Singapore
| | - Antoine P Trzcinski
- b School of Civil Engineering and Surveying, Faculty of Health, Engineering, and Sciences , University of Southern Queensland , Toowoomba , Queensland , Australia
| | - Hyun-Suk Oh
- c Singapore Membrane Technology Centre , Nanyang Environment and Water Research Institute , Singapore
| | - Evelyn Chew
- a Advanced Environmental Biotechnology Centre , Nanyang Environment and Water Research Institute , Singapore
| | - Yu Liu
- a Advanced Environmental Biotechnology Centre , Nanyang Environment and Water Research Institute , Singapore
| | - Soon Keat Tan
- a Advanced Environmental Biotechnology Centre , Nanyang Environment and Water Research Institute , Singapore
| | - Wun Jern Ng
- a Advanced Environmental Biotechnology Centre , Nanyang Environment and Water Research Institute , Singapore
| |
Collapse
|
45
|
Aznar R, Barahona F, Geiss O, Ponti J, José Luis T, Barrero-Moreno J. Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS. Talanta 2017; 175:200-208. [PMID: 28841979 DOI: 10.1016/j.talanta.2017.07.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
Abstract
Single particle-inductively coupled plasma mass spectrometry (SP-ICPMS) is a promising technique able to generate the number based-particle size distribution (PSD) of nanoparticles (NPs) in aqueous suspensions. However, SP-ICPMS analysis is not consolidated as routine-technique yet and is not typically applied to real test samples with unknown composition. This work presents a methodology to detect, quantify and characterise the number-based PSD of Ag-NPs in different environmental aqueous samples (drinking and lake waters), aqueous samples derived from migration tests and consumer products using SP-ICPMS. The procedure is built from a pragmatic view and involves the analysis of serial dilutions of the original sample until no variation in the measured size values is observed while keeping particle counts proportional to the dilution applied. After evaluation of the analytical figures of merit, the SP-ICPMS method exhibited excellent linearity (r2>0.999) in the range (1-25) × 104 particlesmL-1 for 30, 50 and 80nm nominal size Ag-NPs standards. The precision in terms of repeatability was studied according to the RSDs of the measured size and particle number concentration values and a t-test (p = 95%) at the two intermediate concentration levels was applied to determine the bias of SP-ICPMS size values compared to reference values. The method showed good repeatability and an overall acceptable bias in the studied concentration range. The experimental minimum detectable size for Ag-NPs ranged between 12 and 15nm. Additionally, results derived from direct SP-ICPMS analysis were compared to the results conducted for fractions collected by asymmetric flow-field flow fractionation and supernatant fractions after centrifugal filtration. The method has been successfully applied to determine the presence of Ag-NPs in: lake water; tap water; tap water filtered by a filter jar; seven different liquid silver-based consumer products; and migration solutions (pure water and sweat simulant) from plasters. Results obtained by SP-ICPMS were supported by transmission electron microscopy and energy dispersive spectroscopy characterisation, suggesting that the proposed methodology can be applied as a positive screening test in the simultaneous quantification and size characterisation of Ag-NPs in samples of environmental interest.
Collapse
Affiliation(s)
- Ramón Aznar
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Francisco Barahona
- European Commission, Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Consumer Products Safety Unit, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Otmar Geiss
- European Commission, Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Consumer Products Safety Unit, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Jessica Ponti
- European Commission, Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Consumer Products Safety Unit, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Tadeo José Luis
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Josefa Barrero-Moreno
- European Commission, Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Consumer Products Safety Unit, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|
46
|
Goswami L, Kim KH, Deep A, Das P, Bhattacharya SS, Kumar S, Adelodun AA. Engineered nano particles: Nature, behavior, and effect on the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 196:297-315. [PMID: 28301814 DOI: 10.1016/j.jenvman.2017.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Increased application of engineered nano particles (ENPs) in production of various appliances and consumer items is increasing their presence in the natural environment. Although a wide variety of nano particles (NPs) are ubiquitously dispersed in ecosystems, risk assessment guidelines to describe their ageing, direct exposure, and long-term accumulation characteristics are poorly developed. In this review, we describe what is known about the life cycle of ENPs and their impact on natural systems and examine if there is a cohesive relationship between their transformation processes and bio-accessibility in various food chains. Different environmental stressors influence the fate of these particles in the environment. Composition of solid media, pore size, solution chemistry, mineral composition, presence of natural organic matter, and fluid velocity are some environmental stressors that influence the transformation, transport, and mobility of nano particles. Transformed nano particles can reduce cell viability, growth and morphology, enhance oxidative stress, and damage DNA in living organisms.
Collapse
Affiliation(s)
- Linee Goswami
- Department of Environmental Science, Tezpur University, Tezpur, Assam, 784028, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| | - Akash Deep
- Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India
| | - Pallabi Das
- Department of Environmental Science, Tezpur University, Tezpur, Assam, 784028, India
| | | | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Adedeji A Adelodun
- Department of Marine Science and Technology, School of Earth and Mineral Science, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
47
|
Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. ATMOSPHERE 2017. [DOI: 10.3390/atmos8050084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Toxicity of Nickel Oxide Nanoparticles on a Freshwater Green Algal Strain of Chlorella vulgaris. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9528180. [PMID: 28473991 PMCID: PMC5394891 DOI: 10.1155/2017/9528180] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/02/2017] [Indexed: 01/08/2023]
Abstract
A freshwater microalga strain of Chlorella vulgaris was used to investigate toxic effects induced by nickel oxide nanoparticles (NiO-NPs) in suspension. Algal cells were exposed during 96 h to 0–100 mg L−1 of NiO-NPs and analyzed by flow cytometry. Physicochemical characterization of nanoparticles in tested media showed a soluble fraction (free Ni2+) of only 6.42% for 100 mg L−1 of NiO-NPs, indicating the low solubility capacity of these NPs. Toxicity analysis showed cellular alterations which were related to NiO-NPs concentration, such as inhibition in cell division (relative cell size and granularity), deterioration of the photosynthetic apparatus (chlorophyll synthesis and photochemical reactions of photosynthesis), and oxidative stress (ROS production). The change in cellular viability demonstrated to be a very sensitive biomarker of NiO-NPs toxicity with EC50 of 13.7 mg L−1. Analysis by TEM and X-ray confirmed that NiO-NPs were able to cross biological membranes and to accumulate inside algal cells. Therefore, this study provides a characterization of both physicochemical and toxicological properties of NiO-NPs suspensions in tested media. The use of the freshwater strain of C. vulgaris demonstrated to be a sensitive bioindicator of NiO-NPs toxicity on the viability of green algae.
Collapse
|
49
|
Tolaymat T, El Badawy A, Genaidy A, Abdelraheem W, Swqueria R. Analysis of metallic and metal oxide nanomaterial environmental emissions. JOURNAL OF CLEANER PRODUCTION 2017; 143:401-412. [PMID: 32489231 PMCID: PMC7266090 DOI: 10.1016/j.jclepro.2016.12.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The current study presents evidence on metallic and metal oxide engineered nanomaterial (ENM) emissions into the environment and an analytic perspective of the outcomes of evaluated studies with respect to different individual end points along the lifecycle trajectory. The key findings suggest that 1) the published literature on emissions of metallic ENMs is limited in both the number and information available on the characteristics of emitted ENMs; 2) the studies are classified as experimental and computational studies focused on predicting ENM emissions; 3) the majority of studies investigated ENM emissions during nanomaterial use and waste management, followed by raw material manufacturing, and finally, nano-enabled product manufacturing; 4) the studies primarily reported the concentration/quantity of emitted ENMs, whereas the physical-chemical characteristics of emitted ENMs were rarely measured or reported; and 5) the published literature primarily focused on emissions of silver and titanium dioxide ENMs and lacked similar information on other surging metallic and metal oxide ENMs such as nano-zero valent iron (nZVI), aluminum (Al), and aluminum oxide (Al2O3) ENMs. The evidence suggests that emitted nanoparticles into the air cover a wide range of concentrations below and above the allowable occupational exposure limits. The concentrations of nanoparticles in water systems are considered in the toxic to very toxic range for a variety of biological species. Given the critical gaps in knowledge, one cannot read across different sources of emissions for metallic and metal oxide ENMs hampering efforts with respect to understanding realistic scenarios for transformations in the natural environment and biological media.
Collapse
Affiliation(s)
- Thabet Tolaymat
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Amro El Badawy
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ash Genaidy
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Wael Abdelraheem
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Reynold Swqueria
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA, WorldTek Inc, Cincinnati, OH, USA, Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
50
|
Karami Mehrian S, De Lima R. Nanoparticles cyto and genotoxicity in plants: Mechanisms and abnormalities. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.enmm.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|