1
|
Chen L, Zhang Y, Bu Y, Zhou J, Man Y, Wu X, Yang H, Lin J, Wang X, Jing Y. Imaging the spatial distribution of structurally diverse plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6980-6997. [PMID: 39269320 DOI: 10.1093/jxb/erae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone spatial distributions. In this review, we provide an overview of currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues in imaging techniques to further enhance our understanding of plant hormone biology.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yi Man
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
2
|
Liu Y, Han J, Chen G, Huang S, Huang S, Zheng J, Xu J, Zhu F, Ouyang G. Mesoporous carbon hollow spheres based sensitive SPME probes for in vivo sampling analysis of selected plant hormones in Chinese aloes. Anal Chim Acta 2024; 1329:343191. [PMID: 39396281 DOI: 10.1016/j.aca.2024.343191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
Phytohormones are a class of endogenous substances that separately or synergistically regulate the growth, development, and differentiation of plants. Accurately and efficiently detecting and monitoring the concentration of plant hormones in living plants is of significant importance. Herein, a novel mesoporous carbon hollow spheres (MCHS)-based in vivo solid phase microextraction (SPME) probe was designed for in vivo sampling of plant hormones. The designed MCHS features the advantages of high surface area, porous shells, and large hollow spaces, facilitating the dynamic adsorption and enrichment of target phytohormone. In addition, a cationic polyelectrolyte, (poly (diallyl dimethyl ammonium chloride) (PDDA), was further modified onto the MCHS to expedite the extraction process by electrostatic interaction. Utilizing the MCHS@PDDA probe in combination with HPLC-MS/MS facilitated the continuous monitoring of three plant hormones (abscisic acid (ABA), indole-3-acetic acid (IAA), and gibberellin (GA3)) in Chinese aloe. The detection limit of this method was 0.016-0.090 μg/L, the linear range was 10-1000 μg/L, and both the RSD of the single probe (n = 6) and probe-to-probe test (n = 6) were less than 7.2 %. This method had excellent accuracy and good reproducibility comparable to the traditional sample pretreatment method. Ultimately, this established in-vivo SPME method was successfully adopted to quantify three selected plant hormones in living Chinese Aloes, providing a new method for the long-term monitoring of endogenous active substances in living system.
Collapse
Affiliation(s)
- Yan Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiajia Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Siming Huang
- Guangzhou Med Univ, Affiliated Hosp 5, Sch Pharmaceut Sci, NMPA, Guangzhou Municipal & Guangdong Prov Key Lab, Guangzhou, 511436, China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Chemical Engineering and Technology, Analysis Research Center, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
3
|
Yang R, Zhang D, Wang D, Chen H, Jin Z, Fang Y, Huang Y, Lin H. Infection mechanism of Botryosphaeria dothidea and the disease resistance strategies of Chinese hickory (Carya cathayensis). BMC PLANT BIOLOGY 2024; 24:938. [PMID: 39385101 PMCID: PMC11462999 DOI: 10.1186/s12870-024-05664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Botryosphaeria dothidea is the main fungal pathogen responsible for causing Chinese hickory (Carya cathayensis) dry rot disease, posing a serious threat to the Chinese hickory industry. Understanding the molecular basis of B. dothidea infection and the host's resistance mechanisms is crucial for controlling and managing the ecological impact of Chinese hickory dry rot disease. This study utilized ultrastructural observations to reveal the process of B. dothidea infection and colonization in Chinese hickory, and investigated the impact of B. dothidea infection on Chinese hickory biochemical indicators and plant hormone levels. Through high-throughput transcriptome sequencing, the gene expression profiles associated with different stages of B. dothidea infection in Chinese hickory and their corresponding defense responses were described. Additionally, a series of key genes closely related to non-structural carbohydrate metabolism, hormone metabolism, and plant-pathogen interactions during B. dothidea infection in Chinese hickory were identified, including genes encoding DUF, Myb_DNA-binding, and ABC transporter proteins. These findings provide important insights into elucidating the pathogenic mechanisms of B. dothidea and the resistance genes in Chinese hickory.
Collapse
Affiliation(s)
- Ruifeng Yang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Da Zhang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Dan Wang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Hongyi Chen
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Zhexiong Jin
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Yan Fang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China
| | - Youjun Huang
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China.
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China.
| | - Haiping Lin
- State Key Laboratory of Subtropical Forest Cultivation, Zhejiang A & F University, Dong Hu Campus, 666 Wusu Street, Lin'an, 311300, China.
| |
Collapse
|
4
|
Qiu Z, Wei C, Kang L, Zhou L, Lai C, Li X, Yan B, Xu J, Wang S, Huang L. Sensitive quantitation of ultra-trace toxic aconitines in complex matrices by perfusion nano-electrospray ionization mass spectrometry combined with gas-liquid microextraction. Talanta 2024; 269:125402. [PMID: 37979510 DOI: 10.1016/j.talanta.2023.125402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
The accurate analysis of ultra-trace (e.g. <10-4 ng/mL) substances in complex matrices is a burdensome but vital problem in pharmaceutical analysis, with important implications for precise quality control of drugs, discovery of innovative medicines and elucidation of pharmacological mechanisms. Herein, an innovative constant-flow perfusion nano-electrospray ionization (PnESI) technique was developed firstly features significant quantitative advantages in high-sensitivity ambient MS analysis of complex matrix sample. More importantly, double-labeled addition enrichment quantitation strategies of gas-liquid microextraction (GLME) were proposed for the first time, allowing highly selective extraction and enrichment of specific target analytes in a green and ultra-efficient (>1000-fold) manner. Using complex processed Aconitum herbs as example, PnESI-MS directly enabled the qualitative and absolute quantitative analysis of the processed Aconitum extracts and characterized the target toxic diester alkaloids with high sensitivity, high stability, wide linearity range, and strong resistance to matrix interference. Further, GLME device was applied to obtain the highly specific enrichment of the target diester alkaloids more than 1000-fold, and accurate absolute quantitation of trace aconitine, mesaconitine, and hypaconitine in the extracts of Heishunpian, Zhichuanwu and Zhicaowu was accomplished (e.g., 0.098 pg/mL and 0.143 pg/mL), with the quantitation results well below the LODs of aconitines from any analytical instruments available. This study built a systematic strategy for accurate quantitation of ultra-trace substances in complex matrix sample and expected to provide a technological revolution in many fields of pharmaceutical research.
Collapse
Affiliation(s)
- Zidong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chaofa Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liping Kang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changjiangsheng Lai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Binbin Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang, 330013, China
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, College of Chemistry, Biology and Material Sciences, East China Institute of Technology, Nanchang, 330013, China.
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Vanama S, Gopalan NSR, Pesari M, Baskar M, Gali UD, Lakshmi DL, Koteshwar P, Jesudasu G, Rathod S, Prasad MS, Panuganti R, Sundaram RM, Mohapatra S, Kannan C. Native bio-control agents from the rice fields of Telangana, India: characterization and unveiling the potential against stem rot and false smut diseases of rice. World J Microbiol Biotechnol 2023; 40:2. [PMID: 37923802 DOI: 10.1007/s11274-023-03782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023]
Abstract
The stem rot caused by Sclerotium hydrophilum and false smut caused by Ustilaginoidea virens are two of the major production constraints in rice cultivation in India and other countries. Stem rot and false smut can be effectively controlled with synthetic fungicides. However, the indiscriminate use of chemical fungicides may cause development of resistance among the pathogens. In addition to this, synthetic fungicides also exhibit harmful impacts on the environment. Exploiting microbe-based alternatives for managing plant diseases diminishes public concerns about the ill effects of pesticide usage in crops. In this regard, the present study was designed to investigate the potential of native microbial biocontrol agents (BCAs) from rice rhizosphere for the sustainable management of stem rot and false smut diseases in rice. Potential BCAs and pathogens were identified and characterized through morphological, biochemical, and sanger sequencing techniques. Bio-efficacy tests of potential BCAs against stem rot and false smut diseases on rice under glasshouse conditions indicated higher seed vigour index of the treated seeds, significant improvement in the growth of the seedling, increased dry weight, reduction in percentage disease index viz., 70.03% (stem rot) and 69.24% (false smut) over the control plants. Phytohormones indole acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA), salicylic acid (SA), and zeatin (tZ) were detected and quantified in the four potential BCAs using liquid chromatography- tandem mass spectrometry (LC-MS/MS). Scanning electron microscopy (SEM) studies revealed the endophytic nature of the strains in rice. The study indicated a positive correlation between the diversity and concentration of phytohormones released by the bioagents and enhanced plant growth promotion and disease suppression in rice.
Collapse
Affiliation(s)
- Sowmya Vanama
- Professor Jayashankar, Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - N S Raja Gopalan
- Birla Institute of Technology and Science Pilani, Hyderabad Campus, Secunderabad, Telangana, 500078, India
| | - Maruthi Pesari
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - M Baskar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Uma Devi Gali
- Professor Jayashankar, Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - D Ladha Lakshmi
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - P Koteshwar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - G Jesudasu
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Santosha Rathod
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - M Srinivas Prasad
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Rajanikanth Panuganti
- Professor Jayashankar, Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Sridev Mohapatra
- Birla Institute of Technology and Science Pilani, Hyderabad Campus, Secunderabad, Telangana, 500078, India
| | - C Kannan
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, 500030, India.
| |
Collapse
|
6
|
Zhang D, Qu S, Wang M, Liu Y, Xu C, Kan H, Wang Y, Dong K. Application of a three dimensional polyethyleneimine functionalized graphene oxide aerogel as an adsorbent for the determination of phytohormones in ginseng. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5630-5638. [PMID: 37853757 DOI: 10.1039/d3ay01368e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Aerogels have attracted considerable attention in sample pretreatment for their outstanding properties, such as the unique porous structure, large surface area and abundant modifiable active sites. The present research reports a three-dimensional interconnected porous network aerogel (PEI-AGO) manufactured based on graphene oxide (GO), polyethyleneimine (PEI) and agar as basic materials through a vacuum freeze-drying treatment. The PEI-AGO aerogel exhibits great potential as a solid phase extraction adsorbent for the selective purification of six endogenous plant hormones in conjunction with high performance liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS). Several factors affecting the extraction efficiency were investigated. Under the optimized extraction conditions, a wide linear range of 0.5-100 ng mL-1 with a good linearity (r > 0.9934) was observed. Low limits of detection (LODs) and limits of quantification (LOQs) were obtained in the range of 0.032-0.155 ng mL-1 and 0.107-0.518 ng mL-1, respectively. Furthermore, the relative recoveries for spiked ginseng samples exhibited remarkable consistency, ranging from 90.2% to 117.6%, with a relative standard deviation (RSD) of ≤9.4% (n = 3). In summary, PEI-AGO has proven to be an effective adsorbent for the pretreatment and enrichment of phytohormones which can be used for the determination of trace endogenous acidic plant hormones in ginseng leaves.
Collapse
Affiliation(s)
- Dongxue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Shuai Qu
- Jilin Institute of Biology, 1244 Qianjin Street, Changchun 130012, Jilin, China
| | - Mingyue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Yuhan Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| |
Collapse
|
7
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
8
|
Zhang DX, Wang MY, Lin WB, Qu S, Ji L, Xu C, Kan H, Dong K. Recent advances in emerging application of functional materials in sample pretreatment methods for liquid chromatography-mass spectrometry analysis of plant growth regulators: A mini-review. J Chromatogr A 2023; 1704:464130. [PMID: 37302252 DOI: 10.1016/j.chroma.2023.464130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Plant growth regulators (PGRs) are a class of small molecular compounds, which can remarkably affect the physiological process of plants. The complex plant matrix along with a wide polarity range and unstable chemical properties of PGRs hinder their trace analysis. In order to obtain a reliable and accurate result, a sample pretreatment process must be carried out, including eliminating the interference of the matrix effect and pre-concentrating the analytes. In recent years, the research of functional materials in sample pretreatment has experienced rapid growth. This review comprehensively overviews recent development in functional materials covering one-dimensional materials, two-dimensional materials, and three-dimensional materials applied in the pretreatment of PGRs before liquid chromatography-mass spectrometry (LC-MS) analysis. Besides, the advantages and limitations of the above functionalized enrichment materials are discussed, and their future trends have been prospected. The work could be helpful to bring new insights for researchers engaged in functional materials in sample pretreatment of PGRs based on LC-MS.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Ming-Yue Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Wen-Bo Lin
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Shuai Qu
- Biology Institute of Jilin province, 1244 Qianjin Street, Changchun 130012, Jilin, China
| | - Li Ji
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China
| | - Hong Kan
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, Jilin, China.
| |
Collapse
|
9
|
Synthesis of spindle-like amino-modified Zn/Fe bimetallic metal-organic frameworks as sorbents for dispersive solid-phase extraction and preconcentration of phytohormoes in vegetable samples. Food Chem 2023; 409:135272. [PMID: 36623357 DOI: 10.1016/j.foodchem.2022.135272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Amino-modified Zn/Fe bimetallic metal-organic frameworks (NH2-Zn/Fe-MIL-88) were synthesized using a one-step solvothermal method with FeCl3·6H2O and Zn(NO3)2·6H2O as metal salts and 2-aminoterephthalic acid as organic ligand. The morphology of NH2-Zn/Fe-MIL-88 can be regulated from octahedral-like to spindle-like with changing molar ratios of metal salts. Using NH2-Zn/Fe-MIL-88 as sorbent, a dispersive solid-phase extraction with putting sorbents into sample solution to extract targets was developed to preconcentrate phytohormones in vegetables. To study the extraction efficiency, a series of NH2-Zn/Fe-MIL-88s with varying molar ratios of metal salts were prepared. The results indicated that NH2-Zn/Fe-MIL-88(1) presented the highest extraction efficiency (82.6 %-98.1 %) to phytohormones among all prepared NH2-Zn/Fe-MIL-88(x). The limits of detection were calculated at 0.07-0.15 ng/mL. The adsorption isotherms and kinetic parameters of NH2-Zn/Fe-MIL-88 for phytohormones were conformed to Langmuir and pseudo-second-order models. The NH2-Zn/Fe-MIL-88 as sorbent combined with HPLC was applied to detect phytohormones in cucumber and tomato samples.
Collapse
|
10
|
Chen D, Xu X, Wang B, Bu X, Zhang M, Xu X, Shi N. Natural cotton fiber-supported liquid extraction for convenient protein-rich aqueous sample preparation: Determination of glucocorticoids in milk and plasma as a proof-of-concept study. Talanta 2023; 260:124618. [PMID: 37156209 DOI: 10.1016/j.talanta.2023.124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Protein-rich aqueous samples such as milk and plasma usually require complex sample preparation steps prior to instrumental analysis. This study proposed a novel cotton fiber-supported liquid extraction (CF-SLE) method for convenient sample preparation. Natural cotton fiber was directly loaded into a syringe tube to conveniently construct the extraction device. No filter frits were required due to the fibrous feature of the cotton fibers. The cost of the extraction device was less than 0.5 CNY, and the costly syringe tube could be easily reused to decrease the cost further. Extraction used a simple two-step protocol: protein-rich aqueous sample loading and elution. Emulsification and centrifugation steps involved in the classic liquid-liquid extraction were avoided. As a proof-of-concept study, the glucocorticoids in milk and plasma were extracted with satisfactory extraction recoveries. Coupled with liquid chromatography-tandem mass spectrometry, a sensitive quantification method was established with excellent linearity (R2 > 0.991) as well as good accuracy (85.7-117.3%) and precision (<14.3%). This system is simple, low-cost, reproducible, and easy to automate. Thus, the proposed CF-SLE method is promising for the routine sample preparation of protein-rich aqueous samples prior to instrumental analysis.
Collapse
Affiliation(s)
- Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 45001, China.
| | - Xinli Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinmiao Bu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Manyu Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 45001, China.
| | - Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Kuang Y, Li M, Hu S, Yang L, Liang Z, Wang J, Jiang H, Zhou X, Su Z. One-Step Co-Electrodeposition of Copper Nanoparticles-Chitosan Film-Carbon Nanoparticles-Multiwalled Carbon Nanotubes Composite for Electroanalysis of Indole-3-Acetic Acid and Salicylic Acid. SENSORS (BASEL, SWITZERLAND) 2022; 22:4476. [PMID: 35746260 PMCID: PMC9228024 DOI: 10.3390/s22124476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
A sensitive simultaneous electroanalysis of phytohormones indole-3-acetic acid (IAA) and salicylic acid (SA) based on a novel copper nanoparticles-chitosan film-carbon nanoparticles-multiwalled carbon nanotubes (CuNPs-CSF-CNPs-MWCNTs) composite was reported. CNPs were prepared by hydrothermal reaction of chitosan. Then the CuNPs-CSF-CNPs-MWCNTs composite was facilely prepared by one-step co-electrodeposition of CuNPs and CNPs fixed chitosan residues on modified electrode. Scanning electron microscope (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were used to characterize the properties of the composite. Under optimal conditions, the composite modified electrode had a good linear relationship with IAA in the range of 0.01-50 μM, and a good linear relationship with SA in the range of 4-30 μM. The detection limits were 0.0086 μM and 0.7 μM (S/N = 3), respectively. In addition, the sensor could also be used for the simultaneous detection of IAA and SA in real leaf samples with satisfactory recovery.
Collapse
Affiliation(s)
- Yiwen Kuang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Mengxue Li
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Shiyu Hu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Lu Yang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Zhanning Liang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Jiaqi Wang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Hongmei Jiang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Xiaoyun Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Zhaohong Su
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| |
Collapse
|
12
|
Li M, Kuang Y, Fan Z, Qin X, Hu S, Liang Z, Liu Q, Zhang W, Wang B, Su Z. Simultaneous Electrochemical Sensing of Indole-3-Acetic Acid and Salicylic Acid on Poly(L-Proline) Nanoparticles-Carbon Dots-Multiwalled Carbon Nanotubes Composite-Modified Electrode. SENSORS (BASEL, SWITZERLAND) 2022; 22:2222. [PMID: 35336393 PMCID: PMC8949798 DOI: 10.3390/s22062222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023]
Abstract
Sensitive simultaneous electrochemical sensing of phytohormones indole-3-acetic acid and salicylic acid based on a novel poly(L-Proline) nanoparticles-carbon dots composite consisting of multiwalled carbon nanotubes was reported in this study. The poly(L-Proline) nanoparticles-carbon dots composite was facilely prepared by the hydrothermal method, and L-Proline was used as a monomer and carbon source for the preparation of poly(L-Proline) nanoparticles and carbon dots, respectively. Then, the poly(L-Proline) nanoparticles-carbon dots-multiwalled carbon nanotubes composite was prepared by ultrasonic mixing of poly(L-Proline) nanoparticles-carbon dots composite dispersion and multiwalled carbon nanotubes. Scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscopy, ultraviolet visible spectroscopy, energy dispersive spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and linear sweep voltammetry were used to characterize the properties of the composite. poly(L-Proline) nanoparticles were found to significantly enhance the conductivity and sensing performance of the composite. Under optimal conditions, the composite-modified electrode exhibited a wide linear range from 0.05 to 25 μM for indole-3-acetic acid and from 0.2 to 60 μM for salicylic acid with detection limits of 0.007 μM and 0.1 μM (S/N = 3), respectively. In addition, the proposed sensor was also applied to simultaneously test indole-3-acetic acid and salicylic acid in real leaf samples with satisfactory recovery.
Collapse
Affiliation(s)
- Mengxue Li
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| | - Yiwen Kuang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Ziyan Fan
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| | - Xiaoli Qin
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| | - Shiyu Hu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| | - Zhanning Liang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| | - Qilin Liu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| | - Weizhong Zhang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| | - Birui Wang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| | - Zhaohong Su
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (Z.F.); (X.Q.); (S.H.); (Z.L.); (Q.L.); (W.Z.); (B.W.)
| |
Collapse
|
13
|
Analysis of multiple-phytohormones during fruit development in strawberry by using miniaturized dispersive solid-phase extraction based on ionic liquid-functionalized carbon fibers. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
LIN S, DING Q, ZHANG W, ZHANG L, LU Q. [Novel adsorption material for solid phase extraction in sample pretreatment of plant hormones]. Se Pu 2021; 39:1281-1290. [PMID: 34811999 PMCID: PMC9404001 DOI: 10.3724/sp.j.1123.2021.03045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/29/2022] Open
Abstract
Plant hormones (PHs) are of significance in plant growth, as they regulate the various processes related to plant growth, development, and resistance. Sensitive and precise quantitative analysis of PHs is a bottleneck in plant science research. Currently, liquid chromatography-tandem mass spectrometry is used for the accurate and efficient detection of PHs. Sample pretreatment is an indispensable step in the chromatography-mass spectrometry analysis of PHs because it directly affects the sensitivity and accuracy of subsequent detection methods. Among various pretreatment methods for PHs, solid phase extraction (SPE) is the most widely used. Various new types of SPE, such as dispersive SPE, magnetic SPE, and solid phase microextraction, have been developed by modifying the extraction cartridge. The choice of adsorption material is the key factor in the abovementioned SPE methods, which has a decisive effect on the extraction, purification, and enrichment effects of the target substance in the sample pretreatment process. Carbon-based materials, including carbon nanotubes, graphene, carbon and nitrogen compounds, as well as organic frameworks, including metal organic frameworks and covalent organic materials, are suitable adsorption materials because of their designable structure, large specific surface area, and good stability. Molecularly imprinted polymers and supramolecular compounds show specific molecular recognition based on host-guest interactions, which can significantly improve the selectivity of sample pretreatment methods. In this paper, SPE-related technology and the abovementioned types of functionalized adsorption materials in the pretreatment of PHs prevalent in the past five years have been reviewed. The related development trends are also summarized.
Collapse
|
15
|
Zhang T, Li N, Chen G, Xu J, Ouyang G, Zhu F. Stress symptoms and plant hormone-modulated defense response induced by the uptake of carbamazepine and ibuprofen in Malabar spinach (Basella alba L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148628. [PMID: 34328997 DOI: 10.1016/j.scitotenv.2021.148628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Due to their wide applications and extensive discharges, pharmaceuticals have recently become a potential risk to aquatic and terrestrial organisms. The uptake of pharmaceuticals have been shown to stimulate plant defense systems and induce phytotoxic effects. Signaling molecules such as plant hormones play crucial roles in plant stress and defense responses, but the relationship between these molecules and pharmaceutical uptake has rarely been investigated. In this study, two common pharmaceuticals, carbamazepine and ibuprofen, and three stress-related plant hormones, jasmonic acid, salicylic acid, and abscisic acid, were simultaneously tracked in the roots and stems of Malabar spinach (Basella alba L.) via an in vivo solid phase microextraction (SPME) method. We also monitored stress-related physiological markers and enzymatic activities to demonstrate plant hormone modulation. The results indicate that pharmaceutical uptake, subsequent stress symptoms, and the defense response were all significantly correlated with the upregulation of plant hormones. Moreover, the plant hormones in the exposure group failed to recover to normal levels, indicating that plants containing pharmaceutical residues might be subject to potential risks.
Collapse
Affiliation(s)
- Tianlang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
16
|
Nasiri A, Jahani R, Mokhtari S, Yazdanpanah H, Daraei B, Faizi M, Kobarfard F. Overview, consequences, and strategies for overcoming matrix effects in LC-MS analysis: a critical review. Analyst 2021; 146:6049-6063. [PMID: 34546235 DOI: 10.1039/d1an01047f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The high-performance liquid chromatography-mass spectrometry (LC-MS) technique is widely applied to routine analysis in many matrices. Despite the enormous application of LC/MS, this technique is subjected to drawbacks called matrix effects (MEs) that could lead to ion suppression or ion enhancement. This phenomenon can exert a deleterious impact on the ionization efficacy of an analyte and subsequently on the important method performance parameters. LC-MS susceptibility to MEs is the main challenge of this technique in the analysis of complex matrices such as biological and food samples. Nowadays, the assessment, estimation, and overcoming of the MEs before developing a method is mandatory in any analysis. Two main approaches including the post-column infusion and post-extraction spike are proposed to determine the degree of MEs. Different strategies can be adopted to reduce or eliminate MEs depending on the complexity of the matrix. This could be done by improving extraction and clean-up methods, changing the type of ionization employed, optimization of liquid chromatography conditions, and using corrective calibration methods. This review article will provide an overview of the MEs as the Achilles heel of the LC-MS technique, the causes of ME occurrence, their consequences, and systemic approaches towards overcoming MEs during LC-MS-based multi-analyte procedures.
Collapse
Affiliation(s)
- Azadeh Nasiri
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jahani
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaya Mokhtari
- Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Yazdanpanah
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Daraei
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Central Research Laboratories, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Dmitrienko SG, Apyari VV, Tolmacheva VV, Gorbunova MV. Liquid–Liquid Extraction of Organic Compounds into a Single Drop of the Extractant: Overview of Reviews. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821080049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
LIAO Y, HUANG X, WANG Z, GAN R. [Research progress in the application of magnetic solid phase extraction based on carbon based magnetic materials in food analysis]. Se Pu 2021; 39:368-375. [PMID: 34227756 PMCID: PMC9404120 DOI: 10.3724/sp.j.1123.2020.05038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 12/07/2022] Open
Abstract
Trace toxic substances in food pose a serious threat to human health, and need to be detected and analyzed to ensure food safety. However, there are many kinds of toxic substances in food, with small amounts and complex matrices, making it necessary to select an appropriate sample pretreatment technology for extraction and purification. There are some disadvantages to sample pretreatment methods such as solid phase extraction and liquid-liquid extraction, in terms of poor selectivity, significant influence of matrix interference, large sample requirement, long extraction time, use of a large amount of harmful organic solvents, and cumbersome and time-consuming operation. Magnetic solid phase extraction (MSPE) combines the advantages of magnetic separation and traditional SPE technology, avoids time-consuming column loading, and can extract the target analyte efficiently. Because of its advantages, in that it has simple operation, is time-saving and fast, requires no centrifugal filtration, and is environmentally friendly, it is considered an efficient sample pretreatment technology and applied in food analysis. The adsorption capacity and selectivity of the magnetic adsorbent used in MSPE are the key factors affecting the extraction efficiency and selectivity of MSPE, and play a key role in the accuracy of the established method. Carbon-based magnetic materials are a type of new functional magnetic materials prepared by the co-precipitation of carbon-based materials (carbon nanotubes, graphene, metal-organic framework-derived carbon, or activated carbon) and magnetic materials. In order to endow carbon-based magnetic materials with the advantages of both, carbon materials and magnetic materials, while also reflecting the advantages of high specific surface area, good stability, low cost, environmental friendliness, excellent physical and chemical properties, high porosity, and high adsorption capacity, proper functional modification is needed. Carbon-based magnetic materials modified by functionalization can efficiently enrich organic and inorganic analytes with different properties, and have seen significant progress in environmental analysis, biological detection, pollution control, and other fields. In recent years, MSPE technology based on carbon-based magnetic materials has been gradually applied in food analysis and pretreatment, but its use is still in infancy and holds immense application potential. Reference to more than 50 papers published in SCI and Chinese core journals over the past four years reveals that carbon-based materials include carbon nanotubes modified by functional groups, reagents, or materials; graphene, graphene oxide, and reduced graphene oxide; carbon derived from a gold organic framework; activated carbon biochar; and nanodiamond. The harmful substances in food samples include esters, mycotoxins, polycyclic aromatic hydrocarbons, antibiotics, alkaloids, phenols, vitamins, and antibiotics. Based on the classification of carbon-based materials, this review reveals that carbon-based magnetic materials have good preconcentration ability for harmful substances in food samples. MSPE can be combined with GC-MS, liquid chromatography-high resolution mass spectrometry (LC-HRMS), ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS), ultra high performance liquid chromatography-Q-Exactive high resolution mass spectrometry (UHPLC-Q-Exactive HRMS), high performance liquid chromatography-diode array detection (HPLC-DAD), gas chromatography micro-electron capture detection (GC-μECD), high performance liquid chromatography fluorescence with post-column photochemical derivatization (HPLC-PCD-FLD), and HPLC-UV to analyze food samples. These combined technologies have high accuracy and recovery. However, the synthesis methods of carbon-based magnetic materials such as carbon nanotubes and graphene, incur high energy consumption and high cost, and involve complex processes, which limit their application. Therefore, a carbon-based magnetic adsorbent with low cost, high selectivity, and high extraction efficiency was developed by further exploring functional modification with biochar as a carbon base. This is a very promising direction to develop MSPE technology utilizing biochar-based magnetic materials for food sample pretreatment. This review provides a theoretical basis and technical support for the wide application of carbon-based magnetic materials in MSPE technology for food analysis.
Collapse
|
19
|
Ultrasound-assisted dispersive-filter extraction coupled with high-performance liquid chromatography: A rapid miniaturized method for the determination of phenylurea pesticides in vegetables and fruits. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Portable automated handheld sample collection-preparation instrument for airborne volatile substances. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Cao D, Barbier F, Yoneyama K, Beveridge CA. A Rapid Method for Quantifying RNA and Phytohormones From a Small Amount of Plant Tissue. FRONTIERS IN PLANT SCIENCE 2020; 11:605069. [PMID: 33329677 PMCID: PMC7717934 DOI: 10.3389/fpls.2020.605069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 05/23/2023]
Abstract
Phytohormones are involved in most plant physiological processes and the quantification of endogenous phytohormone levels and related gene expressions is an important approach to studying phytohormone functions. However, the quantification of phytohormones is still challenging due to their extremely low endogenous level in plant tissues and their high chemical diversity. Therefore, developing a method to simultaneously quantify phytohormone levels and RNA would strongly facilitate comparative analyses of phytohormones and gene expression. The present work reports a convenient extraction protocol enabling multivariate analysis of phytohormones and RNA from small amounts of plant material (around 10 mg). This high-throughput ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method demonstrates quantification of phytohormones and their related metabolites from four plant hormone classes: cytokinin, auxin, abscisic acid, and gibberellin. The UPLC-MS/MS method can quantify thirteen phytohormones and their metabolites simultaneously in 14 min. To validate the developed method, we determined the dynamic profiles of phytohormones and gene expressions in small axillary shoot buds in garden pea. This new method is applicable to quantification analysis of gene expression and multiple phytohormone classes in small amounts of plant materials. The results obtained using this method in axillary buds provide a basis for understanding the phytohormone functions in shoot branching regulation.
Collapse
Affiliation(s)
- Da Cao
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Francois Barbier
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | | |
Collapse
|
22
|
Jon CS, Zou Y, Zhao J, Ri HC, Wang L, Kaw HY, Meng LY, Shang H, Li D. Simultaneous determination of multiple phytohormones in tomato by ionic liquid-functionalized carbon fibers-based solid-phase microextraction coupled with liquid chromatography-mass spectrometry. Anal Chim Acta 2020; 1137:143-155. [PMID: 33153598 DOI: 10.1016/j.aca.2020.09.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022]
Abstract
Phytohormones are interrelated by synergistic or antagonistic crosstalk and play important roles in the regulation of plant growth and development. In order to understand the interaction between phytohormones in the plant physiological network, it is necessary to determine trace levels of multiple phytohormones simultaneously in a complex matrix. Here, we synthesized ionic liquids containing different functional groups and modified the surface of carbon fibers with them. Based on these carbon fibers-ionic liquid (CFs-IL) materials, a solid phase microextraction method was developed to enable the simultaneous extraction of phytohormones. The adsorption specificity of multiple phytohormones was studied by identifying the hydrophobic, electrostatic, and π-π interactions, as well as hydrogen bonds, which favor simultaneous extraction of the relevant acidic, alkaline and neutral phytohormones by improving compatibility. The proposed method, coupled with liquid chromatography-tandem mass spectrometry, was applied to the simultaneous determination of 13 acidic, alkaline and neutral phytohormones in tomato. The limits of quantification were found to be in the range of 0.32-54.05 ng mL-1 and 4.6-185.8 pg mL-1, respectively, when measured by QQQ and Q-TOF. All of the relative recoveries were in the range of 94.40-113.37% with RSDs ≤15.36% (n = 3) for spiked tomato samples. This method is expected to be widely applied to multiple phytohormones analysis for in-depth researches concerning the physiological networks of plants.
Collapse
Affiliation(s)
- Chol-San Jon
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Yilin Zou
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Jinhua Zhao
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Hyok-Chol Ri
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Liyuan Wang
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Han Yeong Kaw
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Long-Yue Meng
- Department of Environmental Science, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China
| | - Haibo Shang
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China.
| | - Donghao Li
- Department of Chemistry, Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Park Road 977, Yanji, 133002, Jilin Province, PR China.
| |
Collapse
|
23
|
Determination of thirteen acidic phytohormones and their analogues in tea (Camellia sinensis) leaves using ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1149:122144. [PMID: 32447251 DOI: 10.1016/j.jchromb.2020.122144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/10/2020] [Accepted: 05/01/2020] [Indexed: 01/21/2023]
Abstract
Trace plant hormones play an important role in tea growth, development and quick response to biotic and abiotic stresses. However, lack of a sensitive method limits the research on plant hormone regulation for tea quality and yields. Herein, a highly sensitive method was developed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for profiling and quantification of 13 acidic phytohormones and their analogues, including auxins, abscisic acid and gibberellins in fresh tea leaves. After optimizing the different C18 columns and mobile phase systematically, an Agilent Eclipse Plus C18 column combined with the mobile phase A (acetonitrile) and B (water) was employed. Target acidic phytohormones were extracted using acidified methanol, and tea matrices were cleaned up by dispersive solid phase adsorbents of polyvinylpolypyrrolidone (PVPP) and graphitized carbon black (GCB) followed by polymer-based mixed-mode cation-exchange solid phase extraction. The method showed good linearity for all 13 analytes with regression coefficients (R2) > 0.998. Satisfactory recoveries of 12 analytes spiked with three levels ranged from 71.8% to 109.9%, while intra-day and inter-day precisions were below 20%. Limits of detection (LODs) and limits of quantitation (LODs) for 12 acidic phytohormones were 0.1-4.2 μg kg-1 and 0.3-13.9 μg kg-1, respectively. Finally, this method was firstly employed to analyze 13 analytes in fresh tea leaves (with the treatment of dormancy, light qualities, exogenous hormones and infestation of pests), highlighting its sufficient capability for rapid analysis of multiclass phytohormones in agriculture field.
Collapse
|
24
|
Xie X, Huang S, Zheng J, Ouyang G. Trends in sensitive detection and rapid removal of sulfonamides: A review. J Sep Sci 2020; 43:1634-1652. [PMID: 32043724 DOI: 10.1002/jssc.201901341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
25
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
26
|
Wang Y, Wu S, Wu D, Shen J, Wei Y, Wang C. Amino bearing core-shell structured magnetic covalent organic framework nanospheres: Preparation, postsynthetic modification with phenylboronic acid and enrichment of monoamine neurotransmitters in human urine. Anal Chim Acta 2020; 1093:61-74. [DOI: 10.1016/j.aca.2019.09.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/01/2022]
|
27
|
Jin H, Liu S, Zenda T, Wang X, Liu G, Duan H. Maize leaves drought-responsive genes revealed by comparative transcriptome of two cultivars during the filling stage. PLoS One 2019; 14:e0223786. [PMID: 31665169 PMCID: PMC6821100 DOI: 10.1371/journal.pone.0223786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/27/2019] [Indexed: 02/03/2023] Open
Abstract
Like other important cereal crop in modern agricultural production, maize is also threatened by drought. And the drought stress during maize filling stage will directly affect the quality (protein or oil concentration) and also the weight of grain. Therefore, different from previous studies focusing on inbred lines and pot experiment at seedling stage, current study selected filling stage of the adult plant and planting maize in the experimental field. Two hybrids cultivars with different drought tolerant were used for drought and water treatment respectively. We performed transcriptome sequencing analysis of 4 groups, 12 samples, and obtained 651.08 million raw reads. Then the data were further processed by mapping to a reference genome, GO annotation, enrichment analysis and so on. Among them we focus on the different change trends of water treatment and drought treatment, and the different responses of two drought-tolerant cultivars to drought treatment. Through the analysis, several transcripts which encode nitrogen metabolic, protein phosphorylation, MYB,AP2/ERF, HB transcriptional factor, O-glycosyl hydrolases and organic acid metabolic process were implicated with maize drought stress. Our data will offer insights of the identification of genes involved in maize drought stress tolerance, which provides a theoretical basis for maize drought resistance breeding.
Collapse
Affiliation(s)
- Hongyu Jin
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xuan Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Guo Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, China
- * E-mail:
| |
Collapse
|
28
|
Li WK, Shi YP. Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|