1
|
Chen R, Muensterman D, Field J, Ng C. Deriving Membrane-Water and Protein-Water Partition Coefficients from In Vitro Experiments for Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39757451 DOI: 10.1021/acs.est.4c06734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The phospholipid membrane-water partition coefficients (KMW) and equilibrium binding affinities for human serum albumin (HSA) of 60 structurally diverse perfluoroalkyl and polyfluoroalkyl substances (PFAS) were evaluated through laboratory measurements and modeling to enhance our understanding of PFAS distribution in organisms. Per- and polyfluoroalkyl carboxylic acids exhibited a 0.36 ± 0.01 log-unit increase in KMW as the fluorinated carbon chain length increased from C4 to C16, while per- and polyfluoroalkyl sulfonates showed a 0.37 ± 0.02 log-unit increase. The highest HSA affinity range was observed between C6 and C10, with the following structural subclass order: per- and polyfluoroalkyl sulfonates ≈ ether sulfonic acids > polyfluoroalkyl carboxylic acids > fluorotelomer unsaturated carboxylic acids > phosphate diesters ≈ per- and polyfluoroether carboxylic acids. A comparison between association rate constants (KA) and HSA-PFAS molecular docking predictions with AutoDock Vina indicated that modeling could effectively predict the affinity of PFAS to HSA, especially for PFAS carbon chain lengths from C4 to C10. Based on in vitro results, exposure-dependent PFAS partitioning in organisms was modeled by comparing distribution coefficients between PFAS in phospholipid membranes and HSA at different PFAS concentrations and demonstrated that at lower concentrations, PFAS had higher partitioning in HSA, while with increasing concentration, the proportion of binding relative to the aqueous phase shifted toward the phospholipid membrane. Few studies have compared the bioaccumulation of PFAS in phospholipid membranes and HSA. This research reports that protein-water distribution coefficients are higher than membrane-water partitioning coefficients at lower PFAS concentrations, which may have implications for interpreting exposure data and toxicity experiments.
Collapse
Affiliation(s)
- Ruiwen Chen
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Derek Muensterman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jennifer Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Carla Ng
- Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
2
|
Starnes HM, Green AJ, Reif DM, Belcher SM. An in vitro and machine learning framework for quantifying serum albumin binding of per- and polyfluoroalkyl substances. Toxicol Sci 2025; 203:67-78. [PMID: 39298512 DOI: 10.1093/toxsci/kfae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a diverse class of anthropogenic chemicals; many are persistent, bioaccumulative, and mobile in the environment. Worldwide, PFAS bioaccumulation causes serious adverse health impacts, yet the physiochemical determinants of bioaccumulation and toxicity for most PFAS are not well understood, largely due to experimental data deficiencies. As most PFAS are proteinophilic, protein binding is a critical parameter for predicting PFAS bioaccumulation and toxicity. Among these proteins, human serum albumin (HSA) is the predominant blood transport protein for many PFAS. We previously demonstrated the utility of an in vitro differential scanning fluorimetry assay for determining relative HSA binding affinities for 24 PFAS. Here, we report HSA affinities for 65 structurally diverse PFAS from 20 chemical classes. We leverage these experimental data, and chemical/molecular descriptors of PFAS, to build 7 machine learning classifier algorithms and 9 regression algorithms, and evaluate their performance to identify the best predictive binding models. Evaluation of model accuracy revealed that the top-performing classifier model, logistic regression, had an AUROC (area under the receiver operating characteristic curve) statistic of 0.936. The top-performing regression model, support vector regression, had an R2 of 0.854. These top-performing models were then used to predict HSA-PFAS binding for chemicals in the EPAPFASINV list of 430 PFAS. These developed in vitro and in silico methodologies represent a high-throughput framework for predicting protein-PFAS binding based on empirical data, and generate directly comparable binding data of potential use in predictive modeling of PFAS bioaccumulation and other toxicokinetic endpoints.
Collapse
Affiliation(s)
- Hannah M Starnes
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, United States
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27713, United States
| | - Scott M Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
3
|
Zhou X, Wang X, Ou T, Huang L, He B. Association between family economic situation and serum PFAS concentration in American adults with hypertension and hyperlipemia. Sci Rep 2024; 14:20799. [PMID: 39242648 PMCID: PMC11379923 DOI: 10.1038/s41598-024-71664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Although there is an association between income status and concentration of perfluoroalkyl and polyfluoroalkyl substance (PFAS), the association remains uncertain in patients with hypertension, hyperlipidemia, and comorbidities. Data from the 2013-2016 National Health and Nutrition Examination Survey were analyzed. A total of 2665 adults were included, and the data included participants' serum PFAS (perfluorooctanoic acid [PFOA], perfluorononaic acid, perfluorodecanoic acid, perfluoroundecanoic acid, perfluorohexane sulfonic acid, and perfluorooctane sulfonic acid) levels and selected covariates. Multivariate linear regression models were used to examine the association between the ratio of family income to poverty (PIR) and individual serum PFAS concentrations in the hypertensive and/or hyperlipidemia groups after adjusting for covariates. The potential effects of sex and age on the results were explored using stratified analysis. A mediating effect model was used to explore the mediating effects of body mass index (BMI) and waist circumference on the association results. After adjusting for potential confounders, for hyperlipidemia and comorbidities (hypertension and hyperlipidemia), serum levels of multiple common PFAS increased by 0.09% (95%Confidence interval [CI] 0.02-0.15%) to 0.13% (95%CI 0.08-0.19%) and 0.10% (95%CI 0.02-0.17%) to 0.12% (95%CI 0.06-0.18%), respectively, with each 1% increase in PIR. The covariate model and stratified analyses results suggested the potential effects of different covariates such as age and sex, leading to changes in the statistical significance of the association results. BMI significantly mediated the effect of PIR on PFOA in hyperlipidemia (13%, P < 0.001). Household income in adults with hyperlipidemia and comorbidities positively correlated with serum PFAS concentration in the United States. Obesity played an indispensable mediating role in the association between economic income and PFAS concentration.
Collapse
Affiliation(s)
- Xingye Zhou
- Hospital Infection Management and Disease Prevention and Control Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xingren Wang
- Department for Endemic and Chronic Disease Control, Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, China
| | - Tingting Ou
- Department for Endemic and Chronic Disease Control, Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, China
| | - Lei Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin He
- Hainan Provincial Center for Disease Control and Prevention, 40 Haifu Avenue, Haikou, Hainan, China.
| |
Collapse
|
4
|
Shi B, Wang J. Prediction of the binding interactions between rosmarinic acid and cysteinyl leukotriene receptor type 1 by molecular docking and immobilized receptor chromatography. RSC Adv 2024; 14:24082-24091. [PMID: 39091377 PMCID: PMC11292110 DOI: 10.1039/d4ra01858c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
Drug-protein interaction analysis is still at the center of research efforts to illustrate binding mechanisms and provide valuable information for selecting drug candidates with ideal properties in the early drug discovery stage. We present the prediction of the binding of rosmarinic acid (RA) to cysteinyl leukotriene receptor type1 (CysLTR1) by molecular docking. According to our findings, CysLTR1 is a potential anti-inflammatory target of RA. Under this assumption, we prepared the immobilized CysLTR1 column via a one-step method and characterized the immobilized CysLTR1 by fluorescent and chromatographic analyses. Furthermore, we used the immobilized CysLTR1 column to evaluate the binding interactions between RA and the immobilized receptor. Molecular docking showed that Tyr 249, Phe 174, Thr 280, Pro 177, and Thr 100 are the main sites for RA to interact with CysLTR1. The main forces that drive the findings are hydrogen bonds and hydrophobic interactions. Characterization results show that CysLTR1 is successfully immobilized with high specificity and stability. Almost no non-specific binding is observed on the immobilized CysLTR1 gels. The association constant and the binding sites are calculated to be 7.268 × 105 L mol-1 and 1.237 × 10-8 mol L-1 by injection amount-dependent method. These results, taken together, confirm the potential target of RA on the anti-inflammatory effect. We believe that it can provide valuable reference information on the in-depth exploration of drug-protein interaction mechanisms, and lead compound screening by this method.
Collapse
Affiliation(s)
- Bowen Shi
- Xi'an International Medical Center Hospital China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University China
| |
Collapse
|
5
|
Qin W, Escher BI, Huchthausen J, Fu Q, Henneberger L. Species Difference? Bovine, Trout, and Human Plasma Protein Binding of Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9954-9966. [PMID: 38804966 PMCID: PMC11171458 DOI: 10.1021/acs.est.3c10824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.
Collapse
Affiliation(s)
- Weiping Qin
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Julia Huchthausen
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Qiuguo Fu
- Department
of Environmental Analytical Chemistry, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| |
Collapse
|
6
|
Yadav A, Vuković L, Narayan M. An Atomic and Molecular Insight into How PFOA Reduces α-Helicity, Compromises Substrate Binding, and Creates Binding Pockets in a Model Globular Protein. J Am Chem Soc 2024; 146:12766-12777. [PMID: 38656109 DOI: 10.1021/jacs.4c02934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose significant health risks due to their widespread presence in various environmental and biological matrices. However, the molecular-level mechanisms underlying the interactions between PFAS and biological constituents, including proteins, carbohydrates, lipids, and DNA, remain poorly understood. Here, we investigate the interactions between a legacy PFAS, viz. perfluorooctanoic acid (PFOA), and the milk protein β-lactoglobulin (BLG) obtained using a combination of experimental and computational techniques. Circular dichroism studies reveal that PFOA perturbs the secondary structure of BLG, by driving a dose-dependent loss of α-helicity and alterations in its β-sheet content. Furthermore, exposure of the protein to PFOA attenuates the on-rate constant for the binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANS), suggesting potential functional impairment of BLG by PFOA. Steered molecular dynamics and umbrella sampling calculations reveal that PFOA binding leads to the formation of an energetically favorable novel binding pocket within the protein, when residues 129-142 are steered to unfold from their initial α-helical structure, wherein a host of intermolecular interactions between PFOA and BLG's residues serve to insert the PFOA into the region between the unfolded helix and beta-sheets. Together, the data provide a novel understanding of the atomic and molecular mechanism(s) by which PFAS modulates structure and function in a globular protein, leading to a beginning of our understanding of altered biological outcomes.
Collapse
Affiliation(s)
- Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Bioinformatics Program, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
7
|
Starnes HM, Jackson TW, Rock KD, Belcher SM. Quantitative cross-species comparison of serum albumin binding of per- and polyfluoroalkyl substances from five structural classes. Toxicol Sci 2024; 199:132-149. [PMID: 38518100 PMCID: PMC11057469 DOI: 10.1093/toxsci/kfae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of over 8000 chemicals, many of which are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and the perfluoroalkyl ether acid congener bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model, and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive bioaccumulation and toxicity assessments for PFAS.
Collapse
Affiliation(s)
- Hannah M Starnes
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Thomas W Jackson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Scott M Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27607, USA
| |
Collapse
|
8
|
Lamichhane HB, Arrigan DWM. Modulating the ion-transfer electrochemistry of perfluorooctanoate with serum albumin and β-cyclodextrin. Analyst 2024; 149:2647-2654. [PMID: 38546701 DOI: 10.1039/d3an02164e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are durable synthetic pollutants that persist in the environment and resist biodegradation. Ion-transfer electrochemistry at aqueous-organic interfaces is a simple strategy for the detection of ionised PFAS. Herein, we investigate the modulation of the ion transfer voltammetry of perfluorooctanoate (PFOA) at liquid-liquid micro-interface arrays by aqueous phase bovine serum albumin (BSA) or β-cyclodextrin (β-CD) and examine the determination of association constants for these binding interactions. By tracking the ion transfer current due to ionised, uncomplexed PFOA as a function of BSA or β-CD concentration, titration curves are produced. Fitting of a binding isotherm to these data provides the association constants. The association constant of PFOA with the BSA determined in this way was ca. 105 M-1 assuming a 1 : 1 binding. Likewise, the association constant for PFOA with β-CD was ca. 104 M-1 for a 1 : 1 β-CD-PFOA complex. Finally, the simultaneous effect of both BSA and β-CD on the ion transfer voltammetry of PFOA was studied, showing clearly that PFOA bound to BSA is released (de-complexed) upon addition of β-CD. The results presented here show ion transfer voltammetry as a simple strategy for the study of molecular and biomolecular binding of ionised PFAS and is potentially useful in understanding the affinity of different PFAS with aqueous phase binding agents such as proteins and carbohydrates.
Collapse
Affiliation(s)
- Hum Bahadur Lamichhane
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Damien W M Arrigan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
9
|
Zhang M, Qiu W, Nie R, Xia Q, Zhang D, Pan X. Macronutrient and PFOS bioavailability manipulated by aeration-driven rhizospheric organic nanocapsular assembly. WATER RESEARCH 2024; 253:121334. [PMID: 38382293 DOI: 10.1016/j.watres.2024.121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Ubiquitous presence of the extremely persistent pollutants, per- and polyfluoroalkyl substances, is drawing ever-increasing concerns for their high eco-environmental risks which, however, are insufficiently considered based on the assembly characteristics of those amphiphilic molecules in environment. This study investigated the re-organization and self-assembly of perfluorooctane sulfonate (PFOS) and macronutrient molecules from rhizospheric organic (RhO) matter induced with a common operation of aeration. Atomic force microscopy (AFM) with infrared spectroscopy (IR)-mapping clearly showed that, after aeration and stabilization, RhO nanocapsules (∼ 1000 nm or smaller) with a core of PFOS-protein complexes coated by "lipid-carbohydrate" layers were observed whereas the capsule structure with a lipid core surrounded by "protein-carbohydrate-protein" multilayers was obtained in the absence of PFOS. It is aeration that exerted the disassociation of pristine RhO components, after which the environmental concentration PFOS restructured the self-assembly structure in a conspicuous "disorder-to-order" transition. AFM IR-mapping analysis of faeces combined with quantification of component uptake denoted the decreased ingestion and utilization of both PFOS and proteins compared with lipids and carbohydrates when Daphnia magna were fed with RhO nanocapsules. RhO nanocapsules acted as double-edged swords via simultaneously impeding the bioaccessibility of hazardous PFOS molecules and macronutrient proteins; and the latter might be more significant, which caused a malnutrition status within merely 48 h. Elucidating the assembly structure of natural organic matter and environmental concentration PFOS, the finding of this work could be a crucial supplementation to the high-dose-dependent eco-effect investigations on PFOS.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weifeng Qiu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Nie
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoyun Xia
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
10
|
Zhang J, Hu L, Xu H. Dietary exposure to per- and polyfluoroalkyl substances: Potential health impacts on human liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167945. [PMID: 37871818 DOI: 10.1016/j.scitotenv.2023.167945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), dubbed "forever chemicals", are widely present in the environment. Environmental contamination and food contact substances are the main sources of PFAS in food, increasing the risk of human dietary exposure. Numerous epidemiological studies have established the link between dietary exposure to PFAS and liver disease. Correspondingly, PFAS induced-hepatotoxicity (e.g., hepatomegaly, cell viability, inflammation, oxidative stress, bile acid metabolism dysregulation and glycolipid metabolism disorder) observed from in vitro models and in vivo rodent studies have been extensively reported. In this review, the pertinent literature of the last 5 years from the Web of Science database was researched. This study summarized the source and fate of PFAS, and reviewed the occurrence of PFAS in food system (natural and processed food). Subsequently, the characteristics of human dietary exposure PFAS (population characteristics, distribution trend, absorption and distribution) were mentioned. Additionally, epidemiologic evidence linking PFAS exposure and liver disease was alluded, and the PFAS-induced hepatotoxicity observed from in vitro models and in vivo rodent studies was comprehensively reviewed. Lastly, we highlighted several critical knowledge gaps and proposed future research directions. This review aims to raise public awareness about food PFAS contamination and its potential risks to human liver health.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330299, China.
| |
Collapse
|
11
|
Peng M, Xu Y, Wu Y, Cai X, Zhang W, Zheng L, Du E, Fu J. Binding Affinity and Mechanism of Six PFAS with Human Serum Albumin: Insights from Multi-Spectroscopy, DFT and Molecular Dynamics Approaches. TOXICS 2024; 12:43. [PMID: 38250999 PMCID: PMC10819430 DOI: 10.3390/toxics12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach. Multi-spectral analysis shows that perfluorononanoic acid (PFNA) has the best binding capabilities with HSA. The order of binding constants (298 K) is as follows: "Perfluorononanoic Acid (PFNA, 7.81 × 106 L·mol-1) > Perfluoro-2,5-dimethyl-3,6-dioxanonanoic Acid (HFPO-TA, 3.70 × 106 L·mol-1) > Perfluorooctanoic Acid (PFOA, 2.27 × 105 L·mol-1) > Perfluoro-3,6,9-trioxadecanoic Acid (PFO3DA, 1.59 × 105 L·mol-1) > Perfluoroheptanoic Acid (PFHpA, 4.53 × 103 L·mol-1) > Dodecafluorosuberic Acid (DFSA, 1.52 × 103 L·mol-1)". Thermodynamic analysis suggests that PFNA and PFO3DA's interactions with HSA are exothermic, driven primarily by hydrogen bonds or van der Waals interactions. PFHpA, DFSA, PFOA, and HFPO-TA's interactions with HSA, on the other hand, are endothermic processes primarily driven by hydrophobic interactions. Competitive probe results show that the main HSA-PFAS binding site is in the HSA structure's subdomain IIA. These findings are also consistent with the findings of molecular docking. Molecular dynamics simulation (MD) analysis further shows that the lowest binding energy (-38.83 kcal/mol) is fund in the HSA-PFNA complex, indicating that PFNA binds more readily with HSA. Energy decomposition analysis also indicates that van der Waals and electrostatic interactions are the main forces for the HSA-PFAS complexes. Correlation analysis reveals that DFT quantum chemical descriptors related to electrostatic distribution and characteristics like ESP and ALIE are more representative in characterizing HSA-PFAS binding. This study sheds light on the interactions between HSA and PFAS. It guides health risk assessments and control strategies against PFAS, serving as a critical starting point for further public health research.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Yang Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Weihua Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Lu Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Erdeng Du
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
| |
Collapse
|
12
|
Hamid N, Junaid M, Manzoor R, Sultan M, Chuan OM, Wang J. An integrated assessment of ecological and human health risks of per- and polyfluoroalkyl substances through toxicity prediction approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167213. [PMID: 37730032 DOI: 10.1016/j.scitotenv.2023.167213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are also known as "forever chemicals" due to their persistence and ubiquitous environmental distribution. This review aims to summarize the global PFAS distribution in surface water and identify its ecological and human risks through integrated assessment. Moreover, it provides a holistic insight into the studies highlighting the human biomonitoring and toxicological screening of PFAS in freshwater and marine species using quantitative structure-activity relationship (QSAR) based models. Literature showed that PFOA and PFOS were the most prevalent chemicals found in surface water. The highest PFAS levels were reported in the US, China, and Australia. The TEST model showed relatively low LC50 of PFDA and PFOS for Pimephales promelas (0.36 and 0.91 mg/L) and high bioaccumulation factors (518 and 921), revealing an elevated associated toxicity. The risk quotients (RQs) values for P. promelas and Daphnia magna were found to be 269 and 23.7 for PFOS. Studies confirmed that long-chain PFAS such as PFOS and PFOA undergo bioaccumulation in aquatic organisms and induce toxicological effects such as oxidative stress, transgenerational epigenetic effects, disturbed genetic and enzymatic responses, perturbed immune system, hepatotoxicity, neurobehavioral toxicity, altered genetic and enzymatic responses, and metabolism abnormalities. Human biomonitoring studies found the highest PFOS, PFOA, and PFHxS levels in urine, cerebrospinal fluid, and serum samples. Further, long-chain PFOA and PFOS exposure create severe health implications such as hyperuricemia, reduced birth weight, and immunotoxicity in humans. Molecular docking analysis revealed that short-chain PFBS (-11.84 Kcal/mol) and long-chain PFUnDA (-10.53 Kcal/mol) displayed the strongest binding interactions with human serum albumin protein. Lastly, research challenges and future perspectives for PFAS toxicological implications were also discussed, which helps to mitigate associated pollution and ecological risks.
Collapse
Affiliation(s)
- Naima Hamid
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Rakia Manzoor
- State key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ong Meng Chuan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
13
|
Starnes HM, Jackson TW, Rock KD, Belcher SM. Quantitative Cross-Species Comparison of Serum Albumin Binding of Per- and Polyfluoroalkyl Substances from Five Structural Classes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566613. [PMID: 38014292 PMCID: PMC10680784 DOI: 10.1101/2023.11.10.566613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of over 8,000 chemicals that are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this differential scanning fluorimetry assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H,1H,2H,2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of serum albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and perfluoroalkyl ether congeners bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive toxicity assessments for PFAS.
Collapse
Affiliation(s)
- Hannah M. Starnes
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
| | - Thomas W. Jackson
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
- Current address: Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kylie D. Rock
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
- Current address: Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Scott M. Belcher
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, NC 27607, USA
| |
Collapse
|
14
|
Han Y, Cao X. Research Progress of Perfluoroalkyl Substances in Edible Oil-A Review. Foods 2023; 12:2624. [PMID: 37444362 DOI: 10.3390/foods12132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Perfluoroalkyl substances (PFASs) have been widely used in different types of consumer and industrial applications such as surfactants, household cleaning products, textiles, carpets, cosmetics, firefighting foams, and food packaging because of their good stability and special physicochemical properties of hydrophobicity, oleophobicity, high temperature resistance, etc. Meanwhile, PFASs are considered an emerging organic pollutant due to their persistence and potential toxicity to human health. PFASs occur in edible oil, an important component of the global diet, mainly in three ways: raw material contamination, process contamination, and migration from oil contact materials. Thus, the occurrence of PFAS in edible oils has drawn more and more attention in recent years. In this work, the pertinent literature of the last two decades from the Web of Science database was researched. This review systematically addressed the potential sources, the contamination levels, and the progress of the determination of PFASs in edible oil. It aims to provide a relatively whole profile of PFASs in edible oil, render assistance to minimise human exposure to PFASs, and standardise the detection methods of perfluoroalkyl substances in edible oil.
Collapse
Affiliation(s)
- Yingyi Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Cotrina EY, Oliveira Â, Llop J, Quintana J, Biarnés X, Cardoso I, Díaz-Cruz MS, Arsequell G. Binding of common organic UV-filters to the thyroid hormone transport protein transthyretin using in vitro and in silico studies: Potential implications in health. ENVIRONMENTAL RESEARCH 2023; 217:114836. [PMID: 36400222 DOI: 10.1016/j.envres.2022.114836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Several anthropogenic contaminants have been identified as competing with the thyroid hormone thyroxine (T4) for binding to transport proteins as transthyretin (TTR). This binding can potentially create toxicity mechanisms posing a threat to human health. Many organic UV filters (UVFs) and paraben preservatives (PBs), widely used in personal care products, are chemicals of emerging concern due to their adverse effects as potential thyroid-disrupting compounds. Recently, organic UVFs have been found in paired maternal and fetal samples and PBs have been detected in placenta, which opens the possibility of the involvement of TTR in the transfer of these chemicals across physiological barriers. We aimed to investigate a discrete set of organic UVFs and PBs to identify novel TTR binders. The binding affinities of target UVFs towards TTR were evaluated using in vitro T4 competitive binding assays. The ligand-TTR affinities were determined by isothermal titration calorimetry (ITC) and compared with known TTR ligands. In parallel, computational studies were used to predict the 3-D structures of the binding modes of these chemicals to TTR. Some organic UVFs, compounds 2,2',4,4'-tetrahydroxybenzophenone (BP2, Kd = 0.43 μM); 2,4-dihydroxybenzophenone (BP1, Kd = 0.60 μM); 4,4'-dihydroxybenzophenone (4DHB, Kd = 0.83 μM), and 4-hydroxybenzophenone (4HB, Kd = 0.93 μM), were found to display a high affinity to TTR, being BP2 the strongest TTR binder (ΔH = -14.93 Kcal/mol). Finally, a correlation was found between the experimental ITC data and the TTR-ligand docking scores obtained by computational studies. The approach integrating in vitro assays and in silico methods constituted a useful tool to find TTR binders among common organic UVFs. Further studies on the involvement of the transporter protein TTR in assisting the transplacental transfer of these chemicals across physiological barriers and the long-term consequences of prenatal exposure to them should be pursued.
Collapse
Affiliation(s)
- Ellen Y Cotrina
- Institut de Química Avançada de Catalunya (IQAC), Spanish Council of Scientific Research (IQAC-CSIC), 08034, Barcelona, Spain
| | - Ângela Oliveira
- Molecular Neurobiology Group, I3S - Instituto de Investigação e Inovação Em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, San Sebastian, Spain
| | - Jordi Quintana
- Research Programme on Biomedical Informatics, Universitat Pompeu Fabra (UPF-IMIM), 08003, Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull (URL), 08017, Barcelona, Spain
| | - Isabel Cardoso
- Molecular Neurobiology Group, I3S - Instituto de Investigação e Inovação Em Saúde, IBMC - Instituto de Biologia Molecular e Celular, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal.
| | - M Silvia Díaz-Cruz
- ENFOCHEM Group. Institute of Environmental Assessment and Water Research (IDÆA) Excellence Center Severo Ochoa, Spanish Council of Scientific Research (CSIC), 08034, Barcelona, Spain.
| | - Gemma Arsequell
- Institut de Química Avançada de Catalunya (IQAC), Spanish Council of Scientific Research (IQAC-CSIC), 08034, Barcelona, Spain.
| |
Collapse
|
16
|
Guo Y, Shi W, Liang Y, Liu Z, Xie Q, Wu J, Wu Y, Sun X. Spatiotemporal and life history related trends of per- and polyfluoroalkyl substances in Indo-Pacific finless porpoises from south China sea (2007-2020). CHEMOSPHERE 2023; 310:136780. [PMID: 36241122 DOI: 10.1016/j.chemosphere.2022.136780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/13/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) levels in Indo-Pacific finless porpoises (Neophocaena phocaenoides) in the Pearl River Estuary (PRE), near the most economically developed region in China, have not been characterized. We measured the hepatic concentrations of twelve PFASs, including nine perfluoroalkyl carboxylic acids (PFCAs) and three perfluoroalkane sulfonic acids (PFSAs) in the finless porpoises (n = 21) collected from the PRE between 2007 and 2020. The average level of PFSAs was more than 2-times higher than that of PFCAs. The order of six dominant PFASs was perfluorooctane sulfonate (PFOS) > perfluoroundecanoic acid (PFUdA) > perfluorodecanoic acid (PFDA) > perfluorotridecanoic acid (PFTrDA) > perfluorononanoic acid (PFNA) > perfluorododecanoic acid (PFDoDA). The levels of Hepatic PFOS of 29% samples exceeded the no observable adverse effect level (NOAEL) values. The concentration of PFASs in males was significant higher than in females. PFASs levels were significantly negatively correlated with body length in males and positively correlated in females. PFASs levels in the PRE finless porpoises were lower than in humpback dolphins possibly due to different foraging habitat toward the coast and the consumption of less fish. PFCAs levels in finless porpoises from the western PRE were higher compared to Hong Kong, possibly due to the high-intensity sources of terrestrial anthropogenic pollutants. Significant increasing spatiotemporal trends of PFSAs, PFCAs and PFASs were found in finless porpoises from 2007 to 2020, suggesting a continuously increased risk of PFASs exposure for PRE cetaceans in the last decade.
Collapse
Affiliation(s)
- Yongwei Guo
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Wei Shi
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Yuqin Liang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Zhiwei Liu
- School of Ecology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiang Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Xian Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
17
|
Cui X, Gu Q, Juhasz A, Chen Y. In vivo relative bioavailability of perfluorooctanoic acid (PFOA) and its alternative hexafluoropropylene oxide trimer acid (HFPO-TA): Influence of food and mechanisms exploration. ENVIRONMENT INTERNATIONAL 2022; 168:107450. [PMID: 35961272 DOI: 10.1016/j.envint.2022.107450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The extensive use of perfluorooctanoic acid (PFOA), and its substitute hexafluoropropylene oxide trimer acid (HFPO-TA) has resulted in their frequent detection in environmental samples. However, little is known of their bioavailability via oral ingestion and the influence of food co-ingestion on absorption. Here, the relative bioavailability (RBA) of PFOA and HFPO-TA in soil was measured using an in vivo mouse model in the presence of food with different nutritional statuses (n = 11). PFOA and HFPO-TA RBA in soil was variable depending on nutrient co-administration, ranging from 29.8-95.5 % and 43.9-68.0 %, respectively. For both PFOA and HFPO-TA, a significantly negative correlation was observed between RBA and protein content in food (r = 0.57-0.72), while a positive correlation was observed with carbohydrate content (r = 0.51-0.57). Mechanistic studies showed that protein in food decreased PFOA and HFPO-TA RBA by down-regulating the expression of fatty acid binding protein 1 (FABP1) and up-regulating the expression of multidrug resistance associated protein 4 (Mrp4) in the liver, which are responsible for the absorption and efflux of PFOA and HFPO-TA. Dietary carbohydrates promoted albumin synthesis and up-regulated FABP1 expression thereby enhancing absorption and increasing PFOA and HFPO-TA RBA. This study provides an insight into potential dietary strategies for reducing exposure to per- and polyfluoroalkyl substances.
Collapse
Affiliation(s)
- Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Ebinezer LB, Battisti I, Sharma N, Ravazzolo L, Ravi L, Trentin AR, Barion G, Panozzo A, Dall'Acqua S, Vamerali T, Quaggiotti S, Arrigoni G, Masi A. Perfluorinated alkyl substances affect the growth, physiology and root proteome of hydroponically grown maize plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129512. [PMID: 35999737 DOI: 10.1016/j.jhazmat.2022.129512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Poly- and perfluorinated alkyl substances (PFAS) are a group of persistent organic pollutants causing serious global concern. Plants can accumulate PFAS but their effect on plant physiology, especially at the molecular level is not very well understood. Hence, we used hydroponically-grown maize plants treated with a combination of eleven different PFAS (each at 100 μg L-1) to investigate their bioaccumulation and effects on the growth, physiology and their impact on the root proteome. A dose-dependent decrease in root growth parameters was evidenced with a significant reduction in the relative growth rate, fresh weight of leaves and roots and altered photosynthetic parameters in PFAS-treated plants. Higher concentration of shorter PFAS (C < 8) was detected in the leaves, while long-chain PFAS (C ≥ 8) were more retained in roots. From the root proteome analysis, we identified 75 differentially abundant proteins, mostly involved in cellular metabolic and biosynthetic processes, translation and cytoskeletal reorganization. Validating the altered protein abundance using quantitative real-time PCR, the results were further substantiated using amino acid and fatty acid profiling, thus, providing first insight into the altered metabolic state of plants exposed to PFAS from a proteomics perspective.
Collapse
Affiliation(s)
- Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ilaria Battisti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy
| | - Nisha Sharma
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Lokesh Ravi
- Department of Botany, St. Joseph's College (Autonomous), Bengaluru, India
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Giuseppe Barion
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 PD, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; CRIBI Biotechnology Center, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
19
|
Chang YF, Chen SY, Lee CC, Chen J, Lai CS. Easy and Rapid Approach to Obtaining the Binding Affinity of Biomolecular Interactions Based on the Deep Learning Boost. Anal Chem 2022; 94:10427-10434. [PMID: 35837692 DOI: 10.1021/acs.analchem.2c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, the deep learning (DL) dimension of artificial intelligence has received much attention from biochemical researchers and thus has gradually become the key approach adopted in the area of biosensing applications. Studies have shown that the use of DL techniques for sensing can not only shorten the time of data analysis but also significantly increase the accuracy of data analysis and prediction, resulting in the performance improvement of biosensing systems in comparison to conventional methods. However, obtaining reliable equilibrium and rate constants of biomolecular interactions during the detection process remains difficult and time-consuming to date. In this study, we propose a transformed model based on the deep transfer learning and sequence-to-sequence autoencoder that can successfully transfer the SPR sensorgram to the protein-binding constants, that is, the association rate constant (ka) and dissociation rate constant (kd), which provide crucial information to understand the mechanisms of drug action and the functional structures of biomolecules. Experimentally, we first trained and tested the pre-trained model using the Langmuir model which generated ideal SPR sensorgrams and then we fine-tuned the pre-trained model through the augmented SPR sensorgrams which were synthesized by using the synthesized minority oversampling technique (SMOTE) through the moderate-scale experiment. Next, the fine-tuned model was inputted with a short experimental SPR sensorgram that only needs 110 s, and the sensorgram was directly transformed into a reconstructed ideal sensorgram. Finally, the binding kinetic constants, that is, ka and kd, as outputs, were obtained through fitting the reconstructed ideal sensorgram. The results showed that the prediction errors of ka and kd obtained by our model were less than 12 and 24%, respectively. Based on the convenience, accuracy, and reliability of the proposed DL approach, we believe our strategy significantly boosts the feasibility to monitor the binding affinity of antibodies online during production.
Collapse
Affiliation(s)
- Ying-Feng Chang
- Artificial Intelligence Research Center, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan
| | - Sin-You Chen
- Artificial Intelligence Research Center, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan
| | - Chi-Ching Lee
- Artificial Intelligence Research Center, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan.,Department of Computer Science and Information Engineering, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Kweishan District, Taoyuan City 33305, Taiwan
| | - Jenhui Chen
- Artificial Intelligence Research Center, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan.,Department of Computer Science and Information Engineering, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan.,Division of Breast Surgery and General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Branch, Kweishan District, Taoyuan City 33305, Taiwan.,Department of Electronic Engineering, Ming Chi University of Technology, Taishan District, New Taipei City 24301, Taiwan
| | - Chao-Sung Lai
- Artificial Intelligence Research Center, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan.,Department of Electronic Engineering, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan.,Center for Biomedical Engineering, Chang Gung University, Kweishan District, Taoyuan City 33302, Taiwan.,Department of Nephrology, Chang Gung Memorial Hospital, Kweishan District, Taoyuan City 33305, Taiwan.,Department of Materials Engineering, Ming Chi University of Technology, Taishan District, New Taipei City 24301, Taiwan
| |
Collapse
|
20
|
Wang L, Zhang W, Shao Y, Zhang D, Guo G, Wang X. Analytical methods for obtaining binding parameters of drug–protein interactions: A review. Anal Chim Acta 2022; 1219:340012. [DOI: 10.1016/j.aca.2022.340012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
|
21
|
Perera NLD, Miksovska J, O'Shea KE. Elucidation of specific binding sites and extraction of toxic Gen X from HSA employing cyclodextrin. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127765. [PMID: 34838360 DOI: 10.1016/j.jhazmat.2021.127765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The presence of per and poly-fluoroalkyl substances (PFAS), commonly referred to as forever chemicals, in aquatic systems is a serious global health problem. While the remediation of PFAS from aqueous media has been extensively investigated, their interactions with and removal from biological systems have received far less attention. We report herein structural alterations to human serum albumin (HSA) upon addition of perfluoro(2-methyl-3-oxahexanoic) acid (Gen X) monitored by changes to the fluorescence and circular dichroism (CD) spectra of HSA. The equilibrium association constant for Gen X binding to HSA is 7( ± 1) × 103 M-1 determined from changes in HSA fluorescence emission data during titration. Site-specific HSA binding fluorophores, 8-anilinonaphthalene-1-sulfonic acid (1,8-ANS), warfarin and dansyl-L-proline were used to investigate the specific binding sites of Gen X on HSA. A competitive displacement study yields association constants for Gen X to HSA at the 1,8-ANS, warfarin, and dansyl-L-proline binding sites to be 6.25 ( ± 0.5) × 104 M-1, 1.1 × 106 M-1, and 2.5( ± 0.2) × 109 M-1 respectively. Addition of β-cyclodextrin (β-CD) and heptakis(6-deoxy-6-amino)-β-cyclodextrin heptahydrochloride to the HSA:Gen X complex leads to the effective extraction of Gen X from the complex with the return of HSA in its native form. Gen X also leads to displacement of site-specific binding fluorophores bound to HSA, while subsequent addition of β-CD extracts Gen X from HSA with the return of the characteristic fluorescence of the HSA bound site-specific agent. These results illustrate the strong and specific binding sites of Gen X on HSA and demonstrate the principles for the potential application of β-CD for the remediation of PFAS from biological systems.
Collapse
Affiliation(s)
- N L Dilani Perera
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th street, Miami, FL 33199, United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th street, Miami, FL 33199, United States
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th street, Miami, FL 33199, United States.
| |
Collapse
|
22
|
Wang Y, Darling SB, Chen J. Selectivity of Per- and Polyfluoroalkyl Substance Sensors and Sorbents in Water. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60789-60814. [PMID: 34911297 PMCID: PMC8719322 DOI: 10.1021/acsami.1c16517] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/29/2021] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of engineered chemicals that have been widely used in industrial production. PFAS have drawn increasing attention due to their frequent occurrence in the aquatic environment and their toxicity to animals and humans. Developing effective and efficient detection and remediation methods for PFAS in aquatic systems is critical to mitigate ongoing exposure and promote water reuse. Adsorption-based removal is the most common method for PFAS remediation since it avoids hazardous byproducts; in situ sensing technology is a promising approach for PFAS monitoring due to its fast response, easy operation, and portability. This review summarizes current materials and devices that have been demonstrated for PFAS adsorption and sensing. Selectivity, the key factor underlying both sensor and sorbent performance, is discussed by exploring the interactions between PFAS and various probes. Examples of selective probes will be presented and classified by fluorinated groups, cationic groups, and cavitary groups, and their synergistic effects will also be analyzed. This review aims to provide guidance and implication for future material design toward more selective and effective PFAS sensors and sorbents.
Collapse
Affiliation(s)
- Yuqin Wang
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced
Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Seth B. Darling
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Advanced
Materials for Energy-Water Systems Energy Frontier Research Center, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Junhong Chen
- Chemical
Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Menger RF, Funk E, Henry CS, Borch T. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 417:129133. [PMID: 37539085 PMCID: PMC10398537 DOI: 10.1016/j.cej.2021.129133] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of compounds that have become environmental contaminants of emerging concern. They are highly persistent, toxic, bioaccumulative, and ubiquitous which makes them important to detect to ensure environmental and human health. Multiple instrument-based methods exist for sensitive and selective detection of PFAS in a variety of matrices, but these methods suffer from expensive costs and the need for a laboratory and highly trained personnel. There is a big need for fast, inexpensive, robust, and portable methods to detect PFAS in the field. This would allow environmental laboratories and other agencies to perform more frequent testing to comply with regulations. In addition, the general public would benefit from a fast method to evaluate the drinking water in their homes for PFAS contamination. A PFAS sensor would provide almost real-time data on PFAS concentrations that can also provide actionable information for water quality managers and consumers around the planet. In this review, we discuss the sensors that have been developed up to this point for PFAS detection by their molecular detection mechanism as well as the goals that should be considered during sensor development. Future research needs and commercialization challenges are also highlighted.
Collapse
Affiliation(s)
- Ruth F Menger
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
| | - Emily Funk
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Chemical and Biological Engineering, Colorado State University, 1370 Campus Delivery, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
24
|
Olomukoro AA, Emmons RV, Godage NH, Cudjoe E, Gionfriddo E. Ion exchange solid phase microextraction coupled to liquid chromatography/laminar flow tandem mass spectrometry for the determination of perfluoroalkyl substances in water samples. J Chromatogr A 2021; 1651:462335. [PMID: 34174636 DOI: 10.1016/j.chroma.2021.462335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are toxic and bioaccumulative compounds that are persistent in the environment due to their water and heat resistant properties. These compounds have been demonstrated to be ubiquitous in the environment, being found in water, soil, air and various biological matrices. The determination of PFAS at ultra-trace levels is thus critical to assess the extent of contamination in a particular matrix. In this work, solid phase microextraction (SPME) was evaluated as a pre-concentration technique to aid the quantitation of this class of pollutants below the EPA established advisory limits in drinking water at parts-per-trillion levels. Four model PFAS with varying physicochemical properties, namely hexafluoropropylene oxide dimer acid (GenX), perfluoro-1- butanesulfonate (PFBS), perfluoro-n-octanoic acid (PFOA) and perfluoro-1-octanesulfonate (PFOS) were studied as a proof of concept. Analysis was performed with the use of ultra-high pressure liquid chromatography-laminar flow tandem mass spectrometry (UHPLC-MS/MS). This study proposes the use of hydrophilic-lipophilic balance-weak anion-exchange/polyacrylonitrile (HLB-WAX/PAN) as a SPME coating, ideal for all model analytes. A sample volume of 1.5 mL was used for analysis, the optimized protocol including 20 min extraction, 20 min desorption and 6 min LC/MS analysis. This method achieved LOQs of 2.5 ng L- 1 (PFOS) and 1 ng L - 1 (GenX, PFBS and PFOA) with satisfactory precision and accuracy values evaluated over a period of 5 days.
Collapse
Affiliation(s)
- Aghogho A Olomukoro
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 436062, United States; Dr. Nina McClelland Laboratories for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH, 43606, United States
| | - Ronald V Emmons
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 436062, United States; Dr. Nina McClelland Laboratories for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH, 43606, United States
| | - Nipunika H Godage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 436062, United States; Dr. Nina McClelland Laboratories for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH, 43606, United States
| | | | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, 436062, United States; Dr. Nina McClelland Laboratories for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, OH, 43606, United States; School of Green Chemistry and Engineering, The University of Toledo, Toledo, OH, 43606.
| |
Collapse
|
25
|
Daems E, Moro G, Berghmans H, Moretto LM, Dewilde S, Angelini A, Sobott F, De Wael K. Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds. Analyst 2021; 146:2065-2073. [PMID: 33538714 DOI: 10.1039/d0an02005b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins' (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.
Collapse
Affiliation(s)
- Elise Daems
- AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Maso L, Trande M, Liberi S, Moro G, Daems E, Linciano S, Sobott F, Covaceuszach S, Cassetta A, Fasolato S, Moretto LM, De Wael K, Cendron L, Angelini A. Unveiling the binding mode of perfluorooctanoic acid to human serum albumin. Protein Sci 2021; 30:830-841. [PMID: 33550662 DOI: 10.1002/pro.4036] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Perfluorooctanoic acid (PFOA) is a toxic compound that is absorbed and distributed throughout the body by noncovalent binding to serum proteins such as human serum albumin (hSA). Though the interaction between PFOA and hSA has been already assessed using various analytical techniques, a high resolution and detailed analysis of the binding mode is still lacking. We report here the crystal structure of hSA in complex with PFOA and a medium-chain saturated fatty acid (FA). A total of eight distinct binding sites, four occupied by PFOAs and four by FAs, have been identified. In solution binding studies confirmed the 4:1 PFOA-hSA stoichiometry and revealed the presence of one high and three low affinity binding sites. Competition experiments with known hSA-binding drugs allowed locating the high affinity binding site in sub-domain IIIA. The elucidation of the molecular basis of the interaction between PFOA and hSA might provide not only a better assessment of the absorption and elimination mechanisms of these compounds in vivo but also have implications for the development of novel molecular receptors for diagnostic and biotechnological applications.
Collapse
Affiliation(s)
- Lorenzo Maso
- Department of Biology, University of Padua, Padova, Italy
| | - Matteo Trande
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Stefano Liberi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Elise Daems
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.,Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Sara Linciano
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Antwerp, Belgium.,Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | | - Alberto Cassetta
- Istituto di Cristallografia - CNR, Trieste Outstation, Trieste, Italy
| | | | - Ligia M Moretto
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy
| | - Karolien De Wael
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Laura Cendron
- Department of Biology, University of Padua, Padova, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, Italy.,European Centre for Living Technology (ECLT), Venice, Italy
| |
Collapse
|
27
|
Fedorenko M, Alesio J, Fedorenko A, Slitt A, Bothun GD. Dominant entropic binding of perfluoroalkyl substances (PFASs) to albumin protein revealed by 19F NMR. CHEMOSPHERE 2021; 263:128083. [PMID: 33297081 PMCID: PMC8479757 DOI: 10.1016/j.chemosphere.2020.128083] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Mechanistic insight into protein binding by poly- and perfluoroalkyl substances (PFASs) is critical to understanding how PFASs distribute and accumulate within the body and to developing predictive models within and across classes of PFASs. Fluorine nuclear magnetic resonance spectroscopy (19F NMR) has proven to be a powerful, yet underutilized tool to study PFAS binding; chemical shifts of each fluorine group reflect the local environment along the length of the PFAS molecule. Using bovine serum albumin (BSA), we report dissociation constants, Kd, for four common PFASs well below reported critical micelle concentrations (CMCs) - perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS) - as a function of temperature in phosphate buffered saline. Kd values were determined based on the difluoroethyl group adjacent to the anionic headgroups and the terminal trifluoromethyl groups. Our results indicate that the hydrophobic tails exhibit greater binding affinity relative to the headgroup, and that the binding affinities are generally consistent with previous results showing that greater PFAS hydrophobicity leads to greater protein binding. However, the binding mechanism was dominated by entropic hydrophobic interactions attributed to desolvation of the PFAS tails within the hydrophobic cavities of the protein and on the surface of the protein. In addition, PFNA appears to form hemimicelles on the protein surfaces below reported CMC values. This work provides a renewed approach to utilizing 19F NMR for PFAS-protein binding studies and a new perspective on the role of solvent entropy.
Collapse
Affiliation(s)
- Michael Fedorenko
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881, USA
| | - Jessica Alesio
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881, USA
| | - Anatoliy Fedorenko
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881, USA
| | - Angela Slitt
- Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Rd, Kingston, RI, 02881, USA
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Ave, Kingston, RI, 02881, USA.
| |
Collapse
|
28
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
29
|
Moro G, Bottari F, Liberi S, Covaceuszach S, Cassetta A, Angelini A, De Wael K, Moretto LM. Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid. Bioelectrochemistry 2020; 134:107540. [PMID: 32361666 DOI: 10.1016/j.bioelechem.2020.107540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
The immobilization of biomolecules at screen printed electrodes for biosensing applications is still an open challenge. To enrich the toolbox of bioelectrochemists, graphite screen printed electrodes (G-SPE) were modified with an electropolymerized film of pyrrole-2-carboxilic acid (Py-2-COOH), a pyrrole derivative rich in carboxylic acid functional groups. These functionalities are suitable for the covalent immobilization of biomolecular recognition layers. The electropolymerization was first optimized to obtain stable and conductive polymeric films, comparing two different electrolytes: sodium dodecyl sulphate (SDS) and sodium perchlorate. The G-SPE modified with Py-2-COOH in 0.1 M SDS solution showed the required properties and were further tested. A proof-of-concept study for the development of an impedimetric sensor for perfluorooctanoic acid (PFOA) was carried out using the delipidated human serum albumin (hSA) as bioreceptor. The data interpretation was supported by size exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) analysis of the bioreceptor-target complex and the preliminary results suggest the possibility to further develop this biosensing strategy for toxicological and analytical studies.
Collapse
Affiliation(s)
- Giulia Moro
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy; AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Fabio Bottari
- AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stefano Liberi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Sonia Covaceuszach
- Istituto di Cristallografia - CNR, Trieste Outstation, Italy SS 14 km 163.5, Basovizza, Trieste, Italy
| | - Alberto Cassetta
- Istituto di Cristallografia - CNR, Trieste Outstation, Italy SS 14 km 163.5, Basovizza, Trieste, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Karolien De Wael
- AXES Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ligia Maria Moretto
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy
| |
Collapse
|
30
|
Guillette TC, McCord J, Guillette M, Polera ME, Rachels KT, Morgeson C, Kotlarz N, Knappe DRU, Reading BJ, Strynar M, Belcher SM. Elevated levels of per- and polyfluoroalkyl substances in Cape Fear River Striped Bass (Morone saxatilis) are associated with biomarkers of altered immune and liver function. ENVIRONMENT INTERNATIONAL 2020; 136:105358. [PMID: 32044175 PMCID: PMC7064817 DOI: 10.1016/j.envint.2019.105358] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 05/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals of concern that persist in the environment. Environmental monitoring revealed high concentrations of hexafluoropropylene oxide dimer acid (HFPO-DA) and other novel PFAS in the lower Cape Fear River; however, there is limited information on PFAS exposures and effects of this contamination on aquatic biota. Serum concentrations of 23 PFAS in Striped Bass (Morone saxatilis) from the Cape Fear River (n = 58) and a reference population from an aquaculture laboratory on the Pamlico/Tar watershed (n = 29) were quantified using liquid chromatography and high-resolution mass spectrometry, and correlations between PFAS concentrations and health-related serum biomarkers were evaluated. Perfluorooctane sulfonate, the predominant PFAS in Cape Fear River Striped Bass serum, was detectable in every sample with serum concentrations reaching 977 ng/mL. Perfluorononanoic and perfluorodecanoic acid were also detected in all samples, with perfluorohexanesulfonic acid present in >98% of the samples. HFPO-DA (range <0.24-5.85 ng/mL) and Nafion byproduct 2 (range <0.2-1.03 ng/mL) were detected in 48% and 78% of samples, respectively. The mean total PFAS concentration found in domestic Striped Bass raised in well-water under controlled aquaculture conditions was 40 times lower, with HPFO-DA detected in 10% of the samples, and Nafion byproduct 2 was not detected. The elevated PFAS concentrations found in the Cape Fear River Striped Bass were associated with biomarkers of alterations in the liver and immune system.
Collapse
Affiliation(s)
- T C Guillette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - James McCord
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, ORD, US EPA, Research Triangle Park, NC, United States
| | - Matthew Guillette
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - M E Polera
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Kyle T Rachels
- North Carolina Wildlife Resources Commission, Inland Fisheries Division Raleigh, NC, United States
| | - Clint Morgeson
- North Carolina Wildlife Resources Commission, Inland Fisheries Division Raleigh, NC, United States
| | - Nadine Kotlarz
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States; Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States
| | - Detlef R U Knappe
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States; Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, United States
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Mark Strynar
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, ORD, US EPA, Research Triangle Park, NC, United States
| | - Scott M Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
31
|
Investigation of the Interaction Mechanism of Perfluoroalkyl Carboxylic Acids with Human Serum Albumin by Spectroscopic Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041319. [PMID: 32085632 PMCID: PMC7068604 DOI: 10.3390/ijerph17041319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are some of the most significant pollutants in human serum, and are reported to be potentially toxic to humans. In this study, the binding mechanism of PFCAs with different carbon lengths to human serum albumin (HSA) was studied at the molecular level by means of fluorescence spectroscopy under simulated physiological conditions and molecular modeling. Fluorescence data indicate that PFCAs with a longer carbon chain have a stronger fluorescence quenching ability. Perfluorobutanoic acid (PFBA) and perfluorohexanoic acid (PFHxA) had little effect on HSA. Fluorescence quenching of HSA by perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) was a static process that formed a PFCA-HSA complex. Electrostatic interactions were the main intermolecular forces between PFOA and HSA, while hydrogen bonding and van der Waals interactions played important roles in the combination of PFDA and HSA. In fact, the binding of PFDA to HSA was stronger than that of PFOA as supported by fluorescence quenching and molecular docking. In addition, infrared spectroscopy demonstrated that the binding of PFOA/PFDA resulted in a sharp decrease in the β-sheet and α-helix conformations of HSA. Our results indicated that the carbon chain length of PFCAs had a great impact on its binding affinity, and that PFCAs with longer carbon chains bound more strongly.
Collapse
|