1
|
Hou J, Hu C, Li H, Liu H, Xiang Y, Wu G, Li Y. Nanomaterial-based magnetic solid-phase extraction in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2025; 253:116543. [PMID: 39486391 DOI: 10.1016/j.jpba.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Magnetic solid-phase extraction (MSPE) holds significant scientific and technological interest as a novel sample preparation method for complex samples due to its easy operation, swift separation, high adsorption efficiency, and environmental friendliness. As the core of MSPE, magnetic sorbents have captured tremendous attention in recent years. Various promising nanomaterials, such as metal-organic frameworks and covalent organic frameworks, have been synthesized and utilized as sorbents in pharmaceutical and biomedical analysis. This review intends to (1) summarize recent progress of magnetic sorbents applied in this area and discuss their advantages, disadvantages, possible interaction mechanisms with the target substances; (2) explore their innovative applications in the analysis of pharmaceuticals, proteins, peptides, nucleic acids, nucleosides, metabolites, and other disease biomarkers from 2021 to 2024; (3) present the integration of MSPE with emerging analytical technologies; and (4) discuss the current challenges and future perspectives. It is expected to provide references and insights for the development of novel magnetic sorbents and their applications in bioanalysis.
Collapse
Affiliation(s)
- Jingxin Hou
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Hu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hanyin Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongmei Liu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yangjiayi Xiang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Jing'an Branch, the Affiliated Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Gou Wu
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai 201203, China.
| |
Collapse
|
2
|
Yang Y, Li W, Wu D, Wu Y, Li L, Li G. Facile synthesis of magnetic ionic covalent organic framework and dispersive magnetic solid phase extraction of aromatic amino acid oxidation products in thermally processed foods. Food Chem 2025; 462:140936. [PMID: 39232273 DOI: 10.1016/j.foodchem.2024.140936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Aromatic amino acid oxidation products (AAAOPs) are newly discovered risk substances of thermal processes. Due to its significant polarity and trace level in food matrices, there are no efficient pre-treatment methods available to enrich AAAOPs. Herein, we proposed a magnetic cationic covalent organic framework (Fe3O4@EB-iCOF) as an adsorbent for dispersive magnetic solid-phase extraction (DMSPE). Benefiting from the unique charged characteristics of Fe3O4@EB-iCOF, AAAOPs can be enriched through electrostatic interaction and π-π interactions. Under the optimal DMSPE conditions, the combined HPLC-MS/MS method demonstrated good linearity (R2 ≥ 0.990) and a low detection limit (0.11-7.5 μg·kg-1) for AAAOPs. In addition, the method was applied to real sample and obtained satisfactory recoveries (86.8 % ∼ 109.9 %). Especially, we applied this method to the detection of AAAOPs in meat samples and conducted a preliminarily study on its formation rules, which provides a reliable basis for assessing potential dietary risks.
Collapse
Affiliation(s)
- Yujie Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT95DL, United Kingdom
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Aladaghlo Z, Sahragard A, Fakhari A, Salarinejad N, Movahed SK, Dabiri M. Fe 3O 4@nitrogen-doped carbon@Pd core-double shell nanotubes as a novel nanosorbent for ultrasonic assisted dispersive magnetic solid phase extraction of organophosphorus pesticides. Talanta 2025; 281:126911. [PMID: 39317067 DOI: 10.1016/j.talanta.2024.126911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
In this study, an ultrasonic assisted dispersive magnetic solid phase extraction leveraging Fe3O4@nitrogen-doped carbon@Pd core-double shell nanotubes was developed for the extraction of organophosphorus pesticides (OPPs) in trace levels from real samples. Incorporation of Pd species into the structure of the nanosorbent could enhance its interactions with sulfur groups in the structure of OPPs. X-ray photoelectron spectroscopy and X-ray diffraction, brunauer-emmett-teller, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to characterize the nanosorbent after its synthesis. Then, effective variables on the extraction efficiency of OPPs using the nanosorbent were optimized. These parameters included 2-propanol as the adsorption solvent; the sample pH of 7.0; the sorbent quantity of 10 mg; and the extraction and desorption times of 3 min. Under optimized conditions, linear ranges with determination coefficients (R2) higher than 0.99, low detection limits of 0.30 ng mL-1, high preconcentration factors (423-470) and relatively high extraction recoveries (84-94 %) were obtained. The proposed extraction system was then successfully applied to the analysis of OPPs in fruits, vegetables, water, and agricultural soil samples, yielding relative recoveries from 90.4 to 107 %.
Collapse
Affiliation(s)
- Zolfaghar Aladaghlo
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Ali Sahragard
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa Km 7.5, E-07122, Palma de Mallorca, Illes Balears, Spain
| | - Alireza Fakhari
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, Iran.
| | - Neda Salarinejad
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, Iran
| | | | - Minoo Dabiri
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, Iran
| |
Collapse
|
4
|
Zheng X, Xie Y, Chen Z, Cao M, Lei X, Le T. A comprehensive review on the pretreatment and detection methods of nitrofurans and their metabolites in animal-derived food and environmental samples. Food Chem X 2024; 24:101928. [PMID: 39539437 PMCID: PMC11558636 DOI: 10.1016/j.fochx.2024.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, the residues of nitrofurans (NFs) and their metabolites in animal-derived food and environmental samples have gained widespread attention. The parent drugs and their metabolites have displayed significant toxicity to human health including carcinogenic, mutagenic and teratogenic effects, leading to banned in animal husbandry in many countries. Hence, monitoring the residues of NFs is necessary to guarantee public health and ecological security. This review aims to summarize and assess the structural properties, residue status, sample pretreatment methods (liquid-liquid extraction, solid-phase extraction, Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS), and field-assisted extraction), and detection methods (chromatographic analysis, immunoassay, and some innovative detection methods) for NFs and their metabolites in animal-derived food and environmental samples. This paper provides a detailed reference and discussion for the analysis of NFs and their metabolites, which can effectively promote the establishment of innovative detection methods for NFs and their metabolites residues.
Collapse
Affiliation(s)
- Xiaoling Zheng
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yong Xie
- Bioassay 3D Reconstruction Laboratory, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, China
| | - Zhuoer Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Mingdong Cao
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xianlu Lei
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
5
|
Wen J, Zhang K, Liu Y, Du Z, Xiong C, Jiang H. Direct extraction of ten estrogens from milk samples with DVB/NVP-modified magnetic solid-phase extraction adsorbent followed by pre-column derivatization-UHPLC-MS/MS. Food Chem 2024; 459:140312. [PMID: 39003855 DOI: 10.1016/j.foodchem.2024.140312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Estrogens and their analogues can cause harm to human health through the food chain. Ten estrogens in different milk samples were directly extracted by amphiphilic divinylbenzene/N-vinyl-2-pyrrolidone (DVB/NVP)-Fe3O4@SiO2-based magnetic solid-phase extraction (MSPE) followed by pre-column derivatization and ultra-high performance liquid chromatography tandem mass-spectrometry (UHPLC-MS/MS) detection. Under the optimal conditions, the limits of detection for ten analytes were in the range of 0.05-0.38 ng mL-1 in whole liquid milk matrix and 0.04-3.00 ng g-1 in milk powder matrix. The intra-/inter-day accuracy ranged in 83.4-113.8%, with RSDs in 2.5-15.0%. A total of 15 brands of liquid milk and milk powder samples were analyzed, and only estradiol was detected in three brands of boxed liquid milk within safe range. The proposed sample pretreatment eliminated the common protein precipitation process, improved the sample throughput, and has the potential for routine testing of estrogens and their analogues in market-sale milk samples.
Collapse
Affiliation(s)
- Jiaxi Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Kehan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Yujun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Zhifeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| | - Chaomei Xiong
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China..
| | - Hongliang Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, PR China
| |
Collapse
|
6
|
Jiang L, Dong G, Song D, Liu W, Geng X, Meng D, Nie L, Liao J, Zhou Q. Covalent organic framework-functionalized magnetic MXene nanocomposite for efficient pre-concentration and detection of organophosphorus and organochlorine pesticides in tea samples before gas chromatography-triple quadrupole mass spectrometry analysis. Food Chem 2024; 459:140352. [PMID: 38991447 DOI: 10.1016/j.foodchem.2024.140352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 μg/L and had low limits of detection (0.013-0.018 μg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Wenjing Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiaodie Geng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Dejing Meng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China..
| |
Collapse
|
7
|
Park J, Cho YS, Seo DW, Choi JY. An update on the sample preparation and analytical methods for synthetic food colorants in food products. Food Chem 2024; 459:140333. [PMID: 38996638 DOI: 10.1016/j.foodchem.2024.140333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.
Collapse
Affiliation(s)
- Juhee Park
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Yong Sun Cho
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Dong Won Seo
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Ji Yeon Choi
- Food Analysis Research Center, Food Industry Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| |
Collapse
|
8
|
Farajzadeh MA, Hallaji Z, Pezhhanfar S, Mogaddam MRA. Application of magnetic AlFu MOF nanocomposite for the extraction and preconcentration of some pesticides from different distillates. J Chromatogr A 2024; 1736:465436. [PMID: 39413566 DOI: 10.1016/j.chroma.2024.465436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
This research used a magnetic AlFu nano-metal-organic framework as an adsorbent for the first time. This approach extracts and preconcentrates eight pesticides from various distillates through a two-step process: magnetic dispersive micro solid phase extraction and dispersive liquid-liquid microextraction. Initially, the nanocomposite is dispersed into a sample solution containing the pesticides and Na2SO4. The target pesticides are then adsorbed onto the nanocomposite, which is subsequently isolated from the aqueous phase using an external magnetic field. Acetonitrile is used to elute the adsorbed analytes pesticides from the nanocomposite surface. The resulting acetonitrile extract, containing the concentrated pesticides, is then mixed with a tiny amount of another solvent and injected into a NaCl solution. Centrifugation allows the organic phase, enriched with the pesticides, to settle down. An aliquot of this organic layer is then analyzed using a gas chromatography-flame ionization detector. Optimization of the procedure led to favorable performance, including good extraction recovery of the pesticides (68-98 %), significant enrichment (enrichment factors of 340-489), a wide range of detectable concentrations (2.90-1400 µg L-1), and low detection (0.15-0.88 µg L-1) and quantification limits. (0.49-2.90 µg L-1).
Collapse
Affiliation(s)
- Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| | - Zahra Hallaji
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Sakha Pezhhanfar
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Jiang L, Liao J, Nie L, Dong G, Song D, Tang G, Zhou Q. Dual COF functionalized magnetic MXene composite for enhancing magnetic solid phase extraction of thiophene compounds from oilfield produced waters prior to GC-MS/MS analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135653. [PMID: 39217939 DOI: 10.1016/j.jhazmat.2024.135653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel COFTABT@COFTATp modified magnetic MXene composite (CoFe2O4 @Ti3C2 @COFTABT@COFTATp) was synthesized by Schiff base reaction and irre-versible enol-keto tautomerization, and employed to establish a sensitive monitoring method for six thiophene compounds in oilfield produced water samples based on magnetic solid-phase extraction (MSPE) prior to gas chromatography coupled with a triple quadruple mass spectrometer (GC-MS/MS). The designed magnetic materials exhibited unexpected enrichment ability to target thiophene compounds and achieved good extraction efficiencies ranging from 83 % to 98 %. The developed MSPE/GC-MS/MS method exhibited good linearity in the range of 0.001-100 μg L-1, and obtained lower limits of detection ranging from 0.39 to 1.9 ng L-1. The spiked recoveries of thiophene compounds obtained in three oilfield produced water samples were over the range of 96.26 %-99.54 % with relative standard deviations (RSDs) less than 3.7 %. Notably, benzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene were detected in three oilfield-produced water samples. Furthermore, the material still kept favorable stability after six recycling experiments. The adsorption kinetics, adsorption isotherms as well as adsorption thermodynamics of thiophene compounds were investigated in detail to provide insight into the mechanisms. Overall, the present work contributed a promising strategy for designing and synthesizing new functionalized materials for the enrichment and detection of typical pollutants in the environment.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guojin Tang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
10
|
Li W, Zhang Q, Liu Y, Deng B, Zheng Y, Li J, Chen D. Simultaneous effervescence-assisted microextraction and magnetic adsorbent generation for rapid and cost-effective organochlorine pesticides analysis. Food Chem 2024; 457:140192. [PMID: 38941906 DOI: 10.1016/j.foodchem.2024.140192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This study introduced an innovative magnetic effervescence-assisted microextraction method, streamlining the preparation of effervescent tablets through a one-pot method that blends a CO2 donor (Na2CO3) and an H+ donor (NaH2PO4) with bare magnetic particles (Fe3O4) and an adsorbent (hydroxylated multi-walled carbon nanotubes), followed by pressing. During the extraction process, the bare magnetic particles and adsorbent undergo in-situ self-assembly to create a magnetic adsorbent. The effervescence generates bubbles that enhance effective extraction and magnetism facilitates the easy separation of the magnetic adsorbent from the sample solution, completing the process within 4 min. Applied to organochlorine pesticide analysis in fruit juices and herbal extracts, the method exhibits excellent linearity (R2 > 0.993), sensitivity (detection limits: 0.010-0.125 ng/mL), accuracy (recoveries: 85.8-99.9%), and precision (RSDs < 9.7%) with GC-ECD. Overall, this approach stands out for its simplicity, cost-effectiveness, and suitability for on-site analysis, owing to its operational ease and independence from specialized equipment.
Collapse
Affiliation(s)
- Wenxuan Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Qinfeng Zhang
- Hubei Key Laboratory of Resources and Eco-Environment Geology (Hubei Geological Bureau), Hubei Geological Research Laboratory, Wuhan 430034, China
| | - Yuwei Liu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Bowen Deng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Yuanyuan Zheng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China
| | - Jun Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Di Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 45001, China.
| |
Collapse
|
11
|
Landarani M, Nojavan S. Synthesis of green nanosorbent from bovine serum albumin and curcumin for magnetic solid phase extraction of pesticides from food samples. Food Chem 2024; 457:140116. [PMID: 38924914 DOI: 10.1016/j.foodchem.2024.140116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
For the first time, a magnetic carbon nanocomposite was synthesized using one-step hydrothermal procedure, employing bovine serum albumin, curcumin, and ferric ammonium citrate. Additionally, the application of this novel composite as an adsorbent for magnetic dispersive solid phase extraction of fungicides and pesticides from water and food samples is a unique aspect of this study. Under optimum conditions (salt concentration: 5.0% w/v, pH: 7.0, desorption solvent: ethanol, sorbent amount: 20 mg, extraction time: 20 min, desorption time: 3 min, stirring rate: 500 rpm, sample volume: 30 mL, extraction temperature: room temperature, and desorption solvent volume: 150 μL) linearity (2.5 to 1400 ng mL-1), coefficients of determination (R2 ≥ 0.997), limits of detection (0.75 to 1.5 ng mL-1), and limits of quantification (2.5 to 5.0 ng mL-1) were achieved. The method validation results showed extraction recovery ranging from 71.2% to 93.4%, and preconcentration factors ranging from 142.5 to 186.1.
Collapse
Affiliation(s)
- Mohammad Landarani
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Evin, Tehran, Iran.
| |
Collapse
|
12
|
Liu N, Xiao C, Duan W, Wang N, Cui B. Preparation of an imidazolium-based poly(ionic liquid) functionalized magnetic three-dimensional graphene oxide for magnetic solid phase extraction of pyrethroids from tea samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124321. [PMID: 39303518 DOI: 10.1016/j.jchromb.2024.124321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
In this work, an imidazolium-based poly(ionic liquid) (poly(1-dodecyl-3-vinyl-imidazolium bromide) functionalized magnetic three-dimensional graphene oxide (Fe3O4@3D-GO@poly(ImC12+Br-)) was synthesized via a vacuum freezing-drying method and used as a magnetic solid phase extraction (MSPE) adsorbent for the efficient extraction of pyrethroid pesticides from tea samples. The prepared Fe3O4@3D-GO@poly(ImC12+Br-) was confirmed by scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and X-ray photoelectron spectrogram (XPS). Due to its large specific surface area and the ability to offer multiple intermolecular interactions, including π-π stacking, hydrophobic and hydrogen bond interactions, the prepared Fe3O4@3D-GO@poly(ImC12+Br-) showed high extraction efficiency for pyrethroids. The experimental parameters were optimized by a combination of single-factor method and Box-Behnken design to improve the extraction efficiency. Under the optimum conditions, coupled with high performance liquid chromatography (HPLC), a sensitive analytical method was developed for the determination of pyrethroids, and the proposed method showed wide linear ranges (1.00-100 μg L-1) with correlation coefficients (R) ranging from 0.9980 to 0.9994, low limits of detection (0.100 μg L-1) and good repeatability with intra-day relative standard deviations (RSDs) in the range of 2.90-5.53 % and inter-day RSDs in the range of 1.83-7.76 %. Moreover, the developed method was successfully applied to the determination of pyrethroids in tea samples and satisfactory recoveries ranging from 82.37 % to 114.34 % were obtained. The results showed that the developed Fe3O4@3D-GO@poly(ImC12+Br-) was an ideal, effective and selective material for the extraction and enrichment of pyrethroids from tea samples.
Collapse
Affiliation(s)
- Na Liu
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chuhao Xiao
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weixin Duan
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Wang
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Bo Cui
- School of Food Science and Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
13
|
Hashim NM, Mohd Husani NI, Wardani NI, Alahmad W, Shishov A, Madurani KA, Liao PC, Yahaya N, Mohamad Zain NN. Advancements in effervescent-assisted dispersive micro-solid phase extraction for the analysis of emerging pollutants. Anal Chim Acta 2024; 1325:342891. [PMID: 39244296 DOI: 10.1016/j.aca.2024.342891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 09/09/2024]
Abstract
Emerging pollutants pose an increasing threat to the environment and human well-being, requiring substantial progress in analytical methodologies. Dispersive micro-solid phase extraction (μ-dSPE) has proven successful in detecting and measuring these contaminants, particularly in trace quantities. However, challenges persist in achieving a uniform sorbent distribution and efficient separation from the sample matrix. To address these issues, effervescent-assisted dispersive micro-solid phase extraction (EA-μ-dSPE) was developed. This method uses on-site produced carbon dioxide as a dispersing agent, eliminating the need for vortexing or ultrasonication. Due to the sorbent dispersion in the sample solution, the contact surface between the analyte and the sorbent increases, resulting in increased extraction efficiency, reduced extraction time, and promotes of sustainability. Several parameters are critical to the successful execution of this procedure to extract the analytes, including the type and structure of sorbent, composition of dispersing agents, sorbent separation procedure, and type and properties of desorption solvents. The sorbent plays a critical role in successful extraction of emerging pollutants. It is clear that for the extraction of the analyte on the sorbent, proper interaction must be established between the analyte and the sorbent via physical and chemical interactions. This review thoroughly evaluates the underlying principles of the approach, its potential, and the significant advancements that have been documented. It explores the method's capacity to analyse and identify emerging pollutants, emphasising its potential across various sample matrices for enhanced pollutant identification and quantification.
Collapse
Affiliation(s)
- Nor Munira Hashim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nurina Izzah Mohd Husani
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Niluh Indria Wardani
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
| | - Kartika A Madurani
- Laboratory of Instrumentation and Analytical Sciences, Chemistry Department, Faculty of Science and Data Analytics, Institute Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Nadhirah Mohamad Zain
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
14
|
Wu J, Liang L, Li S, Qin Y, Zhao S, Ye F. MOF derivatization of multifunctional nanozyme: Peroxidase-like catalytic activity combined with magnetic solid phase extraction for colorimetric detection of Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124392. [PMID: 38704997 DOI: 10.1016/j.saa.2024.124392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Nanozyme-based colorimetric sensing has drawn immense attention due to the rapid development of nanozyme in recent years. However, the selectivity of nanozyme-based colorimetric sensing greatly limits its subsequent practical application. It is well known that sample pretreatment can not only improve selectivity by eliminating the sample matrix interference, but also improve sensitivity by enriching trace targets. Based on the easy facile surface modification properties of nanozyme, we rationally designed nanozyme combined with sample pretreatment for colorimetric biosensing, through separation and enrichment, thereby improving the selectivity and sensitivity of the nanozyme colorimetric biosensing. As a proof of concept, the detection of Hg2+ by nanozyme-based colorimetric sensing was used as an example. Magnetic peroxidase-like nanozyme Fe3S4 was designed and synthesized. The selectivity is improved by the specific adsorption of S-Hg bond and the interference elimination after magnetic separation. In addition, the sensitivity is improved by magnetic solid-phase extraction enrichment. Our established colorimetric sensing based on Fe3S4 nanozyme integrated sample pretreatment with an enrichment factor of 100 and the limit of detection (LOD) is 26 nM. In addition, this strategy was successfully applied to detect Hg2+ in environmental water samples. Overall, the strategy showed good selectivity and sensitivity, providing a new practical method for the application of nanozyme-based biosensing in sample pretreatment.
Collapse
Affiliation(s)
- Jia Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, PR China
| | - Ling Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Shuishi Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Yuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
15
|
Du A, Lu Z, Hua L. Decentralized food safety and authentication on cellulose paper-based analytical platform: A review. Compr Rev Food Sci Food Saf 2024; 23:e13421. [PMID: 39136976 DOI: 10.1111/1541-4337.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Food safety and authenticity analysis play a pivotal role in guaranteeing food quality, safeguarding public health, and upholding consumer trust. In recent years, significant social progress has presented fresh challenges in the realm of food analysis, underscoring the imperative requirement to devise innovative and expedient approaches for conducting on-site assessments. Consequently, cellulose paper-based devices (PADs) have come into the spotlight due to their characteristics of microchannels and inherent capillary action. This review summarizes the recent advances in cellulose PADs in various food products, comprising various fabrication strategies, detection methods such as mass spectrometry and multi-mode detection, sampling and processing considerations, as well as applications in screening food safety factors and assessing food authenticity developed in the past 3 years. According to the above studies, cellulose PADs face challenges such as limited sample processing, inadequate multiplexing capabilities, and the requirement for workflow integration, while emerging innovations, comprising the use of simplified sample pretreatment techniques, the integration of advanced nanomaterials, and advanced instruments such as portable mass spectrometer and the innovation of multimodal detection methods, offer potential solutions and are highlighted as promising directions. This review underscores the significant potential of cellulose PADs in facilitating decentralized, cost-effective, and simplified testing methodologies to maintain food safety standards. With the progression of interdisciplinary research, cellulose PADs are expected to become essential platforms for on-site food safety and authentication analysis, thereby significantly enhancing global food safety for consumers.
Collapse
Affiliation(s)
- An Du
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science & Technology, Xi'an, P. R. China
| | - Li Hua
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, P. R. China
| |
Collapse
|
16
|
Li ZY, Zhu JH, Xu YZ, Zhao J, Liu YS, Wang LL, Sun SY, Ji SL. Facile preparation of covalent-organic framework composites for magnetic solid-phase extraction of naphthaleneacetic acid in food prior to HPLC-UV analysis. J Chromatogr A 2024; 1731:465180. [PMID: 39053255 DOI: 10.1016/j.chroma.2024.465180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Novel magnetic covalent organic frameworks (COFs) were prepared by one-pot synthetic strategy and employed as an efficient adsorbent for magnetic solid-phase extraction (MSPE) of naphthaleneacetic acid (NAA) in food samples. Depending on the predesigned the hydrogen bonding, π-π and hydrophobic interactions of magnetic COFs, the efficient and selective extraction process for NAA was achieved within 15 min. The magnetic COFs adsorbent combined with HPLC-UV was devoted to develop a novel quantitative method for NAA in complex food. The method afforded good coefficient in range of 0.002-10.0 µg mL-1 and low limit of detection was 0.0006 µg mL-1. And the newly established method afforded less adsorbent consumption, wider linearity and lower LODs than the reported analytical methods. Ultimately, the method was successfully applied to determine NAA in fresh pear, tomato and peach juice. The magnetic COFs based MSPE coupled with HPLC-UV method provided a simple, efficient and dependable alternative to monitor trace NAA in food samples.
Collapse
Affiliation(s)
- Zi-Yu Li
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China; Institute of Bionanotechnology, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai, Shandong 264025, PR China
| | - Jia-Hui Zhu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Yu-Zhuo Xu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Jie Zhao
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China
| | - Yu-Shen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China; Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China; Institute of Bionanotechnology, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Yantai, Shandong 264025, PR China.
| | - Shu-Yang Sun
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, PR China.
| | - Shi-Lei Ji
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, PR China.
| |
Collapse
|
17
|
Xie S, Liao B, Yu J, Zhang W, Chen H, Xu J, Zhang L. Self-assembled flower-like carbon nanosheets for magnetic solid-phase extraction of microcystins from aquatic organism. J Chromatogr A 2024; 1730:465139. [PMID: 38970876 DOI: 10.1016/j.chroma.2024.465139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Adsorbents with good dispersibility and high efficiency are crucial for magnetic solid-phase extraction (MSPE). In this study, flower-like magnetic nanomaterials (F-Ni@NiO@ZnO2-C) were successfully prepared by calcination of metal-organic framework (MOF) precursors that was stacked by two-dimensional (2D) nanosheet. The synthesized F-Ni@NiO@ZnO2-C has a flower-like layered structure with a large amount of pore space, promoting the rapid diffusion of targets. In addition, Zn2+ doped in MOF precursors was still retained that further produced strong metal chelation with targets. The unique structure of F-Ni@NiO@ZnO2-C was used as MSPE adsorbent, and combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for extraction of three microcystins (MCs) detection, including microcystin-LR (MC-LR), microcystin-RR (MC-RR), microcystin-YR (MC-YR). The resulting method has a detection limit of 0.2-1.0 pg mL-1, a linear dynamic range of 0.6-500.0 pg mL-1 and has good linearity (R ≥ 0.9996). Finally, the established method was applied to the highly selective enrichment of MCs in biological samples, successfully detecting trace amounts of MCs (8.4-15.0 pg mL-1) with satisfactory recovery rates (83.7-103.1 %). The results indicated that flower-like magnetic F-Ni@NiO@ZnO2-C was a promising adsorbent, providing great potential for the determination of trace amounts of MCs in biological samples.
Collapse
Affiliation(s)
- Shiye Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Baodi Liao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jing Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian 350109, China
| | - Hui Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
18
|
Wang H, Jiang X, Qin Y, Xiong Z, Zhao L. Research trends in functionalized Fe 3O 4 composites based on affinity recognition systems for targeted extraction of natural products. J Chromatogr A 2024; 1730:465145. [PMID: 38981147 DOI: 10.1016/j.chroma.2024.465145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
In recent years, target-specific affinity recognition systems based on Fe3O4-based composites have proven to be an effective method for screening natural products. Herbal medicines contain a wide range of natural products and are considered to be a major source for the development of novel drugs. However, the process of isolating and obtaining these bioactive components for the production of novel drugs is complex. Meanwhile, the complexity and diversity of herbal constituents have posed a great challenge to the screening studies of herbal active ingredients. Currently, traditional extraction and screening studies of active ingredients in herbal medicine include extraction and chromatographic separation technology development, serum medicinal chemistry, metabolomics and computerized virtual screening. In order to achieve integrated targeting of Fe3O4 for extraction and separation of natural products from herbs, various Fe3O4-based composites need to be synthesized so that the composites can be further functionalized and modified. Composites such as Fe3O4@SiO2, Fe3O4-based magnetic graphene oxide and Fe3O4-based magnetic carbon nanotubes were used to achieve targeted extraction and isolation of natural products from herbal medicines. The main extraction techniques involved based on these Fe3O4-based composites are molecularly imprinted techniques, immobilized ligand fishing techniques, and cell membrane-coated bionanotechnology methods. This article will present recent advances in the synthesis and modification of Fe3O4 composites and their applications for the extraction of natural products in conjunction with molecular imprinting, immobilization-targeted fishing, and cell-membrane-coated biomimetic techniques, as well as the future goals and challenges of functionalized modification of Fe3O4 composites for the targeted extraction of natural products, like protein overexpression modification, doping of fluorescent substances and genetic engineering development. A deeper understanding of the multi-level, multidisciplinary, and applied studies in materials science and phytochemistry will be provided by this article.
Collapse
Affiliation(s)
- Haiwei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Xu Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Yi Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
19
|
Lei C, Zhang S, Liu WX, Ye ML, Zhao YG. Fast Determination of Eleven Food Additives in River Water Using C18 Functionalized Magnetic Organic Polymer Nanocomposite Followed by High-Performance Liquid Chromatography. Molecules 2024; 29:3675. [PMID: 39125079 PMCID: PMC11314223 DOI: 10.3390/molecules29153675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
A novel magnetic nanomaterial with Fe3O4 as the core, PS-DVB as the shell layer, and the surface modified with C18 (C18-PS-DVB-Fe3O4) had been synthesized by seeded emulsion polymerization. C18-PS-DVB-Fe3O4 retains the advantages of the chemical stability, large porosity, and uniform morphology of organic polymers and has the magnetic properties of Fe3O4. A simple, flexible, and efficient magnetic dispersive solid phase extraction (Mag-dSPE) method for the extraction of preservatives, sweeteners, and colorants in river water was established. C18-PS-DVB-Fe3O4 was used as an adsorbent for Mag-dSPE and was coupled with high-performance liquid chromatography (HPLC) to detect 11 food additives: acesulfame, amaranth, benzoic acid, tartrazine, saccharin sodium, sorbic acid, dehydroacetic acid, sunset yellow, allura red, brilliant blue, and erythrosine. Under the optimum extraction conditions, combined with ChromCoreTMAQC18 (5 μm, 4.6 × 250 mm), 20 mmol/L ammonium acetate aqueous solution and methanol were used as mobile phases, and the detection wavelengths were 240 nm and 410 nm. The limits of detection (LODs) of 11 food additives were 0.6-3.1 μg/L with satisfactory recoveries ranging from 86.53% to 106.32%. And the material could be reused for five cycles without much sacrifice of extraction efficiency. The proposed method has been used to determine food additives in river water samples, and results demonstrate the applicability of the proposed C18-PS-DVB-Fe3O4 Mag-dSPE coupled with the HPLC method to environment monitoring analysis.
Collapse
Affiliation(s)
- Chao Lei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; (C.L.); (W.-X.L.)
| | - Shun Zhang
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo 315010, China;
| | - Wen-Xin Liu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; (C.L.); (W.-X.L.)
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; (C.L.); (W.-X.L.)
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; (C.L.); (W.-X.L.)
| |
Collapse
|
20
|
Lanjwani MF, Tuzen M, Khuhawar MY, Afshar Mogaddam MR, Farajzadeh MA. Deep Eutectic Solvents for Extraction and Preconcentration of Organic and Inorganic Species in Water and Food Samples: A Review. Crit Rev Anal Chem 2024; 54:1290-1303. [PMID: 35980662 DOI: 10.1080/10408347.2022.2111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Deep eutectic solvents (DESs) have been developed as green solvents and these are capable as alternatives to conventional solvents used for the extraction of organic and inorganic species from food and water samples. The continuous generation of contaminated waste and increasing concern for the human health and environment have compelled the scientific community to investigate more ecological schemes. In this concern, the use of DESs have developed in one of the chief approach in the field of chemistry. These solvents have appeared as a capable substitute to conventional hazardous solvents and ionic liquids. The DESs has distinctive properties, easy preparation and components availability. It is not only used in scienctific fields but also used in quotidian life. There are many advantages of DESs in analytical chemistry, they are largely used for extraction and determination of inorganic and organic compounds from different samples. In previous a few years, several advanced researches have been focused on the separation and preconcentration of low level of pollutants using DESs as the extractants. This review summarizes the use of DESs in the separation and preconcentration of organic and inorganic species from water and food samples using various microextraction processes.
Collapse
Affiliation(s)
- Muhammad Farooque Lanjwani
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpasa University, Tokat, Turkey
- Dr M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpasa University, Tokat, Turkey
- King Fahd University of Petroleum and Minerals, Research Institute, Center for Environment and Marine Studies, Dhahran, Saudi Arabia
| | - Muhammad Yar Khuhawar
- Institute of Advanced Research Studies in Chemical Sciences, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
21
|
Bai H, Teng G, Zhang C, Yang J, Yang W, Tian F. Magnetic materials as adsorbents for the pre-concentration and separation of active ingredients from herbal medicine. J Sep Sci 2024; 47:e2400274. [PMID: 39073301 DOI: 10.1002/jssc.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Herbal medicine (HM) is crucial in disease management and contains complex compounds with few active pharmacological ingredients, presenting challenges in quality control of raw materials and formulations. Effective separation, identification, and analysis of active components are vital for HM efficacy. Traditional methods like liquid-liquid extraction and solid-phase extraction are time-consuming and environmentally concerning, with limitations such as sorbent issues, pressure, and clogging. Magnetic solid-phase extraction uses magnetic sorbents for targeted analyte separation and enrichment, offering rapid, pressure-free separation. However, inorganic magnetic particles' aggregation and oxidation, as well as lack of selectivity, have led to the use of various coatings and modifications to enhance specificity and selectivity for complex herbal samples. This review delves into magnetic composites in HM pretreatment, specifically focusing on encapsulated or modified magnetic nanoparticles and materials like silica, ionic liquids, graphene family derivatives, carbon nanotubes, metal-organic frameworks, covalent organic frameworks, and molecularly imprinted polymers.
Collapse
Affiliation(s)
- Hezhao Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Guohua Teng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Chen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Jingyi Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Fei Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
22
|
Liu P, Dong Y, Li X, Zhang Y, Liu Z, Lu Y, Peng X, Zhai R, Chen Y. Multilayered Fe 3O 4@(ZIF-8) 3 combined with a computer-vision-enhanced immunosensor for chloramphenicol enrichment and detection. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134150. [PMID: 38552394 DOI: 10.1016/j.jhazmat.2024.134150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The misuse and overuse of chloramphenicol poses severe threats to food safety and human health. In this work, we developed a magnetic solid-phase extraction (MSPE) pretreatment material coated with a multilayered metal-organic framework (MOF), Fe3O4 @ (ZIF-8)3, for the separation and enrichment of chloramphenicol from fish. Furthermore, we designed an artificial-intelligence-enhanced single microsphere immunosensor. The inherent ultra-high porosity of the MOF and the multilayer assembly strategy allowed for efficient chloramphenicol enrichment (4.51 mg/g within 20 min). Notably, Fe3O4 @ (ZIF-8)3 exhibits a 39.20% increase in adsorption capacity compared to Fe3O4 @ZIF-8. Leveraging the remarkable decoding abilities of artificial intelligence, we achieved the highly sensitive detection of chloramphenicol using a straightforward procedure without the need for specialized equipment, obtaining a notably low detection limit of 46.42 pM. Furthermore, the assay was successfully employed to detect chloramphenicol in fish samples with high accuracy. The developed immunosensor offers a robust point-of-care testing tool for safeguarding food safety and public health.
Collapse
Affiliation(s)
- Puyue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiming Dong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaoxuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhi Liu
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yingying Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xuewen Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ruifang Zhai
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yiping Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
23
|
Wu J, Liang L, Li S, Qin Y, Zhao S, Ye F. Rational design of nanozyme with integrated sample pretreatment for colorimetric biosensing. Biosens Bioelectron 2024; 257:116310. [PMID: 38643549 DOI: 10.1016/j.bios.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Nanozymes have been widely used in the field of biosensing owing to their high stability, low cost, adjustable catalytic activity, and convenient modification. However, achieving high selectivity and sensitivity simultaneously in nanozyme-based colorimetric sensing remains a major challenge. Nanozymes are nanomaterials with enzyme-simulating activity that are often used as solid-phase adsorbents for sample pretreatment. Our design strategy integrated sample pretreatment function into the nanozyme through separation and enrichment, thereby improving the selectivity and sensitivity of nanozyme-based colorimetric biosensing. As a proof-of-concept, glucose was used as the model analyte in this study. A phenylboric acid-modified magnetic nanozyme (Cu/Fe3O4@BA) was rationally designed and synthesized. Selectivity was enhanced by boronate-affinity specific adsorption and the elimination of interference after magnetic separation. In addition, magnetic solid-phase extraction enrichment was used to improve the sensitivity. A recovery rate of more than 80% was reached when the enrichment factor was 50. The synthesized magnetic Cu/Fe3O4@BA was recyclable at least five times. The proposed method exhibited excellent selectivity and sensitivity, simple operation, and recyclability, providing a novel and practical strategy for designing multifunctional nanozymes for biosensing.
Collapse
Affiliation(s)
- Jia Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, PR China
| | - Ling Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shuishi Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yuan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
24
|
Chen L, Zhang Y, Zhang YX, Wang WL, Sun DM, Li PY, Feng XS, Tan Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. J Pharm Anal 2024; 14:100899. [PMID: 38634061 PMCID: PMC11022103 DOI: 10.1016/j.jpha.2023.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have emerged as the first-line small molecule drugs in many cancer therapies, exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways. However, there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites, which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments, alongside other potential side effects or adverse reactions. Therefore, an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods, clinical pharmacokinetics, and therapeutic drug monitoring of different TKIs. This paper provides a comprehensive overview of the advancements in pretreatment methods, such as protein precipitation (PPT), liquid-liquid extraction (LLE), solid-phase extraction (SPE), micro-SPE (μ-SPE), magnetic SPE (MSPE), and vortex-assisted dispersive SPE (VA-DSPE) achieved since 2017. It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) methods, capillary electrophoresis (CE), gas chromatography (GC), supercritical fluid chromatography (SFC) procedures, surface plasmon resonance (SPR) assays as well as novel nanoprobes-based biosensing techniques. In addition, a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Lan Chen
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei-Lai Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - De-Mei Sun
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Peng-Yun Li
- Institute of Pharmacology and Toxicology Institution, National Engineering Research Center for Strategic Drugs, Beijing, 100850, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| |
Collapse
|
25
|
Tang X, Urujeni GI, Ni X, Lu Z, Wang D, Gao J, Meriem F, He H, Xiao D, Dramou P. Polyethyleneimine in designed nanocomposite based magnetic halloysite nanotubes for extraction and determination of gallic acid in green tea. Int J Biol Macromol 2024; 265:130914. [PMID: 38492702 DOI: 10.1016/j.ijbiomac.2024.130914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/11/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
An innovative and simple nanocomposite denoted as MHNTs@PEI was synthesized for gallic acid (GA) analytical sample pretreatment. Polyethyleneimine (PEI) functionalized was binded onto magnetic halloysite nanotubes (MHNTs) to inhence adsorption capacity. MHNTs@PEI was obtained only through two steps modification (amination and PEI modification). Characterizations showed that there are layers of synthetic PEI on the tubular structure of the material and magnetic spheres on its surface, both indicating successful synthesis of the nanocomposite. Furthermore, the adsorption isotherms and kinetic modeling showed that the Langmuir model and pseudo-first-order model fit the adsorption data, respectively. MHNTs@PEI achieved an adsorption capacity of 158 mg·g-1. Overall, the abundant adsorption sites significantly improved the adsorption performance of the MHNTs@PEI. Regeneration tests demonstrated that the MHNTs@PEI exhibits effective adsorption, even after undergoing five consecutive cycles. Optimization of key parameters (ratio, volume of elution, elution time and frequency) in the process of adsorption and desorption was also conducted. The limit of detection (LOD) and that of the quantification (LOQ) were 0.19 and 0.63 μg·mL-1, respectively, and the recoveries were 95.67-99.43 %. Finally, the excellent magnetism (43.5 emu·g-1) and the adsorption feature of MHNTs@PEI enabled its successful utilization in analytical sample pretreatment through the extraction of GA from green tea.
Collapse
Affiliation(s)
- Xue Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | | | - Xu Ni
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ziwei Lu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Dan Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Gao
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fizir Meriem
- Laboratoire de Valorisation des Substances Naturelles, University of Djilali Bounaama Khemis Miliana, Algeria
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Deli Xiao
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing 210009, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Liang M, Li N, Zhang H, Ma L, Wang K. Developing a novel magnetic organic polymer for selective extraction and determination of 16 macrolides in water and honey samples. RSC Adv 2024; 14:8726-8734. [PMID: 38500629 PMCID: PMC10945740 DOI: 10.1039/d4ra00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
A novel magnetic organic polymer Fe3O4@SiO2@Tb-PDAN was designed and synthesized, which was used as an adsorbent for magnetic solid-phase extraction (MSPE) of 16 macrolides (MALs) in water and honey. The synthesized adsorbent was characterized using techniques including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Then several parameters of the extraction process were further optimized. Under the optimized conditions, an MSPE-LC-MS/MS method was established for extraction and determination of 16 MALs, which showed good linearity (r ≥ 0.999), low limits of detection (0.001-0.012 μg L-1 for water and 0.001-0.367 μg kg-1 for honey) and satisfactory recoveries (70.02-118.91%) with the relative standard deviations (RSDs) lower than 10.0%. This established method was then successfully applied to detect MALs in real samples, which suggested that Fe3O4@SiO2@Tb-PDAN was a potential magnetic adsorbent for efficient extraction and analysis of MALs.
Collapse
Affiliation(s)
- Mengnan Liang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Na Li
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Hao Zhang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Ling Ma
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Ke Wang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| |
Collapse
|
27
|
Sabotič J, Bayram E, Ezra D, Gaudêncio SP, Haznedaroğlu BZ, Janež N, Ktari L, Luganini A, Mandalakis M, Safarik I, Simes D, Strode E, Toruńska-Sitarz A, Varamogianni-Mamatsi D, Varese GC, Vasquez MI. A guide to the use of bioassays in exploration of natural resources. Biotechnol Adv 2024; 71:108307. [PMID: 38185432 DOI: 10.1016/j.biotechadv.2024.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application-based development and further testing, as well as for consideration by regulatory authorities.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Engin Bayram
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - David Ezra
- Department of Plant Pathology and Weed Research, ARO, The Volcani Institute, P.O.Box 15159, Rishon LeZion 7528809, Israel
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Berat Z Haznedaroğlu
- Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Leila Ktari
- B3Aqua Laboratory, National Institute of Marine Sciences and Technologies, Carthage University, Tunis, Tunisia
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dina Simes
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal; 2GenoGla Diagnostics, Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Evita Strode
- Latvian Institute of Aquatic Ecology, Agency of Daugavpils University, Riga LV-1007, Latvia
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, 81-378 Gdynia, Poland
| | - Despoina Varamogianni-Mamatsi
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece
| | | | - Marlen I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 3036 Limassol, Cyprus
| |
Collapse
|
28
|
Zhao MM, Wu HZ, Deng XK, Yi RN, Yang Y. The application progress of magnetic solid-phase extraction for heavy metal analysis in food: a mini review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:333-343. [PMID: 38126405 DOI: 10.1039/d3ay01617j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The emerging sample pretreatment technique of magnetic solid-phase extraction (MSPE) has drawn the attention of researchers owing to its advantages of less reagent consumption, fast separation/enrichment process, high adsorption capacity, and simple operation. This paper presents a review of synthesis techniques, classification, and analysis procedures for MSPE in the detection of heavy metals in food. Magnetic adsorbents derived from silica, metal oxides, carbon, polymers, etc., are applied for the detection of heavy metals in food. Then, the recent development of the technology of MSPE for the analysis of heavy metal extraction in food is summarized in detail. Finally, the future outlook for the improvement of MSPE is also discussed.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Hai-Zhi Wu
- Hunan Province Institute of Product and Goods Quality Inspection, Changsha, Hunan 410007, China.
| | - Xiao-Ke Deng
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Rong-Nan Yi
- Criminal Technology Department, Hunan Police Academy, Changsha, Hunan, 410138, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
29
|
Aladaghlo Z, Sahragard A, Fakhari A, Salarinejad N, Movahed SK, Dabiri M. Fe 3O 4@nitrogen-doped carbon core-double shell nanotubes as a novel and efficient nanosorbent for ultrasonic assisted dispersive magnetic solid phase extraction of heterocyclic pesticides from environmental soil and water samples. Mikrochim Acta 2024; 191:98. [PMID: 38227067 DOI: 10.1007/s00604-023-06153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
Fe3O4@nitrogen-doped carbon core-double shell nanotubes (Fe3O4@N-C C-DSNTs) were successfully synthesized and applied as a novel nanosorbent in ultrasonic assisted dispersive magnetic solid phase extraction (UA-DMSPE) of tribenuron-methyl, fenpyroximate, and iprodione. Subsequently, corona discharge ion mobility spectrometry (CD-IMS) was employed for the detection of the extracted analytes. Effective parameters on the extraction recovery percentage (ER%) were systematically investigated and optimized. Under optimal conditions, UA-DMSPE-CD-IMS demonstrated remarkable linearity in different ranges within 1.0 - 700 ng mL-1 with correlation coefficients exceeding 0.993, repeatability values below 6.9%, limits of detection ranging from 0.30 to 0.90 ng mL-1, high preconcentration factors (418 - 435), and ER% values (83 - 87%). The potential of the proposed method was further demonstrated by effectively determining the targeted pesticides in various environmental soil and water samples, exhibiting relative recoveries in the range 92.1 - 102%.
Collapse
Affiliation(s)
- Zolfaghar Aladaghlo
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-77871, Iran.
| | - Ali Sahragard
- FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa km 7.5, E-07122, Palma de Mallorca, Illes Balears, Spain
| | - Alireza Fakhari
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, I.R, Iran.
| | - Neda Salarinejad
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, I.R, Iran
| | - Siyavash Kazemi Movahed
- Department of Chemistry, Isfahan University of Technology, Isfahan, 8415683111, Islamic Republic of Iran
| | - Minoo Dabiri
- Faculty of Chemistry, Shahid Beheshti University G. C., P.O. Box 1983963113, Evin, Tehran, I.R, Iran
| |
Collapse
|
30
|
Nie XM, Li YL, Xu XL, Chen FM, Zhang F, Chen D. Application of urea-based magnetic covalent organic framework as sorbent for the determination of coumarin and its derivatives in food samples combined with liquid chromatography-mass spectrometry. Food Chem 2024; 431:137058. [PMID: 37591143 DOI: 10.1016/j.foodchem.2023.137058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
A magnetic solid-phase extraction (MSPE) protocol using novel Urea-based magnetic covalent organic framework coupled with liquid chromatography-mass spectrometry was developed for the detection of coumarins in food samples (soft drink, biscuit and sesame paste). This adsorbent was synthesized through atom economic polymerization of tetrakis(4-aminophenyl) methane and 1,4-phenylene diisocyanate, which was successfully verified by a series of techniques. Major parameters influencing MSPE efficiency were optimized. This protocol had some advantages, such as organic-reagent-saving (2.0 mL), easy operating, short extraction time, and high repeatability (8 times). The established method exhibited superior linearity (R2 ≥ 0.999) and the limits of detection ranging from 1.0 to 5.0 µg/kg. The recoveries of coumarin and its derivatives ranged from 73.8% to 113.5% and both intra- and inter-day precision were less than 15%. These data indicate the protocol is a highly promising alternative for coumarin extraction and enrichment.
Collapse
Affiliation(s)
- Xue-Mei Nie
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Yin-Long Li
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Xiu-Li Xu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Feng-Ming Chen
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, China.
| | - Da Chen
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
31
|
Wang MM, Li ZL, Wu H, Chen KY, Guo F, Zuo GF, He Y, Yin XB. Self-assembled Fe 3O 4-NH 2 @g-C 3N 4 composite for magnetic solid-phase extraction of benzophenones in sea water and lake water coupled with LC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132776. [PMID: 37844496 DOI: 10.1016/j.jhazmat.2023.132776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Magnetic solid-phase extraction (MSPE) was developed based on a well-designed Fe3O4-NH2 @g-C3N4 nanocomposite as sorbent for a mixture of six benzophenones (BPs) in environmental water samples. The composite fabricated via in-situ self-assembled g-C3N4 shell with homogeneous polymerization of cyanuric chloride and cyanuric acid on Fe3O4-NH2 core. While high adsorption capacity was derived from g-C3N4 via hydrophobic, π-π and hydrogen bonding interactions to the targets, the fast magnetic separation was realized with Fe3O4 core for less solvent consumption. In combination with LC-MS/MS, the Fe3O4-NH2 @g-C3N4 sorbent minimized the interfering components, reduced the matrix effects, and provided the enrichment factors of 121-150 for six BPs with relative standard deviations ≤ 9.7% even after 20 times extraction-desorption cycles. The present method gave the detection limits of 0.3-2.5 ng/L for six BPs with the linear ranges of 1.0-2000 ng/L, and the recoveries of 84.6%-104% in sea water and 86.2%-107% in lake water samples. Thus, the Fe3O4-NH2 @g-C3N4-based MSPE coupled with LC-MS/MS method provided a convenient, efficient, and reliable alternative to monitor trace BPs in environmental water samples.
Collapse
Affiliation(s)
- Man-Man Wang
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Zi-Ling Li
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Han Wu
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Ke-Yan Chen
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Fan Guo
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Gui-Fu Zuo
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yu He
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China.
| |
Collapse
|
32
|
Melekhin AO, Tolmacheva VV, Goncharov NO, Apyari VV, Parfenov MY, Bulkatov DP, Dmitrienko SG, Zolotov YA. Rapid multi-residue LC-MS/MS determination of nitrofuran metabolites, nitroimidazoles, amphenicols, and quinolones in honey with ultrasonic-assisted derivatization - magnetic solid-phase extraction. J Pharm Biomed Anal 2024; 237:115764. [PMID: 37804641 DOI: 10.1016/j.jpba.2023.115764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
A rapid multi-residue LC-MS/MS method for the identification and determination of banned veterinary drugs in honey was developed. A total of 31 investigated veterinary drugs belonging to 4 classes including nitrofurans metabolites, nitroimidazoles, amphenicols, and quinolones were quantified by LC-MS/MS with ESI using one single injection. The sample preparation included treatment with 5-nitro-2-furaldehyde (5-NFA) in a thermostated ultrasonic bath (80 °C, 0.5М НСl, 20 min) to liberate matrix-bound residues of nitrofurans. Magnetic hypercrosslinked polystyrene (HCP/Fe3O4) was proposed for the solid-phase extraction and clean-up of target analytes prior to LC-MS/MS analysis. To evaluate and validate the performance of method, the criteria of the Decision (EC) no 2002/657 were applied. The LOQs of the examined analytes range from 0.3 to 1 μg kg-1, which indicates good sensitivity to quantify the target compounds in honey. The recoveries of veterinary drugs from 1 g of honey with 50 mg of the sorbent are 97-109% for nitrofuran metabolites, 84-115% for nitroimidazoles, 86-103% for amphenicols, and 97-118% for quinolones. The relative standard deviations of intra-day and inter-day precision analyses (RSD) are less than 16%. This methodology was applied to real honey samples and trace levels of some veterinary drugs were detected.
Collapse
Affiliation(s)
- A O Melekhin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia; Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - V V Tolmacheva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - N O Goncharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - V V Apyari
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia.
| | - M Yu Parfenov
- Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - D P Bulkatov
- Federal Centre for Animal Health, Orangereynaya st., 23, 111622 Moscow, Russia
| | - S G Dmitrienko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia
| | - Yu A Zolotov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, 1/3, 119991 Moscow, Russia; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Avenue, 31, 119991 Moscow, Russia
| |
Collapse
|
33
|
Maghraby YR, Labib RM, Sobeh M, Farag MA. Gingerols and shogaols: A multi-faceted review of their extraction, formulation, and analysis in drugs and biofluids to maximize their nutraceutical and pharmaceutical applications. Food Chem X 2023; 20:100947. [PMID: 38144766 PMCID: PMC10739842 DOI: 10.1016/j.fochx.2023.100947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 12/26/2023] Open
Abstract
Gingerols represent the main bioactive compounds in ginger drugs mostly Zinigiber officinale (F. Zingebraceae) and account for the biological activities and the strong/pungent flavor in ginger. Ginger (Z. officinale) rhizome is one of the most valued herbal drugs for ailments' treatment in many ayurvedic medicine asides from its culinary applications as a spice. Gingerols and their dehydrated products shogaols are phenolic phytochemicals found in members of the Zingiberaceae family and account for most of their effects including anti-inflammatory and anticancer activities. This review entails most of the novel trends related to the extraction, optimization, and formulations of gingerols and shogaols to insure best recoveries and efficacies from their natural resources. Further, it presents a comprehensive overview of the different analytical approaches for the determination of gingerols/shogaols' levels in nutraceuticals to ensure highest quality and for their detection in body fluids for proof of efficacy.
Collapse
Affiliation(s)
- Yasmin R. Maghraby
- Department of Chemistry, The American University in Cairo, New Cairo, Egypt
| | - Rola M. Labib
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mansour Sobeh
- AgroBioSciences Program, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben-Guerir 43150, Morocco
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
34
|
Cao S, Huang S, Yang C, Lian L, Ren M, Sun D. ZIF-67-modified magnetic nanoparticles for extraction of phenoxy carboxylic acid herbicides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5483-5491. [PMID: 37840357 DOI: 10.1039/d3ay01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Phenoxy carboxylic acid (PCA) herbicides are commonly used herbicides that can easily accumulate in soil, groundwater, crops, and vegetable surfaces. Thus, they pose a serious risk to human health. Accurate detection of trace amounts of PCAs in various matrixes is crucial. Herein, ZIF-67-modified magnetic nanoparticles (MNPs, ZIF-67@Fe3O4) were prepared by growing ZIF-67 on the surface of Fe3O4 MNPs. The introduction of ZIF-67 improved the dispersion of Fe3O4 nanoparticles in water and enhanced their extraction performance for PCAs. When an eluent consisting of ammonia water and acetonitrile (5% : 95%; v/v) was employed, 10 mg of ZIF-67@Fe3O4 displayed optimal extraction performance for PCAs in a 20 mL sample solution at a pH of 3. We achieved a limit of detection ranging from 0.014 μg L-1 to 0.056 μg L-1 for four types of PCA herbicides by using the newly developed method. Notably, the values were considerably lower than the maximum concentration levels of PCAs in drinking water set by the Environmental Protection Agency. The relative recovery rate of PCAs using ZIF-67@Fe3O4 ranged from 83.75% to 117.07% when applied to river water and apple samples. These results demonstrate the great potential of ZIF-67@Fe3O4 in determining the residues of organic pesticides in real samples.
Collapse
Affiliation(s)
- Shengyu Cao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| | - Shanshan Huang
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Chudi Yang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Minhong Ren
- Department of Analytical Chemistry, Guangxi Vocational & Technical Institute of Industry, Guangxi, China
| | - Dazhi Sun
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, Jilin, China.
| |
Collapse
|
35
|
Lin S, Liang B, Zhao Z, Li Z, Deng K, He H, Liang SX. Fabrication of a magnetic metal-organic framework/covalent organic framework composite for simultaneous magnetic solid-phase extraction of seventeen trace quinolones residues in meats. J Chromatogr A 2023; 1709:464403. [PMID: 37757609 DOI: 10.1016/j.chroma.2023.464403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Effective capture of quinolones (QNs) in animal-derived food is a vital procedure for food safety monitoring. However, the lack of adsorption specificity and difficult to recycle in complex substrate conditions have been major problems for most of the adsorbents. In this work, a magnetic Fe3O4/MOF/COF composite (named Fe3O4@NH2-MIL-125@TpPa-SO3H) was successfully synthesized with good magnetic responsiveness and conspicuous affinity towards QNs. The Fe3O4/MOF/COF composite was used as a magnetic solid-phase extraction (MSPE) adsorbent for pretreatment and determination of QNs in meat samples. Under optimal MSPE conditions in combination with high performance liquid chromatography-quadrupole orbitrap high resolution mass spectrometer (HPLC-Q-Orbitrap HRMS), the proposed method had good linearity (R2 ≥ 0.9978) from 0.01 to 100ng g-1, low limits of detection (0.0016 to 0.0940ng g-1), good precision with relative standard deviations lower than 5.8%. This method was effectively applied to the detection of 17 QNs in the spiked pork, chicken and beef samples with satisfactory recoveries from 83.9 to 106.2%. The separation selectivity mainly due to the π-π interaction, hydrogen bonding, and electrostatic attraction between QNs and the sulfonic acid and amino functional groups of the composite. After verification, the stability and reusability of the composite meet the requirements of complex matrix sample pretreatment. The developed MSPE method based on the magnetic Fe3O4/MOF/COF composite provided an ideal sample pretreatment alternative for determining trace QNs in complex matrixes with selectivity, simplicity, rapidity, and efficiency.
Collapse
Affiliation(s)
- Shumin Lin
- Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Bolong Liang
- School of Eco-Environment, Hebei University, Baoding 071002, PR China
| | - Zhe Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Zhenqiu Li
- College of Life Science, Hebei University, Baoding 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Kai Deng
- College of Life Science, Hebei University, Baoding 071002, PR China
| | - Hongbin He
- School of Eco-Environment, Hebei University, Baoding 071002, PR China
| | - Shu-Xuan Liang
- Key Laboratory of Analytical Science and Technology of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
36
|
Yang J, Li M, Liu X, Liao Y, Zhao H, Chen J, Dai X, Simal-Gandara J, Kong Z, Zhang M. Magnetic functionalized graphene oxide combined with ultra-high performance liquid chromatography for trace detection of succinate dehydrogenase inhibitor fungicides in food. J Sep Sci 2023; 46:e2300108. [PMID: 37582657 DOI: 10.1002/jssc.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
In this study, an efficient, sensitive, and convenient magnetic solid-phase extraction method combined with ultra-high performance liquid chromatography-tandem mass spectrometry (MSPE-UHPLC-MS/MS) was developed for the simultaneous determination of 19 succinate dehydrogenase inhibitor fungicide residues in six different food matrices The synthesized tetraethylenepentamine magnetic graphene oxide nanocomposite showed the advantages of good dispersibility, large specific surface area (113.93 m2 /g) and large pore volume (0.25 cm3 /g), making it an ideal succinate dehydrogenase inhibitor pretreatment adsorbent. The MSPE-UHPLC-MS/MS method showed linearity in the range of 5.0-800.0 μg/kg, with a correlation coefficient (R2 ) > 0.99, and a limit of quantification of 5 μg/kg. The recovery of succinate dehydrogenase inhibitor fungicides was in the range of 71.2%-119.4%. The MSPE method is simple, rapid, and efficient, making it an ideal alternative to sample pretreatment in the determination of trace succinate dehydrogenase inhibitor fungicides in complex matrices.
Collapse
Affiliation(s)
- Jiajie Yang
- College Life Science & Technology, Xinjiang University, Urumqi, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yonghong Liao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Haoran Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Minwei Zhang
- College Life Science & Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
37
|
Peng X, Liu L, Hu X, Yan W, Zheng D, Xia Z, Yu Q, Zhou Y, Xia H, Peng L. Facile fabrication of naphthalene-functionalized magnetic nanoparticles for efficient extraction of polycyclic aromatic hydrocarbons from environmental water and fish samples. J Chromatogr A 2023; 1706:464229. [PMID: 37506458 DOI: 10.1016/j.chroma.2023.464229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In this study, naphthalene-modified magnetic nanoparticles (Fe3O4@Nap) were simply prepared based on specific chelation interaction between phosphate groups and metal ions on Fe3O4 surface. The resultant Fe3O4@Nap were characterized by FTIR, BET, SEM, TEM, NAM, TGA, and VSM techniques. With Fe3O4@Nap as adsorbent, the polycyclic aromatic hydrocarbons (PAHs) were efficiently extracted by magnetic solid-phase extraction (MSPE) from environmental water and fish samples through the π-π interaction between modified naphthalene groups and PAHs, followed by their determination by GC-MS/MS. The key parameters influencing the extraction efficiency were investigated. Under the optimized conditions, the Fe3O4@Nap-based MSPE/GC-MS/MS method proposed in this paper was evaluated and applied for analyzing PAHs in environmental water and fish samples. And the proposed MSPE/GC-MS/MS method exhibited good linearities for water samples (in the range of 0.1-10 ng/mL, R2 >0.9945) and for fish samples (in the range of 1-100 ng/g, R2 > 0.9905). The limits of detection (LODs) for water and fish samples were 0.004-0.031 ng/mL and 0.07-0.28 ng/g, respectively. Additionally, this method exhibited desirable accuracy and precision. The PAH recovery values from water and fish samples ranged from 81.5% to 109.6% with inter- and intra-day relative standard deviations (RSDs) of less than 12.8%. The MSPE/GC-MS/MS method was successfully applied to the analysis of real environmental water and fish samples. Overall, the newly synthesized Fe3O4@Nap exhibited high sensitivity, specificity, reusability, repeatability, and it could efficiently extract PAHs from environmental water and fish samples by MSPE.
Collapse
Affiliation(s)
- Xitian Peng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Li Liu
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Xizhou Hu
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Wei Yan
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Dan Zheng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Zhenzhen Xia
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China
| | - Qiongwei Yu
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Youxiang Zhou
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| | - Hong Xia
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| | - Lijun Peng
- Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro products, Institute of Agricultural Quality Standards and Testing Technology Research, Wuhan, Hubei 430064, PR China.
| |
Collapse
|
38
|
Fu Q, Li J, Wang X, Sun-Waterhouse D, Sun X, Waterhouse GIN, Wu P. Covalent organic framework-based magnetic solid-phase extraction coupled with gas chromatography-tandem mass spectrometry for the determination of trace phthalate esters in liquid foods. Mikrochim Acta 2023; 190:383. [PMID: 37697171 DOI: 10.1007/s00604-023-05958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Covalent organic framework-coated magnetite particles (Fe3O4@COF) were synthesized and applied as the adsorbent to the selective capture of phthalate esters (PAEs) in liquid foods. Combined with the magnetic solid-phase extraction (MSPE) technology, a gas chromatography-tandem mass spectrometry (GC-MS/MS) method was employed for the separation and quantification of PAEs. Following optimization of the magnetic extraction and elution parameters, the developed analytical method offered a satisfactory linear range (0.1-5 μg L-1) with determination coefficients ranging from 0.9934 to 0.9975 for the five different PAEs studied. The limits of detection (LOD) were in the range 1.9-12.8 ng L-1. The recoveries ranged from 70.0 to 119.8% with a relative standard deviation (RSD) less than 9.7%. Density functional theory (DFT) calculations established that the dominant adsorption mechanism used by the COF to bind PAEs involved π-π stacking interactions. Results encourage the wider use of COF-based adsorbents and MSPE methods in the analytical determination of PAEs in foods.
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xin Wang
- Weifang Inspection and Testing Center, Weifang, 261000, People's Republic of China
| | | | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | | | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
39
|
Qi M, Li Y, Zhu Z, Du B, Chen D. Current Sample Preparation Methods and Determination Techniques for the Determination of Phthalic Acid Ester Plasticizers in Edible Oils. Molecules 2023; 28:5106. [PMID: 37446766 DOI: 10.3390/molecules28135106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In the process of production, processing, transportation, and storage of edible oils, the oils inevitably come into contact with plastic products. As a result, plasticizers migrate into edible oils, are harmful to human health, and can exhibit reproductive toxicity. Therefore, the determination of plasticizers in edible oils is very important, and a series of sample preparation methods and determination techniques have been developed for the determination of plasticizers in edible oils. Phthalic acid ester (PAE) plasticizers are the most widely used among all plasticizers. This review aims to provide a comprehensive overview of the sample preparation methods and detection techniques reported for the determination of PAEs in edible oils since 2010, focusing on sample preparation methods of edible oils combined with various separation-based analytical techniques, such as gas chromatography (GC) and liquid chromatography (LC) with different detectors. Furthermore, the advantages, disadvantages, and limitations of these techniques as well as the prospective future developments are also discussed.
Collapse
Affiliation(s)
- Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanyan Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| |
Collapse
|
40
|
Liu Y, Ling Y, Zhang Y, Feng X, Zhang F. Synthesis of a magnetic covalent organic framework for extraction and separation of ultraviolet filters in beverage samples. Food Chem 2023; 410:135323. [PMID: 36608551 DOI: 10.1016/j.foodchem.2022.135323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
In this study, a novel magnetic covalent organic framework (Fe3O4@TAPB-BTT) was successfully synthesized under mild conditions. The prepared magnetic COF exhibited large surface area (876.3 m2 g-1), porous feature as well as sizeable π-conjugated network structure. Due to the above advantages, Fe3O4@TAPB-BTT showed good adsorptive performance for ultraviolet (UV) filters with adsorption capacities ranging from 80.8 to 120.1 mg g-1. Then the adsorbent was applied to magnetic solid phase extraction (MSPE) of UV filters in beverage samples, followed by UHPLC-MS/MS analysis. The established method showed good accuracy, precision, and reproducibility with satisfactory recoveries (76.9-95.6 %), low limits of detection (0.001-0.15 µg/L), and low relative standard deviations (<9.8 %). Besides, the adsorbent can be reutilized at least ten times, demonstrating satisfactory reusability. This work provided an effective method for the analysis and determination of UV filters in drinks.
Collapse
Affiliation(s)
- Ye Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China; School of Pharmacy China Medical University, Shenyang 110122, Liaoning, China
| | - Yun Ling
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Yuan Zhang
- School of Pharmacy China Medical University, Shenyang 110122, Liaoning, China
| | - Xuesong Feng
- School of Pharmacy China Medical University, Shenyang 110122, Liaoning, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China.
| |
Collapse
|
41
|
Cui X, Wang Y, Shi YL, Lu R, Gao H, Zhou W, Huang X. Phenylboronic acid-functionalized magnetic metal-organic framework nanoparticles for magnetic solid phase extraction of five benzoylurea insecticides. J Chromatogr A 2023; 1704:464115. [PMID: 37285619 DOI: 10.1016/j.chroma.2023.464115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
This research involves the construction of a phenylboronic acid-functionalized magnetic UiO-66 metal-organic framework (MOF) nanoparticle (CPBA@UiO-66@Fe3O4). Its design is primarily for the magnetic solid phase extraction (MSPE) of benzoylurea insecticides. An organic ligand, 2-amino terephthalic acid (2-ATPA), facilitated the introduction of amino groups while keeping the original crystal structure of UiO-66 intact. The constructed UiO-66 MOF showcases a porous structure and extensive surface area, thereby providing an optimal platform for further functionalization. The employment of 4-carboxylphenylboronic acid as a modifier notably amplified the extraction efficiency for benzoylureas. This improvement was due to the formation of B-N coordination and other secondary interactions. By integrating this with high-performance liquid chromatography (HPLC), we established a quantitative analytical method for benzoylurea insecticides. This method achieved a wide linear range (2.5-500 μg L-1 or 5-500 μg L-1), satisfactory recoveries (83.3-95.1%), and acceptable limits of detection (LODs: 0.3-1.0 μg L-1). The developed method proved successful when applied to six tea infusion samples, representing China's six major tea categories. Semi-fermented and light-fermented tea samples demonstrated relatively higher spiking recoveries.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China
| | - Yujiao Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China
| | - Yao-Lin Shi
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Runhua Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China
| | - Haixiang Gao
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China
| | - Wenfeng Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing 100193, PR China.
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Key Laboratory of Vegetables Quality and Safety Control, Laboratory of Quality & Safety Risk Assessment for Vegetable Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China.
| |
Collapse
|
42
|
Yu HP, Ren HB, Cui YY, Yang CX. Room-temperature synthesis of dual-functionalized magnetic microporous organic network for efficient extraction of vanillins in food. Talanta 2023; 257:124391. [PMID: 36854206 DOI: 10.1016/j.talanta.2023.124391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Microporous organic networks (MONs) are promising materials for the magnetic solid-phase extraction (MSPE) of trace targets from diverse complex samples. However, all the reported magnetic MONs (MMONs) are mono-functionalized and synthesized by refluxing at high temperatures, which is not an energy-efficient and environmentally friendly method. Here, for the first time, we report the room-temperature fabrication of a novel dual-functionalized MMON (MMON-B) for the efficient MSPE of typical vanillin additives from food samples prior to high-performance liquid chromatography (HPLC). The conjugated MMON-B with numerous -OH and -NH2 groups afforded good extraction for vanillins via π-π, hydrophobic, and hydrogen-bonding interactions. The factors affecting the extraction were studied in detail. Under the optimal conditions, the developed MMON-B-MSPE-HPLC-UV method exhibited wide linear range (0.50-1200 μg L-1), low limits of detection (0.10-0.15 μg L-1), and good reusability and stability. Therefore, MMON-B was successfully used to enrich vanillins in complex food samples. The morphology and extraction efficiency of the room-temperature synthesized MMON-B were comparable with those of the MMON-B synthesized via the conventional reflux method, indicating that the room-temperature fabrication method is a good alternative to the reflux method. This study presents the feasibility of using a room-temperature method for synthesizing dual-functionalized MONs, and the findings may significantly promote the application of MONs in the MSPE of trace targets from complex matrices.
Collapse
Affiliation(s)
- Hui-Ping Yu
- College of Chemistry, Research Center for Analytical Sciences, Nankai University, Tianjin, 300071, China
| | - Hu-Bo Ren
- Quality Supervision & Test Center, China National Tobacco Corporation Shandong Branch, Jinan, 250098, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
43
|
Gemuh CV, Bezrouk A, Pérez R, Ayala C, Solich P, Horstkotte B. Solvent-assisted dispersive micro-solid phase extraction of bisphenols using iron(III) thenoyltrifluoroacetonate complex (Fe(TTA) 3) as a new nanostructured sorbent: a proof of concept. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2061-2072. [PMID: 36916662 DOI: 10.1039/d3ay00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this work, we describe for the first time the use of iron(III) thenoyltrifluoroacetonate complex (Fe(TTA)3) as a novel sorbent for solvent-assisted dispersive micro-solid phase extraction (SA-dμSPE) of bisphenols from water samples. The extraction procedure is based on the formation of nanoparticles in situ following the rapid injection of a methanolic solution of Fe(TTA)3 into the stirred aqueous sample. Herein, the synthesis of Fe(TTA)3 and study of the essential parameters of the preparative procedure are described. The optimized procedure allowed for efficient enrichment of bisphenols from various water samples, chosen as model contaminants and matrix, within 2.5 min. The sorbent was collected by centrifugation, dissolved in methanol, and injected to perform HPLC with spectrophotometric detection. The limits of detection and quantification obtained ranged from 1.0-3.1 and 3.1-7.5 μg L-1, respectively. Intraday and interday precisions of <7% relative standard deviation (RSD) and <8% RSD with analyte recoveries ranging between 70-117% (103.8% on average) were obtained for the analysis of river water, wastewater treatment plant effluent, and bottled water.
Collapse
Affiliation(s)
- Celestine Vubangsi Gemuh
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Aleš Bezrouk
- Department of Medical Biophysics, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03 Hradec Králové, Czech Republic
| | - Rocío Pérez
- Chemistry Department, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Caitlan Ayala
- Chemistry Department, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Petr Solich
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Burkhard Horstkotte
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
44
|
Magnetic solid-phase extraction based on GO/Fe 3O 4 coupled with UPLC-MS/MS for determining nitroimidazoles and their metabolites in honey. Talanta 2023; 254:124181. [PMID: 36512971 DOI: 10.1016/j.talanta.2022.124181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
A magnetic graphene oxide (GO/Fe3O4) nanocomposite was synthesized in one step by a chemical coprecipitation method, which was further used for magnetic solid-phase extraction (MSPE). This study aimed to combine GO/Fe3O4 with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to detect the nitroimidazoles (NDZs) and their three major metabolites in honey samples. GO/Fe3O4 was characterized by transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR) spectroscopy, and magnetic property measurement system (MPMS), and the influencing parameters such as adsorbent amount, pH of the dissolved sample solution, sample volume, type and volume of the eluent, shaking speed, and adsorption and desorption time were optimized. Under the optimized conditions, the limits of detection (LOD) and quantitation (LOQ) of the method were 0.003-0.08 μg kg-1 and 0.009-0.3 μg kg-1, respectively, with good linearity reported in the range of 0.5-20 μg kg-1 (R2 ≥ 0.9991). The average recoveries of 10 analytes were in the range of 66.0%-90.8% with relative standard deviations (RSD) lower than 6.9% (n = 6). The preparation of GO/Fe3O4 and the extraction process were convenient and rapid, and consumed small amounts of organic solvents. The optimized method was successfully applied for extracting NDZs and their three major metabolites from honey samples with good accuracy.
Collapse
|
45
|
Sun R, Li Y, Du T, Qi Y. Recent advances in integrated dual-mode optical sensors for food safety detection. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
46
|
Advances on Hormones in Cosmetics: Illegal Addition Status, Sample Preparation, and Detection Technology. Molecules 2023; 28:molecules28041980. [PMID: 36838967 PMCID: PMC9959700 DOI: 10.3390/molecules28041980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Owing to the rapid development of the cosmetic industry, cosmetic safety has become the focus of consumers' attention. However, in order to achieve the desired effects in the short term, the illegal addition of hormones in cosmetics has emerged frequently, which could induce skin problems and even skin cancer after long-term use. Therefore, it is of great significance to master the illegal addition in cosmetics and effectively detect the hormones that may exist in cosmetics. In this review, we analyze the illegally added hormone types, detection values, and cosmetic types, as well as discuss the hormone risks in cosmetics for human beings, according to the data in unqualified cosmetics in China from 2017 to 2022. Results showed that although the frequency of adding hormones in cosmetics has declined, hormones are still the main prohibited substances in illegal cosmetics, especially facial masks. Because of the complex composition and the low concentration of hormones in cosmetics, it is necessary to combine efficient sample preparation technology with instrumental analysis. In order to give the readers a comprehensive overview of hormone analytical technologies in cosmetics, we summarize the advanced sample preparation techniques and commonly used detection techniques of hormones in cosmetics in the last decade (2012-2022). We found that ultrasound-assisted extraction, solid phase extraction, and microextraction coupled with chromatographic analysis are still the most widely used analytical technologies for hormones in cosmetics. Through the investigation of market status, the summary of sample pretreatment and detection technologies, as well as the discussion of their development trends in the future, our purpose is to provide a reference for the supervision of illegal hormone residues in cosmetics.
Collapse
|
47
|
Ozalp O, Gumus ZP, Soylak M. Magnetic solid-phase extraction of atrazine with ACC@NiCo 2O 4@Fe 3O 4 nanocomposite in spice and water samples. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2023.2168203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Z. Pinar Gumus
- Central Research Testing and Analysis Laboratory Research and Application Center (EGE-MATAL), Ege University, İzmir, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Ankara, Cankaya, Turkey
| |
Collapse
|
48
|
Dan A, Zhang S, Chen Z, Dong J, Zheng W, Tu Y, Lin Z, Cai Z. Facile synthesis of Cu 2+-immobilized magnetic covalent organic frameworks for highly efficient enrichment and sensitive determination of five phthalate monoesters from mouse plasma with HPLC-MS/MS. Talanta 2023; 253:123923. [PMID: 36108515 DOI: 10.1016/j.talanta.2022.123923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Development of a simple, highly selective, and sensitive analytical method for phthalate monoesters (mPAEs) remains a challenge due to the complexity of biological samples. To address this issue, Cu2+ immobilized magnetic covalent organic frameworks (Fe3O4@TtDt@Cu2+ composites) with core-shell structures were prepared to enhance the enrichment efficiency of mPAEs by a facile approach synthesis of COFs shells with inherent bifunctional groups on Fe3O4 NPs and further Cu2+ immobilization. The composites exhibit high specific surface area (348.1 m2 g-1), outstanding saturation magnetization (34.94 emu g-1), ordered mesoporous structure, Cu2+ immobilization, and excellent thermal stability. Accordingly, a magnetic solid-phase extraction (MSPE) pretreatment technique based on Cu2+ immobilized COF composites combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established, and key parameters including the adsorbent amount, adsorption time, elution solvent, etc. were examined in detail. The developed analytical method showed wide linear ranges (10-8000 ng L-1), low limit of detections (LODs, 2-10 ng L-1), and good correlation coefficients (R2 ≥ 0.9904) for the five mPAEs. Furthermore, the analytical method was also successfully applied to the highly sensitive detection of metabolite mPAEs in mouse plasma samples, indicating the promising application of the Fe3O4@TtDt@Cu2+ composites as a quick and efficient adsorbent in the sample pretreatment.
Collapse
Affiliation(s)
- Akang Dan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shasha Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhongliang Chen
- Fujian Inspection and Research Institute for Product Quality, Fuzhou, Fujian, 350002, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wenjun Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, PR China.
| |
Collapse
|
49
|
Magnetic Composite Based on Carbon Nanotubes and Deep Eutectic Solvents: Preparation and Its Application for the Determination of Pyrethroids in Tea Drinks. Foods 2022; 12:foods12010008. [PMID: 36613223 PMCID: PMC9818387 DOI: 10.3390/foods12010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, a novel composite material prepared by using deep eutectic solvent (tetrabutylammonium chloride-dodecanol, DES5) functionalized magnetic MWCNTs-ZIF-8 (MM/ZIF-8@DES5) was employed as an adsorbent for the magnetic solid-phase extraction of six pyrethroids from tea drinks. The characterization results show that MM/ZIF-8@DES5 possessed sufficient specific surface area and superparamagnetism, which could facilitate the rapid enrichment of pyrethroids from tea drink samples. The results of the optimization experiment indicated that DES5, which comprised tetrabutylammonium chloride and 1-dodecanol, was selected for the next experiment and that the adsorption properties of MM/ZIF-8@DES5 were higher than those of MM/ZIF-8 and M-MWCNTs. The validation results show that the method has a wide linear range (0.5-400 μg L-1, R2 ≥ 0.9905), low LOD (0.08-0.33 μg L-1), and good precision (intra-day RSD ≤ 5.6%, inter-day RSD ≤ 8.6%). The method was successfully applied to the determination of pyrethroids in three tea drink samples.
Collapse
|
50
|
Tian W, Liu Y, Wang S, Ye J, Liu H, Wang Y, Zhou M. Automated and Rapid Easy-to-Use Magnetic Solid-Phase Extraction System for Five Heavy Metals in Cereals and Feeds. Foods 2022; 11:foods11243944. [PMID: 36553685 PMCID: PMC9778536 DOI: 10.3390/foods11243944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
A rapid, accurate, and ecofriendly pretreatment plays an extremely important role prior to ICP-MS for heavy metal analysis. In order to improve the pretreatment efficiency, a high-throughput and automatic magnetic solid-phase extraction of five heavy metals (Cd, Pb, Mn, Cu, and Zn) was carried out by a magnet-controlled pretreatment system with an ecofriendly diluted acid as an extracting agent and carboxyl-functionalized magnetic beads as a pretreatment material. Key conditions, including the pH, adsorption time, and eluent solution, were optimized. The time for purification and enrichment was only 8 min. The adsorption capacities of the carboxyl-functionalized magnetic beads were in the range of 152~426 mg g-1. The preconcentration factor of Cu was 40, and others were 200. In the optimal conditions, the limits of detection for Mn, Zn, Cd, Cu, and Pb by ICP-MS were 3.84, 2.71, 0.16, 11.54, and 6.01 ng L-1, respectively. The percentage recoveries were in the range of 80~110%, and the relative standard deviations were less than 3%. The developed method was in good agreement with traditional standard microwave digestion. Additionally, the designed system could simultaneously process up to 24 samples within 22 min, reducing the time to less than 1 min/sample. Thus, the proposed auto-MSPE-ICP-MS method was successfully applied to analyze five heavy metals in cereals and feeds with a simple operation and high precision, safety, and reliability.
Collapse
Affiliation(s)
- Wei Tian
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yonglin Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Songxue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Hongmei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yue Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Minghui Zhou
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
- Correspondence:
| |
Collapse
|