1
|
Ji Y, Li L, Li W, Li L, Ma Y, Li Q, Chen X, Zhao W, Zhu H, Huo J, Wu M. Xiaoai Jiedu recipe reduces cell survival and induces apoptosis in hepatocellular carcinoma by stimulating autophagy via the AKT/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119135. [PMID: 39586558 DOI: 10.1016/j.jep.2024.119135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Xiaoai Jiedu recipe (XJR) is a traditional Chinese medicine formulation used in clinical settings to treat liver cancer. It has shown promising effectiveness by combining herbal and animal-derived ingredients, offering a new approach to cancer treatment. However, its mechanism of action is poorly understood. AIM OF THE STUDY The molecular processes underlying the inhibitory effects of the XJR on hepatocellular cancer (HCC) were investigated. MATERIALS AND METHODS The primary chemical components of XJR and associated disease targets relevant to HCC were anticipated and compiled using a database. The potential targets and processes by which XJR influenced HCC were investigated using GO and KEGG enrichment analyses, as well as protein-protein interaction (PPI) networks. Transmission electron microscopy, laser confocal microscopy, and Western blotting were used to evaluate autophagy, while CCK-8 assays measured cell viability and Western blotting and flow cytometry evaluated apoptosis. In vivo assays were conducted employing an HCC xenograft mouse model. RESULTS Network pharmacology analysis identified 456 intersecting targets between XJR and HCC. The top five active components are quercetin, cholesterol, jaceosidine, eupafolin, and oleanolic acid. The key targets include TP53, AKT1, IL6, EGFR, SRC, HSP90AA1, TNF, IL1B, MYC, and CASP3. Additionally, the autophagy pathway was found to be one of the main pathways through which XJR intervenes in HCC. The increased quantity of autophagosomes and autolysosomes, the overexpression of Beclin1 and LC3A/B-II proteins, and the downregulation of P62 all suggest that XJR stimulated autophagy in HCC cells. Functional tests employing pathway-specific activators and inhibitors and siRNA-based knockdown demonstrated that XJR promoted autophagy by blocking AKT/mTOR signaling. Furthermore, XJR reduced the viability of HCC cells and promoted apoptosis by upregulating apoptosis proteins. Autophagy inhibitors and Beclin1 silencing reversed these effects. Research conducted in vivo showed that XJR activated autophagy through the AKT/mTOR axis, thereby markedly reducing tumor growth and inducing tumor cell demise. CONCLUSIONS These studies show that XJR activates autophagy in both cellular and animal models to induce apoptosis and decrease HCC cell proliferation, as shown by network pharmacology and verification assays. Further, these findings provide experimental evidence that the anti-tumor activity of XJR involves autophagy stimulation.
Collapse
Affiliation(s)
- Yi Ji
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Li Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Wenting Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Liu Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China
| | - Yanxia Ma
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingfeng Li
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Wenyue Zhao
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China
| | - Hengzhou Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, China.
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - Mianhua Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China.
| |
Collapse
|
2
|
Luengas‐Martinez A, Ismail D, Paus R, Young HS. Vascular endothelial growth factor A inhibition remodels the transcriptional signature of lipid metabolism in psoriasis non-lesional skin in 12 h ex vivo culture. SKIN HEALTH AND DISEASE 2024; 4:e471. [PMID: 39624732 PMCID: PMC11608907 DOI: 10.1002/ski2.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Vascular endothelial growth factor A (VEGF-A)-mediated angiogenesis is involved in the pathogenesis of psoriasis. VEGF-A inhibitors are widely used to treat oncological and ophthalmological diseases but have not been used in psoriasis management. The molecular mechanisms underlying the effects of VEGF-A inhibition in psoriatic skin remain unknown. OBJECTIVES To identify the genes and canonical pathways affected by VEGF-A inhibition in non-lesional and plaque skin ex vivo. METHODS Total RNA sequencing was performed on skin biopsies from patients with psoriasis (n = 6; plaque and non-lesional skin) and healthy controls (n = 6) incubated with anti-VEGF-A monoclonal antibody (bevacizumab, Avastin®) or human IgG1 isotype control for 12 h in serum-free organ culture. Differentially expressed genes between paired control and treated samples with adjusted p-values <0.1 were considered significant. Gene ontology and ingenuity pathway analysis was used to identify enriched biological processes, canonical pathways and upstream regulators. RESULTS VEGF-A inhibition upregulated the expression of genes involved in lipid metabolism. Pathway enrichment analysis identified the activation of pathways involved in fatty acids and lipid biosynthesis and degradation in non-lesional skin and ferroptosis in plaque skin. VEGF-A inhibition downregulated endothelial cell apoptosis in non-lesional psoriasis skin and members of the interferon family were identified as potential regulators of the effects of VEGF-A inhibition in non-lesional skin. CONCLUSION Early response to VEGF-A inhibition is associated with changes in lipid metabolism in non-lesional psoriasis skin and cellular stress in psoriasis plaque. More investigation is needed to validate these findings.
Collapse
Affiliation(s)
- Andrea Luengas‐Martinez
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Dina Ismail
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
- Dr. Philip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Monasterium LaboratoryMuensterGermany
| | - Helen S. Young
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| |
Collapse
|
3
|
Demir K, Turgut R, Şentürk S, Işıklar H, Günalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr 2024; 12:9951-9973. [PMID: 39723045 PMCID: PMC11666977 DOI: 10.1002/fsn3.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.
Collapse
Affiliation(s)
- Kübra Demir
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
- Faculty of Health Science, Department of Nutrition and DieteticsSabahattin Zaim UniversityIstanbulTürkiye
| | - Rana Turgut
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Selcen Şentürk
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Handan Işıklar
- Faculty of Medicine, Department of Internal MedicineYalova UniversityYalovaTürkiye
| | - Elif Günalan
- Faculty of Health Science, Department of Nutrition and DieteticsIstanbul Health and Technology UniversityIstanbulTürkiye
| |
Collapse
|
4
|
Sitthisuk P, Innajak S, Poorahong W, Samosorn S, Dolsophon K, Watanapokasin R. Effect of Acacia concinna Extract on Apoptosis Induction Associated with Endoplasmic Reticulum Stress and Modulated Intracellular Signaling Pathway in Human Colon HCT116 Cancer Cells. Nutrients 2024; 16:3764. [PMID: 39519596 PMCID: PMC11547357 DOI: 10.3390/nu16213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) stands as one of the most prevalent cancer types and among the most frequent causes of cancer-related death globally. Acacia concinna (AC) is a medicinal and edible plant that exhibits a multitude of biological properties, including anticancer properties. This study aimed to investigate the impact of the AC extract on apoptosis induction and the underlying mechanisms associated with this effect in KRAS-mutated human colon HCT116 cells. METHODS The effect of AC extract on cell cytotoxicity was evaluated using MTT assay. Nuclear morphological changes were visualized with Hoechst 33342 staining, while mitochondrial membrane potential (MMP) was assessed via JC-1 staining. Flow cytometry was employed for cell cycle analysis, and intracellular ROS levels were determined using DCFH-DA staining. RESULTS The results showed that HCT116 cells exposed to AC extract showed reduced cell growth and prompted apoptosis, as indicated by an increase in chromatin condensation, apoptotic bodies, the sub-G1 apoptotic cell population, and disrupted MMP. Expression levels of apoptosis mediator proteins determined by Western blot analysis showed an increase in pro-apoptotic proteins (Bak and Bax) while decreasing anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1), leading to caspase-7 activation and PARP inactivation. AC extract was also found to enhance intracellular reactive oxygen species (ROS) levels and stimulate endoplasmic reticulum (ER) stress. Furthermore, AC extract increases the phosphorylation of ERK1/2, p38, and c-Jun while downregulating PI3K, Akt, β-catenin, and their downstream target proteins. CONCLUSIONS These results demonstrate that AC extract could inhibit cancer cell growth via ROS-induced ER stress associated with apoptosis and regulate the MAPK, PI3K/Akt, and Wnt/β-catenin signaling pathways in HCT116 cells. Therefore, AC extract may be a novel candidate for natural anticancer resources for colon cancer treatment.
Collapse
Affiliation(s)
- Pornnapa Sitthisuk
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| | - Sukanda Innajak
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| | - Watcharaporn Poorahong
- Department of Biochemistry, Faculty of Medicine, Bangkok Thonburi University, Bangkok 10170, Thailand;
| | - Siritron Samosorn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (S.S.); (K.D.)
| | - Kulvadee Dolsophon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; (S.S.); (K.D.)
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; (P.S.); (S.I.)
| |
Collapse
|
5
|
Yan Y, Yu W, Guo M, Zhu N, Chen X, Li N, Zhong C, Wang G. Autophagy regulates apoptosis of colorectal cancer cells based on signaling pathways. Discov Oncol 2024; 15:367. [PMID: 39182013 PMCID: PMC11344751 DOI: 10.1007/s12672-024-01250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer is a common malignant tumor of the digestive system. Its morbidity and mortality rank among the highest in the world. Cancer development is associated with aberrant signaling pathways. Autophagy is a process of cell self-digestion that maintains the intracellular environment and has a bidirectional regulatory role in cancer. Apoptosis is one of the important death programs in cancer cells and is able to inhibit cancer development. Studies have shown that a variety of substances can regulate autophagy and apoptosis in colorectal cancer cells through signaling pathways, and participate in the regulation of autophagy on apoptosis. In this paper, we focus on the relevant research on autophagy in colorectal cancer cells based on the involvement of related signaling pathways in the regulation of apoptosis in order to provide new research ideas and therapeutic directions for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yuwei Yan
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wenyan Yu
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Min Guo
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Naicheng Zhu
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiudan Chen
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Nanxin Li
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Chen Zhong
- Research Center for Differentiation and Development of CM Basic Theory, Jiangxi University of Chinese Medicine, Jiangxi Province Key Laboratory of CM Etiopathogenisis, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guojuan Wang
- Oncology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, No.445, Bayi Avenue, Nanchang, 330006, China.
| |
Collapse
|
6
|
Shamsudin NF, Leong SW, Koeberle A, Suriya U, Rungrotmongkol T, Chia SL, Taher M, Haris MS, Alshwyeh HA, Alosaimi AA, Mediani A, Ilowefah MA, Islami D, Mohd Faudzi SM, Fasihi Mohd Aluwi MF, Wai LK, Rullah K. A novel chromone-based as a potential inhibitor of ULK1 that modulates autophagy and induces apoptosis in colon cancer. Future Med Chem 2024; 16:1499-1517. [PMID: 38949858 PMCID: PMC11370956 DOI: 10.1080/17568919.2024.2363668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Aim: Chromones are promising for anticancer drug development.Methods & results: 12 chromone-based compounds were synthesized and tested against cancer cell lines. Compound 8 showed the highest cytotoxicity (LC50 3.2 μM) against colorectal cancer cells, surpassing 5-fluorouracil (LC50 4.2 μM). It suppressed colony formation, induced cell cycle arrest and triggered apoptotic cell death, confirmed by staining and apoptosis markers. Cell death was accompanied by enhanced reactive oxygen species formation and modulation of the autophagic machinery (autophagy marker light chain 3B (LC3B); adenosine monophosphate-activated protein kinase (AMPK); protein kinase B (PKB); UNC-51-like kinase (ULK)-1; and ULK2). Molecular docking and dynamic simulations revealed that compound 8 directly binds to ULK1.Conclusion: Compound 8 is a promising lead for autophagy-modulating anti-colon cancer drugs.
Collapse
Affiliation(s)
- Nur Farisya Shamsudin
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck6020, Austria
| | - Utid Suriya
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural & Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Suet Lin Chia
- UPM – MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang43400, Selangor, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Kuantan25200, Pahang, Malaysia
| | - Hussah Abdullah Alshwyeh
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Areej A Alosaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam31441, Saudi Arabia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), Bangi43600, Malaysia
| | | | - Deri Islami
- Faculty of Pharmacy & Health Sciences, Universitas Abdurrab, Jalan Riau Ujung, Pekanbaru28292, Riau, Indonesia
| | - Siti Munirah Mohd Faudzi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| | | | - Lam Kok Wai
- Drugs & Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur50300, Malaysia
| | - Kamal Rullah
- Drug Discovery & Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan25200, Pahang, Malaysia
| |
Collapse
|
7
|
Iskandar A, Kim SK, Wong TW. “Drug-Free” chitosan nanoparticles as therapeutic for cancer treatment. POLYM REV 2024; 64:818-871. [DOI: 10.1080/15583724.2024.2323943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Se-Kwon Kim
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Seoul, Republic of Korea
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Cacciola NA, De Cicco P, Amico R, Sepe F, Li Y, Grauso L, Nanì MF, Scarpato S, Zidorn C, Mangoni A, Borrelli F. Zosterabisphenone B, a new diarylheptanoid heterodimer from the seagrass Zostera marina, induces apoptosis cell death in colon cancer cells and reduces tumour growth in mice. Phytother Res 2024. [PMID: 38923111 DOI: 10.1002/ptr.8269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumours worldwide. Diarylheptanoids, secondary metabolites isolated from Zostera marina, are of interest in natural products research due to their biological activities. Zosterabisphenone B (ZBP B) has recently been shown to inhibit the viability of CRC cells. The aim of this study was to investigate the therapeutic potential of ZBP B for targeting human CRC cells. Cell viability was determined using the MTT assay. Flow cytometry and Western blot analyses were used to assess apoptosis and autophagy. A CRC xenograft model was used to evaluate the in vivo effect of ZBP B. No cytotoxic effect on HCEC cells was observed in the in vitro experiments. ZBP B caused morphological changes in HCT116 colon cancer cells due to an increase in early and late apoptotic cell populations. Mechanistically, ZBP B led to an increase in cleaved caspase-3, caspase-8, caspase-9, PARP and BID proteins and a decrease in Bcl-2 and c-Myc proteins. In the xenograft model of CRC, ZBP B led to a reduction in tumour growth. These results indicate that ZBP B exerts a selective cytotoxic effect on CRC cells by affecting apoptotic signalling pathways and reducing tumour growth in mice. Taken together, our results suggest that ZBP B could be a lead compound for the synthesis and development of CRC drugs.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rebecca Amico
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fabrizia Sepe
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Yan Li
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Laura Grauso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Francesca Nanì
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Silvia Scarpato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Alfonso Mangoni
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Lee YT, Mohd Yunus MH, Yazid MD, Ugusman A. Unraveling the path to osteoarthritis management: targeting chondrocyte apoptosis for therapeutic intervention. Front Cell Dev Biol 2024; 12:1347126. [PMID: 38827524 PMCID: PMC11140145 DOI: 10.3389/fcell.2024.1347126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease affecting joints and further causing disabilities. This disease affects around 240 million people worldwide. It is a multifactorial disease, and its etiology is difficult to determine. Although numerous therapeutic strategies are available, the therapies are aimed at reducing pain and improving patients' quality of life. Hence, there is an urgent need to develop disease-modifying drugs (DMOAD) that can reverse or halt OA progression. Apoptosis is a cell removal process that is important in maintaining homeostatic mechanisms in the development and sustaining cell population. The apoptosis of chondrocytes is believed to play an important role in OA progression due to poor chondrocytes self-repair abilities to maintain the extracellular matrix (ECM). Hence, targeting chondrocyte apoptosis can be one of the potential therapeutic strategies in OA management. There are various mediators and targets available to inhibit apoptosis such as autophagy, endoplasmic reticulum (ER) stress, oxidative stress, and inflammation. As such, this review highlights the importance and potential targets that can be aimed to reduce chondrocyte apoptosis.
Collapse
Affiliation(s)
- Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
10
|
Nejad FS, Alizade-Harakiyan M, Haghi M, Ebrahimi R, Zangeneh MM, Farajollahi A, Fathi R, Mohammadi R, Miandoab SS, Asl MH, Asgharian P, Divband B, Ahmadi A. Investigating the effectiveness of iron nanoparticles synthesized by green synthesis method in chemoradiotherapy of colon cancer. Heliyon 2024; 10:e28343. [PMID: 38560153 PMCID: PMC10981048 DOI: 10.1016/j.heliyon.2024.e28343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Current methods of colon cancer treatment, especially chemotherapy, require new treatment methods due to adverse side effects. One important area of interest in recent years is the use of nanoparticles as drug delivery vehicles since several studies have revealed that they can improve the target specificity of the treatment thus lowering the dosage of the drugs while preserving the effectiveness of the treatment thus reducing the side effects. The use of traditional medicine has also been a favorite topic of interest in recent years in medical research, especially cancer research. In this research work, the green synthesis of Fe nanoparticles was carried out using Mentha spicata extract and the synthesized nanoparticles were identified using FT-IR, XRD, FE-SEM and EDS techniques. Then the effect of Mentha spicata, Fe nanoparticles, and Mentha spicata -loaded Fe nanoparticles on LS174t colon cancer cells, and our result concluded that all three, especially Mentha spicata -loaded Fe nanoparticles, have great cytotoxic effects against LS174t cells, and exposure to radiotherapy just further intensified these results. The in vitro condition revealed alterations in the expression of pro-apoptotic BAX and anti-apoptotic Bcl2, suggesting a pro-apoptotic effect from all three components, particularly the Mentha spicata-loaded Fe nanoparticles. After further clinical trials, these nanoparticles can be used to treat colon cancer.
Collapse
Affiliation(s)
- Farshad Seyed Nejad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Alizade-Harakiyan
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Physics Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Rokhsareh Ebrahimi
- Medicinal Chemistry Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahdi Zangeneh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Farajollahi
- Department of Radiation Oncology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Physics Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Radiation Science Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Fathi
- Polymer Research Laboratory, Department of Organic and Biochemistry, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, University of Tabriz, Tabriz, Iran
| | | | | | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Baharak Divband
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Amin Ahmadi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Kapuy O. Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4368. [PMID: 38673953 PMCID: PMC11050573 DOI: 10.3390/ijms25084368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis. It has already been proven that the proper order and characteristic features of both surviving and self-killing mechanisms are controlled by negative and positive feedback loops, respectively. The new results suggest that these feedback loops are found not only within but also between branches of the UPR, fine-tuning the response to ER stress. In this review, we summarize the recent knowledge of the dynamical characteristic of endoplasmic reticulum stress response mechanism by using both theoretical and molecular biological techniques. In addition, this review pays special attention to describing the mechanism of action of the dynamical features of the feedback loops controlling cellular life-and-death decision upon ER stress. Since ER stress appears in diseases that are common worldwide, a more detailed understanding of the behaviour of the stress response is of medical importance.
Collapse
Affiliation(s)
- Orsolya Kapuy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
12
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
13
|
Alsufiani HM. The synergistic effect of oxaliplatin and punicalagin on colon cancer cells Caco-2 death. Int J Health Sci (Qassim) 2024; 18:33-37. [PMID: 38455601 PMCID: PMC10915914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Objectives The objectives of the study are to investigate the synergistic effect of oxaliplatin (oxa) and punicalagin (pun) on the death of colon cancer cells (Caco-2) by apoptosis and autophagy. Methods The effects of the combined treatments (5 μM oxa + 50 μM pun, 5 μM oxa + 75 μM pun, 20 μM oxa + 50 μM pun, and 5 μM oxa + 75 μM pun) were compared with untreated Caco2 cells (control) or cells treated with oxa alone. Apoptosis was detected using an Annex in V FITC flow cytometry assay and poly (ADP-ribose) polymerase cleavage by western blotting. Light chain 3 was detected by western blotting as an autophagy marker. Results The combined treatments significantly increased the number of apoptotic cells in comparison to untreated cells or cells treated with oxa alone. By contrast, the combined treatments had no significant effect on autophagy. Conclusion The combined treatment significantly promoted cell death through apoptosis while maintaining a basal level of autophagy.
Collapse
Affiliation(s)
- Hadeil Muhanna Alsufiani
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Damiescu R, Efferth T, Dawood M. Dysregulation of different modes of programmed cell death by epigenetic modifications and their role in cancer. Cancer Lett 2024; 584:216623. [PMID: 38246223 DOI: 10.1016/j.canlet.2024.216623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Modifications of epigenetic factors affect our lives and can give important information regarding one's state of health. In cancer, epigenetic modifications play a crucial role, as they influence various programmed cell death types. The purpose of this review is to investigate how epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs, influence various cell death processes in suppressing or promoting cancer development. Autophagy and apoptosis are the most investigated programmed cell death modes, as based on the tumor stage these cell death types can either promote or prevent cancer evolution. Therefore, our discussion focuses on how epigenetic modifications affect autophagy and apoptosis, as well as their diagnostic and therapeutical potential in combination with available chemotherapeutics. Additionally, we summarize the available data regarding the role of epigenetic modifications on other programmed cell death modes, such as ferroptosis, necroptosis, and parthanatos in cancer and discuss current advancements.
Collapse
Affiliation(s)
- R Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - T Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany
| | - M Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz, Germany.
| |
Collapse
|
15
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Chen R, Zou J, Zhong X, Li J, Kang R, Tang D. HMGB1 in the interplay between autophagy and apoptosis in cancer. Cancer Lett 2024; 581:216494. [PMID: 38007142 DOI: 10.1016/j.canlet.2023.216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Lysosome-mediated autophagy and caspase-dependent apoptosis are dynamic processes that maintain cellular homeostasis, ensuring cell health and functionality. The intricate interplay and reciprocal regulation between autophagy and apoptosis are implicated in various human diseases, including cancer. High-mobility group box 1 (HMGB1), a nonhistone chromosomal protein, plays a pivotal role in coordinating autophagy and apoptosis levels during tumor initiation, progression, and therapy. The regulation of autophagy machinery and the apoptosis pathway by HMGB1 is influenced by various factors, including the protein's subcellular localization, oxidative state, and interactions with binding partners. In this narrative review, we provide a comprehensive overview of the structure and function of HMGB1, with a specific focus on the interplay between autophagic degradation and apoptotic death in tumorigenesis and cancer therapy. Gaining a comprehensive understanding of the significance of HMGB1 as a biomarker and its potential as a therapeutic target in tumor diseases is crucial for advancing our knowledge of cell survival and cell death.
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ju Zou
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiao Zhong
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jie Li
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Rajabi S, Tahmasvand Z, Maresca M, Hamzeloo-Moghadam M. Gaillardin inhibits autophagy and induces apoptosis in MCF-7 breast cancer cells by regulating JAK/STAT pathway. Mol Biol Rep 2024; 51:158. [PMID: 38252203 DOI: 10.1007/s11033-023-09131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Gaillardin is a potent anti-cancer sesquiterpene lactone found in Inula oculus-christi. AIM The present study examined the effects of gaillardin on apoptosis and autophagy in the MCF-7 breast cancer cell line. METHODS The MTT assay was used to unravel the antiproliferative effects of gaillardin on MCF-7 cells. The expression of apoptosis-related genes including CASP3, BAX, BCL2, STAT3, and JAK2, and key markers of autophagy such as ATG1, ATG4, ATG5, ATG7, ATG12, BECN1, and MAP1LC3A were measured by real time-PCR method. The protein expression of Caspase 3, phosphorylated JAK2, phosphorylated STAT3, ATG1, ATG4, ATG5, ATG12, Beclin1, and LC-III was determined using western blotting. RESULTS Gaillardin treatment significantly decreased the proliferation of MCF-7 cells with a parallel upregulation of the level of pro-apoptotic caspase-3 enzyme with no effect on Bax and Bcl2 expression. The levels of phosphorylated and active forms of JAK2 and STAT3 proteins were reduced following the treatment of MCF-7 cells with gaillardin. This sesquiterpene lactone com-pound considerably downregulated the levels of six autophagy markers, including ATG1, ATG4, ATG5, ATG12, Beclin1, and LC-III in MCF-7 cells. CONCLUSION These data indicated the apoptosis-inducing activity of gaillardin in MCF-7 cells by a mechanism that inhibits the JAK/STAT signaling pathway. Further, autophagy inhibition was the other phenomenon caused by gaillardin in MCF-7 cells. These results can provide evidence to highlight the role of gaillardin as a novel therapeutic for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1434875451, Iran
| | - Zahra Tahmasvand
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1434875451, Iran
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, 13397, France.
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center, Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1516745811, Iran.
| |
Collapse
|
18
|
Chang TM, Chi MC, Chiang YC, Lin CM, Fang ML, Lee CW, Liu JF, Kou YR. Promotion of ROS-mediated apoptosis, G2/M arrest, and autophagy by naringenin in non-small cell lung cancer. Int J Biol Sci 2024; 20:1093-1109. [PMID: 38322119 PMCID: PMC10845293 DOI: 10.7150/ijbs.85443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/17/2023] [Indexed: 02/08/2024] Open
Abstract
Background: As lung cancer is the leading cause of cancer death worldwide, the development of new medicines is a crucial endeavor. Naringenin, a flavanone derivative, possesses anti-cancer and anti-inflammatory properties and has been reported to have cytotoxic effects on various cancer cells. The current study investigated the underlying molecular mechanism by which naringenin induces cell death in lung cancer. Methods: The expression of apoptosis, cell cycle arrest, and autophagy markers in H1299 and A459 lung cancer cells was evaluated using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL), Western blot, Annexin V/PI stain, PI stain, acridine orange staining, and transmission electron microscopy (TEM). Using fluorescence microscopy, DALGreen was used to observe the degradation of p62, a GFP-LC3 plasmid was used to evaluate puncta formation, and a pcDNA3-GFP-LC3-RFP-LC3ΔG plasmid was used to evaluate autophagy flux. Furthermore, the anti-cancer effect of naringenin was evaluated in a subcutaneous H1299 cell xenograft model. Results: Naringenin treatment of lung cancer cells (H1299 and A459) reduced cell viability and induced cell cycle arrest. Pretreatment of cells with ROS scavengers (N-acetylcysteine or catalase) suppressed the naringenin-induced cleavage of apoptotic protein and restored cyclin-dependent kinase activity. Naringenin also triggered autophagy by mediating ROS generation, thereby activating AMP-activated protein kinase (AMPK) signaling. ROS inhibition not only inhibited naringenin-induced autophagic puncta formation but also decreased the ratio of microtubule-associated proteins 1A/1B light chain 3 II (LC3II)/LC3I and activity of the AMPK signaling pathway. Furthermore, naringenin suppressed tumor growth and promoted apoptosis in the xenograft mouse model. Conclusion: This study demonstrated the potent anti-cancer effects of naringenin on lung cancer cells, thereby providing valuable insights for developing small-molecule drugs that can induce cell cycle arrest, apoptosis, and autophagic cell death.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department and Institute of Physiology, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Miao-Ching Chi
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Chieh-Mo Lin
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung 83347, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Yu Ru Kou
- Department and Institute of Physiology, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan
| |
Collapse
|
19
|
Rajabi S, Irani M, Moeinifard M, Hamzeloo-Moghadam M. Britannin suppresses MCF-7 breast cancer cell growth by inducing apoptosis and inhibiting autophagy. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:90-99. [PMID: 38948174 PMCID: PMC11210692 DOI: 10.22038/ajp.2023.22995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 07/02/2024]
Abstract
Objective Breast cancer is the main reason for cancer-related death in women. Britannin is a sesquiterpene lactone compound derived from Inula aucheriana with anti-tumor properties. We aimed to explore the impacts of britannin on apoptosis and autophagy in MCF-7 breast cancer cell line. Materials and Methods The cytotoxic influences of britannin on MCF-7 cells were estimated by the MTT method. The expression levels of apoptosis-associated genes such as CASP3, BCL2, BCL2L1, STAT3, and JAK2 and transcripts of autophagy markers including ATG1, ATG4, ATG5, ATG7, ATG12, BECN1, and MAP1LC3A were quantified using quantitative real time-PCR (qRT-PCR). Western blotting method was used to evaluate the amount of caspase 3, phosphorylated JAK2, phosphorylated STAT3, ATG1, ATG4, ATG5, Beclin1, and LC-III. Results Treatment of MCF-7 cells with various concentrations of britannin remarkably hindered the viability of these cells compared to the controls. This compound significantly elevated the expression of pro-apoptotic caspase-3 but did not influence the levels of anti-apoptotic BCL2 and BCL2L1. Britannin decreased the levels of phosphorylated forms of JAK2 and STAT3 proteins causing the blockage of the JAK/STAT pathway. Four autophagy factors expressions, including ATG4, ATG5, Beclin1, and LCIII, were reduced due to the effect of britannin on MCF-7 cells. Conclusion Britannin triggered apoptosis in MCF-7 cells by a mechanism that led to the blockade of the JAK/STAT pathway. Moreover, britannin prohibited autophagy in these cancer cells. This may suggest britannin as an agent for the suppression of breast tumors or as an adjutant for the enhancement of anti-breast cancer drugs effect.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Irani
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Moeinifard
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Mirabdali S, Ghafouri K, Farahmand Y, Gholizadeh N, Yazdani O, Esbati R, Hajiagha BS, Rahimi A. The role and function of autophagy through signaling and pathogenetic pathways and lncRNAs in ovarian cancer. Pathol Res Pract 2024; 253:154899. [PMID: 38061269 DOI: 10.1016/j.prp.2023.154899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/24/2024]
Abstract
Lysosomal-driven autophagy is a tightly controlled cellular catabolic process that breaks down and recycles broken or superfluous cell parts. It is involved in several illnesses, including cancer, and is essential in preserving cellular homeostasis. Autophagy prevents DNA mutation and cancer development by actively eliminating pro-oxidative mitochondria and protein aggregates from healthy cells. Oncosuppressor and oncogene gene mutations cause dysregulation of autophagy. Increased autophagy may offer cancer cells a pro-survival advantage when oxygen and nutrients are scarce and resistance to chemotherapy and radiation. This finding justifies the use of autophagy inhibitors in addition to anti-neoplastic treatments. Excessive autophagy levels can potentially kill cells. The diagnosis and treatment of ovarian cancer present many difficulties due to its complexity and heterogeneity. Understanding the role of autophagy, a cellular process involved in the breakdown and recycling of cellular components, in ovarian cancer has garnered increasing attention in recent years. Of particular note is the increasing amount of data indicating a close relationship between autophagy and ovarian cancer. Autophagy either promotes or restricts tumor growth in ovarian cancer. Dysregulation of autophagy signaling pathways in ovarian cancers can affect the development, metastasis, and response to tumor treatment. The precise mechanism underlying autophagy concerning ovarian cancer remains unclear, as does the role autophagy plays in ovarian carcinoma. In this review, we tried to encapsulate and evaluate current findings in investigating autophagy in ovarian cancer.
Collapse
Affiliation(s)
- Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Tehran East Branch, Islamic Azad University, Tehran, Iran.
| | - Asiye Rahimi
- Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Kobayashi H, Imanaka S, Yoshimoto C, Matsubara S, Shigetomi H. Molecular mechanism of autophagy and apoptosis in endometriosis: Current understanding and future research directions. Reprod Med Biol 2024; 23:e12577. [PMID: 38645639 PMCID: PMC11031673 DOI: 10.1002/rmb2.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Background Endometriosis is a common gynecological condition, with symptoms including pain and infertility. Regurgitated endometrial cells into the peritoneal cavity encounter hypoxia and nutrient starvation. Endometriotic cells have evolved various adaptive mechanisms to survive in this inevitable condition. These adaptations include escape from apoptosis. Autophagy, a self-degradation system, controls apoptosis during stress conditions. However, to date, the mechanisms regulating the interplay between autophagy and apoptosis are still poorly understood. In this review, we summarize the current understanding of the molecular characteristics of autophagy in endometriosis and discuss future therapeutic challenges. Methods A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review. Results Autophagy may be dynamically regulated through various intrinsic (e.g., PI3K/AKT/mTOR signal transduction network) and extrinsic (e.g., hypoxia and iron-mediated oxidative stress) pathways, contributing to the development and progression of endometriosis. Upregulation of mTOR expression suppresses apoptosis via inhibiting the autophagy pathway, whereas hypoxia or excess iron often inhibits apoptosis via promoting autophagy. Conclusion Endometriotic cells may have acquired antiapoptotic mechanisms through unique intrinsic and extrinsic autophagy pathways to survive in changing environments.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Chiharu Yoshimoto
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of Obstetrics and GynecologyNara Prefecture General Medical CenterNaraJapan
| | - Sho Matsubara
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of MedicineKei Oushin ClinicNishinomiyaJapan
| | - Hiroshi Shigetomi
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
- Department of Gynecology and Reproductive MedicineAska Ladies ClinicNaraJapan
| |
Collapse
|
22
|
Lee MG, Hong HJ, Nam KS. Anthocyanin Oligomers Induce Apoptosis and Autophagy by Inhibiting the mTOR Signaling Pathway in Human Breast Cancer Cells. Pharmaceuticals (Basel) 2023; 17:24. [PMID: 38256858 PMCID: PMC10820553 DOI: 10.3390/ph17010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Anthocyanin oligomers (AOs) are phytochemicals synthesized by fermenting anthocyanins extracted from grape skins and are more biologically active than monomeric anthocyanins. In this study, we evaluate the effects of an AO on triple-negative MDA-MB-231 and HER2-overexpressing SK-BR-3 breast cancer cells. The cell viability of MDA-MB-231 and SK-BR-3 cells was significantly inhibited in a concentration-dependent manner by AO treatment for 24 h, while delphinidin (a monomeric anthocyanin) had no effect on cell viability. In addition, the AO increased H2A.X phosphorylation (a marker of DNA damage), reduced RAD51 (a DNA repair protein) and survivin (a cell survival factor) protein levels, and induced apoptosis by caspase-3-dependent PARP1 cleavage in both cell lines. Surprisingly, the AO induced autophagy by increasing intracellular LC3-II puncta and LC3-II and p62 protein levels. In addition, the AO inhibited the mTOR pathway in MDA-MB-231 and SK-BR-3 cells by suppressing the HER2, EGFR1, and AKT pathways. These results demonstrate that the anti-cancer effect of the AO was due to the induction of apoptosis and autophagy via cleaved caspase-3-mediated PARP1 cleavage and mTOR pathway inhibition, respectively. Furthermore, our results suggest that anthocyanin oligomers could be considered potential candidates for breast cancer treatment.
Collapse
Affiliation(s)
| | | | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (M.-G.L.); (H.-J.H.)
| |
Collapse
|
23
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
24
|
Cardoso RV, Pereira PR, Freitas CS, Mattos ÉBDA, Silva AVDF, Midlej VDV, Vericimo MA, Conte-Júnior CA, Paschoalin VMF. Tarin-Loaded Nanoliposomes Activate Apoptosis and Autophagy and Inhibit the Migration of Human Mammary Adenocarcinoma Cells. Int J Nanomedicine 2023; 18:6393-6408. [PMID: 37954458 PMCID: PMC10638905 DOI: 10.2147/ijn.s434626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
Background Tarin, a lectin purified from Colocasia esculenta, promotes in vitro and in vivo immunomodulatory effects allied to promising anticancer and antimetastatic effects against human adenocarcinoma mammary cells. This makes this 47 kDa-protein a natural candidate against human breast cancer, a leading cause of death among women. Tarin encapsulated in pegylated nanoliposomes displays increased effectiveness in controlling the proliferation of a mammary adenocarcinoma lineage comprising MDA-MB-231 cells. Methods The mechanisms enrolled in anticancer and antimetastatic responses were investigated by treating MDA-MB-231 cells with nano-encapsulated tarin at 72 μg/mL for up to 48h through flow cytometry and transmission electron microscopy (TEM). The safety of nano-encapsulated tarin towards healthy tissue was also assessed by the resazurin viability assay, and the effect of nanoencapsulated tarin on cell migration was evaluated by scratch assays. Results Ultrastructural analyses of MDA-MB-231 cells exposed to nanoencapsulated tarin revealed the accumulation of autophagosomes and damaged organelles, compatible with autophagy-dependent cell death. On the other hand, the flow cytometry investigation detected the increased occurrence of acidic vacuolar organelles, a late autophagosome trait, along with the enhanced presence of apoptotic cells, activated caspase-3/7, and cell cycle arrest at G0/G1. No deleterious effects were observed in healthy fibroblast cells following tarin nanoencapsulated exposition, in contrast to reduced viability in cells exposed to free tarin. The migration of MDA-MB-231 cells was inhibited by nano-encapsulated tarin, with delayed movement by 24 h compared to free tarin. Conclusion The nanoliposome formulation delivers tarin in a delayed and sustained manner, as evidenced by the belated and potent antitumoral and anti-migration effects on adenocarcinoma cells, with no toxicity to healthy cells. Although further investigations are required to fully understand antitumorigenic tarin mechanisms, the activation of both apoptotic and autophagic machineries along with the caspase-3/7 pathway, and cell cycle arrest may comprise a part of these mechanisms.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Cyntia Silva Freitas
- Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Taha RI, Alghamdi MA, Alshehri Hanan Hassan, Al Qahtani EA, Al-Khater KM, Aldahhan RA, El Nashar EM. Streptozotocin- induced changes in aquaporin 1 and 4, oxidative stress, and autophagy in submandibular and parotid salivary glands and the possible ameliorative effect of intermittent fasting on these changes. Tissue Cell 2023; 85:102242. [PMID: 39491403 DOI: 10.1016/j.tice.2023.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Salivary glands are highly responsible for maintaining oral tissue homeostasis by secreting saliva. This study was designed to investigate aquaporin 1 and 4, oxidative stress, and autophagy in submandibular and parotid salivary glands of diabetic rats and the possible ameliorative effect of intermittent fasting on these changes. Fifty adult male rats were divided into control and experimental groups. Experimental diabetes was induced by a single intraperitoneal injection of streptozotocin. After induction of diabetics, the experimental group was divided into two groups (diabetic without intermittent fasting and diabetic with intermittent fasting). The animals were sacrificed two and four weeks after induction of diabetes. Intermittent fasting significantly decreased malondialdehyde and significantly elevated reduced glutathione (GSH) in the submandibular and parotid glands compared to those of diabetic rats. The salivary secretions were also significantly histologically spared in diabetics with intermittent fasting groups. Furthermore, intermittent fasting increased aquaporin 1 in both glands, while aquaporin 4 was only elevated in the submandibular gland. The immunolocalization and gene expression of Lc3-II was higher in the diabetic salivary glands than in the fasting glands. In conclusion, these findings highlight the pathological role of autophagy in diabetic submandibular and parotid glands and provide potential target for the therapeutic role of intermittent fasting to ameliorate the dysfunction of the submandibular and parotid glands in type I diabetes mellitus.
Collapse
Affiliation(s)
- Reham Ismail Taha
- Anatomy and embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalised Medicine Unit, college of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Alshehri Hanan Hassan
- Endocrinology and diabetes section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Eman Ali Al Qahtani
- Endocrinology and diabetes section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, PO Box 2114, Dammam 31451, Saudi Arabia.
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, PO Box 2114, Dammam 31451, Saudi Arabia.
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
26
|
Hussain Y, Singh J, Meena A, Sinha RA, Luqman S. Escin enhanced the efficacy of sorafenib by autophagy-mediated apoptosis in lung cancer cells. Phytother Res 2023; 37:4819-4837. [PMID: 37468281 DOI: 10.1002/ptr.7948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Combining anti-cancer drugs has been exploited as promising treatment strategy to target lung cancer. Synergistic chemotherapies increase anti-cancer effect and reduce effective drug doses and side effects. In this study, therapeutic potential of escin in combination with sorafenib has been explored. 3-(4,5-Dimethylthiazol-2-yl)-2 5-diphenyltetrazolium bromide assay was used to calculate IC50 values. The synergy was evaluated using Chou-Talaly algorithm. Cellular reactive oxygen species, mitochondrial membrane potential, annexin V, and cell-cycle studies were done by flow-cytometer, and autophagy biomarkers expression were determined using western blotting. Moreover, autophagy was knocked down using ATG5 siRNA to confirm its role, diethylnitrosamine-induced lung cancer model was used to check the synergy of sorafenib/escin. Escin significantly reduced the IC50 of sorafenib in A549 and NCIH460 cells. The combination of sorafenib/escin produced a 2.95 and 5.45 dose reduction index for sorafenib in A549 and NCI-H460 cells. The combination of over-expressed p62 and LC3-II reflects autophagy block-mediated late apoptosis. This phenomenon was reconfirmed by ATG5 knockdown. This combination also selectively targeted G0/G1 phase of cancer cells. In in vivo study, the combination reduced tumour load and lower elevated serum biochemical parameters. The combination of sorafenib/escin synergistically inhibits autophagy to induce late apoptosis in lung cancer cells' G0/G1 phase.
Collapse
Affiliation(s)
- Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
27
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Jung JY. Piperine Induces Apoptosis and Autophagy in HSC-3 Human Oral Cancer Cells by Regulating PI3K Signaling Pathway. Int J Mol Sci 2023; 24:13949. [PMID: 37762259 PMCID: PMC10530752 DOI: 10.3390/ijms241813949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, therapies for treating oral cancer have various side effects; therefore, research on treatment methods employing natural substances is being conducted. This study aimed to investigate piperine-induced apoptosis and autophagy in HSC-3 human oral cancer cells and their effects on tumor growth in vivo. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that piperine reduced the viability of HSC-3 cells and 4',6-diamidino-2-phenylindole staining, annexin-V/propidium iodide staining, and analysis of apoptosis-related protein expression confirmed that piperine induces apoptosis in HSC-3 cells. Additionally, piperine-induced autophagy was confirmed by the observation of increased acidic vesicular organelles and autophagy marker proteins, demonstrating that autophagy in HSC-3 cells induces apoptosis. Mechanistically, piperine induced apoptosis and autophagy by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in HSC-3 cells. We also confirmed that piperine inhibits oral cancer tumor growth in vivo via antitumor effects related to apoptosis and PI3K signaling pathway inhibition. Therefore, we suggest that piperine can be considered a natural anticancer agent for human oral cancer.
Collapse
Affiliation(s)
- Eun-Ji Han
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Eun-Young Choi
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Su-Ji Jeon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Sang-Woo Lee
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Jun-Mo Moon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Soo-Hyun Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Ji-Youn Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
- Research Institute for Natural Products, Kongju National University, Yesan-gun 32439, Republic of Korea
| |
Collapse
|
28
|
Shabkhizan R, Haiaty S, Moslehian MS, Bazmani A, Sadeghsoltani F, Saghaei Bagheri H, Rahbarghazi R, Sakhinia E. The Beneficial and Adverse Effects of Autophagic Response to Caloric Restriction and Fasting. Adv Nutr 2023; 14:1211-1225. [PMID: 37527766 PMCID: PMC10509423 DOI: 10.1016/j.advnut.2023.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Each cell is equipped with a conserved housekeeping mechanism, known as autophagy, to recycle exhausted materials and dispose of injured organelles via lysosomal degradation. Autophagy is an early-stage cellular response to stress stimuli in both physiological and pathological situations. It is thought that the promotion of autophagy flux prevents host cells from subsequent injuries by removing damaged organelles and misfolded proteins. As a correlate, the modulation of autophagy is suggested as a therapeutic approach in diverse pathological conditions. Accumulated evidence suggests that intermittent fasting or calorie restriction can lead to the induction of adaptive autophagy and increase longevity of eukaryotic cells. However, prolonged calorie restriction with excessive autophagy response is harmful and can stimulate a type II autophagic cell death. Despite the existence of a close relationship between calorie deprivation and autophagic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible effects of prolonged and short-term calorie restriction on autophagic response and cell homeostasis.
Collapse
Affiliation(s)
- Roya Shabkhizan
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bazmani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ebrahim Sakhinia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Yin L, Yuan L, Tang Y, Luo Z, Lin X, Wang S, Liang P, Jiang B. NUCLEOLIN PROMOTES AUTOPHAGY THROUGH PGC-1Α IN LPS-INDUCED MYOCARDIAL INJURY. Shock 2023; 60:227-237. [PMID: 37249064 DOI: 10.1097/shk.0000000000002152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ABSTRACT As a multifunctional protein, nucleolin can participate in a variety of cellular processes. Nucleolin also has multiple protective effects on heart disease. Previous studies have shown that nucleolin could not only resist oxidative stress damage and inflammatory damage, but also regulate autophagy to play a protective role in cardiac ischemia. However, the specific mechanism has not been fully elucidated in LPS-induced myocardial injury. Therefore, the aim of this study is to explore the underlying mechanism by which nucleolin regulates autophagy to protect against LPS-induced myocardial injury in vivo and in vitro . In our study, we found that nucleolin could bind to PGC-1α, and we predicted that this interaction could promote autophagy and played a role in inhibiting cardiomyocyte apoptosis. Downregulation of nucleolin in H9C2 cells resulted in decreased autophagy and increased cell apoptosis during LPS-induced myocardial injury, while upregulation of PGC-1α had the opposite protective effect. Upregulation of nucleolin expression in cardiomyocytes could increase the level of autophagy during LPS-induced myocardial injury. In contrast, interference with PGC-1α expression resulted in a decrease in the protective effect of nucleolin, leading to reduced autophagy and thus increasing apoptosis. By using tandem fluorescent-tagged LC3 autophagic flux detection system, we observed autophagic flux and determined that PGC-1α interference could block autophagic lysosomal progression. We further tested our hypothesis in the nucleolin cardiac-specific knockout mice. Finally, we also found that inhibition of autophagy can reduce mitochondrial biogenesis as well as increase apoptosis, which demonstrated the importance of autophagy. Therefore, we can speculate that nucleolin can protect LPS-induced myocardial injury by regulating autophagy, and this protective effect may be mediated by the interaction with PGC-1α, which can positively regulate the ULK1, an autophagy-related protein. Our study provides a new clue for the cardioprotective effect of nucleolin, and may provide new evidence for the treatment of LPS-induced myocardial injury through the regulation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | |
Collapse
|
30
|
Woźniak P, Kleczka A, Jasik K, Kabała-Dzik A, Dzik R, Stojko J. The Effect of Natural Substances Contained in Bee Products on Prostate Cancer in In Vitro Studies. Molecules 2023; 28:5719. [PMID: 37570691 PMCID: PMC10420981 DOI: 10.3390/molecules28155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer is a common cancer in men in older age groups. The WHO forecasts an increase in the incidence of prostate cancer in the coming years. Patients may not respond to treatment, and may not tolerate the side effects of chemotherapy. Compounds of natural origin have long been used in the prevention and treatment of cancer. Flavonoids obtained from natural products, e.g., propolis, are compounds with proven antibacterial and antiviral efficacy which modulate the immune response and may be useful as adjuvants in chemotherapy. The main aim of the present study was to evaluate the cytotoxic and pro-apoptotic properties of selected flavonoids on prostate cancer cells of the LNCaP line. The compounds used in this study were CAPE, curcumin (CUR), and quercetin (QUE). Mitochondrial and lysosome metabolism was assessed by the XTT-NR-SRB triple assay as well as by the fluorescent staining techniques. Staining for reactive oxygen species was performed as well. The experiment showed that each of the tested compounds has a cytotoxic effect on the LNCaP cell line. Different types of cell death were induced by the tested compounds. Apoptosis was induced by quercetin, while autophagy-specific changes were observed after using CAPE. Compounds obtained from other bee products have antiproliferative and cytotoxic activity against LNCaP prostate cancer cells.
Collapse
Affiliation(s)
- Przemysław Woźniak
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (P.W.); (J.S.)
| | - Anna Kleczka
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Krzysztof Jasik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (A.K.); (K.J.)
| | - Radosław Dzik
- Faculty of Biomedical Engineering, Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland;
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland; (P.W.); (J.S.)
| |
Collapse
|
31
|
Abo-Zaid OAR, Moawed FSM, Barakat WEM, Ghobashy MM, Ahmed ESA. Antitumor activity of 5-fluorouracil polymeric nanogel synthesized by gamma radiation on a rat model of colon carcinoma: a proposed mechanism. Discov Oncol 2023; 14:138. [PMID: 37493814 PMCID: PMC10371941 DOI: 10.1007/s12672-023-00733-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
The use of 5-fluorouracil (5-FU) is associated with multifaceted challenges and poor pharmacokinetics. Accordingly, our study was designed to prepare 5-FU nanogel as a new form of the colon cancer chemotherapeutic drug 5-FU using polyacrylic acid and gelatin hybrid nanogel as efficient drug carriers. Alongside the in vivo chemotherapeutic evaluation, the anti-proliferative and anti-apoptotic efficacy were carried out for 5-FU nanogel against 1,2-dimethylhydrazine (DMH, 20 mg/kg) and γ-radiation (4 Gy)-prompted colon dysplasia in rats compared to 5-FU. The morphology and size of 5-FU nanogel were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) in addition to cytotoxicity assay. The expression of phosphoinositide-3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR); Toll-like receptor2 (TLR2)/nuclear factor kappa B), adenosine monophosphate (AMP)-activated protein kinase (AMPK) and its downstream autophagy-related genes in addition to apoptotic markers were measured in colon tissues. Results: 5-FU nanogel reduced the levels of the TLR2/ NF-κβ as well as the expression of PI3K/AKT/mTOR. Moreover, it promoted autophagy through the activation of the AMPK and its downstream targets which consequently augmented the intrinsic and extrinsic apoptotic pathways. Conclusion: Collectively, these data might strengthen the therapeutic potential of 5-FU nanogel which can be used as an antitumor product for colon cancer.
Collapse
Affiliation(s)
- Omayma A R Abo-Zaid
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Benha, Egypt
| | - Fatma S M Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| | - Wael E M Barakat
- Biochemistry and Molecular Biology Department, Faculty of Vet. Med, Benha University, Benha, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
32
|
Tsai KY, Wei PL, Lee CC, Makondi PT, Chen HA, Chang YY, Liu DZ, Huang CY, Chang YJ. 2,3,5,4'-Tetrahydroxystilbene (TG1), a Novel Compound Derived from 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG), Inhibits Colorectal Cancer Progression by Inducing Ferroptosis, Apoptosis, and Autophagy. Biomedicines 2023; 11:1798. [PMID: 37509438 PMCID: PMC10376355 DOI: 10.3390/biomedicines11071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the deadliest cancers worldwide and long-term survival is not guaranteed in metastatic disease despite current multidisciplinary therapies. A new compound 2,3,5,4'-Tetrahydroxystilbene (TG1), derived from THSG (2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside), has been developed, and its anticancer ability against CRC is verified in this study. METHODS HCT116, HT-29, and DLD-1 were treated with TG1 and the IC50 was measured using a sulforhodamine B assay. A Xenograft mouse model was used to monitor tumor growth. Apoptosis and autophagy, induced by TG1 in CRC cells, were examined. RNA-sequencing analysis of CRC cells treated with TG1 was performed to discover underlying pathways and mechanisms. RESULTS The results demonstrated that treatment with TG1 inhibited CRC proliferation in vitro and in vivo and induced apoptotic cell death, which was confirmed by Annexin V-FITC/PI staining and Western blotting. Additionally, TG1 treatment increased the level of autophagy in cells. RNA-sequencing and GSEA analyses revealed that TG1 was associated with MYC and the induction of ferroptosis. Furthermore, the ferroptosis inhibitor Bardoxolone abrogated the cytotoxic effect of TG1 in CRC cells, indicating that ferroptosis played a crucial role in TG1-induced cytotoxicity. CONCLUSIONS These findings suggest that TG1 might be a potential and potent compound for clinical use in the treatment of CRC by inhibiting proliferation and inducing ferroptosis through the MYC pathway.
Collapse
Affiliation(s)
- Kuei-Yen Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Hsin-An Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Yao-Yuan Chang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Medical and Pharmaceutical Industry Technology and Development Center, New Taipei 24888, Taiwan
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
33
|
Li M, Zhang HY, Zhang RG. MFAP2 enhances cisplatin resistance in gastric cancer cells by regulating autophagy. PeerJ 2023; 11:e15441. [PMID: 37304872 PMCID: PMC10257393 DOI: 10.7717/peerj.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cisplatin (CDDP) is of importance in cancer treatment and widely used in advanced gastric cancer (GC). However, its clinical usage is limited due to its resistance, and the regulatory mechanism of CDDP resistance in GC has not yet been fully elucidated. In this study, we first conducted a comprehensive study to investigate the role of MFAP2 through bioinformatics analysis. Methods The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were applied to downloadgene expression data and clinicopathologic data, and the differentially expressed genes (DEGs) were further analyzed. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and survival analysis were conducted. Furthermore, according to the clinicopathological characteristics of TCGA, clinical correlation analysis was conducted, and a receiver operating characteristic curve (ROC) was plotted. Results We revealed that FAP, INHBA and MFAP2 were good diagnostic factors of GC. However, the mechanism of MFAP2 in GC remains elusive, especially in the aspect of chemotherapy resistance. We developed the CDDP-resistant cell line, and found that MFAP2 was upregulated in CDDP-resistant cells, and MFAP2-knockdown improved CDDP sensitivity. Finally, we found that MFAP2 enhanced CDDP resistance by inducing autophagy in drug-resistant cell lines. Conclusions The above results suggested that MFAP2 could affect the chemotherapy resistance by altering the level of autophagy in GC patients as a potential therapeutic target.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Hong-Yi Zhang
- Department of Stomatology, Beijing Electric Power Hospital, Capital Medical University, Beijing, China
| | - Rong-Gui Zhang
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
34
|
Abdel-Hamid HA, Marey H, Ibrahim MFG. Hemin protects against cell stress induced by estrogen and progesterone in rat mammary glands via modulation of Nrf2/HO-1 and NF-κB pathways. Cell Stress Chaperones 2023; 28:289-301. [PMID: 36930344 PMCID: PMC10167073 DOI: 10.1007/s12192-023-01337-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Mammary gland hyperplasia is one of the risk factors for breast cancer. Till date, there is no study that has addressed the effect of hemin in this condition. Thus, this study was designed to evaluate the effect of the heme oxygenase 1 (HO-1) inducer (hemin) and its inhibitor (zinc protoporphyrin-IX) (ZnPP-IX) on mammary gland hyperplasia (MGH) induced by estrogen and progesterone in adult albino rats. Forty adult female albino rats were divided into the control group, MGH group, MGH + Hemin group, and MGH + Hemin + ZnPP-IX group. Serum levels of estradiol and progesterone were measured. Breast tissues were taken for estimation of oxidative, inflammatory, and apoptotic markers. Mammary gland histology was performed, and expression of Ki-67, Beclin, and P53 in breast tissue was also measured. Estrogen and progesterone administration induced hyperplasia of cells lining the ducts of the breast tissues associated with increased diameter and height of the nipples as well as increased oxidative stress markers, inflammatory markers, antiapoptotic markers, and cell autophagy. Hemin administration during induction of MGH can reverse all the affected parameters. Then, these effects were abolished by ZnPP-IX administration. We concluded that hemin administration can antagonize the cell stress induced by estrogen and progesterone and protect against the development of mammary gland hyperplasia via modulation of Nrf2/HO-1 and NF-κB pathways.
Collapse
Affiliation(s)
- Heba A. Abdel-Hamid
- Department of Medical Physiology, Faculty of Medicine, Minia University, Minia, 61111 Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Al Baha, Saudi Arabia
| | - Heba Marey
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, Minia, 61111 Egypt
| | | |
Collapse
|
35
|
Gmeiner WH, Okechukwu CC. Review of 5-FU resistance mechanisms in colorectal cancer: clinical significance of attenuated on-target effects. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:257-272. [PMID: 37457133 PMCID: PMC10344727 DOI: 10.20517/cdr.2022.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 07/18/2023]
Abstract
The emergence of chemoresistant disease during chemotherapy with 5-Fluorouracil-based (5-FU-based) regimens is an important factor in the mortality of metastatic CRC (mCRC). The causes of 5-FU resistance are multi-factorial, and besides DNA mismatch repair deficiency (MMR-D), there are no widely accepted criteria for determining which CRC patients are not likely to be responsive to 5-FU-based therapy. Thus, there is a need to systematically understand the mechanistic basis for 5-FU treatment failure and an urgent need to develop new approaches for circumventing the major causes of 5-FU resistance. In this manuscript, we review mechanisms of 5-FU resistance with an emphasis on: (1) altered anabolic metabolism limiting the formation of the primary active metabolite Fluorodeoxyuridylate (5-Fluoro-2'-deoxyuridine-5'-O-monophosphate; FdUMP); (2) elevated expression or activity of the primary enzymatic target thymidylate synthase (TS); and (3) dysregulated programmed cell death as important causes of 5-FU resistance. Importantly, these causes of 5-FU resistance can potentially be overcome through the use of next-generation fluoropyrimidine (FP) polymers (e.g., CF10) that display reduced dependence on anabolic metabolism and more potent TS inhibitory activity.
Collapse
Affiliation(s)
- William H. Gmeiner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Integrative Physiology and Pharmacology Graduate Program, Institution, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Charles Chidi Okechukwu
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
36
|
Zhang Y, Li H, Lv L, Lu K, Li H, Zhang W, Cui T. Autophagy: Dual roles and perspective for clinical treatment of colorectal cancer. Biochimie 2023; 206:49-60. [PMID: 36244578 DOI: 10.1016/j.biochi.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) raises concerns to people because of its high recurrence and metastasis rate, diagnosis challenges, and poor prognosis. Various studies have shown the association of altered autophagy with tumorigenesis, tumor-stroma interactions, and resistance to cancer therapy in CRC. Autophagy is a highly conserved cytosolic catabolic process in eukaryotes that plays distinct roles in CRC occurrence and progression. In early tumorigenesis, autophagy may inhibit tumor growth through diverse mechanisms, whereas it exhibits a tumor promoting function in CRC progression. This different functions of autophagy in CRC occurrence and progression make developing therapies targeting autophagy complicated. In this review, we discuss the classification and process of autophagy as well as its dual roles in CRC, functions in the tumor microenvironment, cross-talk with apoptosis, and potential usefulness as a CRC therapeutic target.
Collapse
Affiliation(s)
- Yabin Zhang
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Haiyan Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Liang Lv
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Huihui Li
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China
| | - Wenli Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Tao Cui
- West China Second University Hospital, State Key Laboratory of Biotherapy, Laboratory of Metabolomics and Gynecological Disease Research and Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
37
|
Zudeh G, Franca R, Lucafò M, Bonten EJ, Bramuzzo M, Sgarra R, Lagatolla C, Franzin M, Evans WE, Decorti G, Stocco G. PACSIN2 as a modulator of autophagy and mercaptopurine cytotoxicity: mechanisms in lymphoid and intestinal cells. Life Sci Alliance 2023; 6:e202201610. [PMID: 36596605 PMCID: PMC9811133 DOI: 10.26508/lsa.202201610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
PACSIN2 variants are associated with gastrointestinal effects of thiopurines and thiopurine methyltransferase activity through an uncharacterized mechanism that is postulated to involve autophagy. This study aims to clarify the role of PACSIN2 in autophagy and in thiopurine cytotoxicity in leukemic and intestinal models. Higher autophagy and lower PACSIN2 levels were observed in inflamed compared with non-inflamed colon biopsies of inflammatory bowel disease pediatric patients at diagnosis. PACSIN2 was identified as an inhibitor of autophagy, putatively through inhibition of autophagosome formation by a protein-protein interaction with LC3-II, mediated by a LIR motif. Moreover, PACSIN2 resulted a modulator of mercaptopurine-induced cytotoxicity in intestinal cells, suggesting that PACSIN2-regulated autophagy levels might influence thiopurine sensitivity. However, PACSIN2 modulates cellular thiopurine methyltransferase activity via mechanisms distinct from its modulation of autophagy.
Collapse
Affiliation(s)
- Giulia Zudeh
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Erik J Bonten
- Department of Chemical Biology and Therapeutics, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Matteo Bramuzzo
- Department of Gastroenterology, Digestive Endoscopy and Nutrition Unit, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Martina Franzin
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - William E Evans
- Department of Pharmaceutical Sciences, Saint Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuliana Decorti
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Department of Translational and Advanced Diagnostics, Institute for Maternal and Child Health I.R.C.C.S. Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
38
|
Sana-Eldine AO, Abdelgawad HM, Kotb NS, Shehata NI. The potential effect of Schisandrin-B combination with panitumumab in wild-type and mutant colorectal cancer cell lines: Role of apoptosis and autophagy. J Biochem Mol Toxicol 2023; 37:e23324. [PMID: 36808796 DOI: 10.1002/jbt.23324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
Panitumumab is an approved monoclonal antibody for the treatment of colorectal cancer (CRC); however, mutations in EGFR signaling pathway resulted in poor response. Schisandrin-B (Sch-B) is a phytochemical that was suggested to protect against inflammation, oxidative stress, and cell proliferation. The present study aimed to investigate the potential effect of Sch-B on panitumumab-induced cytotoxicity in wild-type Caco-2, and mutant HCT-116 and HT-29 CRC cell lines, and the possible underlying mechanisms. CRC cell lines were treated with panitumumab, Sch-B, and their combination. The cytotoxic effect of drugs was determined by MTT assay. The apoptotic potential was assessed in-vitro by DNA fragmentation and caspase-3 activity. Additionally, autophagy was investigated via microscopic detection of autophagosomes and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) measurement of Beclin-1, Rubicon, LC3-II, and Bcl-2 expression. The drug pair enhanced panitumumab cytotoxicity in all CRC cell lines where IC50 of panitumumab was decreased in Caco-2 cell line. Apoptosis was induced through caspase-3 activation, DNA fragmentation, and Bcl-2 downregulation. Caco-2 cell line treated with panitumumab showed stained acidic vesicular organelles, contrariwise, all cell lines treated with Sch-B or the drug pair displayed green fluorescence indicating the lack of autophagosomes. qRT-PCR revealed the downregulation of LC3-II in all CRC cell lines, Rubicon in mutant cell lines, and Beclin-1 in HT-29 cell line only. Sch-B at 6.5 µM promoted panitumumab-induced apoptotic cell death, in-vitro, via caspase-3 activation and Bcl-2 downregulation, rather than autophagic cell death. This novel combination therapy against CRC, allows the reduction of panitumumab dose to guard against its adverse effects.
Collapse
Affiliation(s)
| | - Hanan M Abdelgawad
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nahla S Kotb
- Biochemistry Department, Faculty of postgraduate studies for advanced Biotechnology and life sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Nagwa I Shehata
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
39
|
Ma R, Su H, Jiao K, Liu J. Role of Th17 cells, Treg cells, and Th17/Treg imbalance in immune homeostasis disorders in patients with chronic obstructive pulmonary disease. Immun Inflamm Dis 2023; 11:e784. [PMID: 36840492 PMCID: PMC9950879 DOI: 10.1002/iid3.784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, following strokes and cardiovascular diseases. Chronic lung inflammation is believed to play a role in the development of COPD. In addition, accumulating evidence shows that the immune system plays a crucial role in the pathogenesis of COPD. Significant advancements have been made in research on the pathogenesis of immune diseases and chronic inflammation in recent years, and T helper 17 (Th17) cells and regulatory T (Treg) cells have been found to play a crucial role in the autoimmune response. Th17 cells are a proinflammatory subpopulation that causes autoimmune disease and tissue damage. Treg cells, on the other hand, have a negative effect but can contribute to the occurrence of the same disease when their antagonism fails. This review mainly summarizes the biological characteristics of Th17 cells and Treg cells, their roles in chronic inflammatory diseases of COPD, and the role of the Th17/Treg ratio in the onset, development, and outcome of inflammatory disorders, as well as recent advancements in immunomodulatory treatment targeting Th17/Treg cells in COPD.
Collapse
Affiliation(s)
- Ru Ma
- Department of The First Clinical School of MedicineLanzhou UniversityLanzhouChina
- Department of Gansu Provincial People's HospitalLanzhouChina
| | - Hongling Su
- Department of The First Clinical School of MedicineLanzhou UniversityLanzhouChina
- Department of Gansu Provincial People's HospitalLanzhouChina
| | - Keping Jiao
- Department of The First Clinical School of MedicineLanzhou UniversityLanzhouChina
- Department of Gansu Provincial People's HospitalLanzhouChina
| | - Jian Liu
- Department of The First Clinical School of MedicineLanzhou UniversityLanzhouChina
| |
Collapse
|
40
|
Andrade-Meza A, Arias-Romero LE, Armas-López L, Ávila-Moreno F, Chirino YI, Delgado-Buenrostro NL, García-Castillo V, Gutiérrez-Cirlos EB, Juárez-Avelar I, Leon-Cabrera S, Mendoza-Rodríguez MG, Olguín JE, Perez-Lopez A, Pérez-Plasencia C, Reyes JL, Sánchez-Pérez Y, Terrazas LI, Vaca-Paniagua F, Villamar-Cruz O, Rodríguez-Sosa M. Mexican Colorectal Cancer Research Consortium (MEX-CCRC): Etiology, Diagnosis/Prognosis, and Innovative Therapies. Int J Mol Sci 2023; 24:ijms24032115. [PMID: 36768437 PMCID: PMC9917340 DOI: 10.3390/ijms24032115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/25/2023] Open
Abstract
In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.
Collapse
Affiliation(s)
- Antonio Andrade-Meza
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Luis E. Arias-Romero
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yolanda I. Chirino
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Norma L. Delgado-Buenrostro
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Verónica García-Castillo
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Emma B. Gutiérrez-Cirlos
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - Sonia Leon-Cabrera
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Carrera de Médico Cirujano, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Mónica G. Mendoza-Rodríguez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Jonadab E. Olguín
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Araceli Perez-Lopez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Carlos Pérez-Plasencia
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - José L. Reyes
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Luis I. Terrazas
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Laboratorio Nacional en Salud: Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Olga Villamar-Cruz
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores-Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
- Correspondence: ; Tel.: +52-55-5623-1333
| |
Collapse
|
41
|
Wang J, Han Y, Wang M, Li H, Sun Y, Chen X. The inhibitory effect of Yam polysaccharides on acrylamide-induced programmed cell death in RAW 264.7 cells. Food Sci Nutr 2023; 11:443-457. [PMID: 36655068 PMCID: PMC9834884 DOI: 10.1002/fsn3.3076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Acrylamide has been well known for its neurotoxicity, genotoxicity, carcinogenicity, etc. Recently, the immunotoxicity of acrylamide has been reported by different research groups, although the underlying mechanisms of acrylamide endangering immune systems have not been fully elucidated. In this study, mouse monocyte-macrophage cells model was used to clarify the toxic mechanism of acrylamide and the inhibitory effect of Yam polysaccharides (YPS) on acrylamide-induced damage. We found that acrylamide induced RAW 264.7 cell death in a time- and concentration-dependent manner. After acrylamide (2.0, 3.0, 4.0 mmol/L) treatment for 24 h, cell apoptosis, autophagy, and pyroptosis were observed. However, the levels of autophagy and pyroptosis decreased at a high concentration of acrylamide (4.0 mmol/L). Acrylamide upregulated P2X7 expression, but the P2X7 level was not showing a monotone increasing trend. When the P2X7 antagonist was applied, the effect of acrylamide on autophagy and pyroptosis was weakened. Additionally, acrylamide triggered the occurrence of oxidative stress and a decreased nitric oxide (NO) level. However, reactive oxygen species (ROS) generation, the decrease of heme oxygenase-1 (HO-1) expression, and the increase of inducible nitric oxide synthase (iNOS) expression were reversed by the inhibition of P2X7. Yam polysaccharides (50.0 μg/ml) significantly inhibited acrylamide-induced oxidative stress and cell death (including apoptosis, autophagy, and pyroptosis). Yam polysaccharides also effectively reversed the increase of iNOS expression induced by acrylamide. However, Yam polysaccharides promoted the expression of P2X7 rather than prohibit it. These results indicated that acrylamide caused RAW 264.7 cell death due to pro-apoptosis as well as excessive autophagy and pyroptosis. Apoptosis might be more predominant than autophagy and pyroptosis under a higher concentration of acrylamide (4.0 mmol/L). P2X7-stimulated oxidative stress was responsible for acrylamide-induced programmed cell death (PCD), but P2X7 showed limited regulatory effect on apoptosis. Yam polysaccharides with antioxidant activity inhibited acrylamide-induced cell death (apoptosis, autophagy, and pyroptosis), but exerted limited effect on the acrylamide-induced P2X7 expression. These findings would offer an insight into elucidating the immunotoxic mechanism of acrylamide and the potential approaches to control its toxicity.
Collapse
Affiliation(s)
- Jing Wang
- School of Food and Biological EngineeringShaanxi University of Science & TechnologyXi'AnChina
| | - Ying Han
- School of Food and Biological EngineeringShaanxi University of Science & TechnologyXi'AnChina
| | | | - He Li
- School of Food and Biological EngineeringShaanxi University of Science & TechnologyXi'AnChina
| | - Yujiao Sun
- School of Food and Biological EngineeringShaanxi University of Science & TechnologyXi'AnChina
| | - Xuefeng Chen
- School of Food and Biological EngineeringShaanxi University of Science & TechnologyXi'AnChina
| |
Collapse
|
42
|
Yerlikaya A, Zeren S. Molecular Pathways, Targeted Therapies, and Proteomic Investigations of Colorectal Cancer. Curr Mol Med 2023; 23:2-12. [PMID: 34951572 DOI: 10.2174/1566524022666211224120614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
According to the GLOBOCAN 2020 data, colorectal cancer is the third most commonly diagnosed cancer and the second leading cause of cancer-related death. The risk factors for colorectal cancer include a diet abundant with fat, refined carbohydrates, animal protein, low fiber content, alcoholism, obesity, long-term cigarette smoking, low physical activity, and aging. Colorectal carcinomas are classified as adenocarcinoma, neuroendocrine, squamous cell, adenosquamous, spindle cell, and undifferentiated carcinomas. In addition, many variants of colorectal carcinomas have been recently distinguished based on histological, immunological, and molecular characteristics. Recently developed targeted molecules in conjunction with standard chemotherapeutics or immune checkpoint inhibitors provide promising treatment protocols for colorectal cancer. However, the benefit of targeted therapies is strictly dependent on the mutational status of signaling molecules (e.g., KRAS) or mismatch repair systems. Here it is aimed to provide a comprehensive view of colorectal cancer types, molecular pathways associated, recently developed targeted therapies, as well as proteomic investigations applied to colorectal cancer for the discovery of novel biomarkers and new targets for treatment protocols.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Sezgin Zeren
- Department of General Surgery, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
43
|
Yu L, Zhang MM, Hou JG. Molecular and cellular pathways in colorectal cancer: apoptosis, autophagy and inflammation as key players. Scand J Gastroenterol 2022; 57:1279-1290. [PMID: 35732586 DOI: 10.1080/00365521.2022.2088247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal carcinogenesis (CRC) is one of the most aggressive forms of cancer, particularly in developing countries. It accounts for the second and third-highest reason for cancer-induced lethality in women and men respectively. CRC involves genetic and epigenetic modifications in colonic epithelium, leading to colon adenocarcinoma. The current review highlights the pathogenic mechanisms and multifactorial etiology of CRC, influenced by apoptosis, inflammation, and autophagy pathways. METHODS We have carried out a selective literature review on mechanisms contributing to the pathogenesis of CRC. RESULTS Resistance to senescence and apoptosis of the mesenchymal cells, which play a key role in intestinal organogenesis, morphogenesis and homeostasis, appears important for sporadic CRC. Additionally, inflammation-associated tumorigenesis is a key incident in CRC, supported by immune disruptors, adaptive and innate immune traits, environmental factors, etc. involving oxidative stress, DNA damage and epigenetic modulations. The self-digesting mechanism, autophagy, also plays a twin role in CRC through the participation of LC3/LC3-II, Beclin-1, ATG5, other autophagy proteins, and Inflammatory Bowel Disease (IBD) susceptibility genes. It facilitates the promotion of effective surveillance pathways and stimulates the generation of malignant tumor cells. The autophagy and apoptotic pathways undergo synergistic or antagonistic interactions in CRC and bear a critical association with IBD that results from the pro-neoplastic effects of persistent intestinal inflammation. Conversely, pro-inflammatory factors stimulate tumor growth and angiogenesis and inhibit apoptosis, suppressing anti-tumor activities. CONCLUSION Hence, research attempts for the development of potential therapies for CRC are in progress, primarily based on combinatorial approaches targeting apoptosis, inflammation, and autophagy.
Collapse
Affiliation(s)
- Lei Yu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Miao-Miao Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Guang Hou
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
An in vivo and in vitro assessment of the anti-breast cancer activity of crude extract and fractions from Prunella vulgaris L. Heliyon 2022; 8:e11183. [PMCID: PMC9636486 DOI: 10.1016/j.heliyon.2022.e11183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Prunella vulgaris L.(P. vulgaris) is a perennial herb belonging to the Labiate family and widely distributed in China, Japan, Korea and Europe. Medical monographs and previous studies have shown that P. vulgaris has significant anti-breast cancer activity, and its use in breast treatment has a long history. However, systematically reports about the material basis and mechanism of P. vulgaris on anti-breast cancer activity are limited. In the present study, we first screened the best active fraction from the crude extract (PVE) and ethanol eluted fractions of P. vulgaris by using MDA-MB-231, MCF-7, 4T1 cell models in vitro and a 4T1-BALB/c transplanted tumour mouse breast cancer model in vivo. Furthermore, the anti-breast cancer mechanism of the best active fraction was investigated. The results demonstrated that PVE and ethanol fractions exhibited anti-breast cancer activity, especially with the 50% ethanol eluted fraction (PV50), which effectively regulated the 4T1 cell cycle, inhibited tumour cell proliferation, and promoted cancer cell apoptosis. In case of in vivo assays, PV50 inhibited tumour growth and lung metastasis, as well as inducing cell apoptosis by promoting damage of nuclear DNA and increasing expression of cleaved caspase-3. In addition, the chemical compositions of PV50 were analyzed by HPLC and UPLC-MS/MS, which were identified as flavonoids, moderately polar triterpenes, and a small amount of phenolic acid. The PV50 could be applied as natural sources against breast cancer in the pharmaceutical industry. These findings provide a basis for understanding the mechanism of the anti-breast cancer activity of P. vulgaris.
Collapse
|
45
|
Petsri K, Thongsom S, Racha S, Chamni S, Jindapol S, Kaekratoke N, Zou H, Chanvorachote P. Novel mechanism of napabucasin, a naturally derived furanonaphthoquinone: apoptosis and autophagy induction in lung cancer cells through direct targeting on Akt/mTOR proteins. BMC Complement Med Ther 2022; 22:250. [PMID: 36180880 PMCID: PMC9524025 DOI: 10.1186/s12906-022-03727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background Akt and mTOR are aberrantly activated in cancers and targeting these proteins are interesting for cancer drug discovery. Napabucasin (NB), a phytochemical compound, has been reported as potential anti-cancer agent, however, Akt and mTOR targeting mechanisms remain unclear. Method Apoptosis induction was investigated by Hoechst 33342/PI double staining and annexin V/PI staining with flowcytometry. Autophagy was evaluated by monodansylcadaverine staining and Western blot analysis. Binding affinity of NB and essential signaling proteins (PI3K, Akt, and mTOR) was investigated using molecular docking and confirmed by Western blot analysis. Result A structure modification from changing methyl moiety of acetyl group of NB to hydroxyl moiety of carboxyl group of NB derivative (napabucasin-acid or NB-acid) greatly affected the compound activities. NB showed more potent anti-cancer activity. NB reduced cell viability with an approximately 20 times lower IC50 and inhibited the colony formation capacity much more than NB-acid treated cells. NB induced cell apoptosis, which was accompanied by decrease Bcl‑2 and Mcl-1 and clevage of PARP, while NB-acid show lesser effect on Mcl-1. NB was found to strongly induce autophagy indicated by acidic vesicle staining and the LC3B conversion. Interestingly, computational molecular docking analysis further demonstrated that NB directly bound to Akt and mTOR (complex 1 and 2) proteins at their critical sites indicating that NB targets the upstream regulators of apoptosis and autophagy. The docking results were confirmed by decrease of p-Akt/Akt, p-mTOR/mTOR, and c-Myc a downstream target of Akt protein levels. Conclusion Results show for the first time that NB exerts an anti-cancer activity through the direct interaction to Akt and mTOR proteins. The methyl moiety of acetyl group of NB is required for its potent anti-cancer activities. These data encourage further development of NB compounds for Akt and mTOR driven cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03727-6.
Collapse
|
46
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
47
|
Sahashi H, Kato A, Yoshida M, Hayashi K, Naitoh I, Hori Y, Natsume M, Jinno N, Kachi K, Asano G, Toyohara T, Kito Y, Ammanamanchi S, Kataoka H. Urolithin A targets the AKT/WNK1 axis to induce autophagy and exert anti-tumor effects in cholangiocarcinoma. Front Oncol 2022; 12:963314. [PMID: 36212467 PMCID: PMC9539031 DOI: 10.3389/fonc.2022.963314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Urolithin A (UA; 3,8-dihydroxybenzo[c]chromen-6-one), a metabolite generated by intestinal bacteria during the biotransformation of ellagitannins, has gained considerable attention in treating several cancers. Cholangiocarcinoma (CCA) remains one of the most lethal cancers; it grows in a special environment constantly exposed to both blood and bile. Since UA is known to undergo enterohepatic recirculation, we hypothesized that UA might have significant antitumor effects in CCA. Here, we investigated the therapeutic potential of UA in CCA and aimed to elucidate its mechanisms, including autophagy. UA treatment inhibited cell proliferation and induced G2/M phase cell cycle arrest in CCA cells. UA also suppressed cell migration and invasion, but did not cause apoptosis. Furthermore, Western blotting and immunocytochemistry demonstrated increased LC3-II accumulation, while electron microscopy demonstrated induced autophagosomes after UA treatment, suggesting that UA upregulated autophagy in CCA cells. In xenograft mice treated with UA, tumor growth was inhibited with increased LC3-II levels. On the other hand, phospho-kinase array demonstrated downregulation of the AKT/WNK1 pathway. LC3-II expression was elevated in WNK1 knocked down cells, indicating that WNK1 is the key signal for regulating autophagy. Thus, UA exerted antitumor effects by suppressing the AKT/WNK1 signaling pathway and inducing autophagy. In conclusion, UA, a natural, well-tolerated compound, may be a promising therapeutic candidate for advanced CCA.
Collapse
Affiliation(s)
- Hidenori Sahashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Akihisa Kato
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
- *Correspondence: Akihisa Kato,
| | - Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuki Hori
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Makoto Natsume
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naruomi Jinno
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenta Kachi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Go Asano
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Tadashi Toyohara
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yusuke Kito
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Sudhakar Ammanamanchi
- Department of Internal Medicine, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
48
|
Changotra H, Kaur S, Yadav SS, Gupta GL, Parkash J, Duseja A. ATG5: A central autophagy regulator implicated in various human diseases. Cell Biochem Funct 2022; 40:650-667. [PMID: 36062813 DOI: 10.1002/cbf.3740] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Autophagy, an intracellular conserved degradative process, plays a central role in the renewal/recycling of a cell to maintain the homeostasis of nutrients and energy within the cell. ATG5, a key component of autophagy, regulates the formation of the autophagosome, a hallmark of autophagy. ATG5 binds with ATG12 and ATG16L1 resulting in E3 like ligase complex, which is necessary for autophagosome expansion. Available data suggest that ATG5 is indispensable for autophagy and has an imperative role in several essential biological processes. Moreover, ATG5 has also been demonstrated to possess autophagy-independent functions that magnify its significance and therapeutic potential. ATG5 interacts with various molecules for the execution of different processes implicated during physiological and pathological conditions. Furthermore, ATG5 genetic variants are associated with various ailments. This review discusses various autophagy-dependent and autophagy-independent roles of ATG5, highlights its various deleterious genetic variants reported until now, and various studies supporting it as a potential drug target.
Collapse
Affiliation(s)
- Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sargeet Kaur
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Suresh Singh Yadav
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University Punjab, Ghudda, Bathinda, Punjab, India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
49
|
Glycyrrhetinic acid modified chlorambucil prodrug for hepatocellular carcinoma treatment based on DNA replication and tumor microenvironment. Colloids Surf B Biointerfaces 2022; 220:112864. [DOI: 10.1016/j.colsurfb.2022.112864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
|
50
|
Wang M, Yu F. Research Progress on the Anticancer Activities and Mechanisms of Polysaccharides From Ganoderma. Front Pharmacol 2022; 13:891171. [PMID: 35865946 PMCID: PMC9294232 DOI: 10.3389/fphar.2022.891171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/17/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer ranks as a primary reason for death worldwide. Conventional anticancer therapies can cause severe side effects, and thus natural products may be promising drug candidates for cancer therapy. Accumulating evidence has verified the prominent anticancer properties of Ganoderma polysaccharides, suggesting that Ganoderma polysaccharides may be effective chemopreventive agents of natural origin. Based on their abilities to prevent cancer development by regulating the DNA damage response, cancer cell proliferation, apoptosis, host immunity, gut microbiota and therapeutic sensitivity, there has been increasing interest in elucidating the clinical implication of Ganoderma polysaccharides in cancer therapy. In this review, we summarize recent findings pertaining to the roles of bioactive polysaccharides from Ganoderma in cancer pathogenesis, discuss the multifarious mechanisms involved and propose future directions for research. A more sophisticated understanding of the anticancer benefits of Ganoderma polysaccharides will be helpful for improving current treatments and developing novel therapeutic interventions for human malignancies.
Collapse
|