1
|
Wu HH, Leng S, Eisenstat DD, Sergi C, Leng R. Targeting p53 for immune modulation: Exploring its functions in tumor immunity and inflammation. Cancer Lett 2025; 617:217614. [PMID: 40054656 DOI: 10.1016/j.canlet.2025.217614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
p53, often referred to as the "guardian of the genome," is a critical regulator of cellular responses to stress. p53 plays a dual role in tumor suppression and immune regulation. In addition to its well-known functions of maintaining genomic stability and inducing apoptosis, p53 orchestrates a complex interaction between innate and adaptive immune responses. This involvement contributes to pathogen clearance, immune surveillance, and immunogenic cell death (ICD). This review explores the influence of p53 on immune dynamics, detailing its effects on macrophages, dendritic cells, natural killer cells (NK), T cells, and B cells. This review explains how mutations in p53 disrupt immune responses, promoting tumor immune evasion, and highlights its regulation of inflammatory cytokines and pattern recognition receptors. Furthermore, p53's role in ICD marks it as a key player in antitumor immunity, which has significant implications for cancer immunotherapy. The review also discusses the role of p53 in inflammation, autoimmune diseases, and chronic infections, revealing its dual function in promoting and suppressing inflammation through interactions with NF-κB signaling. Therapeutically, approaches that target p53, including wild-type p53 reactivation and combination therapies with immune checkpoint inhibitors, show considerable promise. Advances in high-throughput technologies, such as single-cell RNA sequencing and CRISPR screens, provide new insights into the immunological functions of p53, including its role in microbiome-immune interactions and immune senescence. This comprehensive review highlights the importance of incorporating immunological insights from p53 into innovative therapeutic strategies, addressing existing knowledge gaps, and paving the way for personalized medicine.
Collapse
Affiliation(s)
- H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - David D Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada; Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, Alberta, T6G 1C9, Canada; Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, Alberta, T6G 2H7, Canada; Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria, 3052, Australia
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB, T6G 2B7, Canada; Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
2
|
Liu Y, Stockwell BR, Jiang X, Gu W. p53-regulated non-apoptotic cell death pathways and their relevance in cancer and other diseases. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00842-3. [PMID: 40204927 DOI: 10.1038/s41580-025-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Programmed cell death is a mechanism that is crucial for numerous physiological and pathological processes. Whereas p53-mediated apoptosis is a major cell death pathway in cancer, accumulating evidence indicates that p53 also has crucial roles in controlling different non-apoptotic cell death (NACD) pathways, including ferroptosis, necroptosis, pyroptosis, autophagy-dependent cell death, entotic cell death, parthanatos and paraptosis, and may regulate PANoptosis, cuproptosis and disulfidptosis. Notably, the function of p53 in these NACDs substantially contributes to its biological effects, particularly in cancer development and other pathological processes. In this Review, we discuss recent advances in understanding the roles and underlying mechanisms of p53-mediated NACDs, focusing on ferroptosis, necroptosis and pyroptosis. We discuss the complex and distinct physiological settings in which NACDs are regulated by p53, and potential targeting of p53-regulated NACDs for the treatment of cancer and other human diseases. Finally, we highlight several important questions concerning p53-regulated NACDs that warrant further investigation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Liu W, Lei Q, van Pelt AMM, Hamer G. Repeated ionizing radiation exposure induces TRIP13 expression, conferring radioresistance in lung cancer cells. Sci Rep 2025; 15:985. [PMID: 39762328 PMCID: PMC11704074 DOI: 10.1038/s41598-024-84592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is a common treatment modality for lung cancer, and resistance to radiation can significantly affect treatment outcomes. We recently described that lung cancer cells that express more germ cell cancer genes (GC genes, genes that are usually restricted to the germ line) can repair DNA double-strand breaks more rapidly, show higher rates of proliferation and are more resistant to ionizing radiation than cells that express fewer GC genes. The gene encoding TRIP13 appeared to play a large role in this malignant phenotype. However, the molecular regulatory mechanism of TRIP13 in radiation resistance remained largely unknown. Here, we show that TRIP13 is a key contributor to non-small cell lung cancer (NSCLC) treatment resistance, particularly in patients following radiation treatment, for whom levels of TRIP13 expression are correlated with a poor prognosis. Repeated irradiation of led to an increase of basal TRIP13 levels and radioresistance. This effect of radioresistance could be enhanced or abrogated by overexpressing or knocking out TRIP13. Elevated TRIP13 is also correlated with enhanced repair of radiation-induced DNA damage. We further showed the proteins NBS1 and RAD51 (homologous recombination. HR) and XRCC5 (non-homologous end-joining, NHEJ) to act downstream of TRIP13, although inhibition of TRIP13 mostly reduced the HR associated proteins in response to induced resistance to irradiation. This study elucidates a novel mechanism of treatment resistance in NSCLC cells, in which TRIP13 promotes HR mediated DNA repair and resistance to ionizing radiation.
Collapse
Affiliation(s)
- Wenqing Liu
- Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, 1105AZ, The Netherlands
| | - Qijing Lei
- Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, 1105AZ, The Netherlands
- Department of Physiology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ans M M van Pelt
- Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, 1105AZ, The Netherlands
| | - Geert Hamer
- Reproductive Biology Laboratory, Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105AZ, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam, 1105AZ, The Netherlands.
| |
Collapse
|
4
|
De Giglio A, De Biase D, Favorito V, Maloberti T, Di Federico A, Zacchini F, Venturi G, Parisi C, Gustavo Dall'Olio F, Ricciotti I, Gagliano A, Melotti B, Sperandi F, Altimari A, Gruppioni E, Tallini G, Gelsomino F, Montanaro L, Ardizzoni A. STK11 mutations correlate with poor prognosis for advanced NSCLC treated with first-line immunotherapy or chemo-immunotherapy according to KRAS, TP53, KEAP1, and SMARCA4 status. Lung Cancer 2025; 199:108058. [PMID: 39709652 DOI: 10.1016/j.lungcan.2024.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND The upfront treatment of non-oncogene-addicted NSCLC relies on immunotherapy alone (ICI) or in combination with chemotherapy (CT-ICI). Genomic aberrations such as KRAS, TP53, KEAP1, SMARCA4, or STK11 may impact survival outcomes. METHODS We performed an observational study of 145 patients treated with first-line IO or CT-ICI for advanced non-squamous (nsq) NSCLC at our institution tested with an extensive lab-developed NGS panel. The primary objective was to assess the clinical outcomes of STK11-mutated patients. Then, we performed an external validation through the public OAK/POPLAR dataset, including nsq NSCLC patients treated with single-agent ICI or CT. RESULTS Most patients were male (59.7 %), former smokers (61.1 %), with ECOG PS 0-1 (84 %), and received first-line CT-IO (58.6 %). 44.8 % had a mutation in KRAS, 21.4 % in KEAP1, 50.3 % in TP53, 13.1 % in SMARCA4, and 14.4 % in the STK11 gene. The mOS was 8 mo. (95 % CI, 5-16.7) for STK11 mutated pts and 17.3 mo. for STK11 wild-type patients (95 % CI, 8.9-24.4) (p = 0.038). TP53 (8.3 vs 17.3), KRAS (9.2 vs 15.9), and KEAP1 (8.9 vs 15.9) mutated patients evidenced a trend for dismal mOS. SMARCA4 status had no impact on mOS. STK11 mutations were detrimental to OS in the univariate (HR 1.74, p = 0.041) and multivariate model (HR 1.97, p = 0.025) after adjusting for sex, age, ECOG PS, treatment (ICI vs CT-ICI), KRAS, KEAP1, TP53, and SMARCA4 status. Genomic alterations did not impact the mPFS in our cohort. Within the OAK/POPLAR dataset, STK11 mutations (60/818 pts) were significantly associated with increased death risk in the univariate (HR 2.01, p < 0.001) and multivariate model (HR 1.66, p = 0.001) after adjusting for age, sex, treatment (ICI vs CT), KRAS, KEAP1, TP53, and SMARCA4 status. CONCLUSION STK11 aberrations hampered the mOS of nsq NSCLC patients treated with first-line ICI or CT-ICI. The negative prognostic impact seems to be unrelated to ICI administration.
Collapse
Affiliation(s)
- Andrea De Giglio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Dario De Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valentina Favorito
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Di Federico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Federico Zacchini
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Venturi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Claudia Parisi
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Faculty of Medicine, Paris-Saclay University, Paris, France
| | | | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ambrogio Gagliano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Barbara Melotti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Sperandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Gelsomino
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lorenzo Montanaro
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Datta M, Via LE, Dartois V, Xu L, Barry CE, Jain RK. Leveraging insights from cancer to improve tuberculosis therapy. Trends Mol Med 2025; 31:11-20. [PMID: 39142973 PMCID: PMC11717643 DOI: 10.1016/j.molmed.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.
Collapse
Affiliation(s)
- Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Lei Xu
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Lee Y, Lee YY, Park J, Maksakova A, Seo D, Kim J, Yeom JE, Kim Y, Kim CH, Ryoo R, Kim SN, Park J, Park W, Kim TH, Choy YB, Park CG, Kim KH, Lee W. Illudin S inhibits p53-Mdm2 interaction for anticancer efficacy in colorectal cancer. Biomed Pharmacother 2025; 182:117795. [PMID: 39740390 DOI: 10.1016/j.biopha.2024.117795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025] Open
Abstract
The impairment of the p53 pathway was once regarded as inadequately druggable due to the specificity of the p53 structure, its flat surface lacking an ideal drug-binding site, and the difficulty in reinstating p53 function. However, renewed interest in p53-based therapies has emerged, with promising approaches targeting p53 and ongoing clinical trials investigating p53-based treatments across various cancers. Despite significant progress in p53-targeted therapies, challenges persist in identifying effective therapeutic targets within the p53 pathway. In this study, we implemented a molecular screening system to effectively discover p53 activator. As a result, illudin S was identified as a potential inhibitor of the p53-Mdm2 interaction. This compound is particularly intriguing due to its well-documented anti-cancer effects, despite the ambiguity surrounding its precise mechanism of action. Illudin S demonstrated a direct binding affinity to the Mdm2 binding site of p53 through hydrogen bonding, which enhanced the stability and transcriptional activity of p53. The inhibition of the p53-Mdm2 interaction by illudin S led to increased p53 expression. Moreover, this inhibition effectively induced apoptosis and cell cycle arrest in CT26 colorectal cancer cells. Administration of illudin S in a colorectal cancer mouse model resulted in prolonged survival and significant tumor growth inhibition. These findings elucidate the mechanism underlying the anti-cancer effects of illudin S, specifically through its targeting of the p53-Mdm2 interaction in colorectal cancer. Consequently, illudin S emerges as a promising candidate for the development of p53-targeted cancer therapies.
Collapse
Affiliation(s)
- Yoonsuk Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jinyoung Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anna Maksakova
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Seo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Eun Yeom
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yewon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol-Hwi Kim
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju 28644, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tae-Hyung Kim
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang 14, Seongbuk, Seoul 02792, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Abdalla M, Abdelkhalig SM, Edet UO, Zothantluanga JH, Umoh EA, Moglad E, Nkang NA, Hader MM, Alanazi TMR, AlShouli S, Al-Shouli S. Molecular dynamics-based computational investigations on the influence of tumor suppressor p53 binding protein against other proteins/peptides. Sci Rep 2024; 14:29871. [PMID: 39622863 PMCID: PMC11612205 DOI: 10.1038/s41598-024-81499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
The tumor-suppressing p-53 binding protein is a crucial protein that is involved in the prevention of cancer via its regulatory effect on a number of cellular processes. Recent evidence indicates that it interacts with a number of other proteins involved in cancer in ways that are not fully understood. An understanding of such interactions could provide insights into novel ways p53 further exerts its tumour prevention role via its interactions with diverse proteins. Thus, this study aimed to examine the interactions of the p53 protein with other proteins (peptides and histones) using molecular simulation dynamics. We opted for a total of seven proteins, namely 2LVM, 2MWO, 2MWP, 4CRI, 4 × 34, 5Z78, and 6MYO (control), and had their PBD files retrieved from the protein database. These proteins were then docked against the p-53 protein and the resulting interactions were examined using molecular docking simulations run at 500 ns. The result of the interactions revealed the utilisation of various amino acids in the process. The peptide that interacted with the highest number of amino acids was 5Z78 and these were Lys10, Gly21, Trp24, Pro105, His106, and Arg107, indicating a stronger interaction. The RMSD and RMSF values indicate that the complexes formed were stable, with 4CRI, 6MYO, and 2G3R giving the most stable values (less than 2.5 Å). Other parameters, including the SASA, Rg, and number of hydrogen bonds, all indicated the formation of fairly stable complexes. Our study indicates that overall, the interactions of 53BP1 with p53K370me2, p53K382me2, methylated K810 Rb, p53K381acK382me2, and tudor-interacting repair regulator protein indicated interactions that were not as strong as those with the histone protein. Thus, it could be that P53 may mediate its tumour suppressing effect via interactions with amino acids and histone.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, China.
| | - Sozan M Abdelkhalig
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Uwem O Edet
- Department of Biological (Microbiology), Faculty of Natural and Applied Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria.
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Ekementeabasi Aniebo Umoh
- Department of Human Physiology, Faculty of Basic Medical Sciences, Arthur Jarvis University, Akpabuyo, Cross River State, Nigeria
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O. Box 173, Alkharj, 11942, Saudi Arabia
| | - Nkoyo Ani Nkang
- Science Laboratory Department, Faculty of Biological Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Meshari M Hader
- Dietary Department, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | | | - Sawsan AlShouli
- Pharmacy Department, Security Forces Hospital, Riyadh, 11481, Saudi Arabia
| | - Samia Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
8
|
Lian Q, Chen F, Sha Z, Zhao H, Li J, Chen T, Liu C, Wang B, Wang Z, Qiao S. Disulfiram Upgrades the Radiosensitivity of Osteosarcoma by Enhancing Apoptosis and P53-Induced Cell Cycle Arrest. Radiat Res 2024; 202:752-764. [PMID: 39307526 DOI: 10.1667/rade-24-00046.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/29/2024] [Indexed: 11/09/2024]
Abstract
The prognosis of osteosarcoma has not been improved for decades. As radioresistance is one of the major reasons, effective radiotherapy sensitization drugs need to be discovered. HOS and K7M2 osteosarcoma cell lines were treated with disulfiram (DSF) and radiation to assess cell viability, proliferation, migration ability, apoptosis level, ROS and Ca2+ level, and cell cycle in vitro. A HOS-derived subcutaneous tumor mouse model was constructed to evaluate tumor growth after DSF combined with radiation, and the Tunel assay and immunohistochemistry of Ki67 were conducted. Western blot was used to evaluate the protein expression level. The IC50 and working concentration of DSF in osteosarcoma cell lines were ascertained. When combined with radiation, DSF effectively suppressed cell viability, proliferation, and migration, while enhancing apoptosis in osteosarcoma cells. The cell cycle postirradiation exhibited a downward shift in the G1 phase, but the addition of DSF counteracted this trend. The combination of DSF and radiation exhibited inhibitory effects on tumor growth in vivo, which was corroborated by Ki67 staining and Tunel assay. Western blot analysis revealed that DSF upregulated the expression of P53, P21, CDKN2C, BAX, and cleaved Caspase-3 while downregulating BCL2, CDK4/6, and CyclinD1 after irradiation. Our results document that DSF exerts its radiosensitization effects in vivo and in vitro, and is a valuable radiosensitizing drug option for osteosarcoma. The radiosensitization effect is mainly achieved by activating the apoptotic pathway and promoting cell cycle arrest induced by P53/P21 and CDKN2C after irradiation.
Collapse
Affiliation(s)
- Qiujian Lian
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Fengmei Chen
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Zhilin Sha
- Department of Biliary Tract Surgery, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Haonan Zhao
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Jingyan Li
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou Fujian 350001, China
| | - Tongjiang Chen
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Chang Liu
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
- Department of Orthopedics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, Fujian 350025, China
| | - Bingxuan Wang
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Zhiwei Wang
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
| | - Suchi Qiao
- Department of Orthopedics, The Third Affiliated Hospital (Eastern Hepatobiliary Surgery Hospital), Naval Medical University (Second Military Medical University), Shanghai 201805, China
| |
Collapse
|
9
|
Henry B, Phillips AJ, Sibley LD, Rosenberg A. A combination of four Toxoplasma gondii nuclear-targeted effectors protects against interferon gamma-driven human host cell death. mBio 2024; 15:e0212424. [PMID: 39292011 PMCID: PMC11481881 DOI: 10.1128/mbio.02124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In both mice and humans, Type II interferon gamma (IFNγ) is crucial for the regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the host's immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ-driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent parasite premature egress and host cell death in human cells stimulated with IFNγ post-infection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ-driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.IMPORTANCEToxoplasma gondii, an intracellular parasite, affects nearly one-third of the global human population, posing significant risks for immunocompromised patients and infants infected in utero. In murine models, the core mechanisms of IFNγ-mediated immunity against T. gondii are consistently preserved, showcasing a remarkable conservation of immune defense mechanisms. In humans, the recognized restriction mechanisms vary among cell types, lacking a universally applicable mechanism. This difference underscores a significant variation in the genes employed by T. gondii to shield itself against the IFNγ response in human vs murine cells. Here, we identified a specific combination of four parasite-secreted effectors deployed into the host cell nucleus, disrupting IFNγ signaling. This disruption is crucial in preventing premature egress of the parasite and host cell death. Notably, this phenotype is exclusive to human cells, highlighting the intricate and unique mechanisms T. gondii employs to modulate host responses in the human cellular environment.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Aubrey J. Phillips
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, Zhou Y, Fu B, Sun R, Zheng X, Tian Z, Wei H. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity 2024; 57:2344-2361.e7. [PMID: 39321806 DOI: 10.1016/j.immuni.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.
Collapse
Affiliation(s)
- Zhigang Nian
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yiqing Shen
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jintang Liu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianghui Du
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Jiang
- Department of Anesthesiology, The first affiliated hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaohu Zheng
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
11
|
Efe G, Rustgi AK, Prives C. p53 at the crossroads of tumor immunity. NATURE CANCER 2024; 5:983-995. [PMID: 39009816 DOI: 10.1038/s43018-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
The p53 tumor suppressor protein has a plethora of cell-intrinsic functions and consequences that impact diverse cell types and tissues. Recent studies are beginning to unravel how wild-type and mutant p53 work in distinct ways to modulate tumor immunity. This sets up a disequilibrium between tumor immunosurveillance and escape therefrom. The ability to exploit this emerging knowledge for translational approaches may shape immunotherapy and targeted therapeutics in the future, especially in combinatorial settings.
Collapse
Affiliation(s)
- Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Carol Prives
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Fischer M, Sammons MA. Determinants of p53 DNA binding, gene regulation, and cell fate decisions. Cell Death Differ 2024; 31:836-843. [PMID: 38951700 PMCID: PMC11239874 DOI: 10.1038/s41418-024-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
The extent to which transcription factors read and respond to specific information content within short DNA sequences remains an important question that the tumor suppressor p53 is helping us answer. We discuss recent insights into how local information content at p53 binding sites might control modes of p53 target gene activation and cell fate decisions. Significant prior work has yielded data supporting two potential models of how p53 determines cell fate through its target genes: a selective target gene binding and activation model and a p53 level threshold model. Both of these models largely revolve around an analogy of whether p53 is acting in a "smart" or "dumb" manner. Here, we synthesize recent and past studies on p53 decoding of DNA sequence, chromatin context, and cellular signaling cascades to elicit variable cell fates critical in human development, homeostasis, and disease.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, The State University of New York at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
13
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Chauhan S, Jaiswal S, Jakhmola V, Singh B, Bhattacharya S, Garg M, Sengupta S. Potential role of p53 deregulation in modulating immune responses in human malignancies: A paradigm to develop immunotherapy. Cancer Lett 2024; 588:216766. [PMID: 38408603 PMCID: PMC7615729 DOI: 10.1016/j.canlet.2024.216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The crucial role played by the oncogenic expression of TP53, stemming from mutation or amyloid formation, in various human malignancies has been extensively studied over the past two decades. Interestingly, the potential role of TP53 as a crucial player in modulating immune responses has provided new insight into the field of cancer biology. The loss of p53's transcriptional functions and/or the acquisition of tumorigenic properties can efficiently modulate the recruitment and functions of myeloid and lymphoid cells, ultimately leading to the evasion of immune responses in human tumors. Consequently, the oncogenic nature of the tumor suppressor p53 can dynamically alter the function of immune cells, providing support for tumor progression and metastasis. This review comprehensively explores the dual role of p53 as both the guardian of the genome and an oncogenic driver, especially in the context of regulation of autophagy, apoptosis, the tumor microenvironment, immune cells, innate immunity, and adaptive immune responses. Additionally, the focus of this review centers on how p53 status in the immune response can be harnessed for the development of tailored therapeutic strategies and their potential application in immunotherapy against human malignancies.
Collapse
Affiliation(s)
- Shivi Chauhan
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Shivani Jaiswal
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Bhavana Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noda, 201313, India.
| |
Collapse
|
15
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
16
|
Luo X, Zhang Z, Li S, Wang Y, Sun M, Hu D, Jiang J, Wang Y, Ji X, Chen X, Zhang B, Liang H, Li Y, Liu B, Xu X, Wang S, Xu S, Nie Y, Wu K, Fan D, Liu D, Huang W, Xia L. SRSF10 facilitates HCC growth and metastasis by suppressing CD8 +T cell infiltration and targeting SRSF10 enhances anti-PD-L1 therapy. Int Immunopharmacol 2024; 127:111376. [PMID: 38113691 DOI: 10.1016/j.intimp.2023.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND AND AIMS RNA splicing is an essential step in regulating the gene posttranscriptional expression. Serine/arginine-rich splicing factors (SRSFs) are splicing regulators with vital roles in various tumors. Nevertheless, the expression patterns and functions of SRSFs in hepatocellular carcinoma (HCC) are not fully understood. METHODS Flow cytometry and immunofluorescent staining were used to determine the CD8+T cell infiltration. Orthotopic HCC model, lung metastasis model, DEN/CCl4 model, Srsf10△hep model, and Srsf10HepOE model were established to evaluate the role of SRSF10 in HCC and the efficacy of combination treatment. RESULTS SRSF10 was one of the most survival-relevant genes among SRSF members and was an independent prognostic factor for HCC. SRSF10 facilitated HCC growth and metastasis by suppressing CD8+T cell infiltration. Mechanistically, SRSF10 down-regulated the p53 protein by preventing the exon 6 skipping (exon 7 in mouse) mediated degradation of MDM4 transcript, thus inhibiting CD8+T cell infiltration. Elimination of CD8+T cells or overexpression of MDM4 removed the inhibitory role of SRSF10 knockdown in HCC growth and metastasis. SRSF10 also inhibited the IFNα/γ signaling pathway and promoted the HIF1α-mediated up-regulation of PD-L1 in HCC. Hepatocyte-specific SRSF10 deficiency alleviated the DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SRSF10 overexpression deteriorated these effects. Finally, SRSF10 knockdown enhanced the anti-PD-L1-mediated anti-tumor activity. CONCLUSIONS SRSF10 promoted HCC growth and metastasis by repressing CD8+T cell infiltration mediated by the MDM4-p53 axis. Furthermore, SRSF10 suppressed the IFNα/γ signaling pathway and induced the HIF1α signal mediated PD-L1 up-regulation. Targeting SRSF10 combined with anti-PD-L1 therapy showed promising efficacy.
Collapse
Affiliation(s)
- Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Huifang Liang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
17
|
Cui H, Zhu B, Li H, Meng Y, Cai M, Wang H, Yuan M, Zhong X, Wang B, Shan H, Zhe Miao M, Chai K, Zheng J, Zhang L, Liu Y. Malonate differentially affects cell survival and confers chemoresistance in cancer cells via the induction of p53-dependent autophagy. Biochem Pharmacol 2024; 219:115950. [PMID: 38043718 DOI: 10.1016/j.bcp.2023.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Metabolic network intertwines with cancerous signaling and drug responses. Malonate is a prevailing metabolite in cancer and a competitive inhibitor of succinate dehydrogenase (SDH). Recent studies showed that malonate induced reactive oxygen species (ROS)-dependent apoptosis in neuroblastoma cells, but protected cells from ischemia-reperfusion injury. We here revealed that malonate differentially regulated cell death and survival in cancer cells. While high-dose malonate triggered ROS-dependent apoptosis, the low-dose malonate induced autophagy and conferred resistance to multiple chemotherapeutic agents. Mechanistically, our results showed that malonate increased p53 stability and transcriptionally up-regulated autophagy modulator DRAM (damage-regulated autophagy modulator), thus promoting autophagy. We further proved that autophagy is required for malonate-associated chemoresistance. Collectively, our findings suggest that malonate plays a double-edge function in cancer response to stressors, and highlights a pro-cancer impact of p53-induced autophagy in response to malonate.
Collapse
Affiliation(s)
- Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bao Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huiyan Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanyuan Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Cai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Min Yuan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bingwu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjian Shan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Michael Zhe Miao
- Curriculum in Oral and Craniofacial Biomedicine, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Keli Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Radiation Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
18
|
Henry B, Sibley LD, Rosenberg A. A Combination of Four Nuclear Targeted Effectors Protects Toxoplasma Against Interferon Gamma Driven Human Host Cell Death During Acute Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.24.573224. [PMID: 38234811 PMCID: PMC10793417 DOI: 10.1101/2023.12.24.573224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In both mice and humans, Type II interferon-gamma (IFNγ) is crucial for regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the hosťs immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent host cell death and parasite premature egress in human cells stimulated with IFNγ postinfection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
19
|
Harford JB. A Second Career for p53 as A Broad-Spectrum Antiviral? Viruses 2023; 15:2377. [PMID: 38140618 PMCID: PMC10747836 DOI: 10.3390/v15122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
As the world exits the global pandemic caused by the previously unknown SARS-CoV-2, we also mark the 30th anniversary of p53 being named "molecule of the year" by Science based on its role as a tumor suppressor. Although p53 was originally discovered in association with a viral protein, studies on its role in preventing carcinogenesis have far overshadowed research related to p53's role in viral infections. Nonetheless, there is an extensive body of scientific literature demonstrating that p53 is a critical component of host immune responses to viral infections. It is striking that diverse viruses have independently developed an impressive repertoire of varied mechanisms to counter the host defenses that are mediated by and through p53. The variety of ways developed by viruses to disrupt p53 in their hosts attests to the protein's importance in combatting viral pathogens. The present perspective aims to make the case that p53 ought to be considered a virus suppressor in addition to a tumor suppressor. It is hoped that additional research aimed at more fully understanding the role of p53 in antiviral immunity will result in the world being better positioned for the next pandemic than it was when SARS-CoV-2 emerged to produce COVID-19.
Collapse
Affiliation(s)
- Joe B Harford
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA
| |
Collapse
|
20
|
Kumar A, Thirumurugan K. Understanding cellular senescence: pathways involved, therapeutics and longevity aiding. Cell Cycle 2023; 22:2324-2345. [PMID: 38031713 PMCID: PMC10730163 DOI: 10.1080/15384101.2023.2287929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/15/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
A normal somatic cell undergoes cycles of finite cellular divisions. The presence of surveillance checkpoints arrests cell division in response to stress inducers: oxidative stress from excess free radicals, oncogene-induced abnormalities, genotoxic stress, and telomere attrition. When facing such stress when undergoing these damages, there is a brief pause in the cell cycle to enable repair mechanisms. Also, the nature of stress determines whether the cell goes for repair or permanent arrest. As the cells experience transient or permanent stress, they subsequently choose the quiescence or senescence stage, respectively. Quiescence is an essential stage that allows the arrested/damaged cells to go through appropriate repair mechanisms and then revert to the mainstream cell cycle. However, senescent cells are irreversible and accumulate with age, resulting in inflammation and various age-related disorders. In this review, we focus on senescence-associated pathways and therapeutics understanding cellular senescence as a cascade that leads to aging, while discussing the recent details on the molecular pathways involved in regulating senescence and the benefits of therapeutic strategies against accumulated senescent cells and their secretions.
Collapse
Affiliation(s)
- Ashish Kumar
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kavitha Thirumurugan
- Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
21
|
Qi Y, Ren S, Ye J, Bi S, Shi L, Fang Y, Wang G, Finfrock YZ, Li J, Che Y, Ning G. Copper-Single-Atom Coordinated Nanotherapeutics for Enhanced Sonothermal-Parallel Catalytic Synergistic Cancer Therapy. Adv Healthc Mater 2023; 12:e2300291. [PMID: 37157943 DOI: 10.1002/adhm.202300291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Phototherapy and sonotherapy are recognized by scientific medicine as effective strategies for treating certain cancers. However, these strategies have limitations such as an inability to penetrate deeper tissues and overcome the antioxidant tumor microenvironment. In this study, a novel "BH" interfacial-confined coordination strategy to synthesize hyaluronic acid-functionalized single copper atoms dispersed over boron imidazolate framework-derived nanocubes (HA-NC_Cu) to achieve sonothermal-catalytic synergistic therapy is reported. Notably, HA-NC_Cu demonstrates exceptional sonothermal conversion performance under low-intensity ultrasound irradiation, attained through intermolecular lattice vibrations. In addition, it shows promise as an efficient biocatalyst, able to generate high-toxicity hydroxyl radicals in response to tumor-endogenous hydrogen peroxide and glutathione. Density functional theory calculations reveal that the superior parallel catalytic performance of HA-NC_Cu originates from the CuN4 C/B active sites. Both in vitro and in vivo evaluations consistently demonstrate that the sonothermal-catalytic synergistic strategy significantly improves tumor inhibition rate (86.9%) and long-term survival rate (100%). In combination with low-intensity ultrasound irradiation, HA-NC_Cu triggers a dual death pathway of apoptosis and ferroptosis in MDA-MB-231 breast cancer cells, comprehensively limiting primary triple-negative breast cancer. This study highlights the applications of single-atom-coordinated nanotherapeutics in sonothermal-catalytic synergistic therapy, which may create new opportunities in biomedical research.
Collapse
Affiliation(s)
- Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Shuangsong Ren
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Yueguang Fang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Y Zou Finfrock
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ying Che
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
22
|
Zhang L, Zhang J, Xuan X, Wu D, Yu J, Wang P, Yang X, Zhang J, Gan W, He M, Liu XM, Zhou J, Wang D, Gu W, Li D. A p53/LINC00324 positive feedback loop suppresses tumor growth by counteracting SET-mediated transcriptional repression. Cell Rep 2023; 42:112833. [PMID: 37480565 DOI: 10.1016/j.celrep.2023.112833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/26/2023] [Accepted: 07/03/2023] [Indexed: 07/24/2023] Open
Abstract
The p53 tumor suppressor exerts antitumor functions through its ability to regulate the transcription of its downstream targets. Long noncoding RNAs (lncRNAs) act as oncogenes or tumor suppressors implicated in tumorigenesis and tumor progression. Here, we identify the lncRNA LINC00324 (long intergenic noncoding RNA 00324) as a direct p53 transcriptional target. Knockdown of LINC00324 expression promotes tumor growth by reducing p53 transcriptional activity, whereas ectopic LINC00324 expression demonstrates a reverse effect. Notably, LINC00324 is present in the endogenous p53 complex in tumor cells and directly binds to the C-terminal domain of p53 in vitro. Mechanistically, LINC00324 enables p53 transactivation by competitively disrupting the p53-SET interaction, resulting in an increase of p300/CBP-mediated H3K18 and H3K27 acetylation on the p53 target promoters. Lower LINC00324 expression is associated with more aggressive disease status and predicts worse overall survival of patients with cancer. Our study identifies a p53/LINC00324 positive feedback loop that suppresses tumor growth by counteracting SET-mediated transcriptional repression.
Collapse
Affiliation(s)
- Ling Zhang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jun Zhang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaofeng Xuan
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Di Wu
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jianfeng Yu
- Department of Life Science and Technology, Changshu Institute of Technology, 99 South Third Ring Road, Suzhou 215500, China
| | - Peizhen Wang
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Xiaomei Yang
- Department of Emergency, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Jieru Zhang
- Department of Respiratory & Critical Care Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Wenjuan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated to Soochow University, 9 Chongwen Road, Suzhou 215300, China
| | - Mengfan He
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China
| | - Xiao-Min Liu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jun Zhou
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology and Department of Medical Genetics, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Dawei Li
- Center for Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, 68 Jiyang West Road, Suzhou 215600, China.
| |
Collapse
|
23
|
Shomali N, Kamrani A, Nasiri H, Heris JA, Shahabi P, Yousefi M, Mohammadinasab R, Sadeghvand S, Akbari M. An updated review of a novel method for examining P53 mutations in different forms of cancer. Pathol Res Pract 2023; 248:154585. [PMID: 37302277 DOI: 10.1016/j.prp.2023.154585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
In the past fifteen years, it has been clear that tumor-associated p53 mutations can cause behaviors distinct from those brought on by a simple loss of p53's tumor-suppressive function in its wild-type form. Many of these mutant p53 proteins develop oncogenic characteristics that allow them to encourage cell survival, invasion, and metastasis. But it is now understood that the immune response is also significantly influenced by the cancer cell's p53 status. The recruitment and activity of myeloid and T cells can be impacted by p53 loss or mutation in malignancies, allowing immune evasion and accelerating cancer growth. Additionally, p53 can work in immune cells, which can have various effects that either hinder or assist the growth of tumors. In this review article, we examined different mutations of P53 in some significant cancers, such as liver, colorectal, and prostate, and reviewed some new therapeutic approaches.
Collapse
Affiliation(s)
- Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Stieg DC, Parris JLD, Yang THL, Mirji G, Reiser SK, Murali N, Werts M, Barnoud T, Lu DY, Shinde R, Murphy ME, Claiborne DT. The African-centric P47S Variant of TP53 Confers Immune Dysregulation and Impaired Response to Immune Checkpoint Inhibition. CANCER RESEARCH COMMUNICATIONS 2023; 3:1200-1211. [PMID: 37441266 PMCID: PMC10335007 DOI: 10.1158/2767-9764.crc-23-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in cancer and is mutationally inactivated in 50% of sporadic tumors. Inactivating mutations in TP53 also occur in Li Fraumeni syndrome (LFS). In addition to germline mutations in TP53 in LFS that completely inactivate this protein, there are many more germline mutant forms of TP53 in human populations that partially inactivate this protein: we call these partially inactivating mutations "hypomorphs." One of these hypomorphs is a SNP that exists in 6%-10% of Africans and 1%-2% of African Americans, which changes proline at amino acid 47 to serine (Pro47Ser; P47S). We previously showed that the P47S variant of p53 is intrinsically impaired for tumor suppressor function, and that this SNP is associated with increased cancer risk in mice and humans. Here we show that this SNP also influences the tumor microenvironment, and the immune microenvironment profile in P47S mice is more protumorigenic. At basal levels, P47S mice show impaired memory T-cell formation and function, along with increased anti-inflammatory (so-called "M2") macrophages. We show that in tumor-bearing P47S mice, there is an increase in immunosuppressive myeloid-derived suppressor cells and decreased numbers of activated dendritic cells, macrophages, and B cells, along with evidence for increased T-cell exhaustion in the tumor microenvironment. Finally, we show that P47S mice demonstrate an incomplete response to anti-PD-L1 therapy. Our combined data suggest that the African-centric P47S variant leads to both intrinsic and extrinsic defects in tumor suppression. Significance Findings presented here show that the P47S variant of TP53 influences the immune microenvironment, and the immune response to cancer. This is the first time that a naturally occurring genetic variant of TP53 has been shown to negatively impact the immune microenvironment and the response to immunotherapy.
Collapse
Affiliation(s)
- David C. Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua L. D. Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tyler Hong Loong Yang
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Gauri Mirji
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sarah Kim Reiser
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nivitha Murali
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Madison Werts
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - David Y. Lu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rahul Shinde
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Daniel T. Claiborne
- Program in Immunology, Microenvironment, and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Moe SE, Erland FA, Fromreide S, Lybak S, Brydoy M, Dongre HN, Dhayalan SM, Costea DE, Vintermyr OK, Aarstad HJ. The TP53 Codon 72 Arginine Polymorphism Is Found with Increased TP53 Somatic Mutations in HPV(-) and in an Increased Percentage among HPV(+) Norwegian HNSCC Patients. Biomedicines 2023; 11:1838. [PMID: 37509476 PMCID: PMC10376802 DOI: 10.3390/biomedicines11071838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Somatic TP53 mutations are frequent in head and neck squamous cell carcinoma (HNSCC) and are important pathogenic factors. OBJECTIVE To study TP53 mutations relative to the presence of human papillomavirus (HPV) in tumors in HNSCC patients. METHODS Using a custom-made next-generation sequencing (NGS) panel on formalin-fixed, paraffin-embedded tumor tissue, we analyzed somatic TP53 mutations and the TP53 single-nucleotide polymorphism (SNP) codon 72 (P72R; rs1042522) (proline → arginine) from 104 patients with HNSCC. RESULTS Only 2 of 44 patients with HPV-positive (HPV(+)) HNSCC had a TP53 somatic mutation, as opposed to 42/60 HPV-negative (HPV(-)) HNSCC patients (p < 0.001). Forty-five different TP53 somatic mutations were detected. Furthermore, in HPV(-) patients, we determined an 80% prevalence of somatic TP53 mutations in the TP53 R72 polymorphism cohort versus 40% in the TP53 P72 cohort (p = 0.001). A higher percentage of patients with oral cavity SCC had TP53 mutations than HPV(-) oropharyngeal (OP) SCC patients (p = 0.012). Furthermore, 39/44 HPV(+) tumor patients harbored the TP53 R72 polymorphism in contrast to 42/60 patients in the HPV(-) group (p = 0.024). CONCLUSIONS Our observations show that TP53 R72 polymorphism is associated with a tumor being HPV(+). We also report a higher percentage of somatic TP53 mutations with R72 than P72 in HPV(-) HNSCC patients.
Collapse
Affiliation(s)
- Svein Erik Moe
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Fredrik A Erland
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Siren Fromreide
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Stein Lybak
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Marianne Brydoy
- Department of Oncology, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Harsh N Dongre
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Sophia M Dhayalan
- Department of Pathology, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | | | - Olav K Vintermyr
- Department of Pathology, Haukeland University Hospital (HUS), N-5020 Bergen, Norway
| | - Hans Jørgen Aarstad
- Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
26
|
Montero-Calle A, Garranzo-Asensio M, Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Poves C, Dziaková J, Sanz R, Díaz del Arco C, Pingarrón JM, Fernández-Aceñero MJ, Campuzano S, Barderas R. p53 and p63 Proteoforms Derived from Alternative Splicing Possess Differential Seroreactivity in Colorectal Cancer with Distinct Diagnostic Ability from the Canonical Proteins. Cancers (Basel) 2023; 15:cancers15072102. [PMID: 37046764 PMCID: PMC10092954 DOI: 10.3390/cancers15072102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most frequent cause of cancer-related death worldwide. The detection in plasma samples of autoantibodies against specific tumor-associated antigens has been demonstrated to be useful for the early diagnosis of CRC by liquid biopsy. However, new studies related to the humoral immune response in cancer are needed to enable blood-based diagnosis of the disease. Here, our aim was to characterize the humoral immune response associated with the different p53 and p63 proteoforms derived from alternative splicing and previously described as aberrantly expressed in CRC. Thus, here we investigated the diagnostic ability of the twelve p53 proteoforms and the eight p63 proteoforms described to date, and their specific N-terminal and C-terminal end peptides, by means of luminescence HaloTag beads immunoassays. Full-length proteoforms or specific peptides were cloned as HaloTag fusion proteins and their seroreactivity analyzed using plasma from CRC patients at stages I-IV (n = 31), individuals with premalignant lesions (n = 31), and healthy individuals (n = 48). p53γ, Δ40p53β, Δ40p53γ, Δ133p53γ, Δ160p53γ, TAp63α, TAp63δ, ΔNp63α, and ΔNp63δ, together with the specific C-terminal end α and δ p63 peptides, were found to be more seroreactive against plasma from CRC patients and/or individuals with premalignant lesions than from healthy individuals. In addition, ROC (receiver operating characteristic) curves revealed a high diagnostic ability of those p53 and p63 proteoforms to detect CRC and premalignant individuals (AUC higher than 85%). Finally, electrochemical biosensing platforms were employed in POC-like devices to investigate their usefulness for CRC detection using selected p53 and p63 proteoforms. Our results demonstrate not only the potential of these biosensors for the simultaneous analysis of proteoforms’ seroreactivity, but also their convenience and versatility for the clinical detection of CRC by liquid biopsy. In conclusion, we here show that p53 and p63 proteoforms possess differential seroreactivity in CRC patients in comparison to controls, distinctive from canonical proteins, which should improve the diagnostic panels for obtaining a blood-based biomarker signature for CRC detection.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
| | - Rebeca M. Torrente-Rodríguez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Víctor Ruiz-Valdepeñas Montiel
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Carmen Poves
- Gastroenterology Unit, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Jana Dziaková
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Surgical Pathology Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain (M.J.F.-A.)
| | - José Manuel Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | | | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28014 Madrid, Spain; (R.M.T.-R.); (V.R.-V.M.); (J.M.P.); (S.C.)
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (A.M.-C.); (M.G.-A.)
- Correspondence:
| |
Collapse
|
27
|
Pan J, Huang T, Deng Z, Zou C. Roles and therapeutic implications of m6A modification in cancer immunotherapy. Front Immunol 2023; 14:1132601. [PMID: 36960074 PMCID: PMC10028070 DOI: 10.3389/fimmu.2023.1132601] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Recent studies have demonstrated that N6-methyladenosine (m6A), the most abundant, dynamic, and reversible epigenetic RNA modification in eukaryotes, is regulated by a series of enzymes, including methyltransferases (writers), demethylases (erasers), and m6A recognition proteins (readers). Aberrant regulation of m6A modification is pivotal for tumorigenesis, progression, invasion, metastasis, and apoptosis of malignant tumors. Immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, as recognized by the 2018 Nobel Prize in Medicine and Physiology. However, not all cancer patients response to ICI therapy, which is thought to be the result of intricate immune escape mechanisms. Recently, numerous studies have suggested a novel role for m6A epigenetic modification in the regulation of tumor immune evasion. Herein, we review the relevant mechanisms of m6A regulators in regulating various key signaling pathways in cancer biology and how m6A epigenetic modifications regulate the expression of immune checkpoints, opening a new window to understand the roles and mechanisms of m6A epigenetic modifications in regulating tumor immune evasion. In addition, we highlight the prospects and development directions of future combined immunotherapy strategies based on m6A modification targeting, providing directions for promoting the treatment outcomes of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan Pan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tuxiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhenjun Deng
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chang Zou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Public Service Platform On Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
28
|
Sheekey E, Narita M. p53 in senescence - it's a marathon, not a sprint. FEBS J 2023; 290:1212-1220. [PMID: 34921507 DOI: 10.1111/febs.16325] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
The tumour suppressor p53, a stress-responsive transcription factor, plays a central role in cellular senescence. The role of p53 in senescence-associated stable proliferative arrest has been extensively studied. However, increasing evidence indicates that p53 also modulates the ability of senescent cells to produce and secrete diverse bioactive factors (collectively called the senescence-associated secretory phenotype, SASP). Senescence has been linked with both physiological and pathological conditions, the latter including ageing, cancer and other age-related disorders, in part through the SASP. Cellular functions are generally dictated by the expression profile of lineage-specific genes. Indeed, expression of SASP factors and their regulators are often biased by cell type. In addition, emerging evidence suggests that p53 contributes to deregulation of more stringent lineage-specific genes during senescence. P53 itself is also tightly regulated at the protein level. In contrast to the rapid and transient activity of p53 upon stress ('acute-p53'), during senescence and other prolonged pathological conditions, p53 activities are sustained and fine-tuned through a combination of different inputs and outputs ('chronic-p53').
Collapse
Affiliation(s)
- Eleanor Sheekey
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, UK
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
29
|
Jiang G, Wu Q, Li B. Evaluation of immunotherapy efficacy in gynecologic cancer. Front Immunol 2023; 14:1061761. [PMID: 36793735 PMCID: PMC9922993 DOI: 10.3389/fimmu.2023.1061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Various immunotherapies have demonstrated remarkable success over the past few decades, and have been approved for the treatment of different cancer types. However, patient responses to immunotherapy are variable, and approximately 50% of cases are refractory to these agents. Tumor biomarker-based stratification of cases may therefore help identify subpopulations that are sensitive/resistant to immunotherapy; it may also improve prediction of response in various cancers including gynecologic cancer. These biomarkers include the tumor mutational burden, microsatellite instability, mismatch repair deficiency, T cell-inflamed gene expression profile, programmed cell death protein 1 ligand 1, tumor-infiltrating lymphocytes, and numerous other genomic alterations. Future directions in the treatment of gynecologic cancer include the utilization of these biomarkers to select ideal candidates. This review focused on recent advances in the predictive ability of molecular biomarkers in patients with gynecologic cancer who undergo immunotherapy. The most recent developments in combined immunotherapy and targeted therapy strategies and novel immune interventions against gynecologic cancers have also been discussed.
Collapse
Affiliation(s)
- Genyi Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianhua Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Bilan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Liu Y, Zhang L, Xu ZH, Zhu J, Ma JL, Gao YP, Xu GY. Increased ten-eleven translocation methylcytosine dioxygenase one in dorsal root ganglion contributes to inflammatory pain in CFA rats. Mol Pain 2022; 18:17448069221143671. [PMID: 36411533 PMCID: PMC9720829 DOI: 10.1177/17448069221143671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA hydroxylation catalyzed by Tet dioxygenases occurs abundantly in neurons in mammals. However, effects of ten-eleven translocation methylcytosine dioxygenase 1 (TET1) expression and hydroxymethylation status on neuron injury remain unclear. This study was designed to explore the effects of TET1 and TET2 expression in the inflammatory pain of rats induced by complete Freund's adjuvant (CFA). Mechanical paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL) were detected to assess pain behavior. The expression of TET1 and TET2 were measured in the dorsal root ganglion (DRG) with western blotting analysis. Immunofluorescence staining is employed to detect the expression and co-location of TRPV1 with TET1. Intrathecal administration of Bobcat339 was used to inhibit TET1 function in dorsal root ganglion. The paw withdrawal threshold and thermal withdrawal latency of rats were significantly reduced after CFA Injection. Western blot results showed that the expression of TET1 was significantly increased at 3 days after CFA injection, but TET2 had no statistical difference. Immunofluorescence results showed that TET1 was co-localized with TRPV1. Intrathecal administration of Bobcat339 improved mechanical and thermal pain threshold in CFA rats. Our findings highlight the role of TET1 in chronic inflammatory pain model. The expression of TET1 was increased in CFA rats, and suppression of TET1 will ameliorate inflammatory pain.
Collapse
Affiliation(s)
- Yun Liu
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Ling Zhang
- Center for Translational Medicine,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Zhen-hua Xu
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Jie Zhu
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Jia-ling Ma
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China
| | - Yan-ping Gao
- Department of Anesthesiology,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China,Yan-ping Gao, Department of Anesthesiology,
The Affiliated Zhangjiagang Hospital of Soochow University, 68, Jiyang West
Road, Suzhou 215600, China. and Guang-Yin
Xu, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of
Neuroscience, Soochow University, Suzhou 215123, China.
| | - Guang-Yin Xu
- Center for Translational Medicine,
The
Affiliated Zhangjiagang Hospital of Soochow
University, Suzhou, China,Jiangsu Key Laboratory of
Neuropsychiatric Diseases and Institute of Neuroscience,
Soochow
University, Suzhou, China,Yan-ping Gao, Department of Anesthesiology,
The Affiliated Zhangjiagang Hospital of Soochow University, 68, Jiyang West
Road, Suzhou 215600, China. and Guang-Yin
Xu, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of
Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
31
|
Halim F, Azhar Y, Suwarman S, Hernowo B. p53 Mutation as Plausible Predictor for Endocrine Resistance Therapy in Luminal Breast Cancer. F1000Res 2022; 11:330. [PMID: 36519010 PMCID: PMC9718986 DOI: 10.12688/f1000research.108628.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Endocrine therapy resistance in Luminal Breast Cancer is a significant issue to be tackled, but currently, no specific biomarker could be used to anticipate this event. p53 mutation is widely known as one of Breast Cancer's most prominent genetic alterations. Its mutation could generate various effects in Estrogen Receptor and Progesterone Receptor molecular works, tangled in events leading to the aggravation of endocrine therapy resistance. Hence the possibility of p53 mutation utilization as an endocrine therapy resistance predictive biomarker is plausible. The purpose of this review is to explore the latest knowledge of p53 role in Estrogen Receptor and Progesterone Receptor molecular actions, thus aggravating the Endocrine Therapy resistance in Luminal Breast Cancer, from which we could define possibilities and limitations to utilize p53 as the predictive biomarker of endocrine therapy resistance in Luminal Breast Cancer.
Collapse
Affiliation(s)
- Freda Halim
- Department of Surgery, Pelita Harapan University, Tangerang, Indonesia,
| | - Yohana Azhar
- Department of Surgery - Oncology, Head and Neck Division, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Suwarman Suwarman
- Department of Anesthesiology and Intensive Care, Hasan Sadikin General Hospital, Universitas Padjajaran, Bandung, Indonesia
| | - Bethy Hernowo
- Department of Anatomical Pathology, Universitas Padjajaran, Bandung, West Java, Indonesia
| |
Collapse
|
32
|
Wu X, Wang L, Li Z. Identification of 3-Phenylquinoline Derivative PQ1 as an Antagonist of p53 Transcriptional Activity. ACS OMEGA 2022; 7:43180-43189. [PMID: 36467924 PMCID: PMC9713874 DOI: 10.1021/acsomega.2c05891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Transcription factor p53 regulates cellular responses to environmental perturbations via the transcriptional activation of downstream target genes. Inappropriate p53 activation can trigger abnormal cellular responses, therefore leading to acute or chronic tissue damage, human developmental syndromes, and neurodegenerative diseases. Antagonists of p53 transcriptional activity provide prospective therapeutic applications and molecular probes. In this article, we identified five 3-phenylquinoline derivatives as potential p53 inhibitors through screening a chemical library consisting of 120 compounds, in which PQ1 was the most active compound. PQ1 had no effect on p53 protein levels and decreased the expression of p53 target gene p21. PQ1 thermally stabilizes the wild-type p53 protein. Further, transcriptomics confirmed that PQ1 exposure generated a similar regulatory effect to transcription profiles with a reported p53 transcriptional inhibitor pifithrin-α. However, compared to pifithrin-α, PQ1 increased the sensitivity of SW480 cells to 5FU. Taken together, PQ1 was a novel antagonist of p53 transcriptional activity. We propose that PQ1 could be developed as a chemical tool to pinpoint the physiological functions of p53 and a novel lead compound for targeting dysfunctional p53 activation.
Collapse
Affiliation(s)
- Xingkang Wu
- Modern
Research Center for Traditional Chinese Medicine, The Key Laboratory
of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China
- Key
Laboratory of Effective Substances Research and Utilization in TCM
of Shanxi Province, No.
92, Wucheng Road, Taiyuan 030006, Shanxi, P.
R. China
- Shanxi
Key Laboratory of Redevelopment of Famous Local Traditional Chinese
Medicines, No. 92, Wucheng
Road, Taiyuan 030006, Shanxi, P. R. China
| | - Lu Wang
- Modern
Research Center for Traditional Chinese Medicine, The Key Laboratory
of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, P. R. China
| | - Zhenyu Li
- Department
of Pharmacy, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan 250021, Shandong, P. R. China
| |
Collapse
|
33
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
34
|
Guo J, Zhao J, Sun L, Yang C. Role of ubiquitin specific proteases in the immune microenvironment of prostate cancer: A new direction. Front Oncol 2022; 12:955718. [PMID: 35924159 PMCID: PMC9339679 DOI: 10.3389/fonc.2022.955718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of ubiquitination is associated with multiple processes of tumorigenesis and development, including regulation of the tumor immune microenvironment. Deubiquitinating enzymes (DUBs) can remove ubiquitin chains from substrates, thereby stabilizing target proteins and altering and remodeling biological processes. During tumorigenesis, deubiquitination-altered biological processes are closely related to tumor metabolism, stemness, and the immune microenvironment. Recently, tumor microenvironment (TME) modulation strategies have attracted considerable attention in cancer immunotherapy. Targeting immunosuppressive mechanisms in the TME has revolutionized cancer therapy. Prostate cancer (PC) is one of the most common cancers and the second most common cause of cancer-related death in men worldwide. While immune checkpoint inhibition has produced meaningful therapeutic effects in many cancer types, clinical trials of anti-CTLA4 or anti-PD1 have not shown a clear advantage in PC patients. TME affects PC progression and also enables tumor cell immune evasion by activating the PD-1/PD-L1 axis. Over the past few decades, an increasing number of studies have demonstrated that deubiquitination in PC immune microenvironment may modulate the host immune system’s response to the tumor. As the largest and most diverse group of DUBs, ubiquitin-specific proteases (USPs) play an important role in regulating T cell development and function. According to current studies, USPs exhibit a high expression signature in PC and may promote tumorigenesis. Elevated expression of USPs often indicates poor tumor prognosis, suggesting that USPs are expected to develop as the markers of tumor prognosis and even potential drug targets for anti-tumor therapy. Herein, we first summarized recent advances of USPs in PC and focused on the relationship between USPs and immunity. Additionally, we clarified the resistance mechanisms of USPs to targeted drugs in PC. Finally, we reviewed the major achievement of targeting USPs in cancers.
Collapse
Affiliation(s)
- Jinhui Guo
- Cancer Center, Institute of clinical medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Chen Yang,
| | - Chen Yang
- Cancer Center, Department of Ultrasound, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Chen Yang,
| |
Collapse
|
35
|
Zhang Y, Pang S, Sun B, Zhang M, Jiao X, Lai L, Qian Y, Yang N, Yang W. ELOVLs Predict Distinct Prognosis Value and Immunotherapy Efficacy In Patients With Hepatocellular Carcinoma. Front Oncol 2022; 12:884066. [PMID: 35912257 PMCID: PMC9334671 DOI: 10.3389/fonc.2022.884066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a primary malignancy of the liver with high prevalence worldwide and poor prognosis. It has been verified that elongation of very-long-chain fatty acids gene family (ELOVLs), a group of genes that responsible for elongation of saturated and polyunsaturated fatty acids, participate in the pathogenesis and development of multiplex disease including cancers. However, the functions and prognosis of ELOVLs in HCC are still indistinguishable. Methods First, we searched the mRNA expression and survival data of ELOVLs in patients with HCC via the data of The Cancer Genome Atlas (TCGA). The prognosis value of ELOVLs on HCC was assessed by Kaplan–Meier plotter and Cox regression analysis. reverse transcription quantitative- polymerase chain reaction (RT-qPCR), Western blot (WB), and immunohistochemistry were applied to assess the specific mRNA and protein expression of ELOVLs in HCC clinical specimens of our cohort. Then, the functional enrichment of ELOVL1 especially the pathways relating to the immune was conducted utilizing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) analysis. Additionally, TIMER, CIBERSOR, and tumor immune dysfunction and exclusion (TIDE) were employed to evaluate the relationship between ELOVL1 and immune responses. Last, the correlation of ELOVL1 with genome heterogeneity [microsatellite instability (MSI), tumor mutational burden (TMB), mutant-allele tumor heterogeneity (MATH), homologous recombination deficiency (HRD), purity, ploidy, loss of heterozygosity (LOH), and neoantigens] and mutational landscape were also evaluated basing on the date in TCGA. Results Significant expression alteration was observed in ELOVLs family at the pan-cancer level. In liver cancer, ELOVL1 and ELOVL3 were strongly associated with poor prognosis of HCC by survival analysis and differential expression analysis. Immunohistochemistry microarray, WB, and RT-qPCR confirmed that ELOVL1 but not ELOVL3 played an important role in HCC. Mechanistically, functional network analysis revealed that ELOVL1 might be involved in the immune response. ELOVL1 could affect immune cell infiltration and immune checkpoint markers such as PD-1 and CTLA4 in HCC. Meanwhile, high expression of ELOVL1 would be insensitive to immunotherapy. Correlation analysis of immunotherapy markers showed that ELOVL1 has been associated with MSI, TMB, and oncogene mutations such as TP53. Conclusion ELOVLs play distinct prognostic value in HCC. ELOVL1 could predict the poor prognosis and might be a potential indicator of immunotherapy efficacy in HCC patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shujie Pang
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minbo Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoxiao Jiao
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Linying Lai
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ning Yang
- Department V of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Ning Yang, ; Wenzhuo Yang,
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ning Yang, ; Wenzhuo Yang,
| |
Collapse
|
36
|
Shu S, Li Z, Liu L, Ying X, Zhang Y, Wang T, Zhou X, Jiang P, Lv W. HPV16 E6-Activated OCT4 Promotes Cervical Cancer Progression by Suppressing p53 Expression via Co-Repressor NCOR1. Front Oncol 2022; 12:900856. [PMID: 35875100 PMCID: PMC9302044 DOI: 10.3389/fonc.2022.900856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human papillomaviruses (HPV), mainly HPV16 and HPV18, of high-risk classification are involved in cervical cancer carcinogenesis and progression. Octamer-binding transcription factor 4 (OCT4) is a key transcription factor that is increased in various cancer types. Cervical cancer patients with higher levels of OCT4 had worse survival rates. However, the definite mechanisms underlying its function in the development of cervical cancer still remain to be explicated. Here, our study demonstrated that OCT4 expression was slightly increased in cervical cancer tissues than in precancerous ones. However, OCT4 was significantly upregulated in HPV16-positive tissues, in contrast to the expression profiling for p53. Moreover, knockdown of HPV16 E6 in SiHa cells suppressed the expression of OCT4 with impaired activities of cell proliferation, migration, and invasion, while it recovered the expression of p53. Overexpression of OCT4 and p53 exerted opposite roles on cell proliferation, migration, invasion, and colony formation of cervical cancer cells. More importantly, the enforced expression of OCT4 augmented p53-inhibited cell migration, invasion, and colony formation in human cervical cancer by promoting EMT. Finally, we identified that OCT4 could bind to the p53 promoter region to repress p53 expression by recruiting co-repressor NCOR1 using luciferase, ChIP, and co-IP experiments. We further illustrated that OCT4 not only increased the lung metastasis of cervical cancer but also effectively reversed p53-inhibited lung metastasis. In conclusion, our results suggested that HPV16 E6 activated the expression of OCT4 and subsequently crippled the transcription of p53 via co-repressor NCOR1, which contributed to cervical cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiguo Lv
- *Correspondence: Weiguo Lv, ; Peiyue Jiang,
| |
Collapse
|
37
|
Wang Y, Zhang G, Meng Q, Huang S, Guo P, Leng Q, Sun L, Liu G, Huang X, Liu J. Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nat Commun 2022; 13:1454. [PMID: 35304449 PMCID: PMC8933567 DOI: 10.1038/s41467-022-29120-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Reinvigoration of antitumor immunity has recently become the central theme for the development of cancer therapies. Nevertheless, the precise delivery of immunotherapeutic activities to the tumors remains challenging. Here, we explore a synthetic gene circuit-based strategy for specific tumor identification, and for subsequently engaging immune activation. By design, these circuits are assembled from two interactive modules, i.e., an oncogenic TF-driven CRISPRa effector, and a corresponding p53-inducible off-switch (NOT gate), which jointly execute an AND-NOT logic for accurate tumor targeting. In particular, two forms of the NOT gate are developed, via the use of an inhibitory sgRNA or an anti-CRISPR protein, with the second form showing a superior performance in gating CRISPRa by p53 loss. Functionally, the optimized AND-NOT logic circuit can empower a highly specific and effective tumor recognition/immune rewiring axis, leading to therapeutic effects in vivo. Taken together, our work presents an adaptable strategy for the development of precisely delivered immunotherapy. “Reinvigoration of antitumor immunity has recently become the central theme for the development of cancer therapies. Here the authors present an adaptable gene circuit to harness the CRISPRa for tumorlocalized immune activation.”
Collapse
Affiliation(s)
- Yafeng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China.,Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Guiquan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China
| | - Qingzhou Meng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, 78 Hengzhigang Road, Guangzhou, 510095, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Geng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. .,Zhejiang Laboratory, Hangzhou, 311100, China.
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center at Medical School of Nanjing University, Nanjing, 210061, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
38
|
Pavlíková L, Šereš M, Breier A, Sulová Z. The Roles of microRNAs in Cancer Multidrug Resistance. Cancers (Basel) 2022; 14:cancers14041090. [PMID: 35205839 PMCID: PMC8870231 DOI: 10.3390/cancers14041090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The resistance of neoplastic cells to multiple drugs is a serious problem in cancer chemotherapy. The molecular causes of multidrug resistance in cancer are largely known, but less is known about the mechanisms by which cells deliver phenotypic changes that resist the attack of anticancer drugs. The findings of RNA interference based on microRNAs represented a breakthrough in biology and pointed to the possibility of sensitive and targeted regulation of gene expression at the post-transcriptional level. Such regulation is also involved in the development of multidrug resistance in cancer. The aim of the current paper is to summarize the available knowledge on the role of microRNAs in resistance to multiple cancer drugs. Abstract Cancer chemotherapy may induce a multidrug resistance (MDR) phenotype. The development of MDR is based on various molecular causes, of which the following are very common: induction of ABC transporter expression; induction/activation of drug-metabolizing enzymes; alteration of the expression/function of apoptosis-related proteins; changes in cell cycle checkpoints; elevated DNA repair mechanisms. Although these mechanisms of MDR are well described, information on their molecular interaction in overall multidrug resistance is still lacking. MicroRNA (miRNA) expression and subsequent RNA interference are candidates that could be important players in the interplay of MDR mechanisms. The regulation of post-transcriptional processes in the proteosynthetic pathway is considered to be a major function of miRNAs. Due to their complementarity, they are able to bind to target mRNAs, which prevents the mRNAs from interacting effectively with the ribosome, and subsequent degradation of the mRNAs can occur. The aim of this paper is to provide an overview of the possible role of miRNAs in the molecular mechanisms that lead to MDR. The possibility of considering miRNAs as either specific effectors or interesting targets for cancer therapy is also analyzed.
Collapse
Affiliation(s)
- Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
| | - Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.)
| |
Collapse
|
39
|
Zhou S, Fan C, Zeng Z, Young KH, Li Y. Clinical and Immunological Effects of p53-Targeting Vaccines. Front Cell Dev Biol 2021; 9:762796. [PMID: 34805170 PMCID: PMC8595300 DOI: 10.3389/fcell.2021.762796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy, including immune checkpoint blockade and chimeric antigen receptor T cells, is one of the most promising approaches to treat cancer. Vaccines have been effective in preventing cancers like liver cancer and cervical cancer with a viral etiology. Instead of preventing disease, therapeutic cancer vaccines mobilize the immune system to attack existing cancer. p53 is dysregulated in the majority of human cancers and is a highly promising target for cancer vaccines. Over twenty clinical trials have targeted p53 in malignant diseases using vaccines. In this work, we review the progress of vaccinations with p53 or its peptides as the antigens and summarize the clinical and immunological effects of p53-targeting vaccines from clinical trials. The delivery platforms include p53 peptides, viral vectors, and dendritic cells pulsed with short peptides or transduced by p53-encoding viruses. These studies shed light on the feasibility, safety, and clinical benefit of p53 vaccination in select groups of patients, implicating that p53-targeting vaccines warrant further investigations in experimental animals and human studies.
Collapse
Affiliation(s)
- Shan Zhou
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Chunmei Fan
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Ken H. Young
- Hematopathology Division, Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
40
|
Mammarella E, Zampieri C, Panatta E, Melino G, Amelio I. NUAK2 and RCan2 participate in the p53 mutant pro-tumorigenic network. Biol Direct 2021; 16:11. [PMID: 34348766 PMCID: PMC8335924 DOI: 10.1186/s13062-021-00296-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
Most inactivating mutations in TP53 gene generates neomorphic forms of p53 proteins that experimental evidence and clinical observations suggest to exert gain-of-function effects. While massive effort has been deployed in the dissection of wild type p53 transcriptional programme, p53 mutant pro-tumorigenic gene network is still largely elusive. To help dissecting the molecular basis of p53 mutant GOF, we performed an analysis of a fully annotated genomic and transcriptomic human pancreatic adenocarcinoma to select candidate players of p53 mutant network on the basis their differential expression between p53 mutant and p53 wild-type cohorts and their prognostic value. We identified NUAK2 and RCan2 whose p53 mutant GOF-dependent regulation was further validated in pancreatic cancer cellular model. Our data demonstrated that p53R270H can physically bind RCan2 gene locus in regulatory regions corresponding to the chromatin permissive areas where known binding partners of p53 mutant, such as p63 and Srebp, bind. Overall, starting from clinically relevant data and progressing into experimental validation, our work suggests NUAK2 and RCan2 as novel candidate players of the p53 mutant pro-tumorigenic network whose prognostic and therapeutic interest might attract future studies.
Collapse
Affiliation(s)
- Eleonora Mammarella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carlotta Zampieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
41
|
Chen S, Duan Y, Wu Y, Yang D, An J. A Novel Integrated Metabolism-Immunity Gene Expression Model Predicts the Prognosis of Lung Adenocarcinoma Patients. Front Pharmacol 2021; 12:728368. [PMID: 34393804 PMCID: PMC8361602 DOI: 10.3389/fphar.2021.728368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although multiple metabolic pathways are involved in the initiation, progression, and therapy of lung adenocarcinoma (LUAD), the tumor microenvironment (TME) for immune cell infiltration that is regulated by metabolic enzymes has not yet been characterized. Methods: 517 LUAD samples and 59 non-tumor samples were obtained from The Cancer Genome Atlas (TCGA) database as the training cohort. Kaplan-Meier analysis and Univariate Cox analysis were applied to screen the candidate metabolic enzymes for their role in relation to survival rate in LUAD patients. A prognostic metabolic enzyme signature, termed the metabolic gene risk score (MGRS), was established based on multivariate Cox proportional hazards regression analysis and was verified in an independent test cohort, GSE31210. In addition, we analyzed the immune cell infiltration characteristics in patients grouped by their Risk Score. Furthermore, the prognostic value of these four enzymes was verified in another independent cohort by immunohistochemistry and an optimized model of the metabolic-immune protein risk score (MIPRS) was constructed. Results: The MGRS model comprising 4 genes (TYMS, NME4, LDHA, and SMOX) was developed to classify patients into high-risk and low-risk groups. Patients with a high-risk score had a poor prognosis and exhibited activated carbon and nucleotide metabolism, both of which were associated with changes to TME immune cell infiltration characteristics. In addition, the optimized MIPRS model showed more accurate predictive power in prognosis of LUAD. Conclusion: Our study revealed an integrated metabolic enzyme signature as a reliable prognostic tool to accurately predict the prognosis of LUAD.
Collapse
Affiliation(s)
- Songming Chen
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yumei Duan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanhao Wu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Desong Yang
- Thoracic Surgery Department II, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian An
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Clinical Research Center for Respiratory Diseases, Changsha, China
| |
Collapse
|
42
|
Yu D, Xu Z, Cheng X, Qin J. The role of miRNAs in MDMX-p53 interplay. J Evid Based Med 2021; 14:152-160. [PMID: 33988919 DOI: 10.1111/jebm.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs of 19-24 nucleotides in length and are tightly related to tumorigenesis and progression. Recent studies have demonstrated that the tumor suppressor p53 and its negative controller MDMX are regulated by miRNAs in different ways. Some miRNAs directly target p53 and regulate its expression and function, whereas some miRNAs target MDMX and regulate p53's activity indirectly. The overexpression of several miRNAs can restore the activity of p53 by negatively regulating MDMX in cancer cells. Therefore, a better understanding of the miRNAs-MDMX-p53 network will put forward potential research directions for developing anticancer therapeutics. In the present review, we mainly focus on the regulatory effects of miRNAs on the MDMX-p53 interplay as well as the role of the miRNAs-MDMX-p53 network in human cancer.
Collapse
Affiliation(s)
- Dehua Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiangjiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
43
|
Yang YL, Lin ZW, He PT, Nie H, Yao QY, Zhang SY. Inhibitory Effect of Astragalus Polysaccharide Combined with Cisplatin on Cell Cycle and Migration of Nasopharyngeal Carcinoma Cell Lines. Biol Pharm Bull 2021; 44:926-931. [PMID: 33952795 DOI: 10.1248/bpb.b20-00959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Astragalus polysaccharide (APS) had shown great promise in anti-tumour activities in our previous studies. The present study was designed to investigate whether APS has synergistic effect with cisplatin on the growth-inhibitory of human nasopharyngeal carcinoma cell lines and the possible mechanism. Methods Here, nasopharyngeal carcinoma cell lines (CNE-1) were divided into CNE-1 group, Cisplatin treatment group (2 µg/mL Cisplatin), APS treatment group (200 µg/mL APS) and combination group (2 µg/mL Cisplatin and 200 µg/mL APS). The proliferation inhibition rate of CNE-1 cells was determined by Cell Counting Kit-8 (CCK-8) method after treatment with different concentrations of APS for 24, 48, and 72 h. Apoptosis rates and cell cycle retardation of cells were detected by flow cytometry. Cell migration and invasion was evaluated by transwell assay. Western blotting and quantitative (q)RT-PCR were performed to detect the expression of Bcl-2, Bax, caspase-3, matrix metalloproteinase-2 (MMP-2), p53 and matrix metalloproteinase-9 (MMP-9) proteins in CNE-1 cells. Results APS have an inhibition on the proliferation of CNE-1 cells with time and dose dependence manner. Both the APS and combination therapy could promote apoptosis of CNE-1 cells, with the count of cells increased in G0/G1 and S phase while decreased in G2/M phase, and inhibited the migration and invasion of CNE-1 cells. Moreover, co-administration of Cisplatin and APS was more efficacious for the antitumor effect than either agent alone, as evidenced by the significant decrease in MMP-9 level and increase in p53. Conclusion APS, in combination with cisplatin, had significantly synergistic growth-inhibitory effect on nasopharyngeal carcinoma cell lines, which may be related to cell cycle and migration induction.
Collapse
Affiliation(s)
- Ya Li Yang
- School of Medicine, Jiaying University.,Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University
| | | | | | - Hua Nie
- School of Medicine, Jiaying University
| | | | - Sheng Yuan Zhang
- School of Medicine, Jiaying University.,Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University
| |
Collapse
|