1
|
Pauken KE, Alhalabi O, Goswami S, Sharma P. Neoadjuvant immune checkpoint therapy: Enabling insights into fundamental human immunology and clinical benefit. Cancer Cell 2025; 43:623-640. [PMID: 40118048 DOI: 10.1016/j.ccell.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025]
Abstract
While immune checkpoint therapy (ICT) has revolutionized cancer treatment, most patients with advanced disease fail to achieve durable benefit. To address this challenge, it is essential to integrate mechanistic research with clinical studies to: (1) understand response mechanisms, (2) identify patient-specific resistance pathways, (3) develop biomarkers for patient selection, and (4) design novel therapies to overcome resistance. We propose that incorporating "direct-in-patient" studies into clinical trials is crucial for bridging the gap between fundamental science and clinical oncology. In this review, we first highlight recent clinical success of ICT in the neoadjuvant setting, where treatment is given in earlier disease stages to improve outcomes. We then explore how neoadjuvant clinical trials could be utilized to drive mechanistic laboratory-based investigations. Finally, we discuss novel scientific concepts that will potentially aid in overcoming resistance to ICT, which will require future clinical trials to understand their impact on human immune responses.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Padmanee Sharma
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Wang S, Fang Z, Xiao W, Xie Y, Zhang Y, Liu Z. Causal role of immune cells in thyroid cancer: a two-sample Mendelian randomization study. Discov Oncol 2025; 16:481. [PMID: 40192951 PMCID: PMC11977059 DOI: 10.1007/s12672-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Immune cells play a crucial role in the progression of thyroid cancer. However, previous research on the link between immune cells and thyroid cancer has produced conflicting results. METHODS Based on the public available genome-wide association studies summary statistics, we performed a two-sample Mendelian randomization (MR) to evaluate the causal association between 731 immune phenotypes (including median fluorescence intensities, absolute cell counts, relative cell counts, and morphological parameters) and thyroid cancer. The inverse variance weighting method was employed to investigate the causal relationship between exposure and outcome. Moreover, multiple sensitivity analyses, such as MR-Egger, weighted median, and MR-PRESSO, were simultaneously applied to reinforce the final results. RESULTS After false discovery rate correction, four immunophenotypes were found to be significantly associated with a decreased risk of thyroid cancer. And six immunophenotypes were significantly associated with an increased risk of thyroid cancer. CONCLUSIONS Our study has demonstrated the close connection between immune cells and thyroid cancer by genetic means, thus providing guidance for future clinical research.
Collapse
Affiliation(s)
- Shurong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Zhouyu Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Yueyue Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhihua Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Yang L, Zhang Z, Xu M, Shang M, Wang H, Liu Z. Constructing a prognostic model based on MPT-related genes and investigate the characteristics of immune infiltration in bladder cancer. Discov Oncol 2025; 16:460. [PMID: 40183970 PMCID: PMC11971081 DOI: 10.1007/s12672-025-02222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
PURPOSE Exploring the expression of Mitochondrial Permeability Transition Dependent Necrosis lncRNA in bladder cancer and elucidate their precise function within the tumor microenvironment and impact on prognosis. METHODS We employed a comprehensive bioinformatics approach to investigate the function and influence of lncRNA in bladder cancer. Gene expression data, clinical data, and mutation data of bladder cancer are obtained from TCGA database. RESULTS We developed a new prognostic model incorporating 6 lncRNAs. The predictive efficacy of this model for bladder cancer prognosis was validated. Furthermore, we investigated the influence of model on the tumor microenvironment and drug sensitivity. CONCLUSION This study presents a novel prognostic framework for bladder cancer that holds great potential for enhancing prognostic prediction accuracy and optimizing treatment strategies for patients with this disease.
Collapse
Affiliation(s)
- Lei Yang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
- Anhui Medical University, Hefei, 230601, Anhui Province, China.
| | - Mengfan Xu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Muhan Shang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Haibing Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| | - Zhiqi Liu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China
- Anhui Medical University, Hefei, 230601, Anhui Province, China
| |
Collapse
|
4
|
Guo Z, Li K, Ren X, Wang X, Yang D, Ma S, Zeng X, Zhang P. The role of the tumor microenvironment in HNSCC resistance and targeted therapy. Front Immunol 2025; 16:1554835. [PMID: 40236700 PMCID: PMC11996806 DOI: 10.3389/fimmu.2025.1554835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
The prognosis for head and neck squamous cell carcinoma (HNSCC) remains unfavorable, primarily due to significant therapeutic resistance and the absence effective interventions. A major obstacle in cancer treatment is the persistent resistance of cancer cells to a variety of therapeutic modalities. The tumor microenvironment (TME) which includes encompasses all non-malignant components and their metabolites within the tumor tissue, plays a crucial role in this context. The distinct characteristics of the HNSCC TME facilitate tumor growth, invasion, metastasis, and resistance to treatment. This review provides a comprehensive overview of the HNSCC TME components, with a particular focus on tumor-associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), the extracellular matrix, reprogrammed metabolic processes, and metabolic products. It elucidates their contributions to modulating resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy in HNSCC, and explores novel therapeutic strategies targeting the TME for HNSCC management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Fan J, Chen Y, Gong Y, Sun H, Hou R, Dou X, Zhang Y, Huo C. Single-cell RNA sequencing reveals potential therapeutic targets in the tumor microenvironment of lung squamous cell carcinoma. Sci Rep 2025; 15:10374. [PMID: 40140461 PMCID: PMC11947091 DOI: 10.1038/s41598-025-93916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Lung squamous cell carcinoma (LUSC), accounting for 30% of lung cancer cases, lacks adequate research due to limited understanding of its molecular abnormalities. Our study analyzed public LUSC datasets to explore the tumor microenvironment (TME) composition using scRNA-seq from two cohorts. Applying non-negative matrix factorization, we identified unique malignant cell phenotypes, or meta-programs (MPs), based on gene expression patterns. Survival analysis revealed the clinical relevance of these MPs. Findings illuminated a TME landscape enriched with immune cells-CD8 + T, exhausted T, CD4 + T, and naive T cells-and suggested roles for myeloid cells, like cDC1 and pDCs, in LUSC progression. Different MPs highlighted the heterogeneity of malignant cells and their clinical implications. Targeting MP-specific genes may enable personalized therapy, especially for early-stage LUSC. This study offers insights into immune cell function in tumor dynamics, identifies MPs, and paves the way for novel LUSC strategies, enhancing early intervention, personalized treatment, and prognosis, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Junda Fan
- Department of Oncology, 242 Hospital Affiliated to Shenyang Medical College, Shenyang, 110034, China
| | - Yu Chen
- Jiamusi Central Hospital, Jiamusi, 154000, China
| | - Yue Gong
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Hongmei Sun
- Department of Medical Oncology, The Cancer Hospital of Jia Mu Si, Jiamusi, 154000, China
| | - Rui Hou
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Xiaoya Dou
- Geneis Beijing Co., Ltd, Beijing, 100102, China
| | - Yanping Zhang
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Cheng Huo
- Departmen of Pathology, Sinopharm Tongmei General Hospital, Datong, 037003, China.
| |
Collapse
|
6
|
Guo H, Liu C, Wu K, Li Y, Zhang Z, Chen F. Single-cell RNA sequencing reveals an IL1R2+Treg subset driving immunosuppressive microenvironment in HNSCC. Cancer Immunol Immunother 2025; 74:159. [PMID: 40131478 PMCID: PMC11936857 DOI: 10.1007/s00262-025-04015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
Regulatory T cells (Tregs) play an immunosuppressive role in tumor microenvironment (TME) in various of cancer types. However, how different Treg subsets influence and effect on head and neck squamous cell carcinoma (HNSCC) remain unclear. Here, using single-cell RNA sequencing (scRNA-seq), we identified an IL1R2+Treg subset which promoted the progression of HNSCC. Via tissue microassay (TMA) and enzyme-linked immunosorbent assay (ELISA), we verified the clinical diagnostic value of the IL1R2+Treg and soluble IL1R2 (sIL1R2). In addition, we constructed tumor-bearing mouse models to explore the antitumor effects of combined targeting IL1R2 and CTLA4. For mechanism, we found IL-1β promoted the expression of IL1R2 and CTLA4 in Tregs, and upregulated CTLA4 though NR4A1 translocation. These results revealed that IL1R2+Treg and serum IL1R2 level had potential diagnostic and prognostic value of HNSCC and combined targeting of IL1R2 and CTLA4 might be an effective strategy to inhibit tumor progression.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chun Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Wu
- Department of Oral and Maxillofacial Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Fuxiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Wu Y, Zhu L, Li S, Liu L, Wang Y, Yang Y, Mu Y, Zhu Q, Jiang Y, Wu C, Xi P, Ma C, Liang L, Gao M, Hu Y, Ding Q, Pan S. DA-DRD5 signaling reprograms B cells to promote CD8 + T cell-mediated antitumor immunity. Cell Rep 2025; 44:115364. [PMID: 40023842 DOI: 10.1016/j.celrep.2025.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/16/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Neuronal signals have emerged as pivotal regulators of B cells that regulate antitumor immunity and tumor progression. However, the functional relevance and mechanistic basis of the effects of the neurotransmitter dopamine (DA) on tumor immunity remain elusive. Here, we discovered that plasma DA levels are positively correlated with circulating B cell numbers and potently activate B cell responses in a manner dependent on the DRD5 receptor. Notably, DRD5 signaling enhanced the Janus kinase 1 (JAK1)-STAT1 signaling in B cell responses, which enhanced B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion and cytotoxicity in tumor-specific effector of T cells. Our findings demonstrate that DA signaling suppresses tumor progression and highlight DRD5 as a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Lei Zhu
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, China; Department of Breast Surgery, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing 210004, China
| | - Sheng Li
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Lu Liu
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China
| | - Yaman Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Yongbing Yang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi 214000, China
| | - Yuan Mu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China
| | - Qiuying Zhu
- The First Clinical School of Nanjing Medical University, Nanjing 210029, China
| | - Yuying Jiang
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Wu
- Department of Pathology, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing 210004, China
| | - Peiwen Xi
- Department of Health Management Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunmei Ma
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China
| | - Lijun Liang
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Min Gao
- Department of Nephrology, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, China
| | - Yingchao Hu
- Department of Immunology, Nanjing Medical University, Nanjing 211166, China.
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210036, China.
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Branch of National Clinical Research Center for Laboratory Medicine, Nanjing 210029, China.
| |
Collapse
|
8
|
Muhammed TM, Jasim SA, Zwamel AH, Rab SO, Ballal S, Singh A, Nanda A, Ray S, Hjazi A, Yasin HA. T lymphocyte-based immune response and therapy in hepatocellular carcinoma: focus on TILs and CAR-T cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04035-9. [PMID: 40100377 DOI: 10.1007/s00210-025-04035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death worldwide. The primary therapies for HCC are liver transplantation, hepatic tumor excision, radiofrequency ablation, and molecular-targeted medicines. An unfavorable prognosis marks HCC and has limited pharmacological response in therapeutic studies. The tumor immune microenvironment (TME) imposes significant selection pressure on HCC, resulting in its evolution and recurrence after various treatments. As the principal cellular constituents of tumor-infiltrating lymphocytes (TILs), T cells have shown both anti-tumor and protumor actions in HCC. T cell-mediated immune responses are pivotal in cancer monitoring and elimination. TILs are recognized for their critical involvement in the progression, prognosis, and immunotherapeutic management of HCC. Foxp3 + , CD8 + , CD3 + , and CD4 + T cells are the extensively researched subtypes of TILs. This article examines the functions and processes of several subtypes of TILs in HCC. Emerging T cell-based therapies, including TILs and chimeric antigen receptor (CAR)-T cell therapy, have shown tumor regression in several clinical and preclinical studies. Herein, it also delves into the existing T cell-based immunotherapies in HCC, with emphasis on TILs and CAR-T cells.
Collapse
Affiliation(s)
- Thikra Majid Muhammed
- Biology Department, College of Education for Pure Sciences, University of Anbar, Anbar, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anima Nanda
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
9
|
Yuan Z, Wang JH, Cui H, Wang SY, Wei B, Cui JX. Mapping the landscape of gastric cancer immunotherapy: Bibliometric insights into advances and hotspots. World J Gastrointest Oncol 2025; 17:100997. [PMID: 40092931 PMCID: PMC11866247 DOI: 10.4251/wjgo.v17.i3.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunotherapy has surfaced as a promising therapeutic modality for gastric cancer (GC). A comprehensive review of advancements, current status, and research trends in GC immunotherapy is essential to inform future investigative efforts. AIM To delineate the trends, advancements, and focal points in immunotherapy for GC. METHODS We performed a bibliometric analysis of 2906 articles in English concerning GC immunotherapy published from 2000 to December 20, 2023, indexed in the Web of Science Core Collection. Data analysis and visualization were facilitated by CiteSpace (6.1.6R), VOSviewer v.1.6.17, and GraphPad Prism v8.0.2. RESULTS There has been an increase in the annual publication rate of GC immunotherapy research. China leads in publication volume, while the United States demonstrates the highest citation impact. Fudan University is notable for its citation frequency and publication output. Co-citation analysis and keyword frequency revealed and highlighted a focus on GC prognosis, the tumor microenvironment (TME), and integrative immunotherapy with targeted therapy. Emerging research areas include gastroesophageal junction cancer, adoptive immunotherapy, and the role of Treg cell in immunotherapy. CONCLUSION GC immunotherapy research is an expanding field attracting considerable scientific interest. With the clinical adoption of immunotherapy in GC, the primary goals are to enhance treatment efficacy and patient outcomes. Unlike hematological malignancies, GC's solid TME presents distinct immunological challenges that may attenuate the cytotoxic effects of immune cells on cancer cells. For instance, although CAR-T therapy is effective in hematological malignancies, it has underperformed in GC settings. Current research is centered on overcoming immunosuppression within the TME, with a focus on combinations of targeted therapy, adoptive immunotherapy, Treg cell dynamics, and precise prognosis prediction in immunotherapy. Additionally, immunotherapy's role in treating gastroesophageal junction cancer has become a novel research focus.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Hang Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
10
|
Xie Y, Zhang S, Wu Y, Qi Y, Qi S, Chen X, Chen B. Pan-cancer analysis predicts MBOAT2 as a potential new ferroptosis related gene immune checkpoint. Discov Oncol 2025; 16:322. [PMID: 40088361 PMCID: PMC11910489 DOI: 10.1007/s12672-025-02078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND The phospholipid-modifying enzyme MBOAT2 plays a crucial role in iron homeostasis by inhibiting iron sequestration, thus preventing iron-induced cell death. It achieves this by remodeling the phospholipid composition of cell membranes through phospholipid metabolism. Although multiple studies have highlighted the significance of MBOAT2 in tumorigenesis, a comprehensive pan-cancer analysis has not been conducted to date. METHODS In this study, we analyzed the expression levels of MBOAT2 using RNA sequencing data from the TCGA and GTEx databases. We also investigated MBOAT2 protein information using resources such as the Human Protein Atlas (HPA), GeneCards, and String databases. To assess the prognostic value of MBOAT2, we conducted survival analysis based on clinical data from TCGA. Additionally, we performed enrichment analysis using the R package "clusterProfiler" and explored the relationship between MBOAT2 expression and immune cell infiltration, as well as immune checkpoint interactions in TCGA datasets. Furthermore, we examined the correlation between MBOAT2 expression and clinical pathology through immunohistochemical analysis of breast, prostate, lung, and liver cancer tissues in the HPA database. Finally, western blotting was used to validate MBOAT2 protein expression in breast and prostate cancer cell lines. RESULTS Our analysis revealed that MBOAT2 was highly expressed in a wide range of cancer types, with its expression correlating with improved survival outcomes in the TCGA dataset. Moreover, we found a significant association between MBOAT2 expression and immune regulation, particularly in relation to immune cell infiltration and immune checkpoint interactions. CONCLUSION MBOAT2 holds promise as a prognostic biomarker and may serve as a target for immunotherapy in various malignancies. Further investigation into its role in cancer immunity could offer new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Yuhan Xie
- Department of Emergency Medicine, Institute of Infectious Diseases, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, China
- Department of Neurology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300102, China
| | - Shichao Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yu Wu
- Department of Neurology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300102, China
| | - Yuanjiong Qi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shiyong Qi
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiuju Chen
- Department of Neurology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300102, China.
| | - Bing Chen
- Department of Emergency Medicine, Institute of Infectious Diseases, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, China.
| |
Collapse
|
11
|
Svensson M, Limeres MJ, Zeyn Y, Gambaro RC, Islan GA, Berti IR, Fraude-El Ghazi S, Pretsch L, Hilbert K, Schneider P, Kaps L, Bros M, Gehring S, Cacicedo ML. mRNA-LNP vaccine strategies: Effects of adjuvants on non-parenchymal liver cells and tolerance. Mol Ther Methods Clin Dev 2025; 33:101427. [PMID: 40027262 PMCID: PMC11872076 DOI: 10.1016/j.omtm.2025.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
The liver, which plays pivotal roles in metabolism and immunity, often confers tolerance, suppressing immune responses to pathogens. Adjuvanted, lipid nanoparticle-encapsulated mRNA vaccines (mRNA-LNPs) offer a promising approach to overcome immune tolerance. In this study, the immunostimulatory activity of well-documented adjuvants, i.e., 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), resiquimod (R848), and polyinosinic:polycytidylic acid (Poly I:C), on non-parenchymal liver cells was determined. When co-applied with mRNA-loaded LNPs, these adjuvants enhanced immune responses at variable extents. Moreover, the efficiency of mRNA translation in the presence of cGAMP was comparable with the non-adjuvanted control. Repetitive co-application of adjuvants with mRNA-LNPs showed improvement in cellular responses when R848 or R848/cGAMP treatments were used. These findings emphasize the need to delineate the delicate balance between immunomodulatory properties and the efficiency of mRNA translation when selecting adjuvants for mRNA-LNP vaccines and offer insights on how to enhance immunity to infectious diseases and cancers that affect the liver.
Collapse
Affiliation(s)
- Malin Svensson
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - María José Limeres
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rocio C. Gambaro
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - German A. Islan
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ignacio Rivero Berti
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Silvia Fraude-El Ghazi
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Leah Pretsch
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katja Hilbert
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Department of Medicine II Saarland University Medical Center Saarland University 66421 Homburg, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Maximiliano L. Cacicedo
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
12
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
13
|
Wu B, Yang X, Kong N, Liang J, Li S, Wang H. Engineering Modular Peptide Nanoparticles for Ferroptosis-Enhanced Tumor Immunotherapy. Angew Chem Int Ed Engl 2025; 64:e202421703. [PMID: 39721975 DOI: 10.1002/anie.202421703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors are promising for treating tumors but have limited efficacy due to the immunosuppressive tumor microenvironment. In this study, we develop an orchestrated nanoparticle system using modular peptide assemblies, where the co-assembled sequences are designed for the specific binding to the hydrophobic and hydrophilic domains, guiding the assembly process and enabling the customization of nanoparticle properties. We exploit the modularity of this platform to integrate a hydrophobic ferroptosis precursor, an IDO1 inhibitor, and a hydrophilic peptidic PD-L1 antagonist for optimizing therapeutic outcomes through ferroptosis-enhanced tumor immunotherapy. The resulting nanoparticles induce immunogenic ferroptosis, enhance the intratumoral function of T lymphocytes, suppress regulatory T cells, and effectively modulate the immunosuppressive tumor microenvironment, thereby facilitating regression of tumor growth. This work provides a modular peptide-based nanoparticle engineering strategy and holds significant potential for advancing cancer treatment.
Collapse
Affiliation(s)
- Bihan Wu
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Xuejiao Yang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Nan Kong
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Juan Liang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Sangshuang Li
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University Institution Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 600 Dunyu Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
14
|
Fukushima H, Furusawa A, Okada R, Fujii Y, Choyke PL, Kobayashi H. Antitumor host immunity enhanced by near-infrared photoimmunotherapy. Cancer Sci 2025; 116:572-580. [PMID: 39663860 PMCID: PMC11875768 DOI: 10.1111/cas.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel antitumor therapy that selectively kills cancer cells by NIR light-triggered photochemical reaction of IRDye700DX within Ab-photoabsorber conjugates (APCs). NIR-PIT induces immunogenic cell death, causing immune cell migration between the tumor and tumor-draining lymph nodes, and expanding multiclonal tumor-infiltrating CD8+ T cells. Crucially, the cytotoxic effects of NIR-PIT are limited to cancer cells, sparing immune cells such as antigen-presenting cells and T cells, which are key players in boosting antitumor host immunity. By modifying the Ab used in APC synthesis, NIR-PIT can be repurposed to target and deplete noncancerous immunosuppressive cells including regulatory T cells, myeloid-derived suppressor cells, and cancer-associated fibroblasts in the tumor microenvironment. Immunosuppressive cell targeted NIR-PIT strongly potentiates antitumor host immunity, including the induction of abscopal effects and the development of immune memory. Furthermore, antitumor immune responses and therapeutic efficacy are synergistically enhanced when NIR-PIT is combined with other immune-activating treatments, such as interleukin-15 and immune checkpoint inhibitors. These new findings make NIR-PIT a valuable tool in the evolving landscape of cancer immunotherapy. This review explains the role of NIR-PIT in activating antitumor host immunity.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
- Department of UrologyInstitute of Science TokyoTokyoJapan
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
- Department of Head and Neck SurgeryInstitute of Science TokyoTokyoJapan
| | - Yasuhisa Fujii
- Department of UrologyInstitute of Science TokyoTokyoJapan
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
15
|
Zhang J, Wang G, Liu J, Tang F, Wang S, Li Y. ITGA4 as a potential prognostic and immunotherapeutic biomarker in human cancer and its clinical significance in gastric cancer: an integrated analysis and validation. Front Oncol 2025; 15:1513622. [PMID: 40012546 PMCID: PMC11860100 DOI: 10.3389/fonc.2025.1513622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Background Integrin Subunit Alpha 4 (ITGA4), a member of the integrin protein family, is involved in the progression of malignant tumors. However, its role across different cancer types is not well understood. Methods Utilizing multi-omics data, we comprehensively evaluated ITGA4's expression, clinical relevance, diagnostic and prognostic value, functions, mutations, and methylation status, along with its impact on immunity, mismatch repair (MMR), heterogeneity, stemness, immunotherapy responsiveness, and drug resistance in pan-cancer, with partial validation in gastric cancer (GC) using transcriptomic analysis, single-cell data, western blot (WB), wound-healing assay, flow cytometry and immunohistochemistry (IHC). We further investigated its correlation with clinicopathology and serological markers on tissues from 80 GC patients. Results ITGA4 expression was generally low in normal tissues but varied significantly across tumor types, with higher levels in advanced stages and grades. It demonstrated diagnostic value in 20 cancer types and effectively predicted 1-, 3-, and 5-year survival rates as part of a prognostic model. ITGA4 played roles in cell adhesion, migration, immune regulation, and pathways like PI3K-Akt and TSC-mTOR. It showed alterations in 22 cancer types, with methylation at 9 sites inhibiting its expression. ITGA4 positively correlated with immune cell infiltration, immune regulatory genes, chemokines, and might reduce microsatellite instability (MSI) and tumor mutation burden (TMB) by promoting MMR gene expression. It could also predict immunotherapy efficacy and chemotherapy sensitivity. In GC, high ITGA4 expression was related to poor prognosis, promoted tumor proliferation and migration, and enhanced immune cell infiltration. ITGA4 expression was higher in GC cells and tissues than normal ones. Its downregulation inhibited GC cell migration and promoted apoptosis. Moreover, ITGA4 was correlated with N stage, pathological stage, neural and vascular invasion, serum levels of Ki-67, immune cells, CRP and CA125. Conclusion ITGA4 is a potential biomarker and therapeutic target to enhance cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Jiaxing Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Gang Wang
- School of Basic Medical Sciences of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jie Liu
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Futian Tang
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Song Wang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Qi L, Wang J, Hou S, Liu S, Zhang Q, Zhu S, Liu S, Zhang S. Unraveling the tumor microenvironment of esophageal squamous cell carcinoma through single-cell sequencing: A comprehensive review. Biochim Biophys Acta Rev Cancer 2025; 1880:189264. [PMID: 39805342 DOI: 10.1016/j.bbcan.2025.189264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous and aggressive malignancy. The progression, invasiveness, and metastatic potential of ESCC are shaped by a multitude of cells within the tumor microenvironment (TME), including tumor cells, immune cells, endothelial cells, as well as fibroblasts and other cell types. Recent advancements in single-cell sequencing technologies have significantly enhanced our comprehension of the diverse landscape of ESCC. Single-cell multi-omics technology, particularly single-cell transcriptome sequencing, have shed light on the expression profiles of individual cells and the molecular characteristics of distinct tumor cell populations. This review summarizes the latest literature on single-cell research in the field of ESCC, aiming to elucidate the heterogeneity of tumor cells, immune cells, and stromal cells at the single-cell level. Furthermore, it explores the impact of cellular interactions within the TME on the progression of ESCC. By compiling a comprehensive overview of single-cell omics research on ESCC, this article aims to enhance our understanding of ESCC diagnosis and treatment by elucidating the intricate interplay within the TME. It explores the cellular composition, spatial arrangement, and functional attributes of the ESCC TME, offering potential therapeutic targets and biomarkers for personalized treatment strategies.
Collapse
Affiliation(s)
- Lingyu Qi
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Jiaxin Wang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Songyuan Hou
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Siying Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Qian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Shengtao Zhu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China
| | - Si Liu
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| | - Shutian Zhang
- State Key Laboratory of Digestive healthy, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, PR China.
| |
Collapse
|
17
|
Yan Y, Gong Y, Liang X, Xiong Q, Lin J, Wu Y, Zhang L, Chen H, Jin J, Luan X. Decoding β-catenin associated protein-protein interactions: Emerging cancer therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2025; 1880:189232. [PMID: 39643250 DOI: 10.1016/j.bbcan.2024.189232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The hyperactive Wnt/β-catenin signaling circuit has been proven to be closely related to the progression of various cancers, with β-catenin serving as a central regulator of pro-tumorigenic processes. Preclinical evidences strongly support β-catenin as a promising therapeutic target. However, it has long been considered "undruggable" due to challenges such as the lack of crystal structures for its N- and C-terminal domains, high mutation rates, and limited availability of inhibitors. Notably, the network of β-catenin-associated protein-protein interactions (PPIs) is vital in the progression of multiple diseases. These interactions form a cancer-specific network that participates in all phases of oncogenesis, from cell metastasis to immunosuppressive microenvironment formation. Thus, researches on these PPIs are essential for unraveling the molecular mechanisms behind tumors with aberrant β-catenin activation, as well as for developing new targeted therapies. In this review, we delve into how β-catenin's PPIs orchestrate cancer progression and highlight biological and clinical dilemmas, proposing frontier technologies and potential challenges in targeting β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Yue Yan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiting Gong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaohui Liang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
18
|
Wen Y, Xia Y, Yang X, Li H, Gao Q. CCR8: a promising therapeutic target against tumor-infiltrating regulatory T cells. Trends Immunol 2025; 46:153-165. [PMID: 39890548 DOI: 10.1016/j.it.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Tumor-infiltrating regulatory T (TI-Treg) cells constitute key components within the tumor microenvironment (TME) to suppress antitumor immunity and facilitate tumor progression. Although multiple therapies have been developed to eliminate TI-Treg cells, most of them exhibit only modest efficacy and harbor risks of inducing immune-related adverse events (irAEs). Recent studies demonstrate that CC chemokine receptor (CCR)8 is highly and specifically expressed on effector TI-Treg cells in mice and humans, highlighting CCR8 as a promising target for selective TI-Treg cell depletion in the treatment of various cancers. Here, we concentrate on the latest understanding of CCR8 regarding its expression, functions, and regulation, and summarize the current landscape of CCR8-targeted therapies. With favorable efficacy and safety, the latter represent an important class of next-generation putative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuanjia Wen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangping Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Kurian R, Wang H. Prodrugs in Oncology: Bioactivation and Impact on Therapeutic Efficacy and Toxicity. Int J Mol Sci 2025; 26:988. [PMID: 39940757 PMCID: PMC11816641 DOI: 10.3390/ijms26030988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
A prodrug is a molecule that lacks pharmacological activity, but upon enzymatic bioactivation, it can generate a therapeutically active molecule. The primary reason behind the design of a prodrug is to help circumvent challenges associated with the physicochemical properties of a drug molecule, such as solubility, absorption, distribution, and instability. Chemotherapy has been at the forefront of cancer treatment for over 70 years due to its ability to target rapidly proliferating tumor cells. However, a major concern with conventional chemotherapy is the lack of selectivity and its associated side toxicity, which can severely impact patients' quality of life. In oncology, prodrugs have been explored to enhance the bioavailability, improve efficacy, and minimize systemic toxicity of chemotherapeutic agents. Prodrugs activated by enzymes unique to a tumor microenvironment can significantly increase targeted delivery of chemotherapeutic drugs. This review aims to highlight commonly used chemotherapeutic prodrugs, including both alkylating and non-alkylating agents, and discuss their clinical relevance, mechanisms of bioactivation, and toxicity concerns.
Collapse
Affiliation(s)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| |
Collapse
|
20
|
Li C, Lv Z, Li C, Yang S, Liu F, Zhang T, Wang L, Zhang W, Deng R, Xu G, Luo H, Zhao Y, Lv J, Zhang C. Heterogeneity analysis and prognostic model construction of HPV negative oral squamous cell carcinoma T cells using ScRNA-seq and bulk-RNA analysis. Funct Integr Genomics 2025; 25:25. [PMID: 39849233 PMCID: PMC11759468 DOI: 10.1007/s10142-024-01525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND T cells are involved in every stage of tumor development and significantly influence the tumor microenvironment (TME). Our objective was to assess T-cell marker gene expression profiles, develop a predictive risk model for human papilloma virus (HPV)-negative oral squamous cell carcinoma (OSCC) utilizing these genes, and examine the correlation between the risk score and the immunotherapy response. METHODS We acquired scRNA-seq data for HPV-negative OSCC from the GEO datasets. We performed cell‒cell communication, trajectory, and pathway enrichment analyses of T-cell-associated genes. In addition, we constructed and validated a T-cell-associated gene prognostic model for HPV-negative OSCC patients using TCGA and GEO data and assessed the immune infiltration status of HPV-negative OSCC patients .qRT-PCR was used to detect the expression level of prognosis-related genes in different risk groups. RESULTS ScRNA-seq was conducted on 28,000 cells derived from 14 HPV-negative OSCC samples and 6 normal samples. We identified 4,635 T cells from these cells and identified 774 differentially expressed genes(DEGs) associated with T cells across five distinct T-cell subtypes. Through the integration of bulk-RNAseq data, we established a prognostic model based on DEGs related to T cells. By separating patients into high-risk and low-risk groups according to these prognostic related genes, we can accurately predict their survival rates and the immune infiltration status of the TME.qRT-PCR results showed that compared with the patients of low risk group, the expression of PMEPA1, SH2D2A, SMS and PRDX4 were significantly up-regulated in high risk group. CONCLUSION This study provides a resource for understanding the heterogeneity of T cells in HPV-negative OSCC patients and associated prognostic risk models. It provides new insights for predicting survival and level of immune infiltration in patients with HPV-negative OSCC.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Zengbo Lv
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Chongxin Li
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Shixuan Yang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Feineng Liu
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Tengfei Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Lin Wang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Wen Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Ruoyu Deng
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Guoyu Xu
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Huan Luo
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Yinhong Zhao
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China
| | - Jialing Lv
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China.
| | - Chao Zhang
- Department of Oncology, the First People's Hospital of Qujing City/the Qujing Affiliated Hospital of Kunming Medical University, 1 Yuanlin Road, Qujing, Yunnan, China.
| |
Collapse
|
21
|
Feng Y, Jiang Y, Yang L, Lu D, Li N, Zhang Q, Yang H, Qin H, Zhang J, Gou X, Jiang F. Interactions and communications in lung tumour microenvironment: chemo/radiotherapy resistance mechanisms and therapeutic targets. J Drug Target 2025:1-20. [PMID: 39815747 DOI: 10.1080/1061186x.2025.2453730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The lung tumour microenvironment (TME) is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic and immunosuppressive microenvironment that can augment the resistance of lung tumours to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy. In addition, lung tumour cells can resist chemo/radiotherapy by boosting multidrug resistance mechanisms and antioxidant defence systems within cancer cells and other TME components. In this review, we discuss the interactions and communications between these different components of the lung TME and also the effects of hypoxia, immune evasion and ECM remodelling on lung cancer resistance. Finally, we review the current strategies in preclinical and clinical studies, including the inhibition of checkpoint molecules, chemoattractants, cytokines, growth factors and immunosuppressive mediators such as programmed death 1 (PD-1), insulin-like growth factor 2 (IGF-2) for targeting the lung TME to overcome resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yuan Feng
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Lu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ning Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qun Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyan Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Huiyuan Qin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyun Gou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Jiang
- Science and Technology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
22
|
Fusco C, Di Rella F, Liotti A, Colamatteo A, Ferrara AL, Gigantino V, Collina F, Esposito E, Donzelli I, Porcellini A, Feola A, Micillo T, Perna F, Garziano F, Maniscalco GT, Varricchi G, Mottola M, Zuccarelli B, De Simone B, di Bonito M, Matarese G, Accurso A, Pontillo M, Russo D, Insabato L, Spaziano A, Cantone I, Pezone A, De Rosa V. CD4 +FOXP3Exon2 + regulatory T cell frequency predicts breast cancer prognosis and survival. SCIENCE ADVANCES 2025; 11:eadr7934. [PMID: 39813341 PMCID: PMC11734725 DOI: 10.1126/sciadv.adr7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral Tregs remain largely unknown. Here, we found that a functionally distinct subpopulation of Tregs, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis. Notably, a comprehensive examination of the TCGA validated FOXP3E2 as an independent prognostic marker in all other BC subtypes. We found that FOXP3E2 expression underlies BCs with defective mismatch repair and a stem-like signature and highlights pathways involved in tumor survival. Last, we found that the TME induces FOXP3E2 through the CXCL12/CXCR4 axis and confirmed the higher immunosuppressive capacity of FOXP3E2+ Tregs derived from patients with BC. Our study suggests that FOXP3E2+ Tregs might be used as an independent biomarker to predict BC prognosis and survival and to develop super-targeted immunotherapies.
Collapse
Affiliation(s)
- Clorinda Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesca Di Rella
- Oncologia Clinica Sperimentale di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Anne Lise Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Vincenzo Gigantino
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Francesca Collina
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Emanuela Esposito
- Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Ivana Donzelli
- Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Antonia Feola
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Teresa Micillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Federica Garziano
- U.O.C Biochimica Clinica Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno-C.T.O. Presidio Monaldi, Napoli, Italy
| | - Giorgia Teresa Maniscalco
- Clinica Neurologica e Unità Stroke, Centro Sclerosi Multipla, Ospedale “A.Cardarelli”, Napoli 80131, Italy
| | - Gilda Varricchi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Maria Mottola
- U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy
| | - Bruno Zuccarelli
- U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy
| | - Bruna De Simone
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Maurizio di Bonito
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| | - Antonello Accurso
- Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Martina Pontillo
- Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Daniela Russo
- Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Luigi Insabato
- Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Alessandra Spaziano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Irene Cantone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| |
Collapse
|
23
|
Manole S, Nguyen DH, Min JJ, Zhou S, Forbes N. Setting "cold" tumors on fire: Cancer therapy with live tumor-targeting bacteria. MED 2025; 6:100549. [PMID: 39689707 DOI: 10.1016/j.medj.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/18/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Immunotherapy with checkpoint blockade has shown remarkable efficacy in many patients with a variety of different types of cancer. However, the majority of patients with cancer have yet to benefit from this revolutionary therapy. Studies have shown that checkpoint blockade works best against immune-inflamed tumors characterized by the presence of tumor-infiltrating lymphocytes (TILs). In this review, we summarize studies using live tumor-targeting bacteria to treat cancer and describe various strategies to engineer the tumor-targeting bacteria for maximized immunoregulatory effects. We propose that tumor-localized infections by such engineered bacteria can create an immune microenvironment in favor of a more effective antitumor immunity with or without other therapies, such as immune checkpoint blockade (ICB). Finally, we will briefly outline some exemplary oncology clinical trials involving ICB plus live therapeutic bacteria, with a focus on their ability to modulate antitumor immune responses.
Collapse
Affiliation(s)
- Simin Manole
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University, Hwasun, Jeonnam 58128, South Korea; Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Jeonnam 58128, South Korea.
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Neil Forbes
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA; Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA; Department of Microbiology, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
24
|
Wang B, Xia Y, Zhou C, Zeng Y, Son HG, Demehri S. CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression. JCI Insight 2025; 10:e180962. [PMID: 39782693 PMCID: PMC11721301 DOI: 10.1172/jci.insight.180962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/08/2024] [Indexed: 01/12/2025] Open
Abstract
CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain. Herein, we demonstrate that Th2 cells induced by the topical calcipotriol/thymic stromal lymphopoietin cytokine axis suppressed the growth of established mammary tumors in mice. Interleukin-24 (IL-24), an anticancer cytokine, was highly upregulated in macrophages infiltrating calcipotriol-treated mammary tumors. Macrophages expressed IL-24 in response to IL-4 signaling in combination with Toll-like receptor 4 (TLR4) agonists (e.g., HMGB1) in vitro. Calcipotriol treatment significantly increased HMGB1 release by tumor cells in vivo. CD4+ T cell depletion reduced HMGB1 and IL-24 expression, reversing calcipotriol's therapeutic efficacy. Macrophage depletion and TLR4 inhibition also reduced the therapeutic efficacy of calcipotriol. Importantly, calcipotriol treatment failed to control mammary tumors lacking the IL-24 receptor on tumor cells. Collectively, our findings reveal that Th2 cell-macrophage crosstalk leads to IL-24-mediated tumor cell death, highlighting a promising therapeutic strategy to tackle breast cancer.
Collapse
Affiliation(s)
- Bo Wang
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Urology and
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yun Xia
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Can Zhou
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuhan Zeng
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Heehwa G. Son
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Yazdimamaghani M, Kolupaev OV, Lim C, Hwang D, Laurie SJ, Perou CM, Kabanov AV, Serody JS. Tumor microenvironment immunomodulation by nanoformulated TLR 7/8 agonist and PI3k delta inhibitor enhances therapeutic benefits of radiotherapy. Biomaterials 2025; 312:122750. [PMID: 39126779 PMCID: PMC11401478 DOI: 10.1016/j.biomaterials.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Infiltration of immunosuppressive cells into the breast tumor microenvironment (TME) is associated with suppressed effector T cell (Teff) responses, accelerated tumor growth, and poor clinical outcomes. Previous studies from our group and others identified infiltration of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) as critical contributors to immune dysfunction in the orthotopic claudin-low tumor model, limiting the efficacy of adoptive cellular therapy. However, approaches to target these cells in the TME are currently lacking. To overcome this barrier, polymeric micellular nanoparticles (PMNPs) were used for the co-delivery of small molecule drugs activating Toll-like receptors 7 and 8 (TLR7/8) and inhibiting PI3K delta (PI3Kδ). The immunomodulation of the TME by TLR7/8 agonist and PI3K inhibitor led to type 1 macrophage polarization, decreased MDSC accumulation and selectively decreased tissue-resident Tregs in the TME, while enhancing the T and B cell adaptive immune responses. PMNPs significantly enhanced the anti-tumor activity of local radiation therapy (RT) in mice bearing orthotopic claudin-low tumors compared to RT alone. Taken together, these data demonstrate that RT combined with a nanoformulated immunostimulant diminished the immunosuppressive TME resulting in tumor regression. These findings set the stage for clinical studies of this approach.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Oleg V Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Duke Eye Center, Duke University, Durham, NC, USA
| | - Chaemin Lim
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sonia J Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander V Kabanov
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
26
|
Yang GH, Ma XD, Wei XF, Liu RL, Wang C. A Novel KIF4A-related Model for Predicting Immunotherapy Response and Prognosis in Kidney Renal Clear Cell Carcinoma. Comb Chem High Throughput Screen 2025; 28:691-710. [PMID: 38357945 DOI: 10.2174/0113862073296897240212114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The efficacy of chemotherapy in treating Kidney Renal Clear Cell Carcinoma (KIRC) is limited, whereas immunotherapy has shown some promising clinical outcomes. In this context, KIF4A is considered a potential therapeutic target for various cancers. Therefore, identifying the mechanism of KIF4A that can predict the prognosis and immunotherapy response of KIRC would be of significant importance. METHODS Based on the TCGA Pan-Cancer dataset, the prognostic significance of the KIF4A expression across 33 cancer types was analyzed by univariate Cox algorithm. Furthermore, overlapping differentially expressed genes (DEGs1) between the KIF4A high- and lowexpression groups and DEGs2 between the KIRC and normal groups were also analyzed. Machine learning and Cox regression algorithms were performed to obtain biomarkers and construct a prognostic model. Finally, the role of KIF4A in KIRC was analyzed using quantitative real-time PCR, transwell assay, and EdU experiment. RESULTS Our analysis revealed that KIF4A was significant for the prognosis of 13 cancer types. The highest correlation with KIF4A was found for KICH among the tumour mutation burden (TMB) indicators. Subsequently, a prognostic model developed with UBE2C, OTX1, PPP2R2C, and RFLNA was obtained and verified with the Renal Cell Cancer-EU/FR dataset. There was a positive correlation between risk score and immunotherapy. Furthermore, the experiment results indicated that KIF4A expression was considerably increased in the KIRC group. Besides, the proliferation, migration, and invasion abilities of KIRC tumor cells were significantly weakened after KIF4A was knocked out. CONCLUSION We identified four KIF4A-related biomarkers that hold potential for prognostic assessment in KIRC. Specifically, early implementation of immunotherapy targeting these biomarkers may yield improved outcomes for patients with KIRC.
Collapse
Affiliation(s)
- Guang Hua Yang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xu Dong Ma
- Department of Urology, Baotou Central Hospital, Inner Mongolia Medical University, Baotou, China
| | - Xi Feng Wei
- Department of Urology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Ran Lu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chao Wang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
27
|
Chen H, Lin Y, Chen J, Luo X, Kan Y, He Y, Zhu R, Jin J, Li D, Wang Y, Han Z. Targeting caspase-8: a new strategy for combating hepatocellular carcinoma. Front Immunol 2024; 15:1501659. [PMID: 39726605 PMCID: PMC11669555 DOI: 10.3389/fimmu.2024.1501659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC. In this manuscript, we provide a comprehensive review of the regulatory roles of caspase-8 in apoptosis, necroptosis, pyroptosis, and PANoptosis, as well as its impact on inflammatory reactions and the intricate interplay with critical immune cells within the tumor microenvironment, such as tumor-associated macrophages, T cells, natural killer cells, and dendritic cells. Furthermore, we emphasize how caspase-8 plays pivotal roles in the development, progression, and drug resistance observed in HCC, and explore the potential of targeting caspase-8 as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xuemei Luo
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yubo Kan
- Sichuan Provincial Woman’s and Children’s Hospital/The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Jiahui Jin
- Department of gastroenterology, Baoji Central Hospital, Baoji, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
28
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
29
|
Bai J, Yan M, Xu Y, Wang Y, Yao Y, Jin P, Zhang Y, Qu Y, Niu L, Li H. YAP enhances mitochondrial OXPHOS in tumor-infiltrating Treg through upregulating Lars2 on stiff matrix. J Immunother Cancer 2024; 12:e010463. [PMID: 39551603 PMCID: PMC11574482 DOI: 10.1136/jitc-2024-010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Tumor-infiltrating regulatory T cells (TI-Tregs) are well-adapted to thrive in the challenging tumor microenvironment (TME) by undergoing metabolic reprogramming, notably shifting from glycolysis to mitochondrial oxidative phosphorylation (OXPHOS) for energy production. The extracellular matrix is an important component of the TME, contributing to the regulation of both tumor and immune cell metabolism patterns by activating mechanosensors such as YAP. Whether YAP plays a part in regulating TI-Treg mitochondrial function and the underlying mechanisms are yet to be elucidated. METHODS To gain insights into the effect of matrix stiffness on YAP activation in Tregs, alterations in stiffness were performed both in vitro and in vivo. YAP conditional knockout mice were used to determine the role of YAP in TI-Tregs. RNA-seq, quantitative PCR, flow cytometry, lentivirus infection and mitochondrial function assay were employed to uncover the mechanism of YAP modulating mitochondrial function in TI-Tregs. A YAP inhibitor and a low leucine diet were applied to tumor-bearing mice to seek the potential antitumor strategy. RESULTS In this study, we found that YAP, as a mechanotransducer, was activated by matrix stiffness in TI-Tregs. A deficiency in YAP significantly hindered the immunosuppressive capability of TI-Tregs by disrupting mitochondrial function. Mechanically, YAP enhanced mitochondrial OXPHOS by upregulating the transcription of Lars2 (Leucyl-tRNA synthetase 2, mitochondrial), which was essential for mitochondrial protein translation in TI-Tregs. Since Lars2 relied much on its substrate amino acid, leucine, the combination of a low leucine diet and YAP inhibitor synergistically induced mitochondrial dysfunction in TI-Tregs, ultimately restraining tumor growth. CONCLUSIONS This finding uncovered a new understanding of how YAP shapes mitochondrial function in TI-Tregs in response to mechanical signals within the TME, making the combined strategy of traditional medicine and diet adjustment a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Jingchao Bai
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Meinan Yan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yihan Xu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Youhui Wang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yuan Yao
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Peng Jin
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuhan Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Yang Qu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Liling Niu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|
30
|
Qiu Z, Fan J, He J, Huang X, Yang Z, Sheng Q, Jin L. Causal relationship between cancer and immune cell traits: A two-sample mendelian randomization study. Heliyon 2024; 10:e39732. [PMID: 39583800 PMCID: PMC11582454 DOI: 10.1016/j.heliyon.2024.e39732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Background Observational studies provide evidence of correlations between cancer and the immune system. Previous research has established associations between immune traits and the propensity for developing certain cancers. However, a systematic exploration of these connections remains largely uncharted. Therefore, further investigation is needed to examine the causal association between cancer and immune cell traits using Mendelian randomization (MR) approach. Methods We identified genetic instruments for breast cancer (BC), lung cancer (LC), endometrial cancer (EC), ovarian cancer (OC), prostate cancer (PC), and their subtype cancers to investigate their potential causal impact on immune traits. Data on cancer and immune cell traits were obtained from the IEU Open GWAS project. To assess whether these five cancer types and subtype cancers have a causal association with immune cell traits, we conducted two-sample MR analyses. Additionally, we conducted bidirectional MR analyses to examine the direction of causal relationships and adjusted for potentially related pleiotropy through multivariable MR analysis. Results We have identified several causal relationships between different types of cancer and immune traits. We found that breast cancer may influence 49 immune cell traits, endometrial cancer may influence 38, lung cancer may influence 25, ovarian cancer may influence 19, and prostate cancer may influence 28. Among these, breast cancer and lung cancer were associated with four common immune traits: CD25 on IgD- CD38dim, CD25 on sw mem, CD24 on IgD- CD38-, and CD25 on IgD- CD38-. Lung cancer and prostate cancer shared four immune traits: CD25 on IgD+ CD24+, CD25 on IgD+ CD38-, CD66b on CD66b++ myeloid cell, DN (CD4-CD8-) AC. Endometrial cancer and ovarian cancer shared two immune traits: TD DN (CD4-CD8-) %DN, EM DN (CD4-CD8-) %DN. Breast cancer and endometrial cancer shared one immune trait: CD20 on IgD- CD38dim. Endometrial cancer and prostate cancer shared one immune trait: CCR2 on myeloid DC. Lastly, breast cancer, lung cancer, and prostate cancer shared one immune trait: CD25 on CD24+ CD27+. Additionally, we identified specific immune traits that may serve as protective or risk factors for cancers. We found 14 immune traits may influence breast cancer, 9 immune traits may influence endometrial cancer, 22 immune traits may influence lung cancer, 9 immune traits may influence ovarian cancer, and 14 immune traits may influence prostate cancer. Among these, breast cancer and prostate cancer shared three immune traits: HLA DR++ monocyte %monocyte, HLA DR on plasmacytoid DC, and HLA DR on DC. Lung cancer and ovarian cancer shared one immune trait: CD62L- monocyte %monocyte. Prostate cancer and endometrial cancer shared one immune trait: HLA DR on CD33dim HLA DR + CD11b+. Lastly, ovarian cancer and prostate cancer shared one immune trait: CD3 on resting Treg. Conclusions Our MR study suggests a potential relationship between immune traits and cancers, particularly highlighting 14 immune traits that are simultaneously influenced by two or three of five cancer types, while also indicating that 6 immune traits may simultaneously contribute to the development of two of the cancers. This elucidation enables us to reveal a significant involvement of immune traits in cancer progression, providing critical insights into how immune traits affect cancer susceptibility.
Collapse
Affiliation(s)
- Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xingxing Huang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zuyi Yang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Jin
- Department of Traditional Chinese Medicine, Hangzhou Shangcheng District People's Hospital, Hangzhou, China
| |
Collapse
|
31
|
Song P, Song F, Shao T, Wang P, Li R, Chen ZS, Zhang Z, Xue G. Natural products: promising therapeutics for targeting regulatory immune cells in the tumor microenvironment. Front Pharmacol 2024; 15:1481850. [PMID: 39605905 PMCID: PMC11598344 DOI: 10.3389/fphar.2024.1481850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Regulatory immune cells regulate immune responses through various mechanisms, affecting the occurrence, development, and therapeutic effects of tumors. In this article, we reviewed the important roles of regulatory immune cells, such as regulatory T cells (Tregs), regulatory B cells (Bregs), myeloid-derived suppressor cells (MDSCs), regulatory dendritic cells (DCregs), and tumor-associated macrophages (TAMs), in the tumor microenvironment (TME). The immunomodulatory effects of natural products, such as polysaccharides, polyphenols, glycosides, alkaloids, terpenoids, quinones, and other compounds, which affect the functions of regulatory immune cells through molecular signaling pathways, thereby enhancing the potential of the antitumor immune response, are discussed. These findings provide new ideas and possibilities for the application of natural products in tumor treatment, which can help enhance the effectiveness of tumor treatment and improve patient prognosis.
Collapse
Affiliation(s)
- Peng Song
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Fei Song
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Tingting Shao
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Pengjuan Wang
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Rongkun Li
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhaofang Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Guozhong Xue
- Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
32
|
Venkatachalapathy M. Targeting intratumoral Tregs: The promise of CD25×TIGIT bispecific antibodies in solid tumor therapy. Mol Ther 2024; 32:3758-3760. [PMID: 39489908 PMCID: PMC11573739 DOI: 10.1016/j.ymthe.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
|
33
|
Yan T, Zhou W, Li C. Discovery of a T cell proliferation-associated regulator signature correlates with prognosis risk and immunotherapy response in bladder cancer. Int Urol Nephrol 2024; 56:3447-3462. [PMID: 38789872 DOI: 10.1007/s11255-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The efficacy of immunotherapy is heavily influenced by T cell activity. This study aimed to examine how T cell proliferation regulators can predict the prognosis and response to immunotherapy in patients with bladder cancer (BCa). METHODS T cell proliferation-related subtypes were determined by employing the non-negative matrix factorization (NMF) algorithm that analyzed the expression patterns of T cell proliferation regulators. Subtypes were assessed for variations in prognosis, immune infiltration, and functional behaviors. Subsequently, a risk model related to T cell proliferation was created through Cox and Lasso regression analyses in the TCGA cohort and then confirmed in two GEO cohorts and an immunotherapy cohort. RESULTS BCa patients were categorized into two subtypes (C1 and C2) according to the expression profiles of 31 T cell proliferation-related genes (TRGs) with distinct prognoses and immune landscapes. The C2 subtype had a shorter overall survival (OS), with higher levels of M2 macrophage infiltration, and the activation of cancer-related pathways than the C1 subtype. Following this, thirteen prognosis-related genes that were involved in T cell proliferation were utilized to create the prognostic signature. The model's predictive accuracy was confirmed by analyzing both internal and external datasets. Individuals in the high-risk category experienced a poorer prognosis, increased immunosuppressive factors in the tumor microenvironment, and diminished responses to immunotherapy. Additionally, the immunotherapeutic prediction efficacy of the model was further confirmed by an immunotherapy cohort (anti-PD-L1 in the IMvigor210 cohort). CONCLUSIONS Our study characterized two subtypes linked to T cell proliferation in BCa patients with distinct prognoses and tumor microenvironment (TME) patterns, providing new insights into the heterogeneity of T cell proliferation in BCa and its connection to the immune landscape. The signature has prospective clinical implications for predicting outcomes and may help physicians to select prospective responders who prioritize current immunotherapy.
Collapse
Affiliation(s)
- Ting Yan
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China
| | - Wei Zhou
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, People's Republic of China
| | - Chun Li
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China.
| |
Collapse
|
34
|
Wang Y, Xue L. Decoding the role of FOXP3 in esophageal cancer: Underlying mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189211. [PMID: 39532205 DOI: 10.1016/j.bbcan.2024.189211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Esophageal cancer is a significant contributor to cancer-related mortality, and its poor prognosis is primarily attributed to the aggressive nature of the tumor and challenges in early detection. Currently, there are no ideal drugs developed for treatment, making it crucial to explore potential biomarkers and molecular targets for esophageal cancer. FOXP3, as a transcription factor and major regulator of regulatory T cells, not only plays a role in promoting or inhibiting tumor development in various types of cancer cells including esophageal cancer cells but also influences the function of Treg cells by regulating the expression of multiple genes. This paper provides an in-depth discussion on the functional properties, regulatory mechanisms, key signaling pathways, as well as the role and potential application of FOXP3 in treating esophageal cancer. Furthermore, it comprehensively analyzes the complex role of this transcription factor within the tumor immune microenvironment with an aim to aid in developing new potential targets for esophageal cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Military Medical University, 200003 Shanghai, China.
| | - Lei Xue
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Military Medical University, 200003 Shanghai, China.
| |
Collapse
|
35
|
Wang P, Jiang N, Zhong J, Chen Q, Huang R, Liu C, Xu P. IFI27 enhances bladder cancer immunotherapy response by modulating regulatory T cell enrichment. J Cancer 2024; 15:6616-6630. [PMID: 39668835 PMCID: PMC11632990 DOI: 10.7150/jca.99014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/12/2024] [Indexed: 12/14/2024] Open
Abstract
Bladder cancer (BCa) is the 10th most prevalent cancer globally. Neoadjuvant therapy has become the standard treatment for muscle-invasive bladder cancer, yet the pathologic complete response rate for patients is only approximately 35%. However, the mechanisms underlying neoadjuvant therapy resistance in bladder cancer patients remain unclear. We collected two sets of paired bladder cancer specimens before and after neoadjuvant therapy, and performed RNA sequencing. The findings revealed a significant decrease in IFI27 expression levels in the post-neoadjuvant therapy group compared to samples collected before treatment, suggesting that IFI27 may play a role in resistance to neoadjuvant combination therapy. IFI27, a member of the interferon-alpha (IFN-α) inducible gene family, influences the efficacy of immune checkpoint blockade therapy. Further analysis demonstrated that IFI27 is predominantly expressed in the cytoplasm of bladder cancer cells and exhibited low expression levels in bladder cancer tissues and cell lines. Subsequently, we investigated the inhibitory effects of IFI27 on bladder cancer proliferation, migration, epithelial-mesenchymal transition, and lymph node metastasis. Additionally, in a mouse model, PD-1Ab immunotherapy was found to upregulate IFI27 while downregulating the protein level of FOXP3, a key transcription factor for regulatory T cells. Flow cytometric analysis further demonstrated that IFI27 inhibits bladder cancer progression by suppressing regulatory T cell infiltration and enhancing anti-tumor immune responses. In conclusion, these findings establish IFI27 as a promising molecular marker for improving the efficacy of immunotherapy in bladder cancer and offer valuable insights into strategies for enhancing immunotherapy sensitivity.
Collapse
Affiliation(s)
- Peng Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning Jiang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianye Zhong
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Qiwei Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Renliang Huang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
37
|
Tang B, Chen Y, Jiang Y, Fang M, Gao Q, Ren X, Yao L, Huang G, Chen J, Zhang X, Li R, Zhao S, Gao M, Luo R, Qi M, Li F, Zheng F, Lee M, Tao X, Duan R, Guo J, Chi Z, Cui C. Toripalimab in combination with HBM4003, an anti-CTLA-4 heavy chain-only antibody, in advanced melanoma and other solid tumors: an open-label phase I trial. J Immunother Cancer 2024; 12:e009662. [PMID: 39366752 PMCID: PMC11459314 DOI: 10.1136/jitc-2024-009662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND HBM4003 is a novel anti-CTLA-4 heavy chain-only antibody, designed to enhance Treg ablation and antibody-dependent cell-mediated cytotoxicity while ensuring a manageable safety profile. This phase I trial investigated the safety, pharmacokinetics, immunogenicity and preliminary efficacy of HBM4003 plus with anti-PD-1 antibody toripalimab in patients with advanced solid tumors, especially focusing on melanoma. METHODS The multicenter, open-label phase I trial was divided into two parts: dose-escalation phase (part 1) and dose-expansion phase (part 2). In part 1, HBM4003 was administered at doses of 0.03, 0.1, 0.3 mg/kg in combination with toripalimab with fixed dosage of 240 mg every 3 weeks. The recommended phase II dose (RP2D) was used in the expansion phase. Primary endpoints were safety and RP2D in part 1 and objective response rate (ORR) in part 2. Biomarkers based on cytokines and multiplex immunofluorescence staining were explored. RESULTS A total of 40 patients received study treatment, including 36 patients treated with RP2D of HBM4003 0.3 mg/kg plus toripalimab 240 mg every 3 week. 36 participants (90.0%) experienced at least one treatment-related adverse event (TRAE), of which 10 (25.0%) patients experienced grade ≥3 TRAEs and 5 (12.5%) experienced immune-mediated adverse events (irAEs) with maximum severity of grade 3. No grade 4 or 5 irAEs occurred. Efficacy analysis set included 32 melanoma patients treated with RP2D and with available post-baseline imaging data. The ORRs of anti-PD-1/PD-L1 treatment-naïve subgroup and anti-PD-1/PD-L1 treatment-failed subgroup were 33.3% and 5.9%, respectively. In mucosal melanoma, the ORR of the two subgroups were 40.0% and 10.0%, respectively. Baseline high Treg/CD4+ratio in the tumor serves as an independent predictive factor for the efficacy of immunotherapy. CONCLUSIONS HBM4003 0.3 mg/kg plus toripalimab 240 mg every 3 week demonstrated manageable safety in solid tumors and no new safety signal. Limited data demonstrated promising antitumor activity, especially in PD-1 treatment-naïve mucosal melanoma. TRIAL REGISTRATION NUMBER NCT04727164.
Collapse
Affiliation(s)
- Bixia Tang
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yu Jiang
- Department of Head and Neck Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Meiyu Fang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Quanli Gao
- Immunotherapy Department, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Yao
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Huang
- Central South University (Hunan Cancer Hospital), Changsha, Hunan, China
| | - Jing Chen
- Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoshi Zhang
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Rongqing Li
- Tumor Radiotherapy Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | | | | | | | - Meng Qi
- Harbour BioMed, Shanghai, China
| | - Feng Li
- Harbour BioMed, Shanghai, China
| | | | | | | | - Rong Duan
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Guo
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhihong Chi
- Peking University Cancer Hospital & Institute, Beijing, China
| | - Chuanliang Cui
- Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
38
|
Hoch CC, Hachani K, Han Y, Schmidl B, Wirth M, Multhoff G, Bashiri Dezfouli A, Wollenberg B. The future of interleukin gene therapy in head and neck cancers. Expert Opin Biol Ther 2024; 24:1057-1073. [PMID: 39291462 DOI: 10.1080/14712598.2024.2405568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Head and neck cancer (HNC), primarily head and neck squamous cell carcinomas, originates from the squamous epithelium in areas like the oral cavity, lip, larynx, and oropharynx. With high morbidity impacting critical functions, combined treatments like surgery, radiation, and chemotherapy often fall short in advanced stages, highlighting the need for innovative therapies. AREAS COVERED This review critically evaluates interleukin (IL) gene therapy for treating HNC. The discussion extends to key ILs in HNC, various gene therapy techniques and delivery methods. We particularly focus on the application of IL-2, IL-12, and IL-24 gene therapies, examining their mechanisms and outcomes in preclinical studies and clinical trials. The final sections address IL gene therapy challenges in HNC, exploring solutions and critically assessing future therapeutic directions. EXPERT OPINION Despite advancements in genomic and immunotherapy, significant challenges in HNC treatment persist, primarily due to the immunosuppressive nature of the tumor microenvironment and the adverse effects of current therapies. The therapeutic efficacy of IL gene therapy hinges on overcoming these hurdles through refined delivery methods that ensure targeted, tumor-specific gene expression. Future strategies should focus on refining gene delivery methods and combining IL gene therapy with other treatments to optimize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Cosima C Hoch
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Khouloud Hachani
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Yu Han
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Benedikt Schmidl
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Markus Wirth
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Munich, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- Central Institute for Translational Cancer Research, Technical University of Munich (TranslaTUM), Munich, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
39
|
Soll D, Chu CF, Sun S, Lutz V, Arunkumar M, Gachechiladze M, Schäuble S, Alissa-Alkhalaf M, Nguyen T, Khalil MA, Garcia-Ribelles I, Mueller M, Buder K, Michalke B, Panagiotou G, Ziegler-Martin K, Benz P, Schatzlmaier P, Hiller K, Stockinger H, Luu M, Schober K, Moosmann C, Schamel WW, Huber M, Zielinski CE. Sodium chloride in the tumor microenvironment enhances T cell metabolic fitness and cytotoxicity. Nat Immunol 2024; 25:1830-1844. [PMID: 39198632 PMCID: PMC11436365 DOI: 10.1038/s41590-024-01918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/04/2024] [Indexed: 09/01/2024]
Abstract
The efficacy of antitumor immunity is associated with the metabolic state of cytotoxic T cells, which is sensitive to the tumor microenvironment. Whether ionic signals affect adaptive antitumor immune responses is unclear. In the present study, we show that there is an enrichment of sodium in solid tumors from patients with breast cancer. Sodium chloride (NaCl) enhances the activation state and effector functions of human CD8+ T cells, which is associated with enhanced metabolic fitness. These NaCl-induced effects translate into increased tumor cell killing in vitro and in vivo. Mechanistically, NaCl-induced changes in CD8+ T cells are linked to sodium-induced upregulation of Na+/K+-ATPase activity, followed by membrane hyperpolarization, which magnifies the electromotive force for T cell receptor (TCR)-induced calcium influx and downstream TCR signaling. We therefore propose that NaCl is a positive regulator of acute antitumor immunity that might be modulated for ex vivo conditioning of therapeutic T cells, such as CAR T cells.
Collapse
Affiliation(s)
| | - Chang-Feng Chu
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Shan Sun
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Veronika Lutz
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Mahima Arunkumar
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Mariam Gachechiladze
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Maha Alissa-Alkhalaf
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Trang Nguyen
- Institute of Biology III, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle-Amirah Khalil
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Ignacio Garcia-Ribelles
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Michael Mueller
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Kai Ziegler-Martin
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Pascal Benz
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Philipp Schatzlmaier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maik Luu
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Carolin Moosmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang W Schamel
- Institute of Biology III, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Christina E Zielinski
- Technical University of Munich, Munich, Germany.
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
40
|
Joshi S. New insights into SYK targeting in solid tumors. Trends Pharmacol Sci 2024; 45:904-918. [PMID: 39322438 PMCID: PMC11984332 DOI: 10.1016/j.tips.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Spleen tyrosine kinase (SYK) is predominantly expressed in hematopoietic cells and has been extensively studied for its pivotal role in B cell malignancies and autoimmune diseases. In epithelial solid tumors, SYK shows a paradoxical role, acting as a tumor suppressor in some cancers while driving tumor growth in others. Recent preclinical studies have identified the role of SYK in the tumor microenvironment (TME), revealing that SYK signaling in immune cells, especially B cells, and myeloid cells, promote immunosuppression, tumor growth, and metastasis across various solid tumors. This review explores the emerging roles of SYK in solid tumors, the mechanisms of SYK activation, and findings from preclinical and clinical studies of SYK inhibitors as either standalone treatments or in combination with immunotherapy or chemotherapy for solid tumors.
Collapse
Affiliation(s)
- Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, CA 92093-0815, USA.
| |
Collapse
|
41
|
Canella A, Artomov M, Ukhatov A, Rajendran S, Perez P, Saini U, Hedberg J, Cassady K, Rajappa P. Primary murine high-grade glioma cells derived from RCAS/tv-a diffuse glioma model reprogram naive T cells into immunosuppressive regulatory T lymphocytes. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200861. [PMID: 39328291 PMCID: PMC11426037 DOI: 10.1016/j.omton.2024.200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
High-grade gliomas (HGGs) and glioblastomas (GBMs) are the most aggressive and lethal brain tumors. The current standard of care (SOC) includes gross safe surgical resection followed by chemoradiotherapy. The main chemotherapeutic agents are the DNA-alkylating agent temozolomide (TMZ) and adjuvants. Due to the outdated therapeutic protocols and lack of specific treatments, there is an urgent and rising need to improve our understanding of tumor biology and design more effective therapeutic strategies. In vitro models are essential for investigating glioma biology and testing novel therapeutic approaches. While using commercially available and patient-derived glioma cell lines for in vitro studies is common practice, they exhibit several limitations, including failing to maintain the genetic and phenotypic diversity of primary tumors, undergo genetic drift over time, and often lacking the invasive and stem-like characteristics of patient tumors. These limitations can lead to inconsistent and non-reproducible results, hampering translational research progress. In this study, we established a novel primary murine HGG cell line, isolated from an immunocompetent HGG-bearing RCAS/T-va mouse. We characterized the transcriptome and phenotype to ensure that this cell line resembles the nature of HGGs and retains the ability to reprogram primary murine T lymphocytes.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mykyta Artomov
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksandr Ukhatov
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Phillip Perez
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Uksha Saini
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Jack Hedberg
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Kevin Cassady
- The Center for Childhood Cancer, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
42
|
Ma J, Wei Q, Zhang L, Sun F, Li W, Du R, Liu M, Yan S, Wang C. CCT6A functions as promising diagnostic biomarker and promotes cell proliferation in colorectal cancer. J Cancer 2024; 15:5897-5909. [PMID: 39440061 PMCID: PMC11493007 DOI: 10.7150/jca.98901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Chaperonin-containing tailless complex polypeptide 1 subunit 6A (CCT6A) is mainly located in the cytoplasm and considered to be involved in various biological processes in tumors. However, its function and the intrinsic mechanism need to be further elucidated. Methods: Multi-omics analysis was used to evaluate the correlation between CCT6A expression and prognosis of patients, as well as its immune value. CCT6A was knockout by CRISPR-Cas9, and overexpressed by transfecting plasmids in colorectal cancer (CRC) cells. Cell proliferation was analyzed by MTS, EDU staining and colony growth assay, and cell migration was monitored by wound healing assay and Transwell assay. The phosphor-kinase array kit and immunoblotting assay was utilized to explore the potential molecular mechanisms. Results: CCT6A was highly expressed in multiple tumor tissues and significantly correlated with the prognosis of patients. It was also associated with the immune infiltration, immune correlation and prognosis in CRC. CCT6A was highly expressed in CRC biopsies as well as fresh CRC tissues. Meanwhile, knockout of CCT6A reduced cell proliferation, cell cycle and cell migration. On the contrary, overexpression of CCT6A exhibited the opposite phenotypes. Moreover, we identified that HSPD1 and non-phosphorylated P53 were highly increased in CCT6A overexpressed cells, which are involved in regulating tumorigenesis. Conclusions: Therefore, CCT6A positively regulated cell proliferation/migration in CRC cells, and suggesting CCT6A has a high immunological value and is associated with CRC progression, which makes it a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jianxing Ma
- Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou 730000, China
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Qiuya Wei
- Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lili Zhang
- Department of Oncology, the People's Hospital of Jiaxiang, Jining 272499, China
| | - Fengyao Sun
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Wen Li
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Ruihang Du
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Mingchan Liu
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Siyuan Yan
- Precision Medicine Laboratory for Chronic Non-communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Chen Wang
- Department of General Surgery, the Second Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
43
|
Zhang X, Yue L, Cao L, Liu K, Yang S, Liang S, Liu L, Zhao C, Wu D, Wang Z, Tian R, Rao L. Tumor microenvironment-responsive macrophage-mediated immunotherapeutic drug delivery. Acta Biomater 2024; 186:369-382. [PMID: 39097127 DOI: 10.1016/j.actbio.2024.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Immunotherapy, as a promising treatment strategy for cancer, has been widely employed in clinics, while its efficiency is limited by the immunosuppression of tumor microenvironment (TME). Tumor-associate macrophages (TAMs) are the most abundant immune cells infiltrating the TME and play a crucial role in immune regulation. Herein, a M0-type macrophage-mediated drug delivery system (PR-M) was designed for carrying Toll-like receptors (TLRs) agonist-loaded nanoparticles. When TLR agonist R848 was released by responding to the TME, the PR-Ms were polarized from M0-type to M1-type and TAMs were also stimulated from M2-type to M1-type, which eventually reversed the immunosuppressive states of TME. By synergizing with the released R848 agonists, the PR-M significantly activated CD4+ and CD8+ T cells in the TME and turned the 'cold' tumor into 'hot' tumor by regulating the secretion of cytokines including IFN-γ, TNF-α, IL-10, and IL-12, thus ultimately promoting the activation of antitumor immunity. In a colorectal cancer mouse model, the PR-M treatment effectively accumulated at the tumor site, with a 5.47-fold increase in M1-type and a 65.08 % decrease in M2-type, resulting in an 85.25 % inhibition of tumor growth and a 87.55 % reduction of tumor volume compared with the non-treatment group. Our work suggests that immune cell-mediated drug delivery systems can effectively increase drug accumulation at the tumor site and reduce toxic side effects, resulting in a strong immune system for tumor immunotherapy. STATEMENT OF SIGNIFICANCE: The formation of TME and the activation of TAMs create an immunosuppressive network that allows tumor to escape the immune system and promotes its growth and spread. In this study, we designed an M0-type macrophage-mediated drug delivery system (PR-M). It leverages the synergistic effect of macrophages and agonists to improve the tumor immunosuppressive micro-environment by increasing M1-type macrophages and decreasing M2-type macrophages. As part of the treatment, the drug-loaded macrophages endowed the system with excellent tumor targeting. Furthermore, loading R848 into TME-responsive nanoparticles could protect macrophages and reduce the potential toxicity of agonists. Further investigations demonstrated that the designed PR-M could be a feasible strategy with high efficacy in tumor targeting, drug loading, autoimmunity activation, and lower side effects.
Collapse
Affiliation(s)
- Xueyang Zhang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; Shenzhen Bay Laboratory, Shenzhen 518132, China; School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Ludan Yue
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lei Cao
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Shengren Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lujie Liu
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; Shenzhen Bay Laboratory, Shenzhen 518132, China
| | | | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Lang Rao
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
44
|
Liu S, Jiang R, Wang X, Zhang Q, Li S, Sun X, Feng Y, Du F, Zheng P, Tian Y, Li Z, Liu S. Comprehensive identification of a disulfidptosis-associated long non-coding RNA signature to predict the prognosis and treatment options in ovarian cancer. Front Endocrinol (Lausanne) 2024; 15:1434705. [PMID: 39345881 PMCID: PMC11427372 DOI: 10.3389/fendo.2024.1434705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Distinguished from cuproptosis and ferroptosis, disulfidptosis has been described as a newly discovered form of non-programmed cell death tightly associated with glucose metabolism. However, the prognostic profile of disulfidptosis-related lncRNAs (DRLRs) in ovarian cancer (OC) and their biological mechanisms need to be further elucidated. Materials and methods First, we downloaded the profiles of RNA transcriptome, clinical information for OC patients from the TCGA database. Generated from Cox regression analysis, prognostic lncRNAs were utilized to identify the risk signature by least absolute shrinkage and selection operator analysis. Then, we explored the intimate correlations between disulfidptosis and lncRNAs. What's more, we performed a series of systemic analyses to assess the robustness of the model and unravel its relationship with the immune microenvironment comprehensively. Results We identified two DRLR clusters, in which OC patients with low-risk scores exhibited a favorable prognosis, up-regulated immune cell infiltrations and enhanced sensitivity to immunotherapy. Furthermore, validation of the signature by clinical features and Cox analysis demonstrated remarkable consistency, suggesting the universal applicability of our model. It's worth noting that high-risk patients showed more positive responses to immune checkpoint inhibitors and potential chemotherapeutic drugs. Conclusion Our findings provided valuable insights into DRLRs in OC for the first time, which indicated an excellent clinical value in the selection of management strategies, spreading brilliant horizons into individualized therapy.
Collapse
Affiliation(s)
- Shouze Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rulan Jiang
- Department of Pain, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine (TCM-WM) Hebei, Cangzhou, Hebei, China
| | - Xinxin Wang
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qianqian Zhang
- Department of Gynecology and Obstetrics, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Shumei Li
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoxue Sun
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yajun Feng
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Feida Du
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pengtao Zheng
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongkang Li
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Gynecology III, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
45
|
Luo Y, Xia Y, Liu D, Li X, Li H, Liu J, Zhou D, Dong Y, Li X, Qian Y, Xu C, Tao K, Li G, Pan W, Zhong Q, Liu X, Xu S, Wang Z, Liu R, Zhang W, Shan W, Fang T, Wang S, Peng Z, Jin P, Jin N, Shi S, Chen Y, Wang M, Jiao X, Luo M, Gong W, Wang Y, Yao Y, Zhao Y, Huang X, Ji X, He Z, Zhao G, Liu R, Wu M, Chen G, Hong L, Ma D, Fang Y, Liang H, Gao Q. Neoadjuvant PARPi or chemotherapy in ovarian cancer informs targeting effector Treg cells for homologous-recombination-deficient tumors. Cell 2024; 187:4905-4925.e24. [PMID: 38971151 DOI: 10.1016/j.cell.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/12/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.
Collapse
Affiliation(s)
- Yikai Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Xia
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Li
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Huayi Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahao Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongchen Zhou
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Dong
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xin Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiyu Qian
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangjia Tao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guannan Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Pan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Zhong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingzhe Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Xu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi Wang
- Department of Gynecology & Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ronghua Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanying Shan
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siyuan Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zikun Peng
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Jin
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shennan Shi
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengjie Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaofei Jiao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengshi Luo
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenjian Gong
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Yao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Yi Zhao
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xinlin Huang
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Xuwo Ji
- Precision Scientific (Beijing) Co., Ltd., Beijing 100085, China
| | - Zhaoren He
- BioMap (Beijing) Intelligence Technology Limited, Beijing 100089, China
| | - Guangnian Zhao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ding Ma
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yong Fang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Qinglei Gao
- National Clinical Research Center for Obstetrics and Gynecology, Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Cancer Biology Research Center (Key Laboratory of the Ministry of Education, Hubei Provincial Key Laboratory of Tumor Invasion and Metastasis), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
46
|
Chen M, Qi Y, Zhang S, Du Y, Cheng H, Gao S. Screening of genes related to programmed cell death in esophageal squamous cell carcinoma and construction of prognostic model based on transcriptome analysis. Expert Rev Anticancer Ther 2024; 24:905-915. [PMID: 38975629 DOI: 10.1080/14737140.2024.2377184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVES To screen programmed cell death (PCD)-related genes in esophageal squamous cell carcinoma (ESCC) based on transcriptomic data and to explore its clinical value. METHODS Differentially expressed PCD genes (DEPCDGs) were screened from ESCC transcriptome and clinical data in TCGA database. Univariate COX and LASSO COX were performed on prognostically DEPCDGs in ESCC to develop prognostic model. Differences in immune cell infiltration in different RiskScore groups were determined by ssGSEA and CIBERSORT. The role of RiskScore in immunotherapy response was explored using Tumor Immune Dysfunction and Exclusion (TIDE) and IMvigor210 cohorts. RESULTS Fourteen DEPCDGs associated with prognosis were tapped in ESCC. These DEPCDGs form a RiskScore with good predictive performance for prognosis. RiskScore demonstrated excellent prediction accuracy in three data sets. The abundance of M2 macrophages and Tregs was higher in the high RiskScore group, and the abundance of M1 macrophages was higher in the low RiskScore group. The RiskScore also showed good immunotherapy sensitivity. RT-qPCR analysis showed that AUP1, BCAP31, DYRK2, TAF9 and UBQLN2 were higher expression in KYSE-150 cells. Knockdown BCAP31 inhibited migration and invasion. CONCLUSION A prognostic risk model can predict prognosis of ESCC and may be a useful biomarker for risk stratification and immunotherapy assessment.
Collapse
Affiliation(s)
- Min Chen
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yijun Qi
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Shenghua Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yubo Du
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Haodong Cheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College, Henan University of Science and Technology, Luoyang, China
| | - Shegan Gao
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
- College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
- Medical College, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
47
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
48
|
Kim N, Na S, Pyo J, Jang J, Lee SM, Kim K. A Bioinformatics Investigation of Hub Genes Involved in Treg Migration and Its Synergistic Effects, Using Immune Checkpoint Inhibitors for Immunotherapies. Int J Mol Sci 2024; 25:9341. [PMID: 39273290 PMCID: PMC11395080 DOI: 10.3390/ijms25179341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to identify hub genes involved in regulatory T cell (Treg) function and migration, offering insights into potential therapeutic targets for cancer immunotherapy. We performed a comprehensive bioinformatics analysis using three gene expression microarray datasets from the GEO database. Differentially expressed genes (DEGs) were identified to pathway enrichment analysis to explore their functional roles and potential pathways. A protein-protein interaction network was constructed to identify hub genes critical for Treg activity. We further evaluated the co-expression of these hub genes with immune checkpoint proteins (PD-1, PD-L1, CTLA4) and assessed their prognostic significance. Through this comprehensive analysis, we identified CCR8 as a key player in Treg migration and explored its potential synergistic effects with ICIs. Our findings suggest that CCR8-targeted therapies could enhance cancer immunotherapy outcomes, with breast invasive carcinoma (BRCA) emerging as a promising indication for combination therapy. This study highlights the potential of CCR8 as a biomarker and therapeutic target, contributing to the development of targeted cancer treatment strategies.
Collapse
Affiliation(s)
- Nari Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Seoungwon Na
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Junhee Pyo
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jisung Jang
- Trial Informatics Inc., Seoul 05544, Republic of Korea
| | - Soo-Min Lee
- Samjin Pharmaceutical Co., Ltd., Seoul 04054, Republic of Korea
| | - Kyungwon Kim
- Trial Informatics Inc., Seoul 05544, Republic of Korea
- Departments of Radiology and Research Institute of Radiology, Asan Medical Center, College of Medicine, University of Ulsan, Olymphic-ro 43 Gil 88, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
49
|
Akimova T, Wang L, Bartosh Z, Christensen LM, Eruslanov E, Singhal S, Aishwarya V, Hancock WW. Antisense targeting of FOXP3+ Tregs to boost anti-tumor immunity. Front Immunol 2024; 15:1426657. [PMID: 39234236 PMCID: PMC11371716 DOI: 10.3389/fimmu.2024.1426657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Our goal is to improve the outcomes of cancer immunotherapy by targeting FOXP3+ T-regulatory (Treg) cells with a next generation of antisense oligonucleotides (ASO), termed FOXP3 AUMsilence ASO. We performed in vitro experiments with human healthy donor PBMC and clinical samples from patients with lung cancer, mesothelioma and melanoma, and tested our approach in vivo using ASO FOXP3 in syngeneic murine cancer models and in humanized mice. ASO FOXP3 had no effects on cell viability or cell division, did not affect expression of other FOXP members, but decreased expression of FOXP3 mRNA in PBMC by 54.9% and in cancer samples by 64.7%, with corresponding 41.0% (PBMC) and 60.0% (cancer) decreases of Treg numbers (all p<0.0001). Hence, intratumoral Treg were more sensitive to the effects of ASO FOXP3 than peripheral blood Tregs. Isolated human Treg, incubated with ASO FOXP3 for 3.5 hours, had significantly impaired suppressive function (66.4%) versus Scramble control. In murine studies, we observed a significant inhibition of tumor growth, while 13.6% (MC38) to 22% (TC1) of tumors were completely resorbed, in conjunction with ~50% decrease of Foxp3 mRNA by qPCR and decreased numbers of intratumoral Tregs. In addition, there were no changes in FOXP3 mRNA expression or in the numbers of Tregs in draining lymph nodes and in spleens of tumor bearing mice, confirming that intratumoral Treg had enhanced sensitivity to ASO FOXP3 in vivo compared to other Treg populations. ASO FOXP3 Treg targeting in vivo and in vitro was accompanied by significant downregulation of multiple exhaustion markers, and by increased expression of perforin and granzyme-B by intratumoral T cells. To conclude, we report that targeting the key Treg transcription factor FOXP3, with ASO FOXP3, has a powerful anti-tumoral effect and enhances T cell response in vitro and in vivo.
Collapse
Affiliation(s)
- Tatiana Akimova
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- AUM Biotech, LLC., Philadelphia, PA, United States
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Zhanna Bartosh
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- AUM Biotech, LLC., Philadelphia, PA, United States
| | - Lanette M. Christensen
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Evgeniy Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | - Wayne W. Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Cai S, Zhao M, Yang G, Li C, Hu M, Yang L, Xing L, Sun X. Modified spatial architecture of regulatory T cells after neoadjuvant chemotherapy in non-small cell lung cancer patients. Int Immunopharmacol 2024; 137:112434. [PMID: 38889507 DOI: 10.1016/j.intimp.2024.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
It is crucial to decipher the modulation of regulatory T cells (Tregs) in tumor microenvironment (TME) induced by chemotherapy, which may contribute to improving the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer (NSCLC). We retrospectively collected specimens from patients with II-III NSCLC, constituting two cohorts: a neoadjuvant chemotherapy (NAC) cohort (N = 141) with biopsy (N = 58) and postoperative specimens (N = 141), and a surgery-only cohort (N = 122) as the control group. Then, the cell density (Dens), infiltration score (InS), and Treg-cell proximity score (TrPS) were conducted using a panel of multiplex fluorescence staining (Foxp3, CD4, CD8, CK, CD31, ɑSMA). Subsequently, the association of Tregs with cancer microvessels (CMVs) and cancer-associated fibroblasts (CAFs) was analyzed. Patients with NAC treatment have a higher density of Tregs in both paired (P < 0.001) and unpaired analysis (P = 0.022). Additionally, patients with NAC treatment showed higher infiltration score (paired, P < 0.001; unpaired, P = 0.014) and more CD8+T cells around Tregs (paired/unpaired, both P < 0.001). Subgroup analysis indicated that tumors with a diameter of ≤ 5 cm exhibited increase in both Dens(Treg) and InS(Treg), and gemcitabine, pemetrexed and taxel enhanced Dens(Treg) and TrPS(CD8) following NAC. Multivariate analysis identified that the Dens(Tregs), InS(Tregs) and TrPS(CD8) were significantly associated with better chemotherapy response [OR = 8.54, 95%CI (1.69, 43.14), P = 0.009; OR = 7.14, 95%CI (1.70, 30.08), P = 0.024; OR = 5.50, 95%CI (1.09, 27.75), P = 0.039, respectively] and positive recurrence-free survival [HR = 3.23, 95%CI (1.47, 7.10), P = 0.004; HR = 2.70; 95%CI (1.27, 5.72); P = 0.010; HR = 2.55, 95%CI (1.21, 5.39), P = 0.014, respectively]. Moreover, TrPS(CD8) and TrPS(CD4) were negatively correlated with the CMVs and CAFs. These discoveries have deepened our comprehension of the immune-modulating impact of chemotherapy and underscored that the modified spatial landscape of Tregs after chemotherapy should be taken into account for personalized immunotherapy, aiming to ultimately improve clinical outcomes in patients with NSCLC.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|