1
|
Kessler A, Mueller MB. Induced resistance to herbivory and the intelligent plant. PLANT SIGNALING & BEHAVIOR 2024; 19:2345985. [PMID: 38687704 PMCID: PMC11062368 DOI: 10.1080/15592324.2024.2345985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Plant induced responses to environmental stressors are increasingly studied in a behavioral ecology context. This is particularly true for plant induced responses to herbivory that mediate direct and indirect defenses, and tolerance. These seemingly adaptive alterations of plant defense phenotypes in the context of other environmental conditions have led to the discussion of such responses as intelligent behavior. Here we consider the concept of plant intelligence and some of its predictions for chemical information transfer in plant interaction with other organisms. Within this framework, the flow, perception, integration, and storage of environmental information are considered tunable dials that allow plants to respond adaptively to attacking herbivores while integrating past experiences and environmental cues that are predictive of future conditions. The predictive value of environmental information and the costs of acting on false information are important drivers of the evolution of plant responses to herbivory. We identify integrative priming of defense responses as a mechanism that allows plants to mitigate potential costs associated with acting on false information. The priming mechanisms provide short- and long-term memory that facilitates the integration of environmental cues without imposing significant costs. Finally, we discuss the ecological and evolutionary prediction of the plant intelligence hypothesis.
Collapse
Affiliation(s)
- André Kessler
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| | - Michael B. Mueller
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY, USA
| |
Collapse
|
2
|
Wang N, Li Q, Wu P, Yi S, Ji H, Liu X, He T. Response strategies of five common warm temperate plant species to insect defoliation. BMC Ecol Evol 2024; 24:146. [PMID: 39627682 PMCID: PMC11613790 DOI: 10.1186/s12862-024-02334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Under the background of global climate change, climate warming has led to an increase in insect herbivory, which significantly affects the growth, survival, and regeneration of forest plants in the warm temperate zone of China. Plants can adopt defense responses to adapt to insect defoliation. Therefore, field experiments were conducted on five common warm temperate species, Quercus acutissima, Quercus serrata, Quercus aliena, Quercus dentata, and Robinia pseudoacacia. We measured the leaf traits of healthy trees and insect defoliated trees, to explore the response strategies of common species in warm temperate zones to insect defoliation. Our results showed that native species stored more carbon in extreme environments for survival rather than growth, while the alien species R. pseudoacacia tended to adopt active resource acquisition strategies and were more inclined towards growth. The content of tannins and flavonoids in the alien species R. pseudoacacia did not significantly increase after leaf damage, while the content of secondary metabolites such as tannins, flavonoids, and total phenols in the native species Q. acutissima, Q. serrata, Q. aliena, Q. dentata increased significantly after leaf damage. This indicated that compared to alien species, native species invested more resources in defense, which might reduce resource allocation for growth. Thus, the native Quercus species have stronger resistance than the alien species R. pseudoacacia after insect defoliation.
Collapse
Affiliation(s)
- Ning Wang
- School of Advanced Agricultural Sciences, Weifang University, 5147 Dongfengdong Road, Weifang, 261061, China
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- School of Tropical Medicine, Hainan Medical University, Haikou, 571199, China
| | - Pan Wu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Shijie Yi
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Observation and Research Station of Bohai Eco-Corridor, First Institute of Oceanography Ministry of Natural Resources, Qingdao, 266061, China
| | - Hongliang Ji
- School of Advanced Agricultural Sciences, Weifang University, 5147 Dongfengdong Road, Weifang, 261061, China
| | - Xiao Liu
- School of Geography and Tourism, Qilu Normal University, 2 Wenbo Road, Jinan, 250200, China.
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| | - Tongli He
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
3
|
Yang W, Zhang L, Yang Y, Xiang H, Yang P. Plant secondary metabolites-mediated plant defense against bacteria and fungi pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109224. [PMID: 39437667 DOI: 10.1016/j.plaphy.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plant diseases caused by pathogenic bacteria and fungi are major threats to both wild plants and crops. To counteract these threats, plants have evolved various defense mechanisms, including the production of plant secondary metabolites (PSMs). These compounds, such as terpenoids, phenolics, alkaloids, and glucosinolates, offer a versatile, efficient, and cost-effective means of pathogen resistance. The traditional pathogen management methods relying on synthetic microbicides are often environment unfriendly. In contrast, PSMs provide promising alternative way due to their high efficiency and environmental benefits. This article reviews the categories, biosynthetic pathways, mechanisms of actions, and the commercialization of the PSMs to enhance our understanding of their pathogen resistance capabilities. The goal is to develop sustainable disease management strategies using PSM-based bactericides and fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Arouisse B, Thoen MPM, Kruijer W, Kunst JF, Jongsma MA, Keurentjes JJB, Kooke R, de Vos RCH, Mumm R, van Eeuwijk FA, Dicke M, Kloth KJ. Bivariate GWA mapping reveals associations between aliphatic glucosinolates and plant responses to thrips and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:674-686. [PMID: 39316617 DOI: 10.1111/tpj.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Although plants harbor a huge phytochemical diversity, only a fraction of plant metabolites is functionally characterized. In this work, we aimed to identify the genetic basis of metabolite functions during harsh environmental conditions in Arabidopsis thaliana. With machine learning algorithms we predicted stress-specific metabolomes for 23 (a)biotic stress phenotypes of 300 natural Arabidopsis accessions. The prediction models identified several aliphatic glucosinolates (GLSs) and their breakdown products to be implicated in responses to heat stress in siliques and herbivory by Western flower thrips, Frankliniella occidentalis. Bivariate GWA mapping of the metabolome predictions and their respective (a)biotic stress phenotype revealed genetic associations with MAM, AOP, and GS-OH, all three involved in aliphatic GSL biosynthesis. We, therefore, investigated thrips herbivory on AOP, MAM, and GS-OH loss-of-function and/or overexpression lines. Arabidopsis accessions with a combination of MAM2 and AOP3, leading to 3-hydroxypropyl dominance, suffered less from thrips feeding damage. The requirement of MAM2 for this effect could, however, not be confirmed with an introgression line of ecotypes Cvi and Ler, most likely due to other, unknown susceptibility factors in the Ler background. However, AOP2 and GS-OH, adding alkenyl or hydroxy-butenyl groups, respectively, did not have major effects on thrips feeding. Overall, this study illustrates the complex implications of aliphatic GSL diversity in plant responses to heat stress and a cell-content-feeding herbivore.
Collapse
Affiliation(s)
- Bader Arouisse
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Manus P M Thoen
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
- Enza Seeds, Enkhuizen, the Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Jonathan F Kunst
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Maarten A Jongsma
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Rik Kooke
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Roland Mumm
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
5
|
Shawky A, Hatawsh A, Al-Saadi N, Farzan R, Eltawy N, Francis M, Abousamra S, Ismail YY, Attia K, Fakhouri AS, Abdelrahman M. Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2269. [PMID: 39204705 PMCID: PMC11360581 DOI: 10.3390/plants13162269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress.
Collapse
Affiliation(s)
- Abdelrahman Shawky
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Nabil Al-Saadi
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Raed Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
| | - Nour Eltawy
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Mariz Francis
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Sara Abousamra
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Yomna Y. Ismail
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
| | - Abdulaziz S. Fakhouri
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohamed Abdelrahman
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| |
Collapse
|
6
|
Leong JV, Mezzomo P, Kozel P, Volfová T, de Lima Ferreira P, Seifert CL, Butterill PT, Freiberga I, Michálek J, Matos-Maraví P, Weinhold A, Engström MT, Salminen JP, Segar ST, Sedio BE, Volf M. Effects of individual traits vs. trait syndromes on assemblages of various herbivore guilds associated with central European Salix. Oecologia 2024; 205:725-737. [PMID: 38829402 DOI: 10.1007/s00442-024-05569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.
Collapse
Affiliation(s)
- Jing V Leong
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic.
| | - Priscila Mezzomo
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Petr Kozel
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Tereza Volfová
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Paola de Lima Ferreira
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Biology, Aarhus University, Aarhus, Denmark
| | - Carlo L Seifert
- Department of Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Phillip T Butterill
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Inga Freiberga
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Michálek
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Institute of Microbiology, Centre Algatech Czech Academy of Sciences, Trebon, Czech Republic
| | - Pável Matos-Maraví
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Marica T Engström
- Bioanalytical Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, United Kingdom
| | - Brian E Sedio
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
- Smithsonian Tropical Research Institute, Ancón, Panama
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
Molleman F, Mandal M, Sokół-Łętowska A, Walczak U, Volf M, Mallick S, Moos M, Vodrážka P, Prinzing A, Mezzomo P. Simulated Herbivory Affects the Volatile Emissions of Oak Saplings, while Neighbourhood Affects Flavan-3-ols Content of Their Leaves. J Chem Ecol 2024; 50:250-261. [PMID: 38270732 DOI: 10.1007/s10886-024-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
To what extent particular plant defences against herbivorous insects are constitutive or inducible will depend on the costs and benefits in their neighbourhood. Some defensive chemicals in leaves are thought to be costly and hard to produce rapidly, while others, including volatile organic compounds that attract natural enemies, might be cheaper and can be released rapidly. When surrounding tree species are more closely related, trees can face an increased abundance of both specialist herbivores and their parasitoids, potentially increasing the benefits of constitutive and inducible defences. To test if oaks (Quercus robur) respond more to herbivore attacks with volatile emission than with changes in leaf phenolic chemistry and carbon to nitrogen ratio (C: N), and whether oaks respond to the neighbouring tree species, we performed an experiment in a forest in Poland. Oak saplings were placed in neighbourhoods dominated by oak, beech, or pine trees, and half of them were treated with the phytohormone methyl jasmonate (elicitor of anti-herbivore responses). Oaks responded to the treatment by emitting a different volatile blend within 24 h, while leaf phenolic chemistry and C: N remained largely unaffected after 16 days and multiple treatments. Leaf phenolics were subtly affected by the neighbouring trees with elevated flavan-3-ols concentrations in pine-dominated plots. Our results suggest that these oaks rely on phenols as a constitutive defence and when attacked emit volatiles to attract natural enemies. Further studies might determine if the small effect of the neighbourhood on leaf phenolics is a response to different levels of shading, or if oaks use volatile cues to assess the composition of their neighbourhood.
Collapse
Affiliation(s)
- Freerk Molleman
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland.
| | - Manidip Mandal
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of the Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, Wrocław, 51-630, Poland
| | - Urszula Walczak
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego Str. 6, Poznań, PL-61-614, Poland
| | - Martin Volf
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| | - Soumen Mallick
- Department of Animal Ecology and Tropical Biology, Biocenter, Field Station Fabrikschleichach, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Martin Moos
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Vodrážka
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Andreas Prinzing
- Research Unit « Ecosystemes, Biodiversité, Evolution », Université de Rennes 1, Centre National de la Recherche Scientifique, Campus Beaulieu, bâtiment 14, Rennes, AF-35042, France
| | - Priscila Mezzomo
- Biology Centre, Czech Academy of Sciences, Ceske Budejovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 37005, Czech Republic
| |
Collapse
|
8
|
Li X, Qin H, Tang N, Li X, Xing W. Microplastics enhance the invasion of exotic submerged macrophytes by mediating plant functional traits, sediment properties, and microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134032. [PMID: 38492389 DOI: 10.1016/j.jhazmat.2024.134032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Plant invasions and microplastics (MPs) have significantly altered the structure and function of aquatic habitats worldwide, resulting in severe damage to aquatic ecosystem health. However, the effects of MPs on plant invasion and the underlying mechanisms remain largely unknown. In this study, we conducted mesocosm experiments over a 90-day period to assess the effects of polystyrene microplastics on the invasion of exotic submerged macrophytes, sediment physicochemical properties, and sediment bacterial communities. Our results showed that PS-MPs significantly promoted the performance of functional traits and the invasive ability of exotic submerged macrophytes, while native plants remained unaffected. Moreover, PS-MPs addition significantly decreased sediment pH while increasing sediment carbon and nitrogen content. Additionally, MPs increased the diversity of sediment bacterial community but inhibited its structural stability, thereby impacting sediment bacterial multifunctionality to varying degrees. Importantly, we identified sediment properties, bacterial composition, and bacterial multifunctionality as key mediators that greatly enhance the invasion of exotic submerged macrophytes. These findings provide compelling evidence that the increase in MPs may exacerbate the invasion risk of exotic submerged macrophytes through multiple pathways. Overall, this study enhances our understanding of the ecological impacts of MPs on aquatic plant invasion and the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongjie Qin
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Na Tang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaolu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
9
|
Zhang Y, Yang C, Liu S, Xie Z, Chang H, Wu T. Phytohormones-mediated strategies for mitigation of heavy metals toxicity in plants focused on sustainable production. PLANT CELL REPORTS 2024; 43:99. [PMID: 38494540 DOI: 10.1007/s00299-024-03189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
KEY MESSAGE In this manuscript, authors reviewed and explore the information on beneficial role of phytohormones to mitigate adverse effects of heavy metals toxicity in plants. Global farming systems are seriously threatened by heavy metals (HMs) toxicity, which can result in decreased crop yields, impaired food safety, and negative environmental effects. A rise in curiosity has been shown recently in creating sustainable methods to reduce HMs toxicity in plants and improve agricultural productivity. To accomplish this, phytohormones, which play a crucial role in controlling plant development and adaptations to stress, have emerged as intriguing possibilities. With a particular focus on environmentally friendly farming methods, the current review provides an overview of phytohormone-mediated strategies for reducing HMs toxicity in plants. Several physiological and biochemical activities, including metal uptake, translocation, detoxification, and stress tolerance, are mediated by phytohormones, such as melatonin, auxin, gibberellin, cytokinin, ethylene, abscisic acid, salicylic acid, and jasmonates. The current review offers thorough explanations of the ways in which phytohormones respond to HMs to help plants detoxify and strengthen their resilience to metal stress. It is crucial to explore the potential uses of phytohormones as long-term solutions for reducing the harmful effects of HMs in plants. These include accelerating phytoextraction, decreasing metal redistribution to edible plant portions, increasing plant tolerance to HMs by hormonal manipulation, and boosting metal sequestration in roots. These methods seek to increase plant resistance to HMs stress while supporting environmentally friendly agricultural output. In conclusion, phytohormones present potential ways to reduce the toxicity of HMs in plants, thus promoting sustainable agriculture.
Collapse
Affiliation(s)
- Yumang Zhang
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Chunyuan Yang
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China.
| | - Shuxia Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhonglei Xie
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Hongyan Chang
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Wu
- College of Life Sciences, Changchun University of Science and Technology, Changchun, 130600, China
| |
Collapse
|
10
|
Pan VS, Wetzel WC. Neutrality in plant-herbivore interactions. Proc Biol Sci 2024; 291:20232687. [PMID: 38378151 PMCID: PMC10878797 DOI: 10.1098/rspb.2023.2687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Understanding the distribution of herbivore damage among leaves and individual plants is a central goal of plant-herbivore biology. Commonly observed unequal patterns of herbivore damage have conventionally been attributed to the heterogeneity in plant quality or herbivore behaviour or distribution. Meanwhile, the potential role of stochastic processes in structuring plant-herbivore interactions has been overlooked. Here, we show that based on simple first principle expectations from metabolic theory, random sampling of different sizes of herbivores from a regional pool is sufficient to explain patterns of variation in herbivore damage. This is despite making the neutral assumption that herbivory is caused by randomly feeding herbivores on identical and passive plants. We then compared its predictions against 765 datasets of herbivory on 496 species across 116° of latitude from the Herbivory Variability Network. Using only one free parameter, the estimated attack rate, our neutral model approximates the observed frequency distribution of herbivore damage among plants and especially among leaves very well. Our results suggest that neutral stochastic processes play a large and underappreciated role in natural variation in herbivory and may explain the low predictability of herbivory patterns. We argue that such prominence warrants its consideration as a powerful force in plant-herbivore interactions.
Collapse
Affiliation(s)
- Vincent S. Pan
- Department of Integrative Biology, Michigan State University, Easting Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, Easting Lansing, MI 48824, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
| | - William C. Wetzel
- Department of Integrative Biology, Michigan State University, Easting Lansing, MI 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, Easting Lansing, MI 48824, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
- Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
11
|
Thompson MN, Arriaga J, Bradford BJ, Kurian R, Strozier G, Helms AM. Belowground insect herbivory induces systemic volatile emissions that strengthen neighbouring plant resistance aboveground. PLANT, CELL & ENVIRONMENT 2024; 47:714-725. [PMID: 37961782 DOI: 10.1111/pce.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Plants transmit ecologically relevant messages to neighbouring plants through chemical cues. For instance, insect herbivory triggers the production of herbivore-induced plant volatiles (HIPVs), which can enhance neighbouring plant defences. HIPVs are emitted from directly damaged plant tissues and from systemic, nondamaged tissues. Although volatile-mediated interplant interactions have been observed both above- and belowground, it remains unknown whether belowground herbivory induces systemic HIPVs aboveground that influence neighbouring plants. To explore how belowground herbivory affects interplant interactions aboveground, we characterised systemic HIPVs from squash induced by belowground striped cucumber beetle (Acalymma vittatum) larval herbivory. We exposed squash 'receiver plants' to systemic HIPVs or volatiles from nondamaged plants. We then measured herbivore resistance by challenging 'receiver plants' with aboveground-feeding herbivores: adult beetles (A. vittatum) or squash bugs (Anasa tristis). We discovered belowground-damaged plants emitted more (E)-β-ocimene, a key volatile from the systemic HIPV blend, than nondamaged controls, and that exposure to systemic HIPVs enhanced neighbouring plant resistance to aboveground squash bugs, but not adult beetles. Further investigations into the mechanism of interplant interaction revealed β-ocimene alone can elicit plant resistance against squash bugs. Overall, our findings reveal a novel form of volatile-mediated interactions between plants spanning across aboveground-belowground plant systems.
Collapse
Affiliation(s)
- Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Jayda Arriaga
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Biomedical Sciences Interdisciplinary Program, Texas A&M University, College Station, Texas, USA
| | - B Jack Bradford
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Rachel Kurian
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Gage Strozier
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Ravigné V, Rodrigues LR, Charlery de la Masselière M, Facon B, Kuczyński L, Radwan J, Skoracka A, Magalhães S. Understanding the joint evolution of dispersal and host specialisation using phytophagous arthropods as a model group. Biol Rev Camb Philos Soc 2024; 99:219-237. [PMID: 37724465 DOI: 10.1111/brv.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Theory generally predicts that host specialisation and dispersal should evolve jointly. Indeed, many models predict that specialists should be poor dispersers to avoid landing on unsuitable hosts while generalists will have high dispersal abilities. Phytophagous arthropods are an excellent group to test this prediction, given extensive variation in their host range and dispersal abilities. Here, we explore the degree to which the empirical literature on this group is in accordance with theoretical predictions. We first briefly outline the theoretical reasons to expect such a correlation. We then report empirical studies that measured both dispersal and the degree of specialisation in phytophagous arthropods. We find a correlation between dispersal and levels of specialisation in some studies, but with wide variation in this result. We then review theoretical attributes of species and environment that may blur this correlation, namely environmental grain, temporal heterogeneity, habitat selection, genetic architecture, and coevolution between plants and herbivores. We argue that theoretical models fail to account for important aspects, such as phenotypic plasticity and the impact of selective forces stemming from other biotic interactions, on both dispersal and specialisation. Next, we review empirical caveats in the study of this interplay. We find that studies use different measures of both dispersal and specialisation, hampering comparisons. Moreover, several studies do not provide independent measures of these two traits. Finally, variation in these traits may occur at scales that are not being considered. We conclude that this correlation is likely not to be expected from large-scale comparative analyses as it is highly context dependent and should not be considered in isolation from the factors that modulate it, such as environmental scale and heterogeneity, intrinsic traits or biotic interactions. A stronger crosstalk between theoretical and empirical studies is needed to understand better the prevalence and basis of the correlation between dispersal and specialisation.
Collapse
Affiliation(s)
- Virginie Ravigné
- CIRAD, UMR PHIM, - PHIM, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, TA A-120/K, Campus international de Baillarguet, avenue du Campus d'Agropolis, Montpellier Cedex 5, 34398, France
| | - Leonor R Rodrigues
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Maud Charlery de la Masselière
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Benoît Facon
- CBGP, INRAE, IRD, CIRAD, Institut Agro, University of Montpellier, 755 avenue du Campus Agropolis, CS 34988, Montferrier sur Lez cedex, 30016, France
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| |
Collapse
|
13
|
Auge G, Hankofer V, Groth M, Antoniou-Kourounioti R, Ratikainen I, Lampei C. Plant environmental memory: implications, mechanisms and opportunities for plant scientists and beyond. AOB PLANTS 2023; 15:plad032. [PMID: 37415723 PMCID: PMC10321398 DOI: 10.1093/aobpla/plad032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Plants are extremely plastic organisms. They continuously receive and integrate environmental information and adjust their growth and development to favour fitness and survival. When this integration of information affects subsequent life stages or the development of subsequent generations, it can be considered an environmental memory. Thus, plant memory is a relevant mechanism by which plants respond adaptively to different environments. If the cost of maintaining the response is offset by its benefits, it may influence evolutionary trajectories. As such, plant memory has a sophisticated underlying molecular mechanism with multiple components and layers. Nonetheless, when mathematical modelling is combined with knowledge of ecological, physiological, and developmental effects as well as molecular mechanisms as a tool for understanding plant memory, the combined potential becomes unfathomable for the management of plant communities in natural and agricultural ecosystems. In this review, we summarize recent advances in the understanding of plant memory, discuss the ecological requirements for its evolution, outline the multilayered molecular network and mechanisms required for accurate and fail-proof plant responses to variable environments, point out the direct involvement of the plant metabolism and discuss the tremendous potential of various types of models to further our understanding of the plant's environmental memory. Throughout, we emphasize the use of plant memory as a tool to unlock the secrets of the natural world.
Collapse
Affiliation(s)
| | - Valentin Hankofer
- Institute of Biochemical Plant Pathology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Martin Groth
- Institute of Functional Epigenetics, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, University of Glasgow, Sir James Black Building, University Ave, Glasgow G12 8QQ, UK
| | - Irja Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Christian Lampei
- Department of Biology (FB17), Plant Ecology and Geobotany Group, University of Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
14
|
Kessler A, Mueller MB, Kalske A, Chautá A. Volatile-mediated plant-plant communication and higher-level ecological dynamics. Curr Biol 2023; 33:R519-R529. [PMID: 37279686 DOI: 10.1016/j.cub.2023.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Volatile organic compounds (VOCs) in general and herbivory-induced plant volatiles (HIPVs) in particular are increasingly understood as major mediators of information transfer between plant tissues. Recent findings have moved the field of plant communication closer to a detailed understanding of how plants emit and perceive VOCs and seem to converge on a model that juxtaposes perception and emission mechanisms. These new mechanistic insights help to explain how plants can integrate different types of information and how environmental noise can affect the transmission of information. At the same time, ever-new functions of VOC-mediated plant-plant interactions are being revealed. Chemical information transfer between plants is now known to fundamentally affect plant organismal interactions and, additionally, population, community, and ecosystem dynamics. One of the most exciting new developments places plant-plant interactions along a behavioral continuum with an eavesdropping strategy at one end and mutually beneficial information-sharing among plants within a population at the other. Most importantly and based on recent findings as well as theoretical models, plant populations can be predicted to evolve different communication strategies depending on their interaction environment. We use recent studies from ecological model systems to illustrate this context dependency of plant communication. Moreover, we review recent key findings about the mechanisms and functions of HIPV-mediated information transfer and suggest conceptual links, such as to information theory and behavioral game theory, as valuable tools for a deeper understanding of how plant-plant communication affects ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Michael B Mueller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Department of Biology, University of Turku, 20014 Turku, Finland
| | - Alexander Chautá
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
15
|
Poelman EH, Bourne ME, Croijmans L, Cuny MAC, Delamore Z, Joachim G, Kalisvaart SN, Kamps BBJ, Longuemare M, Suijkerbuijk HAC, Zhang NX. Bringing Fundamental Insights of Induced Resistance to Agricultural Management of Herbivore Pests. J Chem Ecol 2023; 49:218-229. [PMID: 37138167 PMCID: PMC10495479 DOI: 10.1007/s10886-023-01432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
In response to herbivory, most plant species adjust their chemical and morphological phenotype to acquire induced resistance to the attacking herbivore. Induced resistance may be an optimal defence strategy that allows plants to reduce metabolic costs of resistance in the absence of herbivores, allocate resistance to the most valuable plant tissues and tailor its response to the pattern of attack by multiple herbivore species. Moreover, plasticity in resistance decreases the potential that herbivores adapt to specific plant resistance traits and need to deal with a moving target of variable plant quality. Induced resistance additionally allows plants to provide information to other community members to attract natural enemies of its herbivore attacker or inform related neighbouring plants of pending herbivore attack. Despite the clear evolutionary benefits of induced resistance in plants, crop protection strategies to herbivore pests have not exploited the full potential of induced resistance for agriculture. Here, we present evidence that induced resistance offers strong potential to enhance resistance and resilience of crops to (multi-) herbivore attack. Specifically, induced resistance promotes plant plasticity to cope with multiple herbivore species by plasticity in growth and resistance, maximizes biological control by attracting natural enemies and, enhances associational resistance of the plant stand in favour of yield. Induced resistance may be further harnessed by soil quality, microbial communities and associational resistance offered by crop mixtures. In the transition to more sustainable ecology-based cropping systems that have strongly reduced pesticide and fertilizer input, induced resistance may prove to be an invaluable trait in breeding for crop resilience.
Collapse
Affiliation(s)
- Erik H Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands.
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Luuk Croijmans
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Zoë Delamore
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Gabriel Joachim
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Sarah N Kalisvaart
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Bram B J Kamps
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Maxence Longuemare
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Hanneke A C Suijkerbuijk
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Nina Xiaoning Zhang
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
16
|
Zhang X, Li S, Li X, Song M, Ma S, Tian Y, Gao L. Peat-based hairy root transformation using Rhizobium rhizogenes as a rapid and efficient tool for easily exploring potential genes related to root-knot nematode parasitism and host response. PLANT METHODS 2023; 19:22. [PMID: 36871001 PMCID: PMC9985853 DOI: 10.1186/s13007-023-01003-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs) pose a worldwide threat to agriculture of many crops including cucumber. Genetic transformation (GT) has emerged as a powerful tool for exploration of plant-RKN interactions and genetic improvement of RKN resistance. However, it is usually difficult to achieve a highly efficient and stable GT protocol for most crops due to the complexity of this process. RESULTS Here we firstly applied the hairy root transformation system in exploring root-RKN interactions in cucumber plants and developed a rapid and efficient tool transformation using Rhizobium rhizogenes strain K599. A solid-medium-based hypocotyl-cutting infection (SHI) method, a rockwool-based hypocotyl-cutting infection (RHI) method, and a peat-based cotyledon-node injection (PCI) method was evaluated for their ability to induce transgenic roots in cucumber plants. The PCI method generally outperformed the SHI and RHI methods for stimulating more transgenic roots and evaluating the phenotype of roots during nematode parasitism. Using the PCI method, we generated the CRISPR/Cas9-mediated malate synthase (MS) gene (involved in biotic stress responses) knockout plant and the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16, a potential host susceptibility gene for RKN) promoter-driven GUS expressing plant. Knockout of MS in hairy roots resulted in effective resistance against RKNs, while nematode infection induced a strong expression of LBD16-driven GUS in root galls. This is the first report of a direct link between these genes and RKN performance in cucumber. CONCLUSION Taken together, the present study demonstrates that the PCI method allows fast, easy and efficient in vivo studies of potential genes related to root-knot nematode parasitism and host response.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Mengyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
17
|
Kalske A, Kessler A. Herbivory selects for tolerance and constitutive defence across stages of community succession. Proc Biol Sci 2023; 290:20222458. [PMID: 36787795 PMCID: PMC9928524 DOI: 10.1098/rspb.2022.2458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Plants defend themselves from herbivory by either reducing damage (resistance) or minimizing its negative fitness effects with compensatory growth (tolerance). Herbivore pressure can fluctuate from year to year in an early secondary successional community, which can create temporal variation in selection for defence traits. We manipulated insect herbivory and successional age of the community as agents of natural selection in replicated common gardens with the perennial herb Solidago altissima. In these genotypic selection experiments, herbivory consistently selected for better defended plants in both successional communities. Herbivore suppression increased plant survival and the probability of flowering only in mid-succession. Despite these substantial differences in the effects of herbivory between early and mid-succession, the selection on defence traits did not change. Succession affected selection only on aboveground biomass, with positive selection in early but not mid-succession, suggesting an important role of competition in the selective environment. These results demonstrate that changes in the community that affect key life-history traits in an individual species can occur over very short timescales in a dynamic secondary successional environment. The resulting community context-driven variation in natural selection may be an important, yet overlooked, contributor to adaptive mosaics across populations.
Collapse
Affiliation(s)
- Aino Kalske
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Chautá A, Kessler A. Metabolic Integration of Spectral and Chemical Cues Mediating Plant Responses to Competitors and Herbivores. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202768. [PMID: 36297792 PMCID: PMC9609625 DOI: 10.3390/plants11202768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/08/2023]
Abstract
Light quality and chemicals in a plant's environment can provide crucial information about the presence and nature of antagonists, such as competitors and herbivores. Here, we evaluate the roles of three sources of information-shifts in the red:far red (R:FR) ratio of light reflected off of potentially competing neighbors, induced metabolic changes to damage by insect herbivores, and induced changes to volatile organic compounds emitted from herbivore-damaged neighboring plants-to affect metabolic responses in the tall goldenrod, Solidago altissima. We address the hypothesis that plants integrate the information available about competitors and herbivory to optimize metabolic responses to interacting stressors by exposing plants to the different types of environmental information in isolation and combination. We found strong interactions between the exposure to decreased R:FR light ratios and damage on the induction of secondary metabolites (volatile and non-volatile) in plants. Similarly, the perception of VOCs emitted from neighboring plants was altered by the simultaneous exposure to spectral cues from neighbors. These results suggest that plants integrate spectral and chemical environmental cues to change the production and perception of volatile and non-volatile compounds and highlight the role of plant context-dependent metabolic responses in mediating population and community dynamics.
Collapse
|
19
|
Karssemeijer PN, de Kreek KA, Gols R, Neequaye M, Reichelt M, Gershenzon J, van Loon JJA, Dicke M. Specialist root herbivore modulates plant transcriptome and downregulates defensive secondary metabolites in a brassicaceous plant. THE NEW PHYTOLOGIST 2022; 235:2378-2392. [PMID: 35717563 PMCID: PMC9540780 DOI: 10.1111/nph.18324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Plants face attackers aboveground and belowground. Insect root herbivores can lead to severe crop losses, yet the underlying transcriptomic responses have rarely been studied. We studied the dynamics of the transcriptomic response of Brussels sprouts (Brassica oleracea var. gemmifera) primary roots to feeding damage by cabbage root fly larvae (Delia radicum), alone or in combination with aboveground herbivory by cabbage aphids (Brevicoryne brassicae) or diamondback moth caterpillars (Plutella xylostella). This was supplemented with analyses of phytohormones and the main classes of secondary metabolites; aromatic, indole and aliphatic glucosinolates. Root herbivory leads to major transcriptomic rearrangement that is modulated by aboveground feeding caterpillars, but not aphids, through priming soon after root feeding starts. The root herbivore downregulates aliphatic glucosinolates. Knocking out aliphatic glucosinolate biosynthesis with CRISPR-Cas9 results in enhanced performance of the specialist root herbivore, indicating that the herbivore downregulates an effective defence. This study advances our understanding of how plants cope with root herbivory and highlights several novel aspects of insect-plant interactions for future research. Further, our findings may help breeders develop a sustainable solution to a devastating root pest.
Collapse
Affiliation(s)
- Peter N. Karssemeijer
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Kris A. de Kreek
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Rieta Gols
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Mikhaela Neequaye
- John Innes CentreNorwich Research ParkNR4 7UHNorwichUK
- Quadram Institute BioscienceNorwich Research ParkNR4 7UQNorwichUK
| | - Michael Reichelt
- Department of BiochemistryMax‐Planck‐Institute for Chemical Ecology07745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax‐Planck‐Institute for Chemical Ecology07745JenaGermany
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and Research6708PBWageningenthe Netherlands
| |
Collapse
|
20
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Eisenring M, Best RJ, Zierden MR, Cooper HF, Norstrem MA, Whitham TG, Grady K, Allan GJ, Lindroth RL. Genetic divergence along a climate gradient shapes chemical plasticity of a foundation tree species to both changing climate and herbivore damage. GLOBAL CHANGE BIOLOGY 2022; 28:4684-4700. [PMID: 35596651 DOI: 10.1111/gcb.16275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such as Populus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes.
Collapse
Affiliation(s)
- Michael Eisenring
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Forest Entomology, Swiss Federal Research Institute for Forest, Snow, and Landscape Research WSL, Zurich, Switzerland
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark R Zierden
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hillary F Cooper
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
| | - Madelyn A Norstrem
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas G Whitham
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Kevin Grady
- School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Gerard J Allan
- Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Fernández de Bobadilla M, Vitiello A, Erb M, Poelman EH. Plant defense strategies against attack by multiple herbivores. TRENDS IN PLANT SCIENCE 2022; 27:528-535. [PMID: 35027280 DOI: 10.1016/j.tplants.2021.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 05/21/2023]
Abstract
Plants may effectively tailor defenses by recognizing their attackers and reprogramming their physiology. Although most plants are under attack by a large diversity of herbivores, surprisingly little is known about the physiological capabilities of plants to deal with attack by multiple herbivores. Studies on dual herbivore attack identified that defense against one attacker may cause energetic and physiological constraints to deal with a second attacker. How these constraints shape plant plasticity in defense to their full community of attackers is a major knowledge gap in plant science. Here, we provide a framework for plant defense to multiherbivore attack by defining the repertoire of plastic defense strategies that may allow plants to optimize their defenses against a multitude of stressors.
Collapse
Affiliation(s)
| | - Alessia Vitiello
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
23
|
Rusman Q, Hooiveld‐Knoppers S, Dijksterhuis M, Bloem J, Reichelt M, Dicke M, Poelman EH. Flowers prepare thyselves: leaf and root herbivores induce specific changes in floral phytochemistry with consequences for plant interactions with florivores. THE NEW PHYTOLOGIST 2022; 233:2548-2560. [PMID: 34953172 PMCID: PMC9305281 DOI: 10.1111/nph.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The phenotypic plasticity of flowering plants in response to herbivore damage to vegetative tissues can affect plant interactions with flower-feeding organisms. Such induced systemic responses are probably regulated by defence-related phytohormones that signal flowers to alter secondary chemistry that affects resistance to florivores. Current knowledge on the effects of damage to vegetative tissues on plant interactions with florivores and the underlying mechanisms is limited. We compared the preference and performance of two florivores on flowering Brassica nigra plants damaged by one of three herbivores feeding from roots or leaves. To investigate the underlying mechanisms, we quantified expression patterns of marker genes for defence-related phytohormonal pathways, and concentrations of phytohormones and glucosinolates in buds and flowers. Florivores displayed contrasting preferences for plants damaged by herbivores feeding on roots and leaves. Chewing florivores performed better on plants damaged by folivores, but worse on plants damaged by the root herbivore. Chewing root and foliar herbivory led to specific induced changes in the phytohormone profile of buds and flowers. This resulted in increased glucosinolate concentrations for leaf-damaged plants, and decreased glucosinolate concentrations for root-damaged plants. The outcome of herbivore-herbivore interactions spanning from vegetative tissues to floral tissues is unique for the inducing root/leaf herbivore and receiving florivore combination.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
- Present address:
Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Sanne Hooiveld‐Knoppers
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Mirjam Dijksterhuis
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Janneke Bloem
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Strasse 807745JenaGermany
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| |
Collapse
|
24
|
Mason CJ, Ray S, Davidson-Lowe E, Ali J, Luthe DS, Felton G. Plant Nutrition Influences Resistant Maize Defense Responses to the Fall Armyworm (Spodoptera frugiperda). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Plants are often confronted by different groups of herbivores, which threaten their growth and reproduction. However, they are capable of mounting defenses against would-be attackers which may be heightened upon attack. Resistance to insects often varies among plant species, with different genotypes exhibiting unique patterns of chemical and physical defenses. Within this framework, plant access to nutrients may be critical for maximal functioning of resistance mechanisms and are likely to differ among plant genotypes. In this study, we aimed to test the hypothesis that access to nutrition would alter the expression of plant resistance to insects and alter insect performance in a manner consistent with fertilization regime. We used two maize (Zea mays) genotypes possessing different levels of resistance and the fall armyworm (Spodoptera frugiperda) as model systems. Plants were subjected to three fertilization regimes prior to assessing insect-mediated responses. Upon reaching V4 stage, maize plants were separated into two groups, one of which was infested with fall armyworm larvae to induce plant defenses. Plant tissue was collected and used in insect bioassays and to measure the expression of defense-related genes and proteins. Insect performance differed between the two plant genotypes substantially. For each genotype, fertilization altered larval performance, where lower fertilization rates hindered larval growth. Induction of plant defenses by prior herbivory substantially reduced naïve fall armyworm growth in both genotypes. The effects between fertilization and induced defenses were complex, with low fertilization reducing induced defenses in the resistant maize. Gene and protein expression patterns differed between the genotypes, with herbivory often increasing expression, but differing between fertilization levels. The soluble protein concentrations did not change across fertilization levels but was higher in the susceptible maize genotype. These results demonstrate the malleability of plant defenses and the cascading effects of plant nutrition on insect herbivory.
Collapse
|
25
|
Marmolejo LO, Thompson MN, Helms AM. Defense Suppression through Interplant Communication Depends on the Attacking Herbivore Species. J Chem Ecol 2021; 47:1049-1061. [PMID: 34541611 PMCID: PMC8642252 DOI: 10.1007/s10886-021-01314-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022]
Abstract
In response to herbivory, plants emit volatile compounds that play important roles in plant defense. Herbivore-induced plant volatiles (HIPVs) can deter herbivores, recruit natural enemies, and warn other plants of possible herbivore attack. Following HIPV detection, neighboring plants often respond by enhancing their anti-herbivore defenses, but a recent study found that herbivores can manipulate HIPV-interplant communication for their own benefit and suppress defenses in neighboring plants. Herbivores induce species-specific blends of HIPVs and how these different blends affect the specificity of plant defense responses remains unclear. Here we assessed how HIPVs from zucchini plants (Cucurbita pepo) challenged with different herbivore species affect resistance in neighboring plants. Volatile "emitter" plants were damaged by one of three herbivore species: saltmarsh caterpillars (Estigmene acrea), squash bugs (Anasa tristis), or striped cucumber beetles (Acalymma vittatum), or were left as undamaged controls. Neighboring "receiver" plants were exposed to HIPVs or control volatiles and then challenged by the associated herbivore species. As measures of plant resistance, we quantified herbivore feeding damage and defense-related phytohormones in receivers. We found that the three herbivore species induced different HIPV blends from squash plants. HIPVs induced by saltmarsh caterpillars suppressed defenses in receivers, leading to greater herbivory and lower defense induction compared to controls. In contrast, HIPVs induced by cucumber beetles and squash bugs did not affect plant resistance to subsequent herbivory in receivers. Our study shows that herbivore species identity affects volatile-mediated interplant communication in zucchini, revealing a new example of herbivore defense suppression through volatile cues.
Collapse
Affiliation(s)
- Laura O Marmolejo
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| |
Collapse
|
26
|
Hoque MN, Tahjib-Ul-Arif M, Hannan A, Sultana N, Akhter S, Hasanuzzaman M, Akter F, Hossain MS, Sayed MA, Hasan MT, Skalicky M, Li X, Brestič M. Melatonin Modulates Plant Tolerance to Heavy Metal Stress: Morphological Responses to Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms222111445. [PMID: 34768875 PMCID: PMC8584185 DOI: 10.3390/ijms222111445] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022] Open
Abstract
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Md. Najmol Hoque
- Department of Biochemistry and Molecular Biology, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence: (M.T.-U.-A.); (M.B.)
| | - Afsana Hannan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Naima Sultana
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Shirin Akhter
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.H.); (N.S.); (S.A.)
| | - Md. Hasanuzzaman
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Fahmida Akter
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Sazzad Hossain
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Md. Abu Sayed
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology, Dinajpur 5200, Bangladesh;
| | - Md. Toufiq Hasan
- Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
| | - Marián Brestič
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
- Correspondence: (M.T.-U.-A.); (M.B.)
| |
Collapse
|
27
|
de Bobadilla MF, Van Wiechen R, Gort G, Poelman EH. Plasticity in induced resistance to sequential attack by multiple herbivores in Brassica nigra. Oecologia 2021; 198:11-20. [PMID: 34647167 PMCID: PMC8803709 DOI: 10.1007/s00442-021-05043-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
In nature, plants interact with multiple insect herbivores that may arrive simultaneously or sequentially. There is extensive knowledge on how plants defend themselves against single or dual attack. However, we lack information on how plants defend against the attack of multiple herbivores that arrive sequentially. In this study, we investigated whether Brassica nigra L. plants are able to defend themselves against caterpillars of the late-arriving herbivore Plutella xylostella L., when plants had been previously exposed to sequential attack by four other herbivores (P. xylostella, Athalia rosae, Myzus persicae and Brevicoryne brassicae). We manipulated the order of arrival and the history of attack by four herbivores to investigate which patterns in sequential herbivory determine resistance against the fifth attacker. We recorded that history of sequential herbivore attack differentially affected the capability of B. nigra plants to defend themselves against caterpillars of P. xylostella. Caterpillars gained less weight on plants attacked by a sequence of four episodes of attack by P. xylostella compared to performance on plants that were not previously damaged by herbivores. The number of times the plant was attacked by herbivores of the same feeding guild, the identity of the first attacker, the identity and the guild of the last attacker as well as the order of attackers within the sequence of multiple herbivores influenced the growth of the subsequent herbivory. In conclusion, this study shows that history of sequential attack is an important factor determining plant resistance to herbivores.
Collapse
Affiliation(s)
- Maite Fernández de Bobadilla
- Laboratory of Entomology, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Roel Van Wiechen
- Laboratory of Entomology, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Gerrit Gort
- Biometris, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
28
|
Mertens D, Fernández de Bobadilla M, Rusman Q, Bloem J, Douma JC, Poelman EH. Plant defence to sequential attack is adapted to prevalent herbivores. NATURE PLANTS 2021; 7:1347-1353. [PMID: 34650263 DOI: 10.1038/s41477-021-00999-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/02/2021] [Indexed: 05/21/2023]
Abstract
Plants have evolved plastic defence strategies to deal with the uncertainty of when, by which species and in which order attack by herbivores will take place1-3. However, the responses to current herbivore attack may come with a cost of compromising resistance to other, later arriving herbivores. Due to antagonistic cross-talk between physiological regulation of plant resistance to phloem-feeding and leaf-chewing herbivores4-8, the feeding guild of the initial herbivore is considered to be the primary factor determining whether resistance to subsequent attack is compromised. We show that, by investigating 90 pairwise insect-herbivore interactions among ten different herbivore species, resistance of the annual plant Brassica nigra to a later arriving herbivore species is not explained by feeding guild of the initial attacker. Instead, the prevalence of herbivore species that arrive on induced plants as approximated by three years of season-long insect community assessments in the field explained cross-resistance. Plants maintained resistance to prevalent herbivores in common patterns of herbivore arrival and compromises in resistance especially occurred for rare patterns of herbivore attack. We conclude that plants tailor induced defence strategies to deal with common patterns of sequential herbivore attack and anticipate arrival of the most prevalent herbivores.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands
| | | | - Quint Rusman
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands
| | - Janneke Bloem
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands
| | - Jacob C Douma
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
29
|
Cappelli SL, Koricheva J. Interactions between mammalian grazers and plant pathogens: an elephant in the room? THE NEW PHYTOLOGIST 2021; 232:8-10. [PMID: 34213785 DOI: 10.1111/nph.17533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
| | - Julia Koricheva
- Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
30
|
Fernández de Bobadilla M, Bourne ME, Bloem J, Kalisvaart SN, Gort G, Dicke M, Poelman EH. Insect species richness affects plant responses to multi-herbivore attack. THE NEW PHYTOLOGIST 2021; 231:2333-2345. [PMID: 33484613 PMCID: PMC8451852 DOI: 10.1111/nph.17228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/14/2021] [Indexed: 05/05/2023]
Abstract
Plants are often attacked by multiple insect herbivores. How plants deal with an increasing richness of attackers from a single or multiple feeding guilds is poorly understood. We subjected black mustard (Brassica nigra) plants to 51 treatments representing attack by an increasing species richness (one, two or four species) of either phloem feeders, leaf chewers, or a mix of both feeding guilds when keeping total density of attackers constant and studied how this affects plant resistance to subsequent attack by caterpillars of the diamondback moth (Plutella xylostella). Increased richness in phloem-feeding attackers compromised resistance to P. xylostella. By contrast, leaf chewers induced a stronger resistance to subsequent attack by caterpillars of P. xylostella while species richness did not play a significant role for chewing herbivore induced responses. Attack by a mix of herbivores from different feeding guilds resulted in plant resistance similar to resistance levels of plants that were not previously exposed to herbivory. We conclude that B. nigra plants channel their defence responses stronger towards a feeding-guild specific response when under multi-species attack by herbivores of the same feeding guild, but integrate responses when simultaneously confronted with a mix of herbivores from different feeding guilds.
Collapse
Affiliation(s)
- Maite Fernández de Bobadilla
- Laboratory of EntomologyWageningen University and Research CentreDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Mitchel E. Bourne
- Laboratory of EntomologyWageningen University and Research CentreDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Janneke Bloem
- Laboratory of EntomologyWageningen University and Research CentreDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Sarah N. Kalisvaart
- Laboratory of EntomologyWageningen University and Research CentreDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Gerrit Gort
- Biometris, Wageningen University and Research CentreDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University and Research CentreDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen University and Research CentreDroevendaalsesteeg 1Wageningen6708PBthe Netherlands
| |
Collapse
|
31
|
Caicedo-Lopez LH, Guevara-Gonzalez RG, Andrade JE, Esquivel-Delgado A, Perez-Matzumoto AE, Torres-Pacheco I, Contreras-Medina LM. Effect of hydric stress-related acoustic emission on transcriptional and biochemical changes associated with a water deficit in Capsicum annuum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:251-264. [PMID: 34082331 DOI: 10.1016/j.plaphy.2021.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
At specific vibration frequencies like ones generated by insects such as caterpillar chewing and bee's buzz-pollination turn on the plants secondary metabolism and their respective pathways gets activated. Thus, studies report that vibrations and sound waves applied to plants improves their fitness performance. Commonly, acoustic treatments for plants have used arbitrarily random frequencies. In this work, a group of signals obtained from hydric-stressed plants was recorded as vibrational patterns using a laser vibrometer. These vibration-signals were classified as representative of each condition and then externally applied as Acoustic Emission Patterns (AEP). The present research hypothesized that specific vibration frequencies could "emulate" a plant signal through mechanical energy based on tplant's ability to recognize vibration pattern similarity to a hydric status. This investigation aimed to apply the AEP's as characteristic vibrations classified as Low hydric stress (LHS), medium hydric stress (MHS), and high hydric stress (HHS) to evaluate their effect on healthy-well watered plants at two developmental stages. In the vegetative stage, the gene expression related to antioxidant and hydric stress responses was assessed. The LHS, MHS, and HHS acoustic treatments up-regulated the peroxidase (Pod) (~2.8, 1.9, and 3.6-fold change, respectively). The superoxide dismutase (Mn-sod) and phenylalanine ammonia-lyase (Pal) genes were up-regulated by HHS (~0.23 and ~0.55-fold change, respectively) and, the chalcone synthase (Chs) gene was induced by MHS (~0.63-fold-change). At the fructification stage, the MHS treatment induced a significant increase in Capsaicin content (5.88-fold change), probably through the at3and kas gene activation. Findings are correlated for a better understanding of plant responses to different multi frequency-signals tones from vibrations with potential for agricultural applications.
Collapse
Affiliation(s)
- Laura Helena Caicedo-Lopez
- Biosystems Engineering Group, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marques, Queretaro, Mexico; Group of Basic and Applied Bioengineering, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marqués, Querétaro, Mexico
| | - Ramon Gerardo Guevara-Gonzalez
- Biosystems Engineering Group, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marques, Queretaro, Mexico
| | - Juan E Andrade
- Department of Food Science and Human Nutrition, The University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA
| | - Adolfo Esquivel-Delgado
- Physical Metrology, National Metrology Center (CENAM) km 4.5 Carretera a Los Cues C.P. 76246, El Marqués, Qro, Mexico
| | | | - Irineo Torres-Pacheco
- Biosystems Engineering Group, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marques, Queretaro, Mexico
| | - Luis Miguel Contreras-Medina
- Group of Basic and Applied Bioengineering, Faculty of Engineering, Autonomous University of Queretaro-Campus Amazcala, El Marqués, Querétaro, Mexico.
| |
Collapse
|
32
|
Mertens D, Bouwmeester K, Poelman EH. Intraspecific variation in plant-associated herbivore communities is phylogenetically structured in Brassicaceae. Ecol Lett 2021; 24:2314-2327. [PMID: 34331409 PMCID: PMC9291228 DOI: 10.1111/ele.13852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
As a result of co‐evolution between plants and herbivores, related plants often interact with similar herbivore communities. Variation in plant–herbivore interactions is determined by variation in underlying functional traits and by ecological and stochastic processes. Hence, typically, only a subset of possible interactions is realised on individual plants. We show that insect herbivore communities assembling on individual plants are structured by plant phylogeny among 12 species in two phylogenetic lineages of Brassicaceae. This community sorting to plant phylogeny was retained when splitting the community according to herbivore feeding guilds. Relative abundance of herbivores as well as the size of the community structured community dissimilarity among plant species. Importantly, the amount of intraspecific variation in realised plant–herbivore interactions is also phylogenetically structured. We argue that variability in realised interactions that are not directly structured by plant traits is ecologically relevant and must be considered in the evolution of plant defences.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
33
|
Singh A, Dilkes B, Sela H, Tzin V. The Effectiveness of Physical and Chemical Defense Responses of Wild Emmer Wheat Against Aphids Depends on Leaf Position and Genotype. FRONTIERS IN PLANT SCIENCE 2021; 12:667820. [PMID: 34262579 PMCID: PMC8273356 DOI: 10.3389/fpls.2021.667820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/19/2021] [Indexed: 05/15/2023]
Abstract
The bird cherry-oat aphid (Rhopalosiphum padi) is one of the most destructive insect pests in wheat production. To reduce aphid damage, wheat plants have evolved various chemical and physical defense mechanisms. Although these mechanisms have been frequently reported, much less is known about their effectiveness. The tetraploid wild emmer wheat (WEW; Triticum turgidum ssp. dicoccoides), one of the progenitors of domesticated wheat, possesses untapped resources from its numerous desirable traits, including insect resistance. The goal of this research was to determine the effectiveness of trichomes (physical defense) and benzoxazinoids (BXDs; chemical defense) in aphid resistance by exploiting the natural diversity of WEW. We integrated a large dataset composed of trichome density and BXD abundance across wheat genotypes, different leaf positions, conditions (constitutive and aphid-induced), and tissues (whole leaf and phloem sap). First, we evaluated aphid reproduction on 203 wheat accessions and found large variation in this trait. Then, we chose eight WEW genotypes and one domesticated durum wheat cultivar for detailed quantification of the defense mechanisms across three leaves. We discovered that these defense mechanisms are influenced by both leaf position and genotype, where aphid reproduction was the highest on leaf-1 (the oldest), and trichome density was the lowest. We compared the changes in trichome density and BXD levels upon aphid infestation and found only minor changes relative to untreated plants. This suggests that the defense mechanisms in the whole leaf are primarily anticipatory and unlikely to contribute to aphid-induced defense. Next, we quantified BXD levels in the phloem sap and detected a significant induction of two compounds upon aphid infestation. Moreover, evaluating aphid feeding patterns showed that aphids prefer to feed on the oldest leaf. These findings revealed the dynamic response at the whole leaf and phloem levels that altered aphid feeding and reproduction. Overall, they suggested that trichomes and the BXD 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA) levels are the main factors determining aphid resistance, while trichomes are more effective than BXDs. Accessions from the WEW germplasm, rich with trichomes and BXDs, can be used as new genetic sources to improve the resistance of elite wheat cultivars.
Collapse
Affiliation(s)
- Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Hanan Sela
- The Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
34
|
González-García Y, Cadenas-Pliego G, Alpuche-Solís ÁG, Cabrera RI, Juárez-Maldonado A. Carbon Nanotubes Decrease the Negative Impact of Alternaria solani in Tomato Crop. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1080. [PMID: 33922093 PMCID: PMC8143504 DOI: 10.3390/nano11051080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
The diseases that attack the tomato crop are a limiting factor for its production and are difficult to control or eradicate. Stem and fruit rot and leaf blight caused by Alternaria solani causes severe damage and substantial yield losses. Carbon nanotubes (CNTs) could be an alternative for the control of pathogens since they have strong antimicrobial activity, in addition to inducing the activation of the antioxidant defense system in plants. In the present study, multi-walled carbon nanotubes were evaluated on the incidence and severity of A. solani. Moreover, to the impact they have on the antioxidant defense system and the photosynthetic capacity of the tomato crop. The results show that the application of CNTs had multiple positive effects on tomato crop. CNTs decreased the incidence and severity of A. solani. Furthermore, CNTs increased the fruit yield of tomato crop and dry shoot biomass. The antioxidant system was improved, since the content of ascorbic acid, flavonoids, and the activity of the glutathione peroxidase enzyme were increased. The net photosynthesis and water use efficiency were also increased by the application of CNTs. CNTs can be an option to control A. solani in tomato crop, and diminish the negative impact of this pathogen.
Collapse
Affiliation(s)
- Yolanda González-García
- Doctorado en Ciencias en Agricultura Protegida, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico;
| | | | - Ángel Gabriel Alpuche-Solís
- Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, San Luis Potosí, Mexico;
| | - Raúl Iskander Cabrera
- Department of Plant Biology, Rutgers Agricultural Research and Extension Center (RAREC), Rutgers University, Bridgeton, NJ 08302, USA;
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, Mexico
| |
Collapse
|