1
|
John C, Avgar T, Rittger K, Smith JA, Stephenson LW, Stephenson TR, Post E. Pursuit and escape drive fine-scale movement variation during migration in a temperate alpine ungulate. Sci Rep 2024; 14:15068. [PMID: 38956435 PMCID: PMC11219842 DOI: 10.1038/s41598-024-65948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Climate change reduces snowpack, advances snowmelt phenology, drives summer warming, alters growing season precipitation regimes, and consequently modifies vegetation phenology in mountain systems. Elevational migrants track spatial variation in seasonal plant growth by moving between ranges at different elevations during spring, so climate-driven vegetation change may disrupt historic benefits of migration. Elevational migrants can furthermore cope with short-term environmental variability by undertaking brief vertical movements to refugia when sudden adverse conditions arise. We uncover drivers of fine-scale vertical movement variation during upland migration in an endangered alpine specialist, Sierra Nevada bighorn sheep (Ovis canadensis sierrae) using a 20-year study of GPS collar data collected from 311 unique individuals. We used integrated step-selection analysis to determine factors that promote vertical movements and drive selection of destinations following vertical movements. Our results reveal that relatively high temperatures consistently drive uphill movements, while precipitation likely drives downhill movements. Furthermore, bighorn select destinations at their peak annual biomass and maximal time since snowmelt. These results indicate that although Sierra Nevada bighorn sheep seek out foraging opportunities related to landscape phenology, they compensate for short-term environmental stressors by undertaking brief up- and downslope vertical movements. Migrants may therefore be impacted by future warming and increased storm frequency or intensity, with shifts in annual migration timing, and fine-scale vertical movement responses to environmental variability.
Collapse
Affiliation(s)
- Christian John
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA.
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Tal Avgar
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
- Department of Biology, University of British Columbia - Okanagan, Kelowna, BC, Canada
- Wildlife Science Centre, Biodiversity Pathways Ltd., Kelowna, BC, Canada
| | - Karl Rittger
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Boulder, CO, USA
| | - Justine A Smith
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Logan W Stephenson
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | - Thomas R Stephenson
- California Department of Fish and Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, Bishop, CA, USA
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Newman EA, Feng X, Onland JD, Walker KR, Young S, Smith K, Townsend J, Damian D, Ernst K. Defining the roles of local precipitation and anthropogenic water sources in driving the abundance of Aedes aegypti, an emerging disease vector in urban, arid landscapes. Sci Rep 2024; 14:2058. [PMID: 38267474 PMCID: PMC10808563 DOI: 10.1038/s41598-023-50346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Understanding drivers of disease vectors' population dynamics is a pressing challenge. For short-lived organisms like mosquitoes, landscape-scale models must account for their highly local and rapid life cycles. Aedes aegypti, a vector of multiple emerging diseases, has become abundant in desert population centers where water from precipitation could be a limiting factor. To explain this apparent paradox, we examined Ae. aegypti abundances at > 660 trapping locations per year for 3 years in the urbanized Maricopa County (metropolitan Phoenix), Arizona, USA. We created daily precipitation layers from weather station data using a kriging algorithm, and connected localized daily precipitation to numbers of mosquitoes trapped at each location on subsequent days. Precipitation events occurring in either of two critical developmental periods for mosquitoes were correlated to suppressed subsequent adult female presence and abundance. LASSO models supported these analyses for female presence but not abundance. Precipitation may explain 72% of Ae. aegypti presence and 90% of abundance, with anthropogenic water sources supporting mosquitoes during long, precipitation-free periods. The method of using kriging and weather station data may be generally applicable to the study of various ecological processes and patterns, and lead to insights into microclimates associated with a variety of organisms' life cycles.
Collapse
Affiliation(s)
- Erica A Newman
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Xiao Feng
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Kathleen R Walker
- Department of Entomology, University of Arizona, 1140 E South Campus Drive, Forbes 410, Tucson, AZ, 85721, USA
| | - Steven Young
- Maricopa County Environmental Services Vector Control Division, 3220 W Gibson Ln, Phoenix, AZ, 85009, USA
| | - Kirk Smith
- Maricopa County Environmental Services Vector Control Division, 3220 W Gibson Ln, Phoenix, AZ, 85009, USA
| | - John Townsend
- Maricopa County Environmental Services Vector Control Division, 3220 W Gibson Ln, Phoenix, AZ, 85009, USA
| | - Dan Damian
- Maricopa County Office of Enterprise Technology, 301 S 4Th Ave #200, Phoenix, AZ, 85003, USA
| | - Kacey Ernst
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
3
|
Ding C, Meng Y, Huang W, Xie Q. Varying effects of tree cover on relationships between satellite-observed vegetation greenup date and spring temperature across Eurasian boreal forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165650. [PMID: 37474076 DOI: 10.1016/j.scitotenv.2023.165650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Earth observation satellites have facilitated the quantification of how vegetation phenology responds to climate warming on large scales. However, satellite image pixels may contain a mixture of multiple vegetation types or species with diverse phenological responses to climate variability. It is unclear how these mixed pixels affect the statistical relationships between satellite-derived vegetation phenology and climate factors. Here, we aim to investigate the impacts of percent tree cover (PTC), a measure of mixed pixel, on the statistical relationships between satellite-derived vegetation greenup date (GUD) and spring air temperature across Eurasian boreal forests at a 0.05° spatial resolution. We estimated GUD using Moderate Resolution Imaging Spectroradiometer (MODIS) time series data. The responses of GUD to interannual variation in spring temperature (April to May) during 2001-2020 were characterized by correlation coefficient (RTAM) and sensitivity (STAM). We then evaluated the local impacts of PTC on spatial variations in RTAM and STAM using partial correlation analysis through spatial moving windows. Our results indicate that, for most areas, forests with higher PTC were associated with stronger RTAM and STAM. Moreover, PTC had stronger local impacts on RTAM and STAM than mean annual temperature and temperature seasonality for 37.3% and 27.4% of the moving windows, respectively. These impacts were spatially varying and different among forest types. Specifically, deciduous broadleaf forests and deciduous needleleaf forests tend to have a higher proportion of these impacts compared to other forest types. Our findings demonstrate the nonnegligible effects of PTC on the statistical responses of GUD to temperature variability at coarse spatial resolution (0.05°) across Eurasian boreal forests.
Collapse
Affiliation(s)
- Chao Ding
- Center for Territorial Spatial Planning and Real Estate Studies, Beijing Normal University, Zhuhai 519087, China.
| | - Yuanyuan Meng
- Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Wenjiang Huang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoyun Xie
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Yang L, Zhao S, Liu S. Urban environments provide new perspectives for forecasting vegetation phenology responses under climate warming. GLOBAL CHANGE BIOLOGY 2023; 29:4383-4396. [PMID: 37249105 DOI: 10.1111/gcb.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Given that already-observed temperature increase within cities far exceeds the projected global temperature rise by the end of the century, urban environments often offer a unique opportunity for studying ecosystem response to future warming. However, the validity of thermal gradients in space serving as a substitute for those in time is rarely tested. Here, we investigated vegetation phenology dynamics in China's 343 cities and empirically test whether phenological responses to spatial temperature rise in urban settings can substitute for those to temporal temperature rise in their natural counterparts based on satellite-derived vegetation phenology and land surface temperature from 2003 to 2018. We found prevalent advancing spring phenology with "high confidence" and delaying autumn phenology with "medium confidence" under the context of widespread urban warming. Furthermore, we showed that space cannot substitute for time in predicting phenological shifts under climate warming at the national scale and for most cities. The thresholds of ~11°C mean annual temperature and ~600 mm annual precipitation differentiated the magnitude of phenological sensitivity to temperature across space and through time. Below those thresholds, there existed stronger advanced spring phenology and delayed autumn phenology across the spatial urbanization gradients than through time, and vice versa. Despite the complex and diverse relationships between phenological sensitivities across space and through time, we found that the directions of the temperature changes across spatial gradients were converged (i.e., mostly increased), but divergent through temporal gradients (i.e., increased or decreased without a predominant direction). Similarly, vegetation phenology changes more uniformly over space than through time. These results suggested that the urban environments provide a real-world condition to understand vegetation phenology response under future warming.
Collapse
Affiliation(s)
- Lu Yang
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shuqing Zhao
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- College of Ecology and the Environment, Hainan University, Hainan, China
| | - Shuguang Liu
- College of Ecology and the Environment, Hainan University, Hainan, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
5
|
Garretson A, Cuddy T, Duffy AG, Forkner RE. Citizen science data reveal regional heterogeneity in phenological response to climate in the large milkweed bug, Oncopeltus fasciatus. Ecol Evol 2023; 13:e10213. [PMID: 37435026 PMCID: PMC10332934 DOI: 10.1002/ece3.10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Regional populations of geographically widespread species may respond to different environmental factors across the species' range, generating divergent effects of climate change on life-history phenology. Using thousands of citizen science observations extracted from iNaturalist and associated with corresponding temperature, precipitation, elevation, and daylength information, we examined the drivers of adult mating and of nymphal phenology, development, and group size for populations of the large milkweed bug, Oncopeltus fasciatus, in different ecoregions. Research-grade iNaturalist images were correctly identified 98.3% of the time and yielded more than 3000 observations of nymphal groups and 1000 observations of mating adults spanning 18 years. Mating phenology showed distinct regional patterns, ranging from year-round mating in California to temporally restricted mating in the Great Lakes Northeastern Coast ecoregion. Relative temperature increases of 1°C for a given daylength expanded the mating season by more than a week in western ecoregions. While increases in relative temperature delayed mating phenology in all ecoregions, greater winter precipitation advanced mating in the California ecoregion. In the eastern ecoregions, nymphal phenology was delayed by increases in summer rainfall but was advanced by relative temperature increases, whereas in western regions, relative temperature increases delayed nymphal phenology. Furthermore, accumulated growing degree days (AGDD) was a poor predictor of developmental progression, as we found a positive but weak correlation between AGDD and age structure only for the Appalachian Southeast North America and the Great Lakes Northern Coast ecoregions. These complex phenological responses of O. fasciatus are just one example of how populations may be differentially susceptible to a diversity of climatic effects; using data across a species' whole distribution is critical for exposing regional variations, especially for species with large, continental-scale ranges. This study demonstrates the potential of photodocumented biodiversity data to aid in the monitoring of life history, host plant-insect interactions, and climate responsiveness.
Collapse
Affiliation(s)
- Alexis Garretson
- Graduate School of Biomedical SciencesTufts UniversityBostonMassachusettsUSA
- The Jackson LaboratoryBar HarborMaineUSA
| | - Tedra Cuddy
- Forensic Science ProgramGeorge Mason UniversityFairfaxVirginiaUSA
| | | | | | | |
Collapse
|
6
|
Blonder BW, Brodrick PG, Chadwick KD, Carroll E, Cruz-de Hoyos RM, Expósito-Alonso M, Hateley S, Moon M, Ray CA, Tran H, Walton JA. Climate lags and genetics determine phenology in quaking aspen (Populus tremuloides). THE NEW PHYTOLOGIST 2023; 238:2313-2328. [PMID: 36856334 DOI: 10.1111/nph.18850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/19/2023] [Indexed: 05/19/2023]
Abstract
Spatiotemporal patterns of phenology may be affected by mosaics of environmental and genetic variation. Environmental drivers may have temporally lagged impacts, but patterns and mechanisms remain poorly known. We combine multiple genomic, remotely sensed, and physically modeled datasets to determine the spatiotemporal patterns and drivers of canopy phenology in quaking aspen, a widespread clonal dioecious tree species with diploid and triploid cytotypes. We show that over 391 km2 of southwestern Colorado: greenup date, greendown date, and growing season length vary by weeks and differ across sexes, cytotypes, and genotypes; phenology has high phenotypic plasticity and heritabilities of 31-61% (interquartile range); and snowmelt date, soil moisture, and air temperature predict phenology, at temporal lags of up to 3 yr. Our study shows that lagged environmental effects are needed to explain phenological variation and that the effect of cytotype on phenology is obscured by its correlation with topography. Phenological patterns are consistent with responses to multiyear accumulation of carbon deficit or hydraulic damage.
Collapse
Affiliation(s)
- Benjamin W Blonder
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Philip G Brodrick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - K Dana Chadwick
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Erin Carroll
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Roxanne M Cruz-de Hoyos
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | | | - Shannon Hateley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Minkyu Moon
- Department of Earth & Environment, Boston University, Boston, MA, 02215, USA
| | - Courtenay A Ray
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, CA, 94720, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Hoang Tran
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08540, USA
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James A Walton
- Molecular Ecology Laboratory, Department of Wildland Resources, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
7
|
Guralnick RP, Campbell LP, Belitz MW. Weather anomalies more important than climate means in driving insect phenology. Commun Biol 2023; 6:490. [PMID: 37147472 PMCID: PMC10163234 DOI: 10.1038/s42003-023-04873-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Studies of long-term trends in phenology often rely on climatic averages or accumulated heat, overlooking climate variability. Here we test the hypothesis that unusual weather conditions are critical in driving adult insect phenology. First, we generate phenological estimates for Lepidoptera (moths and butterflies) across the Eastern USA, and over a 70 year period, using natural history collections data. Next, we assemble a set of predictors, including the number of unusually warm and cold days prior to, and during, the adult flight period. We then use phylogenetically informed linear mixed effects models to evaluate effects of unusual weather events, climate context, species traits, and their interactions on flight onset, offset and duration. We find increasing numbers of both warm and cold days were strong effects, dramatically increasing flight duration. This strong effect on duration is likely driven by differential onset and termination dynamics. For flight onset, impact of unusual climate conditions is dependent on climatic context, but for flight cessation, more unusually cold days always lead to later termination particularly for multivoltine species. These results show that understanding phenological responses under global change must account for unusual weather events, especially given they are predicted to increase in frequency and severity.
Collapse
Affiliation(s)
- R P Guralnick
- Department of Natural History, Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainesville, FL, 32611, USA.
| | - L P Campbell
- Florida Medical Entomology Laboratory, Department of Entomology & Nematology, IFAS, University of Florida, 200 9th Street SE, Vero Beach, FL, 32962, USA
| | - M W Belitz
- Department of Natural History, Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
8
|
Wood DJA, Stoy PC, Powell SL, Beever EA. Antecedent climatic conditions spanning several years influence multiple land-surface phenology events in semi-arid environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1007010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological processes are complex, often exhibiting non-linear, interactive, or hierarchical relationships. Furthermore, models identifying drivers of phenology are constrained by uncertainty regarding predictors, interactions across scales, and legacy impacts of prior climate conditions. Nonetheless, measuring and modeling ecosystem processes such as phenology remains critical for management of ecological systems and the social systems they support. We used random forest models to assess which combination of climate, location, edaphic, vegetation composition, and disturbance variables best predict several phenological responses in three dominant land cover types in the U.S. Northwestern Great Plains (NWP). We derived phenological measures from the 25-year series of AVHRR satellite data and characterized climatic predictors (i.e., multiple moisture and/or temperature based variables) over seasonal and annual timeframes within the current year and up to 4 years prior. We found that antecedent conditions, from seasons to years before the current, were strongly associated with phenological measures, apparently mediating the responses of communities to current-year conditions. For example, at least one measure of antecedent-moisture availability [precipitation or vapor pressure deficit (VPD)] over multiple years was a key predictor of all productivity measures. Variables including longer-term lags or prior year sums, such as multi-year-cumulative moisture conditions of maximum VPD, were top predictors for start of season. Productivity measures were also associated with contextual variables such as soil characteristics and vegetation composition. Phenology is a key process that profoundly affects organism-environment relationships, spatio-temporal patterns in ecosystem structure and function, and other ecosystem dynamics. Phenology, however, is complex, and is mediated by lagged effects, interactions, and a diversity of potential drivers; nonetheless, the incorporation of antecedent conditions and contextual variables can improve models of phenology.
Collapse
|
9
|
Xie Y, Thammavong HT, Park DS. The ecological implications of intra- and inter-species variation in phenological sensitivity. THE NEW PHYTOLOGIST 2022; 236:760-773. [PMID: 35801834 PMCID: PMC9796043 DOI: 10.1111/nph.18361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plant-pollinator mutualisms rely upon the synchrony of interacting taxa. Climate change can disrupt this synchrony as phenological responses to climate vary within and across species. However, intra- and interspecific variation in phenological responses is seldom considered simultaneously, limiting our understanding of climate change impacts on interactions among taxa across their ranges. We investigated how variation in phenological sensitivity to climate can alter ecological interactions simultaneously within and among species using natural history collections and citizen science data. We focus on a unique system, comprising a wide-ranged spring ephemeral with varying color morphs (Claytonia virginica) and its specialist bee pollinator (Andrena erigeniae). We found strongly opposing trends in the phenological sensitivities of plants vs their pollinators. Flowering phenology was more sensitive to temperature in warmer regions, whereas bee phenology was more responsive in colder regions. Phenological sensitivity varied across flower color morphs. Temporal synchrony between flowering and pollinator activity was predicted to change heterogeneously across the species' ranges in the future. Our work demonstrates the complexity and fragility of ecological interactions in time and the necessity of incorporating variation in phenological responses across multiple axes to understand how such interactions will change in the future.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47906USA
| | | | - Daniel S. Park
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
10
|
Belitz MW, Larsen EA, Shirey V, Li D, Guralnick RP. Phenological research based on natural history collections: practical guidelines and a Lepidopteran case study. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Michael W. Belitz
- Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Elise A. Larsen
- Department of Biology Georgetown University Washington DC USA
| | - Vaughn Shirey
- Department of Biology Georgetown University Washington DC USA
| | - Daijiang Li
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
- Center for Computation & Technology Louisiana State University Baton Rouge LA USA
| | | |
Collapse
|
11
|
Larsen EA, Belitz MW, Guralnick RP, Ries L. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Sci Rep 2022; 12:13370. [PMID: 35927297 PMCID: PMC9352721 DOI: 10.1038/s41598-022-16104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Data availability limits phenological research at broad temporal and spatial extents. Butterflies are among the few taxa with broad-scale occurrence data, from both incidental reports and formal surveys. Incidental reports have biases that are challenging to address, but structured surveys are often limited seasonally and may not span full flight phenologies. Thus, how these data source compare in phenological analyses is unclear. We modeled butterfly phenology in relation to traits and climate using parallel analyses of incidental and survey data, to explore their shared utility and potential for analytical integration. One workflow aggregated “Pollard” surveys, where sites are visited multiple times per year; the other aggregated incidental data from online portals: iNaturalist and eButterfly. For 40 species, we estimated early (10%) and mid (50%) flight period metrics, and compared the spatiotemporal patterns and drivers of phenology across species and between datasets. For both datasets, inter-annual variability was best explained by temperature, and seasonal emergence was earlier for resident species overwintering at more advanced stages. Other traits related to habitat, feeding, dispersal, and voltinism had mixed or no impacts. Our results suggest that data integration can improve phenological research, and leveraging traits may predict phenology in poorly studied species.
Collapse
Affiliation(s)
- Elise A Larsen
- Department of Biology, Georgetown University, Regents Hall 501, Washington DC, 20057, USA.
| | - Michael W Belitz
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.,University of Florida Biodiversity Institute, Gainesville, FL, 32603, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie Ries
- Department of Biology, Georgetown University, Regents Hall 501, Washington DC, 20057, USA
| |
Collapse
|
12
|
New directions in tropical phenology. Trends Ecol Evol 2022; 37:683-693. [PMID: 35680467 DOI: 10.1016/j.tree.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
Abstract
Earth's most speciose biomes are in the tropics, yet tropical plant phenology remains poorly understood. Tropical phenological data are comparatively scarce and viewed through the lens of a 'temperate phenological paradigm' expecting phenological traits to respond to strong, predictably annual shifts in climate (e.g., between subfreezing and frost-free periods). Digitized herbarium data greatly expand existing phenological data for tropical plants; and circular data, statistics, and models are more appropriate for analyzing tropical (and temperate) phenological datasets. Phylogenetic information, which remains seldom applied in phenological investigations, provides new insights into phenological responses of large groups of related species to climate. Consistent combined use of herbarium data, circular statistical distributions, and robust phylogenies will rapidly advance our understanding of tropical - and temperate - phenology.
Collapse
|
13
|
Multiple UAV Flights across the Growing Season Can Characterize Fine Scale Phenological Heterogeneity within and among Vegetation Functional Groups. REMOTE SENSING 2022. [DOI: 10.3390/rs14051290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Grasslands and shrublands exhibit pronounced spatial and temporal variability in structure and function with differences in phenology that can be difficult to observe. Unpiloted aerial vehicles (UAVs) can measure vegetation spectral patterns relatively cheaply and repeatably at fine spatial resolution. We tested the ability of UAVs to measure phenological variability within vegetation functional groups and to improve classification accuracy at two sites in Montana, U.S.A. We tested four flight frequencies during the growing season. Classification accuracy based on reference data increased by 5–10% between a single flight and scenarios including all conducted flights. Accuracy increased from 50.6 to 61.4% at the drier site, while at the more mesic/densely vegetated site, we found an increase of 59.0 to 64.4% between a single and multiple flights over the growing season. Peak green-up varied by 2–4 weeks within the scenes, and sparse vegetation classes had only a short detectable window of active phtosynthesis; therefore, a single flight could not capture all vegetation that was active across the growing season. The multi-temporal analyses identified differences in the seasonal timing of green-up and senescence within herbaceous and sagebrush classes. Multiple UAV measurements can identify the fine-scale phenological variability in complex mixed grass/shrub vegetation.
Collapse
|
14
|
Park DS, Breckheimer IK, Ellison AM, Lyra GM, Davis CC. Phenological displacement is uncommon among sympatric angiosperms. THE NEW PHYTOLOGIST 2022; 233:1466-1478. [PMID: 34626123 DOI: 10.1111/nph.17784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Interactions between species can influence successful reproduction, resulting in reproductive character displacement, where the similarity of reproductive traits - such as flowering time - among close relatives growing together differ from when growing apart. Evidence for the overall prevalence and direction of this phenomenon, and its stability under environmental change, remains untested across large scales. Using the power of crowdsourcing, we gathered phenological information from over 40 000 herbarium specimens, and investigated displacement in flowering time across 110 animal-pollinated species in the eastern USA. Overall, flowering time displacement is not common across large scales. However, displacement is generally greater among species pairs that flower close in time, regardless of direction. Furthermore, with climate change, the flowering times of closely related species are predicted, on average, to shift further apart by the mid-21st century. We demonstrate that the degree and direction of phenological displacement among co-occurring closely related species pairs varies tremendously. However, future climate change may alter the differences in reproductive timing among many of these species pairs, which may have significant consequences for species interactions and gene flow. Our study provides one promising path towards understanding how the phenological landscape is structured and may respond to future environmental change.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | | | - Aaron M Ellison
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
- Sound Solutions for Sustainable Science, Boston, MA, 02135, USA
| | - Goia M Lyra
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
- Programa de Pós Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40000-000, Brasil
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
John C, Shilling F, Post E. drp
T
oolkit
: An automated workflow for aligning and analysing vegetation and ground surface time‐series imagery. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Christian John
- Department of Wildlife, Fish, and Conservation Biology University of California, Davis Davis CA USA
| | - Fraser Shilling
- Department of Environmental Science and Policy University of California, Davis Davis CA USA
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology University of California, Davis Davis CA USA
| |
Collapse
|
16
|
Di Cecco GJ, Barve V, Belitz MW, Stucky BJ, Guralnick RP, Hurlbert AH. Observing the Observers: How Participants Contribute Data to iNaturalist and Implications for Biodiversity Science. Bioscience 2021. [DOI: 10.1093/biosci/biab093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The availability of citizen science data has resulted in growing applications in biodiversity science. One widely used platform, iNaturalist, provides millions of digitally vouchered observations submitted by a global user base. These observation records include a date and a location but otherwise do not contain any information about the sampling process. As a result, sampling biases must be inferred from the data themselves. In the present article, we examine spatial and temporal biases in iNaturalist observations from the platform's launch in 2008 through the end of 2019. We also characterize user behavior on the platform in terms of individual activity level and taxonomic specialization. We found that, at the level of taxonomic class, the users typically specialized on a particular group, especially plants or insects, and rarely made observations of the same species twice. Biodiversity scientists should consider whether user behavior results in systematic biases in their analyses before using iNaturalist data.
Collapse
Affiliation(s)
- Grace J Di Cecco
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Vijay Barve
- biodiversity informatics, Florida Museum of Natural History, Gainesville, Florida, United States
| | - Michael W Belitz
- biodiversity informatics, Florida Museum of Natural History, Gainesville, Florida, United States
| | - Brian J Stucky
- biodiversity informatics, Florida Museum of Natural History, Gainesville, Florida, United States
| | - Robert P Guralnick
- biodiversity informatics, Florida Museum of Natural History, Gainesville, Florida, United States
| | - Allen H Hurlbert
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|