1
|
Alizadeh Bahmani AH, Abdel-Aziz MI, Hashimoto S, Bang C, Brandstetter S, Corcuera-Elosegui P, Franke A, Gorenjak M, Harner S, Kheiroddin P, López-Fernández L, Neerincx AH, Pino-Yanes M, Potočnik U, Sardón-Prado O, Toncheva AA, Wolff C, Kabesch M, Kraneveld AD, Vijverberg SJH, Maitland-van der Zee AH. Association of Corticosteroid Inhaler Type with Saliva Microbiome in Moderate-to-Severe Pediatric Asthma. Biomedicines 2025; 13:89. [PMID: 39857673 PMCID: PMC11761874 DOI: 10.3390/biomedicines13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Metered-dose inhalers (MDIs) and dry powder inhalers (DPIs) are common inhaled corticosteroid (ICS) inhaler devices. The difference in formulation and administration technique of these devices may influence oral cavity microbiota composition. We aimed to compare the saliva microbiome in children with moderate-to-severe asthma using ICS via MDIs versus DPIs. Methods: Saliva samples collected from 143 children (6-17 yrs) with moderate-to-severe asthma across four European countries (The Netherlands, Germany, Spain, and Slovenia) as part of the SysPharmPediA cohort were subjected to 16S rRNA sequencing. The microbiome was compared using global diversity (α and β) between two groups of participants based on inhaler devices (MDI (n = 77) and DPI (n = 65)), and differential abundance was compared using the Analysis of Compositions of Microbiomes with the Bias Correction (ANCOM-BC) method. Results: No significant difference was observed in α-diversity between the two groups. However, β-diversity analysis revealed significant differences between groups using both Bray-Curtis and weighted UniFrac methods (adjusted p-value = 0.015 and 0.044, respectively). Significant differential abundance between groups, with higher relative abundance in the MDI group compared to the DPI group, was detected at the family level [Carnobacteriaceae (adjusted p = 0.033)] and at the genus level [Granulicatella (adjusted p = 0.021) and Aggregatibacter (adjusted p = 0.011)]. Conclusions: Types of ICS devices are associated with different saliva microbiome compositions in moderate-to-severe pediatric asthma. The causal relation between inhaler types and changes in saliva microbiota composition needs to be further evaluated, as well as whether this leads to different potential adverse effects in terms of occurrence and level of severity.
Collapse
Affiliation(s)
- Amir Hossein Alizadeh Bahmani
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Personalized Medicine, 1105 AZ Amsterdam, The Netherlands
| | - Mahmoud I. Abdel-Aziz
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Personalized Medicine, 1105 AZ Amsterdam, The Netherlands
| | - Simone Hashimoto
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Pediatric Pulmonology and Allergy, Emma Children’s Hospital, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Susanne Brandstetter
- University Children’s Hospital Regensburg (KUNO), University of Regensburg, D-93049 Regensburg, Germany
| | - Paula Corcuera-Elosegui
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, D-24105 Kiel, Germany
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Susanne Harner
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Parastoo Kheiroddin
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Leyre López-Fernández
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Anne H. Neerincx
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Olaia Sardón-Prado
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, 20014 San Sebastián, Spain
- Department of Pediatrics, School of Medicine and Nursery, University of te Basque Country, 20014 San Sebastián, Spain
| | - Antoaneta A. Toncheva
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Christine Wolff
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), D-93049 Regensburg, Germany
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Susanne J. H. Vijverberg
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Personalized Medicine, 1105 AZ Amsterdam, The Netherlands
| | - Anke H. Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Public Health, Personalized Medicine, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
2
|
Furlaneto F, Levi YLDAS, Sávio DDSF, da Silveira ICF, de Oliveira AM, Lourenço TGB, Ribeiro MC, Silva PHF, Salvador SLDS, Colombo APV, Messora MR. Microbiological profile of patients with generalized gingivitis undergoing periodontal therapy and administration of Bifidobacterium animalis subsp. lactis HN019: A randomized clinical trial. PLoS One 2024; 19:e0310529. [PMID: 39527605 PMCID: PMC11554181 DOI: 10.1371/journal.pone.0310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE To evaluate the adjunctive use of the probiotic Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019) to conventional therapy on clinical and microbiological parameters in patients with generalized gingivitis. METHODS Sixty systemically healthy individuals with untreated generalized gingivitis were submitted to periodontal therapy and allocated to receive Placebo (n = 30) or Probiotic (n = 30) lozenges, twice a day for 8 weeks. Bleeding on Marginal Probing (BOMP) was evaluated at baseline, after 2 and 8 weeks. Supra and subgingival biofilm were obtained at baseline and 8 weeks post-therapy for analyses by 16S rRNA gene sequencing. Differences between therapeutic groups were analyzed by non-parametric tests (p<0.05). RESULTS The Placebo and Probiotic groups showed a significant reduction in BOMP at 8 weeks compared to baseline (p<0.05). The Probiotic group had a lower percentage of BOMP when compared with the Placebo group at 8 weeks (p<0.0001). Alpha and beta-diversity showed no statistical significance between groups and time points. At phylum level, no significant differences were observed between groups and time points. At genus level, an increase in the relative abundances of Bergeyella and Corynebacterium were significantly associated with a greater reduction in bleeding in the Placebo group and with less reduction in bleeding in the Probiotic group, respectively. At species level, Schaalia spp., Streptococcus gordonii, and Leptotrichia wadei increased in Placebo and decreased in the Probiotic group after treatment. Granulicatella adiacens decreased significantly after the probiotic therapy, while Saccharibacteria (TM7) spp., Solobacterium moorei, and Catonella morbi increased significantly. In the Placebo group, Bergeyella sp. HMT-322 was associated with a greater percentage of reduction in bleeding. In both groups, Actinomyces species were related to less reduction in bleeding. CONCLUSION The adjuvant use of B. lactis HN019 alongside conventional therapy enhanced the reduction in BOMP and promoted greater changes in the microbiological profile of patients with generalized gingivitis. TRIAL REGISTRATION The study was registered at Brazilian Clinical Trials Registry (ReBEC; protocol number: RBR-59v2yb).
Collapse
Affiliation(s)
- Flavia Furlaneto
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of Sao Paulo–USP, Ribeirao Preto, SP, Brazil
| | - Yara Loyanne de Almeida Silva Levi
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of Sao Paulo–USP, Ribeirao Preto, SP, Brazil
| | - Débora de Souza Ferreira Sávio
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of Sao Paulo–USP, Ribeirao Preto, SP, Brazil
| | - Izadora Cianfa Firmino da Silveira
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of Sao Paulo–USP, Ribeirao Preto, SP, Brazil
| | - Adriana Miranda de Oliveira
- Division of Post-graduate Periodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita Gomes Baêta Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcella Costa Ribeiro
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of Sao Paulo–USP, Ribeirao Preto, SP, Brazil
| | - Pedro Henrique Felix Silva
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of Sao Paulo–USP, Ribeirao Preto, SP, Brazil
| | - Sergio Luiz de Souza Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo–USP, Ribeirao Preto, SP, Brazil
| | - Ana Paula Vieira Colombo
- Division of Post-graduate Periodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Michel Reis Messora
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of Sao Paulo–USP, Ribeirao Preto, SP, Brazil
| |
Collapse
|
3
|
You Y, He Y, Huang P. Characterization of lingual microbiota in pediatric geographic tongue. Turk J Pediatr 2024; 66:448-456. [PMID: 39387425 DOI: 10.24953/turkjpediatr.2024.4638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Geographic tongue is an oral mucosal lesion affecting the tongue. The association between geographic tongue and the mucosal microbiota in children remains unclear. METHOD To characterize the feature of lingual microbiota in pediatric geographic tongue, lingual swabs were collected from lesion sites and healthy sites of 25 patients with geographic tongue (14 males and 11 females; age 5.21 ±2.94 years) and 19 controls (10 males and 9 females; age 5.31±2.82 years). DNA was extracted and the 16S rRNA was amplificated, sequenced and analyzed. RESULTS The lingual microbiota composition was significantly different between children with geographic tongue and the healthy cohort; Streptobacillus was reduced in geographic tongue, while Catonella, Bacillus and Oribacterium were overrepresented. When the lesions and the normal mucosa were compared, an increased abundance of Prevotella oris was observed. CONCLUSION Our results provided new insight into the association between oral microbiota and pediatric geographic tongue.
Collapse
Affiliation(s)
- Yi You
- Department of Stomatology, Hunan Children's Hospital, Hunan, China
| | - Yuan He
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Academician Workstation for Oral-maxilofacial and Regenerative Medicine & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, China
| | - Peicheng Huang
- Department of Stomatology, Hunan Children's Hospital, Hunan, China
| |
Collapse
|
4
|
Yavorov-Dayliev D, Milagro FI, Ayo J, Oneca M, Goyache I, López-Yoldi M, Aranaz P. Glucose-lowering effects of a synbiotic combination containing Pediococcus acidilactici in C. elegans and mice. Diabetologia 2023; 66:2117-2138. [PMID: 37584728 PMCID: PMC10542285 DOI: 10.1007/s00125-023-05981-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 08/17/2023]
Abstract
AIMS/HYPOTHESIS Modulation of gut microbiota has emerged as a promising strategy to treat or prevent the development of different metabolic diseases, including type 2 diabetes and obesity. Previous data from our group suggest that the strain Pediococcus acidilactici CECT9879 (pA1c) could be an effective probiotic for regulating glucose metabolism. Hence, the objectives of this study were to verify the effectiveness of pA1c on glycaemic regulation in diet-induced obese mice and to evaluate whether the combination of pA1c with other normoglycaemic ingredients, such as chromium picolinate (PC) and oat β-glucans (BGC), could increase the efficacy of this probiotic on the regulation of glucose and lipid metabolism. METHODS Caenorhabditis elegans was used as a screening model to describe the potential synbiotic activities, together with the underlying mechanisms of action. In addition, 4-week-old male C57BL/6J mice were fed with a high-fat/high-sucrose diet (HFS) for 6 weeks to induce hyperglycaemia and obesity. Mice were then divided into eight groups (n=12 mice/group) according to dietary supplementation: control-diet group; HFS group; pA1c group (1010 colony-forming units/day); PC; BGC; pA1c+PC+BGC; pA1c+PC; and pA1c+BGC. Supplementations were maintained for 10 weeks. Fasting blood glucose was determined and an IPGTT was performed prior to euthanasia. Fat depots, liver and other organs were weighed, and serum biochemical variables were analysed. Gene expression analyses were conducted by real-time quantitative PCR. Sequencing of the V3-V4 region of the 16S rRNA gene from faecal samples of each group was performed, and differential abundance for family, genera and species was analysed by ALDEx2R package. RESULTS Supplementation with the synbiotic (pA1c+PC+BGC) counteracted the effect of the high glucose by modulating the insulin-IGF-1 signalling pathway in C. elegans, through the reversal of the glucose nuclear localisation of daf-16. In diet-induced obese mice, all groups supplemented with the probiotic significantly ameliorated glucose tolerance after an IPGTT, demonstrating the glycaemia-regulating effect of pA1c. Further, mice supplemented with pA1c+PC+BGC exhibited lower fasting blood glucose, a reduced proportion of visceral adiposity and a higher proportion of muscle tissue, together with an improvement in the brown adipose tissue in comparison with the HFS group. Besides, the effect of the HFS diet on steatosis and liver damage was normalised by the synbiotic. Gene expression analyses demonstrated that the synbiotic activity was mediated not only by modulation of the insulin-IGF-1 signalling pathway, through the overexpression of GLUT-1 and GLUT-4 mediators, but also by a decreased expression of proinflammatory cytokines such as monocyte chemotactic protein-1. 16S metagenomics demonstrated that the synbiotic combinations allowed an increase in the concentration of P. acidilactici, together with improvements in the intestinal microbiota such as a reduction in Prevotella and an increase in Akkermansia muciniphila. CONCLUSIONS/INTERPRETATION Our data suggest that the combination of pA1c with PC and BGC could be a potential synbiotic for blood glucose regulation and may help to fight insulin resistance, diabetes and obesity.
Collapse
Affiliation(s)
- Deyan Yavorov-Dayliev
- Genbioma Aplicaciones SL, Navarra, Spain
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain.
- Center for Nutrition Research, University of Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| | - Josune Ayo
- Genbioma Aplicaciones SL, Navarra, Spain
| | | | - Ignacio Goyache
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Miguel López-Yoldi
- Fac Pharm & Nutr, Dept Nutr Food Sci & Physiol, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
5
|
Tahir S, Hasanain R, Abuhammour W, Dsouza AP, Lone R, Kherani S. Granulicatella adiacens Causing a Parapharyngeal Abscess in a 10-Month-Old Infant: A Rare-Case Report and Literature Review of Deep Neck Infections (DNIs) in Children. Cureus 2023; 15:e42144. [PMID: 37602014 PMCID: PMC10438130 DOI: 10.7759/cureus.42144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Granulicatella adiacens is a rare variant of the Streptococcus bacteria. When isolated, G. adiacens has been described in cases of endocarditis and bacteremia, but less commonly seen in isolated pyogenic infections. We report a case of a parapharyngeal abscess caused by G. adiacens in an otherwise healthy 10-month-old infant, which was successfully treated with antibiotics and surgical drainage. To the best of our knowledge, this is the first described case of a pediatric deep soft tissue neck infection caused by G. adiacens with one other report in an adult. Additionally, of all localized infections from this bacteria, this is only the second reported case in the pediatric population. We also include an evidence-based literature review of the clinical presentation, microbiology, imaging modalities, and management approach to deep neck infections (DNIs).
Collapse
Affiliation(s)
- Saja Tahir
- Pediatrics, Al Jalila Children's Speciality Hospital, Dubai, ARE
| | - Rand Hasanain
- Pediatrics, Al Jalila Children's Speciality Hospital, Dubai, ARE
| | - Walid Abuhammour
- Infectious Diseases, Al Jalila Children's Speciality Hospital, Dubai, ARE
| | - Ajay P Dsouza
- Radiology, Al Jalila Children's Speciality Hospital, Dubai, ARE
| | - Rubina Lone
- Laboratory Medicine, Al Jalila Children's Speciality Hospital, Dubai, ARE
| | - Safeena Kherani
- Otolaryngology - Head and Neck Surgery, Al Jalila Children's Speciality Hospital, Dubai, ARE
| |
Collapse
|
6
|
Herreros-Pomares A, Hervás D, Bagan-Debón L, Jantus-Lewintre E, Gimeno-Cardona C, Bagan J. On the Oral Microbiome of Oral Potentially Malignant and Malignant Disorders: Dysbiosis, Loss of Diversity, and Pathogens Enrichment. Int J Mol Sci 2023; 24:ijms24043466. [PMID: 36834903 PMCID: PMC9961214 DOI: 10.3390/ijms24043466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The role of dysbiosis in the development and progression of oral potentially malignant disorders (OPMDs) remains largely unknown. Here, we aim to characterize and compare the oral microbiome of homogeneous leucoplakia (HL), proliferative verrucous leukoplakia (PVL), oral squamous cell carcinoma (OSCC), and OSCC preceded by PVL (PVL-OSCC). Fifty oral biopsies from HL (n = 9), PVL (n = 12), OSCC (n = 10), PVL-OSCC (n = 8), and healthy (n = 11) donors were obtained. The sequence of the V3-V4 region of the 16S rRNA gene was used to analyze the composition and diversity of bacterial populations. In the cancer patients, the number of observed amplicon sequence variants (ASVs) was lower and Fusobacteriota constituted more than 30% of the microbiome. PVL and PVL-OSCC patients had a higher abundance of Campilobacterota and lower Proteobacteria than any other group analyzed. A penalized regression was performed to determine which species were able to distinguish groups. HL is enriched in Streptococcus parasanguinis, Streptococcus salivarius, Fusobacterium periodonticum, Prevotella histicola, Porphyromonas pasteri, and Megasphaera micronuciformis; PVL is enriched in Prevotella salivae, Campylobacter concisus, Dialister pneumosintes, and Schaalia odontolytica; OSCC is enriched in Capnocytophaga leadbetteri, Capnocytophaga sputigena, Capnocytophaga gingivalis, Campylobacter showae, Metamycoplasma salivarium, and Prevotella nanceiensis; and PVL-OSCC is enriched in Lachnospiraceae bacterium, Selenomonas sputigena, and Prevotella shahii. There is differential dysbiosis in patients suffering from OPMDs and cancer. To the best of our knowledge, this is the first study comparing the oral microbiome alterations in these groups; thus, additional studies are needed.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (A.H.-P.); (J.B.)
| | - David Hervás
- Department of Applied Statistics and Operational Research, and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Leticia Bagan-Debón
- Medicina Oral Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, 46022 Valencia, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - José Bagan
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Medicina Oral Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain
- Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, 46014 Valencia, Spain
- Precancer and Oral Cancer Research Group, Valencia University, 46010 Valencia, Spain
- Correspondence: (A.H.-P.); (J.B.)
| |
Collapse
|
7
|
Gershater E, Liu Y, Xue B, Shin MK, Koo H, Zheng Z, Li C. Characterizing the microbiota of cleft lip and palate patients: a comprehensive review. Front Cell Infect Microbiol 2023; 13:1159455. [PMID: 37143743 PMCID: PMC10152472 DOI: 10.3389/fcimb.2023.1159455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Orofacial cleft disorders, including cleft lip and/or palate (CL/P), are one of the most frequently-occurring congenital disorders worldwide. The health issues of patients with CL/P encompass far more than just their anatomic anomaly, as patients with CL/P are prone to having a high incidence of infectious diseases. While it has been previously established that the oral microbiome of patients with CL/P differs from that of unaffected patients, the exact nature of this variance, including the relevant bacterial species, has not been fully elucidated; likewise, examination of anatomic locations besides the cleft site has been neglected. Here, we intended to provide a comprehensive review to highlight the significant microbiota differences between CL/P patients and healthy subjects in various anatomic locations, including the teeth inside and adjacent to the cleft, oral cavity, nasal cavity, pharynx, and ear, as well as bodily fluids, secretions, and excretions. A number of bacterial and fungal species that have been proven to be pathogenic were found to be prevalently and/or specifically detected in CL/P patients, which can benefit the development of CL/P-specific microbiota management strategies.
Collapse
Affiliation(s)
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Binglan Xue
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Kyung Shin
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
8
|
Inchingolo AD, Malcangi G, Semjonova A, Inchingolo AM, Patano A, Coloccia G, Ceci S, Marinelli G, Di Pede C, Ciocia AM, Mancini A, Palmieri G, Barile G, Settanni V, De Leonardis N, Rapone B, Piras F, Viapiano F, Cardarelli F, Nucci L, Bordea IR, Scarano A, Lorusso F, Palermo A, Costa S, Tartaglia GM, Corriero A, Brienza N, Di Venere D, Inchingolo F, Dipalma G. Oralbiotica/Oralbiotics: The Impact of Oral Microbiota on Dental Health and Demineralization: A Systematic Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1014. [PMID: 35883998 PMCID: PMC9323959 DOI: 10.3390/children9071014] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022]
Abstract
The oral microbiota plays a vital role in the human microbiome and oral health. Imbalances between microbes and their hosts can lead to oral and systemic disorders such as diabetes or cardiovascular disease. The purpose of this review is to investigate the literature evidence of oral microbiota dysbiosis on oral health and discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis; both have enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches as ORALBIOTICA for oral diseases such as demineralization. PubMed, Web of Science, Google Scholar, Scopus, Cochrane Library, EMBEDDED, Dentistry & Oral Sciences Source via EBSCO, APA PsycINFO, APA PsyArticles, and DRUGS@FDA were searched for publications that matched our topic from January 2017 to 22 April 2022, with an English language constraint using the following Boolean keywords: ("microbio*" and "demineralization*") AND ("oral microbiota" and "demineralization"). Twenty-two studies were included for qualitative analysis. As seen by the studies included in this review, the balance of the microbiota is unstable and influenced by oral hygiene, the presence of orthodontic devices in the oral cavity and poor eating habits that can modify its composition and behavior in both positive and negative ways, increasing the development of demineralization, caries processes, and periodontal disease. Under conditions of dysbiosis, favored by an acidic environment, the reproduction of specific bacterial strains increases, favoring cariogenic ones such as Bifidobacterium dentium, Bifidobacterium longum, and S. mutans, than S. salivarius and A. viscosus, and increasing of Firmicutes strains to the disadvantage of Bacteroidetes. Microbial balance can be restored by using probiotics and prebiotics to manage and treat oral diseases, as evidenced by mouthwashes or dietary modifications that can influence microbiota balance and prevent or slow disease progression.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Anna Maria Ciocia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Filippo Cardarelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 6, 80138 Naples, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (F.L.)
| | - Andrea Palermo
- Implant Dentistry College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B46BN, UK;
| | - Stefania Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Orthodontics, School of Dentistry, University of Messina, 98125 Messina, Italy;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
- Department of Orthodontics, Faculty of Medicine, University of Milan, 20100 Milan, Italy
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (A.C.); (N.B.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (A.S.); (A.M.I.); (A.P.); (G.C.); (S.C.); (G.M.); (C.D.P.); (A.M.C.); (A.M.); (G.P.); (G.B.); (V.S.); (N.D.L.); (B.R.); (F.P.); (F.V.); (F.C.); (D.D.V.); (G.D.)
| |
Collapse
|
9
|
Saavedra FM, Pelepenko LE, Boyle WS, Zhang A, Staley C, Herzberg MC, Marciano MA, Lima BP. In vitro physicochemical characterization of five root canal sealers and their influence on an ex vivo oral multi-species biofilm community. Int Endod J 2022; 55:772-783. [PMID: 35383959 PMCID: PMC9321831 DOI: 10.1111/iej.13742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
AIM To evaluate the physicochemical properties of five root canal sealers and assess their effect on an ex vivo dental plaque-derived polymicrobial community. METHODOLOGY Dental plaque-derived microbial communities were exposed to the sealers (AH Plus [AHP], GuttaFlow Bioseal [GFB], Endoseal MTA [ESM], Bio-C sealer [BCS] and BioRoot RCS [BRR]) for 3, 6 and 18 h. The sealers' effect on the biofilm biomass and metabolic activity was quantified using crystal violet (CV) staining and MTT assay, respectively. Biofilm community composition and morphology were assessed by denaturing gradient gel electrophoresis (DGGE), 16S rRNA sequencing and scanning electron microscopy. The ISO6876:2012 specifications were followed to determine the setting time, radiopacity, flowability and solubility. Obturated acrylic teeth were used to assess the sealers' effect on pH. Surface chemical characterization was performed using SEM with coupled energy-dispersive spectroscopy. Data normality was assessed using the Shapiro-Wilk test. One-way anova and Tukey's tests were used to analyze data from setting time, radiopacity, flowability and solubility. Two-way anova and Dunnett's tests were used for the data analysis from CV, MTT and pH. 16S rRNA sequencing data were analyzed for alpha (Shannon index and Chao analysis) and beta diversity (Bray-Curtis dissimilarities). Differences in community composition were evaluated by analysis of similarity (p < .05). RESULTS The sealers significantly influenced microbial community composition and morphology. All sealers complied with ISO6876:2012 requirements for setting time, radiopacity and flowability. Although only AHP effectively reduced the biofilm biomass, all sealers, except BRR, reduced biofilm metabolic activity. CONCLUSION Despite adequate physical properties, none of the sealers tested prevented biofilm growth. Significant changes in community composition were observed. If observed in vivo, these changes could affect intracanal microbial survival, pathogenicity and treatment outcomes.
Collapse
Affiliation(s)
- Flavia M. Saavedra
- Department of Restorative DentistrySchool of Dentistry of PiracicabaState University of CampinasPiracicabaBrazil
- Department of Diagnostic and Biological SciencesSchool of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lauter E. Pelepenko
- Department of Restorative DentistrySchool of Dentistry of PiracicabaState University of CampinasPiracicabaBrazil
| | - William S. Boyle
- Department of Diagnostic and Biological SciencesSchool of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Anqi Zhang
- Minnesota Dental Research Center for Biomaterials and Biomechanics (MDRCBB)School of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Christopher Staley
- Division of Basic & Translational ResearchDepartment of SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological SciencesSchool of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Marina A. Marciano
- Department of Restorative DentistrySchool of Dentistry of PiracicabaState University of CampinasPiracicabaBrazil
| | - Bruno P. Lima
- Department of Diagnostic and Biological SciencesSchool of DentistryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
10
|
Maru V, Padawe D, Naik S, Takate V, Sarjeraodighe K, Mali S. Assessment of Bacterial Load Using 3.8% SDF as an Irrigant in Pulpectomized Primary Molars: A Randomized Controlled Trial. Int J Clin Pediatr Dent 2022; 15:S47-S51. [PMID: 35645496 PMCID: PMC9108811 DOI: 10.5005/jp-journals-10005-2130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim and objective The aim of the present study was to evaluate the reduction in bacterial loading using 3.8% as an irrigating solution in pulpectomized primary molars. Study design A randomized, controlled clinical trial was performed that included primary molars with pulp necrosis. Sixty necrotic canals were included, 30 irrigated with 3.8% SDF (experimental group) and 30 with 1% NaOCl solution (control group); in all cases, two microbiological samples from within the canals were taken with sterile paper points, the first after the canal opening and before the first irrigation, and the second after instrumentation and final irrigation, before obturation. All samples were evaluated by Agar plate method. Results The results were statistically analyzed by student “t“ test. After analyzing samples before and after irrigation in the control group (NaOCl), we found a strong significant decrease of bacterial load (p = < 0.001). The same occurred in the 3.8% SDF group samples (p = < 0.001). When both groups were compared post irrigation, a statistically significant difference was observed in favor of 3.8 % SDF. Conclusion 3.8% SDF can be suggested as an alternative irrigant for pulpectomy of necrotic teeth. How to cite this article Maru V, Padawe D, Naik S, et al. Assessment of Bacterial Load Using 3.8% SDF as an Irrigant in Pulpectomized Primary Molars: A Randomized Controlled Trial. Int J Clin Pediatr Dent 2022;15(S-1):S47-S51.
Collapse
Affiliation(s)
- Viral Maru
- Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India
- Viral Maru, Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India, Phone: +91 9867220417, e-mail: n
| | - Dimple Padawe
- Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Shilpa Naik
- Department of Microbiology, Govt. Grant Medical College; JJ Group of Hospital, Mumbai
| | - Vilas Takate
- Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Kishor Sarjeraodighe
- Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Sayali Mali
- Department of Pediatric Dentistry, Government Dental College and Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Srivastava A, Mishra S, Verma D. Characterization of Oral Bacterial Composition of Adult Smokeless Tobacco Users from Healthy Indians Using 16S rDNA Analysis. MICROBIAL ECOLOGY 2021; 82:1061-1073. [PMID: 33634334 DOI: 10.1007/s00248-021-01711-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/03/2021] [Indexed: 05/25/2023]
Abstract
The present investigation is aiming to report the oral bacterial composition of smokeless tobacco (SLT) users and to determine the influence of SLT products on the healthy Indian population. With the aid of the V3 hypervariable region of the 16S rRNA gene, a total of 8,080,889 high-quality reads were clustered into 15 phyla and 180 genera in the oral cavity of the SLT users. Comparative analysis revealed a more diverse microbiome where two phyla and sixteen genera were significantly different among the SLT users as compared to the control group (p-value < 0.05). The prevalence of Fusobacteria-, Porphyromonas-, Desulfobulbus-, Enterococcus-, and Parvimonas-like genera among SLT users indicates altered bacterial communities among SLT users. Besides, the depletion of health-compatible bacteria such as Lactobacillus and Haemophilus also suggests poor oral health. Here, the majority of the altered genera belong to Gram-negative anaerobes that have been reported for assisting biofilm formation that leads in the progression of several oral diseases. The PICRUSt analysis further supports the hypothesis where a significant increase in the count of the genes involved in the metabolism of nitrogen, amino acids, and nicotinate/nicotinamide was observed among tobacco chewers. Moreover, this study has a high significance in Indian prospects where the SLT consumers are prevalent but we are deficient in information on their oral microbiome.
Collapse
Affiliation(s)
- Ankita Srivastava
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Digvijay Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
12
|
Isolation and Description of Catonella massiliensis sp. nov., a Novel Catonella Species, Isolated from a Stable Periodontitis Subject. Pathogens 2021; 10:pathogens10030367. [PMID: 33808593 PMCID: PMC8003473 DOI: 10.3390/pathogens10030367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
The genus Catonella currently counts a unique species, C. morbi, isolated from periodontal pockets and associated with periodontitis and endodontic infections. This study contributed to the taxonomical and clinical knowledge of this genus by describing a novel species isolated from a saliva sample from a man in clinical gingival health following successful treatment of periodontitis. Morphological and chemotaxonomic characteristics were investigated using different growth conditions, pH, and temperature. Cellular fatty acid methyl ester (FAME) analysis was conducted by gas chromatography/mass spectrometry (GC/MS). Phylogenetic analysis based on 16S rRNA, orthologous average nucleotide identity (OrthoANI), and digital DNA-DNA hybridization (dDDH) relatedness were performed. Strain Marseille-Q4567T was found to be an anaerobic and non-spore-forming rod-shaped bacterium that grew at 28–41.5 °C (optimum 37 °C), pH 6.5–8.5 (optimum pH 7.5), and 5–10 g/L of NaCl (optimum 5 g/L). The predominant cellular fatty acid was C16:0 (64.2%), followed by unsaturated structures C18:1n9 (12.5%) and C18:2n6 (7.8%). Based on 16S rRNA sequence comparison, the closest phylogenetic neighbor was C. morbi ATCC 51271T (98.23% similarity). The OrthoANI and dDDH values between strain Q4567T and C. morbi ATCC 51271T were respectively 79.43% and 23.8%. Therefore, we concluded that strain Marseille-Q4567T represents a novel species of the genus Catonella, for which the name Catonella massiliensis sp. nov. is proposed (= CSUR Q4567).
Collapse
|
13
|
Streptococcus pyogenes Is Associated with Idiopathic Cutaneous Ulcers in Children on a Yaws-Endemic Island. mBio 2021; 12:mBio.03162-20. [PMID: 33436440 PMCID: PMC7844543 DOI: 10.1128/mbio.03162-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exudative cutaneous ulcers (CU) in yaws-endemic areas are associated with Treponema pallidum subsp. pertenue (TP) and Haemophilus ducreyi (HD), but one-third of CU cases are idiopathic (IU). Using mass drug administration (MDA) of azithromycin, a yaws eradication campaign on Lihir Island in Papua New Guinea reduced but failed to eradicate yaws; IU rates remained constant throughout the campaign. To identify potential etiologies of IU, we obtained swabs of CU lesions (n = 279) and of the skin of asymptomatic controls (AC; n = 233) from the Lihir Island cohort and characterized their microbiomes using a metagenomics approach. CU bacterial communities were less diverse than those of the AC. Using real-time multiplex PCR with pathogen-specific primers, we separated CU specimens into HD-positive (HD+), TP+, HD+TP+, and IU groups. Each CU subgroup formed a distinct bacterial community, defined by the species detected and/or the relative abundances of species within each group. Streptococcus pyogenes was the most abundant organism in IU (22.65%) and was enriched in IU compared to other ulcer groups. Follow-up samples (n = 31) were obtained from nonhealed ulcers; the average relative abundance of S. pyogenes was 30.11% in not improved ulcers and 0.88% in improved ulcers, suggesting that S. pyogenes in the not improved ulcers may be azithromycin resistant. Catonella morbi was enriched in IU that lacked S. pyogenes As some S. pyogenes and TP strains are macrolide resistant, penicillin may be the drug of choice for CU azithromycin treatment failures. Our study will aid in the design of diagnostic tests and selective therapies for CU.IMPORTANCE Cutaneous ulcers (CU) affect approximately 100,000 children in the tropics each year. While two-thirds of CU are caused by Treponema pallidum subspecies pertenue and Haemophilus ducreyi, the cause(s) of the remaining one-third is unknown. Given the failure of mass drug administration of azithromycin to eradicate CU, the World Health Organization recently proposed an integrated disease management strategy to control CU. Success of this strategy requires determining the unknown cause(s) of CU. By using 16S rRNA gene sequencing of swabs obtained from CU and the skin of asymptomatic children, we identified another possible cause of skin ulcers, Streptococcus pyogenes Although S. pyogenes is known to cause impetigo and cellulitis, this is the first report implicating the organism as a causal agent of CU. Inclusion of S. pyogenes into the integrated disease management plan will improve diagnostic testing and treatment of this painful and debilitating disease of children and strengthen elimination efforts.
Collapse
|
14
|
Kishikawa T, Ogawa K, Motooka D, Hosokawa A, Kinoshita M, Suzuki K, Yamamoto K, Masuda T, Matsumoto Y, Nii T, Maeda Y, Nakamura S, Inohara H, Mochizuki H, Okuno T, Okada Y. A Metagenome-Wide Association Study of Gut Microbiome in Patients With Multiple Sclerosis Revealed Novel Disease Pathology. Front Cell Infect Microbiol 2020; 10:585973. [PMID: 33363050 PMCID: PMC7759502 DOI: 10.3389/fcimb.2020.585973] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022] Open
Abstract
While microbiome plays key roles in the etiology of multiple sclerosis (MS), its mechanism remains elusive. Here, we conducted a comprehensive metagenome-wide association study (MWAS) of the relapsing-remitting MS gut microbiome (ncase = 26, ncontrol = 77) in the Japanese population, by using whole-genome shotgun sequencing. Our MWAS consisted of three major bioinformatic analytic pipelines (phylogenetic analysis, functional gene analysis, and pathway analysis). Phylogenetic case-control association tests showed discrepancies of eight clades, most of which were related to the immune system (false discovery rate [FDR] < 0.10; e.g., Erysipelatoclostridium_sp. and Gemella morbillorum). Gene association tests found an increased abundance of one putative dehydrogenase gene (Clo1100_2356) and one ABC transporter related gene (Mahau_1952) in the MS metagenome compared with controls (FDR < 0.1). Molecular pathway analysis of the microbiome gene case-control comparisons identified enrichment of multiple Gene Ontology terms, with the most significant enrichment on cell outer membrane (P = 1.5 × 10−7). Interaction between the metagenome and host genome was identified by comparing biological pathway enrichment between the MS MWAS and the MS genome-wide association study (GWAS) results (i.e., MWAS-GWAS interaction). No apparent discrepancies in alpha or beta diversities of metagenome were found between MS cases and controls. Our shotgun sequencing-based MWAS highlights novel characteristics of the MS gut microbiome and its interaction with host genome, which contributes to our understanding of the microbiome’s role in MS pathophysiology.
Collapse
Affiliation(s)
- Toshihiro Kishikawa
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kotaro Ogawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Neurology, Japan Community Health care Organization (JCHO) Hoshigaoka Medical Center, Hirakata, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Akiko Hosokawa
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Neurology, Suita Municipal Hospital, Suita, Japan
| | - Makoto Kinoshita
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ken Suzuki
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuo Masuda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichi Maeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan.,Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| |
Collapse
|
15
|
Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS One 2020; 15:e0227657. [PMID: 33216751 PMCID: PMC7679012 DOI: 10.1371/journal.pone.0227657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
When oral bacteria accidentally enter the bloodstream due to transient tissue damage during dental procedures, they have the potential to attach to the endocardium or an equivalent surface of an indwelling prosthesis and cause infection. Many bacterial species produce extracellular vesicles (EVs) as part of normal physiology, but also use it as a virulence strategy. In this study, it was hypothesized that Granulicatella adiacens produce EVs that possibly help it in virulence. Therefore, the objectives were to isolate and characterize EVs produced by G. adiacens and to investigate its immune-stimulatory effects. The reference strain G. adiacens CCUG 27809 was cultured on chocolate blood agar for 2 days. From subsequent broth culture, the EVs were isolated using differential centrifugation and filtration protocol and then observed using scanning electron microscopy. Proteins in the vesicle preparation were identified by nano LC-ESI-MS/MS. The EVs proteome was analyzed and characterized using different bioinformatics tools. The immune-stimulatory effect of the EVs was studied via ELISA quantification of IL-8, IL-1β and CCL5, major proinflammatory cytokines, produced from stimulated human PBMCs. It was revealed that G. adiacens produced EVs, ranging in diameter from 30 to 250 nm. Overall, G. adiacens EVs contained 112 proteins. The proteome consists of several ribosomal proteins, DNA associated proteins, binding proteins, and metabolic enzymes. It was also shown that these EVs carry putative virulence factors including moonlighting proteins. These EVs were able to induce the production of IL-8, IL-1β and CCL5 from human PBMCs. Further functional characterization of the G. adiacens EVs may provide new insights into virulence mechanisms of this important but less studied oral bacterial species.
Collapse
|
16
|
Hernández M, Planells P, Martínez E, Mira A, Carda-Diéguez M. Microbiology of molar-incisor hypomineralization lesions. A pilot study. J Oral Microbiol 2020; 12:1766166. [PMID: 32595912 PMCID: PMC7301705 DOI: 10.1080/20002297.2020.1766166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 01/23/2023] Open
Abstract
Objective: An insufficient mineralization (hypomineralization) in the teeth during the maturation stage of amelogenesis cause defects in 3–44% of children. Here, we describe for the first time the microbiota associated with these defects and compared it to healthy teeth within the same subjects. Methods: Supragingival dental plaque was sampled from healthy and affected teeth from 25 children with molar–incisor hypomineralization (MIH). Total DNA was extracted and the 16S rRNA gene was sequenced by Illumina sequencing in order to describe the bacterial composition. Results: We detected a higher bacterial diversity in MIH samples, suggesting better bacterial adhesion or higher number of niches in those surfaces. We found the genera Catonella, Fusobacterium, Campylobacter, Tannerella, Centipeda, Streptobacillus, Alloprevotella and Selenomonas associated with hypomineralized teeth, whereas Rothia and Lautropia were associated with healthy sites. Conclusion: The higher protein content of MIH-affected teeth could favour colonization by proteolytic microorganisms. The over-representation of bacteria associated with endodontic infections and periodontal pathologies suggests that, in addition to promote caries development, MIH could increase the risk of other oral diseases.
Collapse
Affiliation(s)
| | | | - Eva Martínez
- School of Dentistry, Complutense University, Madrid, Spain
| | - Alex Mira
- Genomics and Health Department, FISABIO Institute, Valencia, Spain
| | | |
Collapse
|
17
|
Pushalkar S, Paul B, Li Q, Yang J, Vasconcelos R, Makwana S, González JM, Shah S, Xie C, Janal MN, Queiroz E, Bederoff M, Leinwand J, Solarewicz J, Xu F, Aboseria E, Guo Y, Aguallo D, Gomez C, Kamer A, Shelley D, Aphinyanaphongs Y, Barber C, Gordon T, Corby P, Li X, Saxena D. Electronic Cigarette Aerosol Modulates the Oral Microbiome and Increases Risk of Infection. iScience 2020; 23:100884. [PMID: 32105635 PMCID: PMC7113564 DOI: 10.1016/j.isci.2020.100884] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/09/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
The trend of e-cigarette use among teens is ever increasing. Here we show the dysbiotic oral microbial ecology in e-cigarette users influencing the local host immune environment compared with non-smoker controls and cigarette smokers. Using 16S rRNA high-throughput sequencing, we evaluated 119 human participants, 40 in each of the three cohorts, and found significantly altered beta-diversity in e-cigarette users (p = 0.006) when compared with never smokers or tobacco cigarette smokers. The abundance of Porphyromonas and Veillonella (p = 0.008) was higher among vapers. Interleukin (IL)-6 and IL-1β were highly elevated in e-cigarette users when compared with non-users. Epithelial cell-exposed e-cigarette aerosols were more susceptible for infection. In vitro infection model of premalignant Leuk-1 and malignant cell lines exposed to e-cigarette aerosol and challenged by Porphyromonas gingivalis and Fusobacterium nucleatum resulted in elevated inflammatory response. Our findings for the first time demonstrate that e-cigarette users are more prone to infection.
Collapse
Affiliation(s)
- Smruti Pushalkar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Bidisha Paul
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Qianhao Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Jian Yang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Rebeca Vasconcelos
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Shreya Makwana
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Juan Muñoz González
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Shivm Shah
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Chengzhi Xie
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY 10010, USA
| | - Erica Queiroz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Maria Bederoff
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Joshua Leinwand
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, NY 10016, USA
| | - Julia Solarewicz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Fangxi Xu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Eman Aboseria
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Deanna Aguallo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Claudia Gomez
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Angela Kamer
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Donna Shelley
- Department of Public Health Policy Analysis Management, New York University School of Global Public Health, New York, NY 10012, USA
| | - Yindalon Aphinyanaphongs
- Department of Population Health, New York University School of Medicine, New York, NY 10016, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Cheryl Barber
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Patricia Corby
- Department of Oral Medicine, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA; Basic Science and Craniofacial Biology, Dental Center, 421 First Avenue, Room 901D, New York, NY, USA.
| | - Deepak Saxena
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24(th) Street, Room 921B, New York, NY 10010, USA.
| |
Collapse
|
18
|
Zhang L, Liu Y, Zheng HJ, Zhang CP. The Oral Microbiota May Have Influence on Oral Cancer. Front Cell Infect Microbiol 2020; 9:476. [PMID: 32010645 PMCID: PMC6974454 DOI: 10.3389/fcimb.2019.00476] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The oral microbiota plays an important role in the human microbiome and human health, and imbalances between microbes and their hosts can lead to oral and systemic diseases and chronic inflammation, which is usually caused by bacteria and contributes to cancer. There may be a relationship between oral bacteria and oral squamous cell carcinoma (OSCC); however, this relationship has not been thoroughly characterized. Therefore, in this study, we compared the microbiota compositions between tumor sites and opposite normal tissues in buccal mucosal of 50 patients with OSCC using the 16S rDNA sequencing. Richness and diversity of bacteria were significantly higher in tumor sites than in the control tissues. Cancer tissues were enriched in six families (Prevotellaceae, Fusobacteriaceae, Flavobacteriaceae, Lachnospiraceae, Peptostreptococcaceae, and Campylobacteraceae) and 13 genera, including Fusobacterium, Alloprevotella and Porphyromonas. At the species level, the abundances of Fusobacterium nucleatum, Prevotella intermedia, Aggregatibacter segnis, Capnocytophaga leadbetteri, Peptostreptococcus stomatis, and another five species were significantly increased, suggesting a potential association between these bacteria and OSCC. Furthermore, the functional prediction revealed that genes involved in bacterial chemotaxis, flagellar assembly and lipopolysaccharide (LPS) biosynthesis which are associated with various pathological processes, were significantly increased in the OSCC group. Overall, oral bacterial profiles showed significant difference between cancer sites and normal tissue of OSCC patients, which might be onsidered diagnostic markers and treatment targets. Our study has been registered in the Chinese clinical trial registry (ChiCTR1900025253, http://www.chictr.org.cn/index.aspx).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jun Zheng
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Chen Ping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Ortiz S, Herrman E, Lyashenko C, Purcell A, Raslan K, Khor B, Snow M, Forsyth A, Choi D, Maier T, Machida CA. Sex-specific differences in the salivary microbiome of caries-active children. J Oral Microbiol 2019; 11:1653124. [PMID: 31497256 PMCID: PMC6720314 DOI: 10.1080/20002297.2019.1653124] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Background and Objectives: Dental caries is a chronic disease affecting young children and has multi-factorial risk factors. The purpose of this work was to identify sex-specific differences in the salivary microbiota within caries-active children. Design: Saliva specimens were collected from 85 children (boys: 41; girls: 44) between the ages of 2-12 years. Salivary microbial DNA was subjected to PCR amplification using V3-V4 16S rDNA-specific primers and next-generation sequencing. Results: Significant sex differences in salivary microbiota were found between caries-active boys versus caries-active girls. Neisseria flavescens, Rothia aeria, and Haemophilus pittmaniae were found at significantly higher levels in caries-active boys. In contrast, Lactococcus lactis, Selenomonas species HOT 126, Actinobaculum species HOT 183, Veillonella parvula, and Alloprevotella species HOT 473 were found at significantly higher levels in caries-active girls. Conclusion: We have found the acid-generating, cariogenic Lactococcus lactis to be much more abundant in caries-active girls than caries-active boys, indicating that this microorganism may play a more significant role in shaping the cariogenic microbiome in girls. In addition, in caries-active girls, Alloprevotella species HOT 473 was the only species that exhibited both significant sex differences (4.4-fold difference; p=0.0003) as well as high abundance in numbers (1.85% of the total microbial population).
Collapse
Affiliation(s)
- Stephanie Ortiz
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Claudia Lyashenko
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Anne Purcell
- Department of Pediatric Dentistry, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Kareem Raslan
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Brandon Khor
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Anna Forsyth
- Department of Pediatric Dentistry, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Dongseok Choi
- OHSU-PSU School of Public Health, Kyunghee University, Portland, OR, US
- Graduate School of Dentistry, Kyunghee University, Seoul, South Korea
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, OR, US
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health & Science University School of Dentistry, Portland, OR, US
- Department of Pediatric Dentistry, Oregon Health & Science University School of Dentistry, Portland, OR, US
| |
Collapse
|
20
|
Patil SM, Arora N, Nilsson P, Yasar SJ, Dandachi D, Salzer WL. Native Valve Infective Endocarditis with Osteomyelitis and Brain Abscess Caused by Granulicatella adiacens with Literature Review. Case Rep Infect Dis 2019; 2019:4962392. [PMID: 31467742 PMCID: PMC6701334 DOI: 10.1155/2019/4962392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/22/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022] Open
Abstract
Granulicatella adiacens is a type of NVS (nutritionally variant streptococci) rarely causing infective endocarditis (IE). NVS are fastidious and unable to sustain growth on routine culture media due to lack of specific nutrients. Endocarditis caused by NVS due to their virulence is associated with higher treatment failures and mortality rates. New antimicrobial susceptibility patterns are indicative of a significant rise in penicillin resistance and susceptibility differences between NVS subspecies. Initial empirical therapy is essential as a delay in using the appropriate agent leads to poor results. We present a case of an immunocompetent young female with recent intravenous drug abuse resulting in native mitral valve endocarditis with ruptured chordae tendineae and septic embolization, causing brain abscess and lumbar spine osteomyelitis. She was transferred to a tertiary center where she underwent mitral valve replacement successfully and treated with six weeks of intravenous vancomycin and ertapenem. To our knowledge, ours is the first case report of G. adiacens endocarditis in an adult with brain abscess and osteomyelitis with an excellent response to antibiotic therapy. Based on our case report, literature review, and new antimicrobial susceptibility patterns, updates to treatment guidelines are suggested to improve the therapeutic outcomes.
Collapse
Affiliation(s)
- Sachin M. Patil
- Infectious Disease Department, University of Missouri Hospital and Clinic, 1 Hospital Dr, Columbia, MO 65212, USA
| | - Niraj Arora
- Neurology Department, University of Missouri Hospital and Clinic, 1 Hospital Dr, Columbia, MO 65212, USA
| | - Peter Nilsson
- Internal Medicine Department, University of Missouri Hospital and Clinic, 1 Hospital Dr, Columbia, MO 65212, USA
| | - S. J. Yasar
- Cardiology Department, University of Missouri Hospital and Clinic, 1 Hospital Dr, Columbia, MO 65212, USA
| | - Dima Dandachi
- Infectious Disease Department, University of Missouri Hospital and Clinic, 1 Hospital Dr, Columbia, MO 65212, USA
| | - W. L. Salzer
- Infectious Disease Department, University of Missouri Hospital and Clinic, 1 Hospital Dr, Columbia, MO 65212, USA
| |
Collapse
|
21
|
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome. Front Cell Infect Microbiol 2019; 9:104. [PMID: 31069174 PMCID: PMC6491454 DOI: 10.3389/fcimb.2019.00104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/26/2019] [Indexed: 12/31/2022] Open
Abstract
Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Ali Tiss
- Functional Proteomics and Metabolomics Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
22
|
Wu Y, Chi X, Zhang Q, Chen F, Deng X. Characterization of the salivary microbiome in people with obesity. PeerJ 2018; 6:e4458. [PMID: 29576948 PMCID: PMC5858547 DOI: 10.7717/peerj.4458] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
Background The interactions between the gut microbiome and obesity have been extensively studied. Although the oral cavity is the gateway to the gut, and is extensively colonized with microbes, little is known about the oral microbiome in people with obesity. In the present study, we investigated the salivary microbiome in obese and normal weight healthy participants using metagenomic analysis. The subjects were categorized into two groups, obesity and normal weight, based on their BMIs. Methods We characterized the salivary microbiome of 33 adults with obesity and 29 normal weight controls using high-throughput sequencing of the V3–V4 region of the 16S rRNA gene (Illumina MiSeq). None of the selected participants had systemic, oral mucosal, or periodontal diseases. Results The salivary microbiome of the obesity group was distinct from that of the normal weight group. The salivary microbiome of periodontally healthy people with obesity had both significantly lower bacterial diversity and richness compared with the controls. The genus Prevotella, Granulicatella, Peptostreptococcus, Solobacterium, Catonella, and Mogibacterium were significantly more abundant in the obesity group; meanwhile the genus Haemophilus, Corynebacterium, Capnocytophaga, and Staphylococcus were less abundant in the obesity group. We also performed a functional analysis of the inferred metagenomes, and showed that the salivary community associated with obesity had a stronger signature of immune disease and a decreased functional signature related to environmental adaptation and Xenobiotics biodegradation compared with the normal weight controls. Discussion Our study demonstrates that the microbial diversity and structure of the salivary microbiome in people with obesity are significantly different from those of normal weight controls. These results suggested that changes in the structure and function of salivary microbiome in people with obesity might reflect their susceptibility to oral diseases.
Collapse
Affiliation(s)
- Yujia Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaopei Chi
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
23
|
Walker MY, Pratap S, Southerland JH, Farmer-Dixon CM, Lakshmyya K, Gangula PR. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide 2018; 73:81-88. [PMID: 28602746 PMCID: PMC6104390 DOI: 10.1016/j.niox.2017.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 12/25/2022]
Abstract
Periodontal disease (PD), a severe form of gum disease, is among the most prevalent chronic infection in humans and is associated with complex microbial synergistic dysbiosis in the subgingival cavity. The immune system of the body interacts with the microbes as the plaque extends and propagates below the gingival sulcus. Once bacteria reach the gingival sulcus, it can enter the blood stream and affect various areas of the human body. The polymicrobial nature of periodontal disease, if left untreated, promotes chronic inflammation, not only within the oral cavity, but also throughout the human body. Alterations seen in the concentrations of healthy gut microbiota may lead to systemic alterations, such as gut motility disorders, high blood pressure, and atherosclerosis. Although gut microbiome has been shown to play a vital role in intestinal motility functions, the role of oral bacteria in this setting remains to be investigated. It is unclear whether oral microbial DNA is present in the large intestine and, if so, whether it alters the gut microbiome. In addition, polybacterial infection induced PD reduced nitric oxide (NO) synthesis and antioxidant enzymes in rodent colon. In this review, we will discuss the interactions between oral and gut microbiome, specifics of how the oral microbiome may modulate the activities of the gut microbiome, and possible ramifications of these alterations.
Collapse
Affiliation(s)
- Miriam Y Walker
- Department of Oral Biology & Research, School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Siddharth Pratap
- Biomedical Informatics Core School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Janet H Southerland
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Cherae M Farmer-Dixon
- Department of Dental Public Health, School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Kesavalu Lakshmyya
- Department of Periodontology and Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Pandu R Gangula
- Department of Oral Biology & Research, School of Dentistry, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
24
|
Bhardwaj RG, Al-Khabbaz A, Karched M. Cytokine induction of peripheral blood mononuclear cells by biofilms and biofilm supernatants of Granulicatella and Abiotrophia spp. Microb Pathog 2017; 114:90-94. [PMID: 29174702 DOI: 10.1016/j.micpath.2017.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/30/2023]
Abstract
Granulicatella and Abiotrophia species are the normal oral flora bacteria that can occasionally cause infective endocarditis. Although substantial data exists in the literature demonstrating occurrence of these species in infective endocarditis, only a few mechanistic studies on their pathogenicity are found. The aim of this study was to investigate the ability of Granulicatella and Abiotrophia species to elicit immune response from human peripheral blood mononuclear cells (PBMC). Biofilms and biofilm supernatants of Granulicatella elegans CCUG 38949, Granulicatella adiacens CCUG 27809 and Abiotrophia defectiva CCUG 27639 were used to stimulate PBMCs for 24 h. Cytokines produced were first screened using a human cytokine membrane array kit. Further, pro-inflammatory cytokines TNF-α, IL-β, and IL-17 were quantified by ELISA. The cytokine profiler array showed the induction of 15 different cytokines/chemokines including IL-1β, IL-6, IL-8, TNF-α, MCP-1, MIP-1α/MIP-1β and RANTES. ELISA quantification revealed that G. adiacens biofilm induced significantly higher (P < 0.05) levels of IL-1β, i.e., 1931 (183) pg/ml than G. elegans or A. defectiva. However, in the case of biofilm supernatants A. defectiva was the strongest, inducing 2104 (574) pg/ml. Biofilm supernatants, but not biofilms from all three species induced TNF-α only weakly. IL-17 was undetectable from any of the stimulated samples. In conclusion, Granulicatella and Abiotrophia are potent inducers of inflammatory mediators from human PBMCs. However, biofilms and biofilm supernatants from these species seem to selectively elicit stimulation of certain cytokines.
Collapse
Affiliation(s)
- Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait
| | - Areej Al-Khabbaz
- Department of Surgical Sciences, Faculty of Dentistry, Kuwait University, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Faculty of Dentistry, Kuwait University, Kuwait.
| |
Collapse
|
25
|
Nóbrega LMM, Montagner F, Ribeiro AC, Mayer MAP, Gomes BPFDA. Bacterial diversity of symptomatic primary endodontic infection by clonal analysis. Braz Oral Res 2016; 30:e103. [PMID: 27737357 DOI: 10.1590/1807-3107bor-2016.vol30.0103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/05/2016] [Indexed: 03/29/2023] Open
Abstract
The aim of this study was to explore the bacterial diversity of 10 root canals with acute apical abscess using clonal analysis. Samples were collected from 10 patients and submitted to bacterial DNA isolation, 16S rRNA gene amplification, cloning, and sequencing. A bacterial genomic library was constructed and bacterial diversity was estimated. The mean number of taxa per canal was 15, ranging from 11 to 21. A total of 689 clones were analyzed and 76 phylotypes identified, of which 47 (61.84%) were different species and 29 (38.15%) were taxa reported as yet-uncultivable or as yet-uncharacterized species. Prevotella spp., Fusobacterium nucleatum, Filifactor alocis, and Peptostreptococcus stomatis were the most frequently detected species, followed by Dialister invisus, Phocaeicola abscessus, the uncharacterized Lachnospiraceae oral clone, Porphyromonas spp., and Parvimonas micra. Eight phyla were detected and the most frequently identified taxa belonged to the phylum Firmicutes (43.5%), followed by Bacteroidetes (22.5%) and Proteobacteria (13.2%). No species was detected in all studied samples and some species were identified in only one case. It was concluded that acute primary endodontic infection is characterized by wide bacterial diversity and a high intersubject variability was observed. Anaerobic Gram-negative bacteria belonging to the phylum Firmicutes, followed by Bacteroidetes, were the most frequently detected microorganisms.
Collapse
Affiliation(s)
| | - Francisco Montagner
- Universidade Federal do Rio Grande do Sul (UFRGS), Department of Conservative Dentistry, Porto Alegre, RS, Brazil
| | - Adriana Costa Ribeiro
- Universidade de São Paulo (USP), Institute of Biomedical Science, Department of Oral Microbiology, São Paulo, SP, Brazil
| | - Márcia Alves Pinto Mayer
- Universidade de São Paulo (USP), Institute of Biomedical Science, Department of Oral Microbiology, São Paulo, SP, Brazil
| | | |
Collapse
|
26
|
Aweid O, Sundararajan S, Teferi A. Granulicatella adiacens prosthetic hip joint infection after dental treatment. JMM Case Rep 2016; 3:e005044. [PMID: 28348763 PMCID: PMC5330231 DOI: 10.1099/jmmcr.0.005044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/27/2016] [Accepted: 04/25/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Granulicatella adiacens is a Gram-positive bacteria and a normal component of oral flora. It is also found in dental plaques, endodontic abscesses and can rarely cause more serious infections. CASE PRESENTATION We describe a prosthetic hip joint infection in an 81-year-old fit and healthy man due to Granulicatella adiacens who underwent a prolonged dental intervention two days earlier without antibiotic prophylaxis. The infection was successfully treated with surgical intervention and a combination of antibiotics. The patient eventually succumbed to severe community-acquired pneumonia two months later. CONCLUSION Current guidelines recommend avoidance of antibiotic prophylaxis prior to dental treatment in patients who have no co-morbidities and no prior operation on the index prosthetic joint. This case report indicates that infections of prosthetic joints may be associated with dental procedures even in fit and healthy patients without the recognized risk factors.
Collapse
Affiliation(s)
- Osama Aweid
- Department of Trauma and Orthopaedics, Peterborough City Hospital, Edith Cavell Campus, Bretton Gate, Peterborough, Cambridgeshire, PE3 9GZ, UK
| | - Sabapathy Sundararajan
- Department of Trauma and Orthopaedics, Luton and Dunstable University Hospital NHS Trust, Luton, LU4 0DZ, UK
| | - Abraham Teferi
- Department of Microbiology, Luton and Dunstable University Hospital NHS Trust, Luton, LU4 0DZ, UK
| |
Collapse
|
27
|
Mengatto CM, Marchini L, Bernardes LADS, Gomes SC, Silva AM, Rizzatti-Barbosa CM. Partial denture metal framework may harbor potentially pathogenic bacteria. J Adv Prosthodont 2016; 7:468-74. [PMID: 26816577 PMCID: PMC4722151 DOI: 10.4047/jap.2015.7.6.468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/15/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The aim of this study was to characterize and compare bacterial diversity on the removable partial denture (RPD) framework over time. MATERIALS AND METHODS This descriptive pilot study included five women who were rehabilitated with free-end mandibular RPD. The biofilm on T-bar clasps were collected 1 week (t1) and 4 months (t2) after the RPD was inserted (t0). Bacterial 16S rDNA was extracted and PCR amplified. Amplicons were cloned; clones were submitted to cycle sequencing, and sequences were compared with GenBank (98% similarity). RESULTS A total of 180 sequences with more than 499 bp were obtained. Two phylogenetic trees with 84 (t1) and 96 (t2) clones represented the bacteria biofilm at the RPD. About 93% of the obtained phylotypes fell into 25 known species for t1 and 17 for t2, which were grouped in 5 phyla: Firmicutes (t1=82%; t2=60%), Actinobacteria (t1=5%; t2=10%), Bacteroidetes (t1=2%; t2=6%), Proteobacteria (t1=10%; t2=15%) and Fusobacteria (t1=1%; t2=8%). The libraries also include 3 novel phylotypes for t1 and 11 for t2. Library t2 differs from t1 (P=.004); t1 is a subset of the t2 (P=.052). Periodontal pathogens, such as F. nucleatum, were more prevalent in t2. CONCLUSION The biofilm composition of the RPD metal clasps changed along time after RPD wearing. The RPD framework may act as a reservoir for potentially pathogenic bacteria and the RPD wearers may benefit from regular follow-up visits and strategies on prosthesis-related oral health instructions.
Collapse
Affiliation(s)
- Cristiane Machado Mengatto
- Department of Conservative Dentistry, Federal University of Rio Grande do Sul, School of Dentistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo Marchini
- Department of Preventive and Community Dentistry, University of Iowa, College of Dentistry, Iowa City, Iowa, USA
| | | | - Sabrina Carvalho Gomes
- Department of Conservative Dentistry, Federal University of Rio Grande do Sul, School of Dentistry, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alecsandro Moura Silva
- Department of Dental Materials and Prosthodontics, State University Julio de Mesquita Filho, School of Dentistry, Sao Jose dos Campos, Sao Paulo, Brazil
| | - Célia Marisa Rizzatti-Barbosa
- Department of Prosthodontics and Periodontology, State University of Campinas, Piracicaba Dental School, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
28
|
Chaves-Moreno D, Plumeier I, Kahl S, Krismer B, Peschel A, Oxley APA, Jauregui R, Pieper DH. The microbial community structure of the cotton rat nose. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:929-935. [PMID: 26306992 DOI: 10.1111/1758-2229.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 06/04/2023]
Abstract
The cotton rat nose is commonly used as a model for Staphylococcus aureus colonization, as it is both physiologically and anatomically comparable to the human nares and can be easily colonized by this organism. However, while the colonization of the human anterior nares has been extensively studied, the microbial community structure of cotton rat noses has not been reported so far. We describe here the microbial community structure of the cotton rat (Sigmodon hispidus) nose through next-generation sequencing of 16S rRNA gene amplicons covering the V1-V2 region and the analysis of nearly full length 16S rRNA genes of the major phylotypes. Roughly half of the microbial community was composed of two undescribed species of the genus Campylobacter, with phylotypes belonging to the genera Catonella, Acholeplasma, Streptobacillus and Capnocytophaga constituting the predominant community members. Thus, the nasal community of the cotton rat is uniquely composed of several novel bacterial species and may not reflect the complex interactions that occur in human anterior nares. Mammalian airway microbiota may, however, be a rich source of hitherto unknown microbes.
Collapse
Affiliation(s)
- Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Iris Plumeier
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Silke Kahl
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Bernhard Krismer
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology, Eberhard-Karls-University, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology, Eberhard-Karls-University, Geschwister-Scholl-Platz, 72074, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Andrew P A Oxley
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| |
Collapse
|
29
|
Karched M, Bhardwaj RG, Asikainen SE. Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. BMC Microbiol 2015; 15:114. [PMID: 26025449 PMCID: PMC4448563 DOI: 10.1186/s12866-015-0439-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/08/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Members of fastidious Granulicatella and Aggregatibacter genera belong to normal oral flora bacteria that can cause serious infections, such as infective endocarditis. Aggregatibacter actinomycetemcomitans has long been implicated in aggressive periodontitis, whereas DNA-based methods only recently showed an association between Granulicatella spp. and dental diseases. As bacterial coaggregation is a key phenomenon in the development of oral and nonoral multispecies bacterial communities it would be of interest knowing coaggregation pattern of Granulicatella species with A. actinomycetemcomitans in comparison with the multipotent coaggregator Fusobacterium nucleatum. The aim was to investigate coaggregation and biofilm formation of Granulicatella elegans and Granulicatella adiacens with A. actinomycetemcomitans and F. nucleatum strains. RESULTS F. nucleatum exhibited significantly (p < 0.05) higher autoaggregation than all other test species, followed by A. actinomycetemcomitans SA269 and G. elegans. A. actinomycetemcomitans CU1060 and G. adiacens did not autoaggregate. G. elegans with F. nucleatum exhibited significantly (p < 0.05) higher coaggregation than most others, but failed to grow as biofilm together or separately. With F. nucleatum as partner, A. actinomycetemcomitans strains SA269, a rough-colony wild-type strain, and CU1060, a spontaneous smooth-colony laboratory variant, and G. adiacens were the next in coaggregation efficiency. These dual species combinations also were able to grow as biofilms. While both G. elegans and G. adiacens coaggregated with A. actinomycetemcomitans strain SA269, but not with CU1060, they grew as biofilms with both A. actinomycetemcomitans strains. CONCLUSIONS G. elegans failed to form biofilm with F. nucleatum despite the strongest coaggregation with it. The ability of Granulicatella spp. to coaggregate and/or form biofilms with F. nucleatum and A. actinomycetemcomitans strains suggests that Granulicatella spp. have the potential to integrate into dental plaque biofilms.
Collapse
Affiliation(s)
- Maribasappa Karched
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| | - Radhika G Bhardwaj
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| | - Sirkka E Asikainen
- General Facility Oral Microbiology Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, Kuwait, Kuwait.
| |
Collapse
|
30
|
Leal-Lopes C, Velloso FJ, Campopiano JC, Sogayar MC, Correa RG. Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies. J Diabetes Res 2015; 2015:284680. [PMID: 26347203 PMCID: PMC4544440 DOI: 10.1155/2015/284680] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The pancreas plays a central role in metabolism, allowing ingested food to be converted and used as fuel by the cells throughout the body. On the other hand, the pancreas may be affected by devastating diseases, such as pancreatitis, pancreatic adenocarcinoma (PAC), and diabetes mellitus (DM), which generally results in a wide metabolic imbalance. The causes for the development and progression of these diseases are still controversial; therefore it is essential to better understand the underlying mechanisms which compromise the pancreatic homeostasis. The interest in the study of the commensal microbiome increased extensively in recent years, when many discoveries have illustrated its central role in both human physiology and maintenance of homeostasis. Further understanding of the involvement of the microbiome during the development of pathological conditions is critical for the improvement of new diagnostic and therapeutic approaches. In the present review, we discuss recent findings on the behavior and functions played by the microbiota in major pancreatic diseases and provide further insights into its potential roles in the maintenance of pancreatic steady-state activities.
Collapse
Affiliation(s)
- Camila Leal-Lopes
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Fernando J. Velloso
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Julia C. Campopiano
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 05508-000 São Paulo, SP, Brazil
- Cell and Molecular Therapy Center (NUCEL-NETCEM), School of Medicine, University of São Paulo, 05360-130 São Paulo, SP, Brazil
| | - Ricardo G. Correa
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- *Ricardo G. Correa:
| |
Collapse
|
31
|
Abstract
Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease.
Collapse
|
32
|
Saber MH, Schwarzberg K, Alonaizan FA, Kelley ST, Sedghizadeh PP, Furlan M, Levy TA, Simon JH, Slots J. Bacterial Flora of Dental Periradicular Lesions Analyzed by the 454-Pyrosequencing Technology. J Endod 2012; 38:1484-8. [DOI: 10.1016/j.joen.2012.06.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/24/2012] [Accepted: 06/30/2012] [Indexed: 12/25/2022]
|
33
|
Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, Gibbons TR, Treangen TJ, Chang YC, Li S, Stine OC, Hasturk H, Kasif S, Segrè D, Pop M, Amar S. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One 2012; 7:e37919. [PMID: 22675498 PMCID: PMC3366996 DOI: 10.1371/journal.pone.0037919] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
The oral microbiome, the complex ecosystem of microbes inhabiting the human mouth, harbors several thousands of bacterial types. The proliferation of pathogenic bacteria within the mouth gives rise to periodontitis, an inflammatory disease known to also constitute a risk factor for cardiovascular disease. While much is known about individual species associated with pathogenesis, the system-level mechanisms underlying the transition from health to disease are still poorly understood. Through the sequencing of the 16S rRNA gene and of whole community DNA we provide a glimpse at the global genetic, metabolic, and ecological changes associated with periodontitis in 15 subgingival plaque samples, four from each of two periodontitis patients, and the remaining samples from three healthy individuals. We also demonstrate the power of whole-metagenome sequencing approaches in characterizing the genomes of key players in the oral microbiome, including an unculturable TM7 organism. We reveal the disease microbiome to be enriched in virulence factors, and adapted to a parasitic lifestyle that takes advantage of the disrupted host homeostasis. Furthermore, diseased samples share a common structure that was not found in completely healthy samples, suggesting that the disease state may occupy a narrow region within the space of possible configurations of the oral microbiome. Our pilot study demonstrates the power of high-throughput sequencing as a tool for understanding the role of the oral microbiome in periodontal disease. Despite a modest level of sequencing (~2 lanes Illumina 76 bp PE) and high human DNA contamination (up to ~90%) we were able to partially reconstruct several oral microbes and to preliminarily characterize some systems-level differences between the healthy and diseased oral microbiomes.
Collapse
Affiliation(s)
- Bo Liu
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
| | - Lina L. Faller
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Niels Klitgord
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Varun Mazumdar
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Mohammad Ghodsi
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
| | - Daniel D. Sommer
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Theodore R. Gibbons
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, United States of America
| | - Todd J. Treangen
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- The McKusick-Nathans Institute for Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yi-Chien Chang
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Shan Li
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - O. Colin Stine
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hatice Hasturk
- The Forysth Institute, Department of Periodontology, Cambridge, Massachusetts, United States of America
| | - Simon Kasif
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Children’s Informatics Program, Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts, United States of America
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
- Department of Computer Science, University of Maryland, College Park, Maryland, United States of America
- Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, United States of America
| | - Salomon Amar
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Center for Anti-Inflammatory Therapeutics; Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
Cargill JS, Scott KS, Gascoyne-Binzi D, Sandoe JAT. Granulicatella infection: diagnosis and management. J Med Microbiol 2012; 61:755-761. [PMID: 22442291 DOI: 10.1099/jmm.0.039693-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Granulicatella species, along with the genus Abiotrophia, were originally known as 'nutritionally variant streptococci'. They are a normal component of the oral flora, but have been associated with a variety of invasive infections in man and are most noted as a cause of bacterial endocarditis. It is often advised that Granulicatella endocarditis should be treated in the same way as enterococcal endocarditis. We review here the published data concerning diagnosis and treatment of Granulicatella infection, and include some observations from local cases, including four cases of endocarditis.
Collapse
Affiliation(s)
- James S Cargill
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Katharine S Scott
- Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Deborah Gascoyne-Binzi
- Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds LS1 3EX, UK
| | - Jonathan A T Sandoe
- Department of Microbiology, Old Medical School, Leeds General Infirmary, Leeds LS1 3EX, UK
| |
Collapse
|
35
|
Catonella morbi as a cause of native valve endocarditis in Chennai, India. Infection 2012; 40:581-2. [PMID: 22367778 DOI: 10.1007/s15010-012-0251-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
|
36
|
Nickerson CA, Ott CM, Castro SL, Garcia VM, Molina TC, Briggler JT, Pitt AL, Tavano JJ, Byram JK, Barrila J, Nickerson MA. Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark Hellbender salamanders. PLoS One 2011; 6:e28906. [PMID: 22205979 PMCID: PMC3242767 DOI: 10.1371/journal.pone.0028906] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/16/2011] [Indexed: 01/27/2023] Open
Abstract
Investigation into the causes underlying the rapid, global amphibian decline provides critical insight into the effects of changing ecosystems. Hypothesized and confirmed links between amphibian declines, disease, and environmental changes are increasingly represented in published literature. However, there are few long-term amphibian studies that include data on population size, abnormality/injury rates, disease, and habitat variables to adequately assess changes through time. We cultured and identified microorganisms isolated from abnormal/injured and repressed tissue regeneration sites of the endangered Ozark Hellbender, Cryptobranchus alleganiensis bishopi, to discover potential causative agents responsible for their significant decline in health and population. This organism and our study site were chosen because the population and habitat of C. a. bishopi have been intensively studied from 1969–2009, and the abnormality/injury rate and apparent lack of regeneration were established. Although many bacterial and fungal isolates recovered were common environmental organisms, several opportunistic pathogens were identified in association with only the injured tissues of C.a. bishopi. Bacterial isolates included Aeromonas hydrophila, a known amphibian pathogen, Granulicetella adiacens, Gordonai terrae, Stenotrophomonas maltophilia, Aerococcus viridans, Streptococcus pneumoniae and a variety of Pseudomonads, including Pseudomonas aeruginosa, P. stutzeri, and P. alcaligenes. Fungal isolates included species in the genera Penicillium, Acremonium, Cladosporium, Curvularia, Fusarium, Streptomycetes, and the Class Hyphomycetes. Many of the opportunistic pathogens identified are known to form biofilms. Lack of isolation of the same organism from all wounds suggests that the etiological agent responsible for the damage to C. a. bishopi may not be a single organism. To our knowledge, this is the first study to profile the external microbial consortia cultured from a Cryptobranchid salamander. The incidence of abnormalities/injury and retarded regeneration in C. a. bishopi may have many contributing factors including disease and habitat degradation. Results from this study may provide insight into other amphibian population declines.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- Arizona State University, School of Life Sciences, The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Tempe, Arizona, United States of America
| | - C. Mark Ott
- NASA/Johnson Space Center, Habitability and Environmental Factors Division, Houston, Texas, United States of America
| | - Sarah L. Castro
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Thomas C. Molina
- EASI, Wyle Laboratories, Houston, Texas, United States of America
| | - Jeffrey T. Briggler
- Missouri Department of Conservation, Jefferson City, Missouri, United States of America
| | - Amber L. Pitt
- University of Florida, Florida Museum of Natural History, Gainesville, Florida, United States of America
| | - Joseph J. Tavano
- University of Florida, Florida Museum of Natural History, Gainesville, Florida, United States of America
| | - J. Kelly Byram
- University of Florida, Florida Museum of Natural History, Gainesville, Florida, United States of America
| | - Jennifer Barrila
- Arizona State University, School of Life Sciences, The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Tempe, Arizona, United States of America
| | - Max A. Nickerson
- University of Florida, Florida Museum of Natural History, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Although fungi, archaea, and viruses contribute to the microbial diversity in endodontic infections, bacteria are the most common micro-organisms occurring in these infections. Datasets from culture and molecular studies, integrated here for the first time, showed that over 460 unique bacterial taxa belonging to 100 genera and 9 phyla have been identified in different types of endodontic infections. The phyla with the highest species richness were Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Diversity varies significantly according to the type of infection. Overall, more taxa have been disclosed by molecular studies than by culture. Many cultivable and as-yet-uncultivated phylotypes have emerged as candidate pathogens based on detection in several studies and/or high prevalence. Now that a comprehensive inventory of the endodontic microbial taxa has been established, future research should focus on the association with different disease conditions, functional roles in the community, and susceptibility to antimicrobial treatment procedures.
Collapse
Affiliation(s)
- J F Siqueira
- Department of Endodontics and Molecular Microbiology, Faculty of Dentistry, Estácio de Sá University, Av. Alfredo Baltazar da Silveira, 580/cobertura, Recreio, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
38
|
Abstract
The acute dental abscess is frequently underestimated in terms of its morbidity and mortality. The risk of potential serious consequences arising from the spread of a dental abscess is still relevant today with many hospital admissions for dental sepsis. The acute dental abscess is usually polymicrobial comprising facultative anaerobes, such as viridans group streptococci and the Streptococcus anginosus group, with predominantly strict anaerobes, such as anaerobic cocci, Prevotella and Fusobacterium species. The use of non-culture techniques has expanded our insight into the microbial diversity of the causative agents, identifying such organisms as Treponema species and anaerobic Gram-positive rods such as Bulleidia extructa, Cryptobacterium curtum and Mogibacterium timidum. Despite some reports of increasing antimicrobial resistance in isolates from acute dental infection, the vast majority of localized dental abscesses respond to surgical treatment, with antimicrobials limited to spreading and severe infections. The microbiology and treatment of the acute localized abscess and severe spreading odontogenic infections are reviewed.
Collapse
Affiliation(s)
- D. Robertson
- Department of Restorative Dentistry, University of Glasgow, Medical Faculty, Glasgow Dental Hospital and School, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - A. J. Smith
- Infection and Immunity Section, University of Glasgow, Medical Faculty, Glasgow Dental Hospital and School, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| |
Collapse
|
39
|
Granulicatella adiacens breast implant-associated infection. Diagn Microbiol Infect Dis 2008; 61:58-60. [PMID: 18206331 DOI: 10.1016/j.diagmicrobio.2007.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 12/03/2007] [Accepted: 12/05/2007] [Indexed: 11/23/2022]
Abstract
The 1st reported case of breast implant-associated infection due to Granulicatella adiacens, formerly known as nutritionally variant streptococci, Streptococcus adiacens, and Abiotrophia adiacens is presented. Microbiology and previously reported cases of infections by this organism are reviewed.
Collapse
|
40
|
Culture-independent analysis of bacterial diversity in a child-care facility. BMC Microbiol 2007; 7:27. [PMID: 17411442 PMCID: PMC1853100 DOI: 10.1186/1471-2180-7-27] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 04/05/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Child-care facilities appear to provide daily opportunities for exposure and transmission of bacteria and viruses. However, almost nothing is known about the diversity of microbial contamination in daycare facilities or its public health implications. Recent culture-independent molecular studies of bacterial diversity in indoor environments have revealed an astonishing diversity of microorganisms, including opportunistic pathogens and many uncultured bacteria. In this study, we used culture and culture-independent methods to determine the viability and diversity of bacteria in a child-care center over a six-month period. RESULTS We sampled surface contamination on toys and furniture using sterile cotton swabs in four daycare classrooms. Bacteria were isolated on nutrient and blood agar plates, and 16S rRNA gene sequences were obtained from unique (one of a kind) colony morphologies for species identification. We also extracted DNA directly from nine representative swab samples taken over the course of the study from both toy and furniture surfaces, and used "universal" 16S rRNA gene bacterial primers to create PCR-based clone libraries. The rRNA gene clones were sequenced, and the sequences were compared with related sequences in GenBank and subjected to phylogenetic analyses to determine their evolutionary relationships. Culturing methods identified viable bacteria on all toys and furniture surfaces sampled in the study. Bacillus spp. were the most commonly cultured bacteria, followed by Staphylococcus spp., and Microbacterium spp. Culture-independent methods based on 16S rRNA gene sequencing, on the other hand, revealed an entirely new dimension of microbial diversity, including an estimated 190 bacterial species from 15 bacterial divisions. Sequence comparisons and phylogenetic analyses determined that the clone libraries were dominated by a diverse set of sequences related to Pseudomonas spp., as well as uncultured bacteria originally identified on human vaginal epithelium. Other sequences were related to uncultured bacteria from wastewater sludge, and many human-associated bacteria including a number of pathogens and opportunistic pathogens. Our results suggest that the child-care facility provided an excellent habitat for slime-producing Pseudomonads, and that diaper changing contributed significantly to the bacterial contamination. CONCLUSION The combination of culture and culture-independent methods provided powerful means for determining both viability and diversity of bacteria in child-care facilities. Our results provided insight into the source of contamination and suggested ways in which sanitation might be improved. Although our study identified a remarkable array of microbial diversity present in a single daycare, it also revealed just how little we comprehend the true extent of microbial diversity in daycare centers or other indoor environments.
Collapse
|