1
|
Zhai J, Chen Z, Zhu Q, Guo Z, Sun X, Jiang L, Li J, Wang N, Yao X, Zhang C, Deng H, Wang S, Yang G. Curcumin inhibits PAT-induced renal ferroptosis via the p62/Keap1/Nrf2 signalling pathway. Toxicology 2024; 506:153863. [PMID: 38878878 DOI: 10.1016/j.tox.2024.153863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Patulin (PAT), the most common mycotoxin, is widespread in foods and beverages which poses a serious food safety issue to human health. Our previous research confirmed that exposure to PAT can lead to acute kidney injury (AKI). Curcumin is the most abundant active ingredient in turmeric rhizome with various biological activities. The aim of this study is to investigate whether curcumin can prevent the renal injury caused by PAT, and to explore potential mechanisms. In vivo, supplementation with curcumin attenuated PAT-induced ferroptosis. Mechanically, curcumin inhibited autophagy, led to the accumulation of p62 and its interaction with Keap1, promoted the nuclear translocation of nuclear factor E2 related factor 2 (Nrf2), and increased the expression of antioxidant stress factors in the process of ferroptosis. These results have also been confirmed in HKC cell experiments. Furthermore, knockdown of Nrf2 in HKC cells abrogated the protective effect of curcumin on ferroptosis. In conclusion, we confirmed that curcumin mitigated PAT-induced AKI by inhibiting ferroptosis via activation of the p62/Keap1/Nrf2 pathway. This study provides new potential targets and ideas for the prevention and treatment of PAT.
Collapse
Affiliation(s)
- Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
2
|
Wang J, Wang J, Lu C, Wang Y, Bi H, Zheng J, Ding X. ISL1-overexpressing BMSCs attenuate renal ischemia-reperfusion injury by suppressing apoptosis and oxidative stress through the paracrine action. Cell Mol Life Sci 2024; 81:312. [PMID: 39066917 PMCID: PMC11335236 DOI: 10.1007/s00018-024-05354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major event in renal transplantation, leading to adverse outcomes. Bone marrow mesenchymal stem cells (BMSCs) are novel promising therapeutics for repairing kidney injuries. The therapeutic efficacy of BMSCs with ISL1 overexpression in renal IRI and its underlying mechanism need to be investigated. The unilateral renal IRI rat model was established to mimic clinical acute kidney injury. Rats were injected with PBS, BMSCs-Scrambled or BMSCs-ISL1 via the tail vein at the timepoint of reperfusion, and then sacrificed after 24 h of reperfusion. The administration of BMSCs-ISL1 significantly improved renal function, inhibited tubular cells apoptosis, inflammation, oxidative stress in rats. In vitro, HKC cells subjected to H2O2 stimulation were pretreated with the conditioned medium (CM) of BMSCs-Scrambled or BMSCs-ISL1. The pretreatment of ISL1-CM attenuated apoptosis and oxidative stress induced by H2O2 in HKC cells. Our proteomic data suggested that haptoglobin (Hp) was one of the secretory proteins in ISL1-CM. Subsequent experiments confirmed that Hp was the important paracrine factor from BMSCs-ISL1 that exerted anti-apoptotic and antioxidant functions. Mechanistically, Hp played a cytoprotective role via the inhibition of ERK signaling pathway, which could be abrogated by Ro 67-7476, the ERK phosphorylation agonist. The results suggested that paracrine action may be the main mechanism for BMSCs-ISL1 to exert protective effects. As an important anti-apoptotic and antioxidant factor in ISL1-CM, Hp may serve as a new therapeutic agent for treating IRI, providing new insights for overcoming the long-term adverse effects of stem cell therapy.
Collapse
Affiliation(s)
- Jiale Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jingwen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Cuinan Lu
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Huanjing Bi
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
3
|
Lamy A, Chertow GM, Jessen M, Collar A, Brown CD, Mack CA, Marzouk M, Scavo V, Washburn TB, Savage D, Smith J, Bennetts J, Assi R, Shults C, Arghami A, Butler J, Devereaux P, Zager R, Wang C, Snapinn S, Browne A, Rodriguez J, Ruiz S, Singh B. Effects of RBT-1 on preconditioning response biomarkers in patients undergoing coronary artery bypass graft or heart valve surgery: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. EClinicalMedicine 2024; 68:102364. [PMID: 38586479 PMCID: PMC10994969 DOI: 10.1016/j.eclinm.2023.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 04/09/2024] Open
Abstract
Background RBT-1 is a combination drug of stannic protoporfin (SnPP) and iron sucrose (FeS) that elicits a preconditioning response through activation of antioxidant, anti-inflammatory, and iron-scavenging pathways, as measured by heme oxygenase-1 (HO-1), interleukin-10 (IL-10), and ferritin, respectively. Our primary aim was to determine whether RBT-1 administered before surgery would safely and effectively elicit a preconditioning response in patients undergoing cardiac surgery. Methods This phase 2, double-blind, randomised, placebo-controlled, parallel-group, adaptive trial, conducted in 19 centres across the USA, Canada, and Australia, enrolled patients scheduled to undergo non-emergent coronary artery bypass graft (CABG) and/or heart valve surgery with cardiopulmonary bypass. Patients were randomised (1:1:1) to receive either a single intravenous infusion of high-dose RBT-1 (90 mg SnPP/240 mg FeS), low-dose RBT-1 (45 mg SnPP/240 mg FeS), or placebo within 24-48 h before surgery. The primary outcome was a preoperative preconditioning response, measured by a composite of plasma HO-1, IL-10, and ferritin. Safety was assessed by adverse events and laboratory parameters. Prespecified adaptive criteria permitted early stopping and enrichment. This trial is registered with ClinicalTrials.gov, NCT04564833. Findings Between Aug 4, 2021, and Nov 9, 2022, of 135 patients who were enrolled and randomly allocated to a study group (46 high-dose, 45 low-dose, 44 placebo), 132 (98%) were included in the primary analysis (46 high-dose, 42 low-dose, 44 placebo). At interim, the trial proceeded to full enrollment without enrichment. RBT-1 led to a greater preconditioning response than did placebo at high-dose (geometric least squares mean [GLSM] ratio, 3.58; 95% CI, 2.91-4.41; p < 0.0001) and low-dose (GLSM ratio, 2.62; 95% CI, 2.11-3.24; p < 0.0001). RBT-1 was generally well tolerated by patients. The primary drug-related adverse event was dose-dependent photosensitivity, observed in 12 (26%) of 46 patients treated with high-dose RBT-1 and in six (13%) of 45 patients treated with low-dose RBT-1 (safety population). Interpretation RBT-1 demonstrated a statistically significant cytoprotective preconditioning response and a manageable safety profile. Further research is needed. A phase 3 trial is planned. Funding Renibus Therapeutics, Inc.
Collapse
Affiliation(s)
- Andre Lamy
- Department of Perioperative Medicine and Surgery, Population Health Research Institute, Hamilton, Ontario, Canada
| | - Glenn M. Chertow
- Departments of Medicine and Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alonso Collar
- Department of Thoracic Surgery and Vascular Surgery, MyMichigan Health, Midland, MI, USA
| | - Craig D. Brown
- Department of Cardiac Surgery, New Brunswick Heart Centre, Saint John, New Brunswick, Canada
| | - Charles A. Mack
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Mohamed Marzouk
- Department of Cardiac Surgery, Québec Heart and Lung Institute, Québec, Québec, Canada
| | - Vincent Scavo
- Department of Cardiovascular and Thoracic Surgery, Lutheran Medical Group, Fort Wayne, Indiana, USA
| | - T Benton Washburn
- Department of Cardiothoracic Surgery, Huntsville Hospital Heart Center, Huntsville, AL, USA
| | - David Savage
- Department of Cardiothoracic Surgery, Indiana University Health, Bloomington, IN, USA
| | - Julian Smith
- Department of Surgery (School of Clinical Sciences at Monash Health), Monash University and Department of Cardiothoracic Surgery, Monash Health, Melbourne, Victoria, Australia
| | - Jayme Bennetts
- Department of Cardiothoracic Surgery, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
- Department of Surgery, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Roland Assi
- Department of Cardiac Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Christian Shults
- Department of Cardiac Surgery, MedStar Heart and Vascular Institute, Washington, DC, USA
| | - Arman Arghami
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, MN, USA
| | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson, MS, USA
- Baylor Scott and White Research Institute, Dallas, TX, USA
| | - P.J. Devereaux
- Department of Perioperative Medicine and Surgery, Population Health Research Institute, Hamilton, Ontario, Canada
| | - Richard Zager
- Department of Drug Development & Medical Affairs, Renibus Therapeutics Inc, Southlake, TX, USA
| | - Chao Wang
- Pharma Data Associates LLC, Piscataway, NJ, USA
| | - Steve Snapinn
- Seattle-Quilcene Biostatistics LLC, Seattle, WA, USA
| | - Austin Browne
- Department of Perioperative Medicine and Surgery, Population Health Research Institute, Hamilton, Ontario, Canada
| | - Jeannette Rodriguez
- Department of Drug Development & Medical Affairs, Renibus Therapeutics Inc, Southlake, TX, USA
| | - Stacey Ruiz
- Department of Drug Development & Medical Affairs, Renibus Therapeutics Inc, Southlake, TX, USA
| | - Bhupinder Singh
- Department of Drug Development & Medical Affairs, Renibus Therapeutics Inc, Southlake, TX, USA
| |
Collapse
|
4
|
Chang SN, Park JG, Kang SC. Therapeutic propensity of ginsenosides Rg1 and Rg3 in rhabdomyolysis-induced acute kidney injury and renohepatic crosstalk in rats. Int Immunopharmacol 2023; 115:109602. [PMID: 36580761 DOI: 10.1016/j.intimp.2022.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ginseng is a traditional herbal medicine used for thousands of years in Southeast Asian countries because of its medicinal properties. Ginsenosides Rg1 and Rg3 have demonstrated therapeutic properties against a broad spectrum of diseases. PURPOSE Here in this study, we investigated the therapeutic efficacy of Rg1 and Rg3 in alleviating glycerol-induced acute kidney injury, also known as rhabdomyolysis-induced acute kidney injury (RAKI). METHODS AKI was induced in male Wistar rats through intramuscular injection of 10 mL/kg glycerol and simultaneous oral treatment of ginsenosides Rg1 and Rg3 for 3 days. We also evaluated the therapeutic potential of Rg1 and Rg3 on human embryonic kidney epithelial (HEK-293). Cell viability and LDH assay were performed on HEK-293 cells to evaluate the toxicity of Rg1 and Rg3. Evaluation of important kidney damage markers such as creatinine and blood urea nitrogen (BUN) was carried out at different time points from the rat serum. Histopathological analysis was performed on kidney tissues. We also performed experiments such as ELISA assay, immunohistochemistry, immunofluorescence staining, COMET assay, western blotting, TUNEL assay, and flow cytometry to obtain results. RESULTS Rg1 and Rg3 significantly downregulated the expression of kidney damage markers such as creatinine and BUN in a dose-dependent manner. Histopathological analysis revealed damage across the glomerulus, tubules, and collecting duct rendering the kidney dysfunctional in glycerol treatment groups. However, Rg1 and Rg3 treated groups showed a significant reduction in tubular necrosis at both 10 and 20 mg/kg. There was also a sharp downregulation of oxidative and ER stress markers. Additionally, we observed nuclear translocation of Nrf2 which were more prominent in kidney tissues. Rg1 and Rg3 were also able to mitigate apoptotic cell death in vitro and in vivo evaluated through immunofluorescence staining for p53, TUNEL assay, flow cytometry, and immunoblotting for intrinsic apoptosis markers. CONCLUSION In summary, we conclude that Rg1 and Rg3 exhibited natural therapeutic remedy against AKI.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
5
|
Rhabdomyolysis-induced acute kidney injury and concomitant apoptosis induction via ROS-mediated ER stress is efficaciously counteracted by epigallocatechin gallate. J Nutr Biochem 2022; 110:109134. [PMID: 36028100 DOI: 10.1016/j.jnutbio.2022.109134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023]
Abstract
Rhabdomyolysis induced acute kidney injury (RIAKI) is a life-threatening condition responsible for approximately 19-58% of AKI cases worldwide. We performed an intramuscular injection of glycerol (10 mL/kg) in male wistar rats to induce AKI. Epigallocatechin gallate (EGCG) was administered for 3 consecutive days to evaluate its protective effects. We observed significant downregulation in serum creatinine, blood urea nitrogen (BUN) and LDH at different time points on EGCG treatment groups in a dose-dependent manner. Similarly, H&E staining also revealed that EGCG was able to reduce the formation of damaged tubules and tubular necrosis which was prominently spread throughout the kidney tissue of glycerol treatment group. Concomitantly, we observed upregulated inflammation, ER stress and elevated oxidative stress in the glycerol treated group only, which was significantly normalized upon EGCG treatment in both in vitro and in vivo studies. The occurrence of apoptosis in kidney tubules was found to be relatively higher in glycerol treated group and H2O2 treated HEK-293 cells. The results obtained after EGCG treatment revealed a significant decrease in apoptotic cell population, which was further validated by immunofluorescence staining against p53 and comet assay in HEK-293 cells and p53 IHC in kidney tissues. Western blotting also revealed a systemic downregulation of intrinsic mitochondrial apoptotic pathway markers such as bax, bcl-2, pro and cleaved caspase 3, caspase 9 and PARP1. Additionally, the results for flow cytometry analysis and TUNEL assay corroborated apoptotic equilibrium. Conclusively, we reckon EGCG as a multi-therapeutic natural product that can be used the for treatment of AKI.
Collapse
|
6
|
Zager RA. Oxidant- induced preconditioning: A pharmacologic approach for triggering renal 'self defense'. Physiol Rep 2022; 10:e15507. [PMID: 36305701 PMCID: PMC9615572 DOI: 10.14814/phy2.15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common event, occurring in ~5% and ~35% of hospitalized and ICU patients, respectively. The development of AKI portends an increased risk of morbidity, mortality, prolonged hospitalization, and subsequent development of chronic kidney disease (CKD). Given these facts, a multitude of experimental studies have addressed potential methods for inducing AKI prevention in high-risk patients. However, successful clinical translation of promising experimental data has remained elusive. Over the past decade, our laboratory has focused on developing a method for safely triggering AKI protection by inducing "kidney preconditioning" in mice by the intravenous administration of a combination of Fe sucrose (FeS) + tin protoporphyrin (SnPP). These agents induce mild, but short lived, 'oxidant stress' which synergistically activate a number of kidney 'self-defense' pathways (e.g., Nrf2, ferritin, IL-10). Within 18-24 h of Fe/SnPP administration, marked protection against diverse forms of experimental toxic and ischemic AKI results. FeS/SnPP-mediated reductions in kidney injury can also indirectly decrease injury in other organs by mitigating the so called "organ cross talk" phenomenon. Given these promising experimental data, three phase 1b clinical trials were undertaken in healthy subjects and patients with stage 3 or 4 CKD. These studies demonstrated that FeS/SnPP were well tolerated and that they up-regulated the cytoprotective Nrf2, ferritin, and IL-10 pathways. Two subsequent phase 2 trials, conducted in patients undergoing 'on-pump' cardiovascular surgery or in patients hospitalized with COVID 19, confirmed FeS/SnPP safety. Furthermore, interim data analyses revealed statistically significant improvements in several clinical parameters. The goals of this review are to: (i) briefly discuss the historical background of renal "preconditioning"; (ii) present the experimental data that support the concept of FeS/SnPP- induced organ protection; and (iii) discuss the initial results of clinical trials that suggest the potential clinical utility of an 'oxidant preconditioning' strategy.
Collapse
Affiliation(s)
- Richard A. Zager
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| |
Collapse
|
7
|
Cai Y, Huang C, Zhou M, Xu S, Xie Y, Gao S, Yang Y, Deng Z, Zhang L, Shu J, Yan T, Wan CC. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154306. [PMID: 35809376 DOI: 10.1016/j.phymed.2022.154306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in clinical inpatients, and it continues a high morbidity and mortality rate despite many clinical treatment measures. AKI is triggered by infections, surgery, heavy metal exposure and drug side effects, but current chemical drugs often fall short of expectations for AKI treatment and have toxic side effects. Therefore, finding new interventions and treatments, especially of natural origin, is of remarkable clinical significance and application. The herbal monomer curcumin is a natural phenolic compound extracted from the plant Curcuma longa and showed various biological activities, including AKI. Furthermore, recent studies have shown that curcumin restores renal function by modulating the immune system and the release of inflammatory mediators, scavenging oxygen free radicals, reducing apoptosis and improving mitochondrial dynamics. However, curcumin has a low bioavailability, which limits its clinical application. For this reason, it is essential to investigate the therapeutic effects and molecular mechanisms of curcumin in AKI, as well as to improve its bioavailability for curcumin formulation development and clinical application. PURPOSE This review summarizes the sources, pharmacokinetics, and limitations in the clinical application of curcumin and explores methods to optimize its bioavailability using nanotechnology. In particular, the therapeutic effects and molecular mechanisms of curcumin on AKI are highlighted to provide a theoretical basis for AKI treatment in clinical practices. METHODS This review was specifically searched by means of a search of three databases (Web of Science, PubMed and Science Direct), till December 2021. Search terms were "Curcumin", "Acute kidney injury", "AKI", " Pharmacokinetics", "Mitochondria" and "Nano formulations". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review) RESULTS: Studies have shown that curcumin responded to AKI-induced renal injury and restored renal tubular epithelial cell function by affecting multiple signaling pathways in AKI models induced by factors such as cisplatin, lipopolysaccharide, ischemia/reperfusion, gentamicin and potassium dichromate. Curcumin was able to affect NF-κB signaling pathway and reduce the expression of IL-1β, IL-6, IL-8 and TNF-α, thus preventing renal inflammatory injury. In the prevention of renal tubular oxidative damage, curcumin reduced ROS production by activating the activity of Nrf2, HO-1 and PGC-1α. In addition, curcumin restored mitochondrial homeostasis by upregulating OPA1 and downregulating DRP1 expression, while reducing apoptosis by inhibiting the caspase-3 apoptotic pathway. In addition, due to the low bioavailability and poor absorption of curcumin in vivo, curcumin nanoformulations including nanoparticles, liposomes, and polymeric micelles are formulated to improve the bioavailability. CONCLUSION This review provides new ideas for the use of curcumin in the prevention and treatment of AKI by modulating the molecular targets of several different cellular signaling pathways.
Collapse
Affiliation(s)
- Yi Cai
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Chaoming Huang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengyu Zhou
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shiqi Xu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongwan Xie
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yantianyu Yang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zirong Deng
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Libei Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jicheng Shu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Chunpeng Craig Wan
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Gu X, Li S, Lu M, Li Y, Wang Q, Chen L, Jia Y, Cao S, Zhang T, Zhou M, Gou X. Investigation of Gynura segetum root extract (GSrE) induced hepatotoxicity based on metabolomic signatures and microbial community profiling in rats. Front Microbiol 2022; 13:947757. [PMID: 36016788 PMCID: PMC9396145 DOI: 10.3389/fmicb.2022.947757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
In recent years, many reports focus on the hepatotoxicity of Gynura segetum root extract (GSrE), but the interaction between GSrE and the gut microbiota is still unclear. This study investigated the mechanism of GSrE-induced hepatotoxicity of different doses and exposure durations by combining metabolomics and gut microbiota analysis. SD rats were divided into 3 groups: blank, low-dose (7.5 g/kg), and high-dose (15 g/kg) groups. Urine and feces samples were collected on day 0, day 10, and day 21. Metabolomics based on gas chromatography-mass spectrometry (GC-MS) was carried out to identify metabolites and metabolic pathways. 16S rDNA gene sequencing was applied to investigate the composition of gut microbiota before and after GSrE-induced hepatotoxicity. Finally, a correlation analysis of metabolites and gut microbiota was performed. Differential metabolites in urine and feces involved amino acids, carbohydrates, lipids, organic acids, and short chain fatty acids. Among them, L-valine, L-proline, DL-arabinose, pentanoic acid, D-allose, and D-glucose in urine and D-lactic acid and glycerol in fecal metabolites depended on the exposure of time and dose. In addition, 16S rDNA sequencing analysis revealed that GSrE-induced hepatotoxicity significantly altered the composition of gut microbiota, namely, f_Muribaculaceae_Unclassified, Lactobacillus, Bacteroides, Lachnospiraceae_NK4A136_group, f_Ruminococcaceae_Unclassified, Prevotellaceae_Ga6A1_group, and Escherichia-Shigella. The correlation analysis between gut microbiota and differential metabolites showed the crosstalk between the gut microbiota and metabolism in host involving energy, lipid, and amino acid metabolisms. In summary, our findings revealed that peripheral metabolism and gut microbiota disorders were time- and dose-related and the correlation between gut microbiota and metabolites in GSrE-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuwei Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengna Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qixue Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center of Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqun Jia
- Experiment Center of Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shan Cao
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Mingmei Zhou
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
- Xiaojun Gou
| |
Collapse
|
9
|
Fu Z, Chu Y, Geng X, Ma Y, Chi K, Song C, Liao S, Hong Q, Wu D, Wang Y. Artificial Kidney Capsule Packed with Mesenchymal Stem Cell-Laden Hydrogel for the Treatment of Rhabdomyolysis-Induced Acute Kidney Injury. ACS Biomater Sci Eng 2022; 8:1726-1734. [PMID: 35302761 DOI: 10.1021/acsbiomaterials.1c01595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) has emerged as a major public health problem affecting millions of people worldwide without specific and satisfactory therapies due to the lack of an effective delivery approach. In the past few decades, hydrogels present infinite potential in localized drug delivery, while their poor adhesion to moist tissue and isotropic diffusion character always restrict the therapeutic efficiency and may lead to unwanted side effects. Herein, we proposed a novel therapeutic strategy for AKI via a customizable artificial kidney capsule (AKC) together with a mesenchymal stem cell (MSC)-laden hydrogel. Specifically, an elastic capsule owning an inner chamber with the same size and shape as the kidney is designed and fabricated through three-dimensional (3D) modeling and printing, serving as an outer wrap for kidney and cell-laden hydrogels. According to the in vitro experiment, the excellent biocompatibility of gelatin-based hydrogel ensures viability and proliferation of MSCs. In vivo mice experiments proved that this concept of AKC-assisted kidney drug delivery could efficiently reduce epithelial cell apoptosis and minimize the damage of the renal tubular structure for mice suffering AKI. Such a strategy not only provides a promising alternative in the treatment of AKI but also offers a feasible and versatile approach for the repair and recovery of other organs.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yanji Chu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaodong Geng
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.,Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force, Qinhuangdao 066100, China
| | - Yingchao Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Kun Chi
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chengcheng Song
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Shenglong Liao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Quan Hong
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Di Wu
- Medical School of Chinese PLA, Beijing 100853, China.,Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yapei Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
10
|
Ahmed RF, Okasha AM, Hafiz SHI, Abdel-Gaber SA, Yousef RKM, Sedik WF. Guanosine protects against glycerol-induced acute kidney injury via up-regulation of the klotho gene. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:399-404. [PMID: 35656176 PMCID: PMC9148399 DOI: 10.22038/ijbms.2022.60579.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/09/2022] [Indexed: 12/02/2022]
Abstract
Objectives Acute Kidney Injury (AKI) is characterized by a rapid and reversible decline in renal function with a rapid decrease in Glomerular Filtration Rate (GFR), which is associated with high mortality. Rhabdomyolysis accounts for 10-40% of AKI, to which the therapeutic approach is limited. Klotho is a protein that modulates sodium-phosphate co-transporters, ion channels that have been reported to have a renal protective effect. Guanosine, a purine nucleoside, has already been reported to have a renal protective effect; however, the mechanism of such protection and its relation to Klotho modification has not been evaluated yet. This study aims to evaluate the mechanism of the protective effect of guanosine against rhabdomyolysis-induced AKI and its relation to the expression of the Klotho gene. Materials and Methods In the current study, rats were divided into three groups: control, glycerol-induced AKI, and guanosine-treated. Serum urea and creatinine levels, renal tissue Total Antioxidant Capacity (TAC), and Klotho and Cystatin C genes expression were evaluated. Furthermore, caspase-3 immunostaining and histopathological evaluations were done. Results Results showed that guanosine treatment resulted in a significant reduction in serum urea and creatinine, Cystatin C genes expression, and caspase-3 immunoexpression, and an increase in TAC and Klotho genes expression. Results also revealed an improvement of renal histopathology when compared with the glycerol-induced AKI group. Conclusion Guanosine may be a promising agent in the treatment of rhabdomyolysis-induced AKI. The proposed mechanism for guanosine may be through its ability to enhance Klotho gene expression in renal tissue, with subsequent antioxidant and anti-apoptotic activity.
Collapse
Affiliation(s)
- Rasha F. Ahmed
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, 61511, Minia, Egypt
| | - Ahmed M. Okasha
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, 61511, Minia, Egypt
| | | | - Seham A. Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511, Minia, Egypt
| | | | - Wael F Sedik
- Department of Medical Biochemistry, Faculty of Medicine, Minia University, 61511, Minia, Egypt
| |
Collapse
|
11
|
Tsai YC, Cheng PY, Chen JH, Lee YM, Yen MH. Raspberry ketone promotes FNDC5 protein expression via HO-1 upregulation in 3T3-L1 adipocytes. CHINESE J PHYSIOL 2022; 65:80-86. [DOI: 10.4103/cjp.cjp_95_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Zager RA, Johnson ACM. The NRF2 stimulating agent, tin protoporphyrin, activates protective cytokine pathways in healthy human subjects and in patients with chronic kidney disease. Physiol Rep 2021; 8:e14566. [PMID: 32940965 PMCID: PMC7507518 DOI: 10.14814/phy2.14566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tin protoporphyrin (SnPP), a heme oxygenase 1 (HO-1) inhibitor, triggers adaptive tissue responses that confer potent protection against acute renal- and extra-renal tissue injuries. This effect is mediated, in part, via SnPP-induced activation of the cytoprotective Nrf2 pathway. However, it remains unclear as to whether SnPP can also upregulate humoral cytokine defenses, either in healthy human subjects or in patients with CKD. If so, then systemically derived cytokines could contribute SnPP-induced tissue protection. METHODS SnPP (90 mg IV) was administered over 2 hr to six healthy human volunteers (HVs) and 12 subjects with stage 3-4 CKD. Plasma samples were obtained from baseline upto 72 hr post injection. Two representative anti-inflammatory cytokines (IL-10, TGFβ1), and a pro-inflammatory cytokine (TNF-α), were assayed. Because IL-6 has been shown to induce tissue preconditioning, its plasma concentrations were also assessed. In complementary mouse experiments, SnPP effects on renal, splenic, and hepatic IL-10, IL-6, TGFβ1, and TNF-α production (as gauged by their mRNAs) were tested. Tissue HO-1 mRNA served as an Nrf2 activation marker. RESULTS SnPP induced marked (~5-7x) increases in plasma IL-10 and IL-6 concentrations within 24-48 hr, and to equal degrees in HVs and CKD patients. SnPP modestly raised plasma TGFβ1 without impacting plasma TNF-α levels. In mouse experiments, SnPP did not affect IL-6, IL-10, TNF-α, or TGFβ1 mRNAs in kidney despite marked renal Nrf2 activation. Conversely, SnPP increased splenic IL-10 and hepatic IL-6/TGFβ1 mRNA levels, suggesting these organs as sites of extra-renal cytokine generation. CONCLUSIONS SnPP can trigger cytoprotective cytokine production, most likely in extra-renal tissues. With ready glomerular cytokine filtration, extra-renal/renal "organ cross talk" can result. Thus, humoral factors seemingly can contribute to SnPP's cytoprotective effects.
Collapse
Affiliation(s)
- Richard A Zager
- Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
13
|
Sun T, Liu Q, Wang Y, Deng Y, Zhang D. MBD2 mediates renal cell apoptosis via activation of Tox4 during rhabdomyolysis-induced acute kidney injury. J Cell Mol Med 2021; 25:4562-4571. [PMID: 33764669 PMCID: PMC8107094 DOI: 10.1111/jcmm.16207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Our study investigated the role of Methyl‐CpG–binding domain protein 2 (MBD2) in RM‐induced acute kidney injury (AKI) both in vitro and in vivo. MBD2 was induced by myoglobin in BUMPT cells and by glycerol in mice. MBD2 inhibition via MBD2 small interfering RNA and MBD2‐knockout (KO) attenuated RM‐induced AKI and renal cell apoptosis. The expression of TOX high mobility group box family member 4 (Tox4) induced by myoglobin was markedly reduced in MBD2‐KO mice. Chromatin immunoprecipitation analysis indicated that MBD2 directly bound to CpG islands in the Tox4 promoter region, thus preventing promoter methylation. Furthermore, siRNA inhibition of Tox4 attenuated myoglobin‐induced apoptosis in BUMPT cells. Finally, MBD2‐KO mice exhibited glycerol‐induced renal cell apoptosis by inactivation of Tox4. Altogether, our results suggested that MBD2 plays a role in RM‐induced AKI via the activation of Tox4 and represents a potential target for treatment of RM‐associated AKI.
Collapse
Affiliation(s)
- Tianshi Sun
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China
| | - Qing Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Wang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital of Central South University, Changsha, China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital of Central South University, Changsha, China.,Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
14
|
Grunenwald A, Roumenina LT, Frimat M. Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. Int J Mol Sci 2021; 22:2009. [PMID: 33670516 PMCID: PMC7923026 DOI: 10.3390/ijms22042009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
The incidence of kidney disease is rising, constituting a significant burden on the healthcare system and making identification of new therapeutic targets increasingly urgent. The heme oxygenase (HO) system performs an important function in the regulation of oxidative stress and inflammation and, via these mechanisms, is thought to play a role in the prevention of non-specific injuries following acute renal failure or resulting from chronic kidney disease. The expression of HO-1 is strongly inducible by a wide range of stimuli in the kidney, consequent to the kidney's filtration role which means HO-1 is exposed to a wide range of endogenous and exogenous molecules, and it has been shown to be protective in a variety of nephropathological animal models. Interestingly, the positive effect of HO-1 occurs in both hemolysis- and rhabdomyolysis-dominated diseases, where the kidney is extensively exposed to heme (a major HO-1 inducer), as well as in non-heme-dependent diseases such as hypertension, diabetic nephropathy or progression to end-stage renal disease. This highlights the complexity of HO-1's functions, which is also illustrated by the fact that, despite the abundance of preclinical data, no drug targeting HO-1 has so far been translated into clinical use. The objective of this review is to assess current knowledge relating HO-1's role in the kidney and its potential interest as a nephroprotection agent. The potential therapeutic openings will be presented, in particular through the identification of clinical trials targeting this enzyme or its products.
Collapse
Affiliation(s)
- Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Marie Frimat
- U1167-RID-AGE, Institut Pasteur de Lille, Inserm, Univ. Lille, F-59000 Lille, France
- Nephrology Department, CHU Lille, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 1 (literature review). КЛИНИЧЕСКАЯ ПРАКТИКА 2020. [DOI: 10.17816/clinpract34284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Morbidity and mortality rates from acute myocardial infarction (AMI) have been growing rapidly in recent years, causing significant socio-economic damage. Cardiac biomarkers play an important role in the diagnosis and prediction of AMI. In our review article, we will summarize information about the main existing cardiac biomarkers and focus on their diagnostic and prognostic value for patients with AMI.
In the first part of the review, we consider the diagnostic and prognostic value of biomarkers of necrosis and myocardial ischemia (aspartate aminotransferase; creatine phosphokinase; cardiac troponins; myoglobin, ischemia-modified albumin, fatty acid binding protein) and neuroendocrine AMI biomarkers (natriuretic peptides, adrenomedullin, catestatin, components of the renin-angiotensin-aldosterone system).
In the second part of the review, we discuss the diagnostic and prognostic value of inflammatory AMI biomarkers (C-reactive protein, interleukin-6, tumor necrosis factor, myeloperoxidase, matrix metalloproteinases, soluble CD40 ligand form (sCD40L), procalcitonin, placental growth factor (PGF), procalcitonin) and recently discovered new biomarkers (microRNA, stimulating growth factor, expressed by genome 2 (ST2), growth differentiation factor 15 (GDF-15), galectin-3).
Collapse
|
16
|
Tsai YC, Wang CW, Wen BY, Hsieh PS, Lee YM, Yen MH, Cheng PY. Involvement of the p62/Nrf2/HO-1 pathway in the browning effect of irisin in 3T3-L1 adipocytes. Mol Cell Endocrinol 2020; 514:110915. [PMID: 32540261 DOI: 10.1016/j.mce.2020.110915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Abstract
Irisin has gained attention because of its potential applications in the treatment of metabolic diseases. Accumulating evidence indicates that irisin attenuates obesity via the browning of white adipose tissue; however, the underlying mechanisms are unclear. Here, we evaluated the effects of irisin on adipocyte browning and the underlying mechanisms. The western blotting and immunofluorescence analyses demonstrated that irisin significantly induced the up-regulation of brown fat-specific proteins (PGC1α, PRDM16, and UCP-1) and HO-1 in 3T3-L1 adipocytes. Moreover, irisin significantly increased the levels of cytosolic p62 and nuclear Nrf2. These effects of irisin in the adipocytes were attenuated by treatment with SnPP or p62 siRNA. In addition, the browning effect of irisin was observed in BAT-WT-1 cells. These findings suggest that irisin induced browning effect via the p62/Nrf2/HO-1 signalling pathway and that it may be a potential candidate for preventing or treating obesity.
Collapse
Affiliation(s)
- Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center, Tainan, Taiwan; Department of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Sport Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chyi-Wen Wang
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Bo-Yao Wen
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Mei Lee
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Mao-Hsiung Yen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
17
|
Abugomaa A, Elbadawy M. Olive leaf extract modulates glycerol-induced kidney and liver damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22100-22111. [PMID: 32291641 DOI: 10.1007/s11356-020-08371-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The present study was conducted to examine the protective effect of olive leaf extract (OLE) against glycerol-induced oxidative stress in rats. Sixty male albino rats were used and allocated randomly into four groups, each of 15 rats. Groups (1) and (2) were administered intraperitoneally (i.p.) a single dose of 500 μL normal saline and hypertonic glycerol solution (10 mL/kg b.wt., 50% v/v, in sterile saline), respectively, followed by a 24-h period of water deprivation. Group (3) was orally given OLE (500 mg/kg b.wt.) for 22 days and glycerol as mentioned above on the 14th day of OLE administration followed by a 24-h period of water deprivation. Group (4) was administered OLE alone. Five rats from each group were sacrificed and samples were collected 1, 5, and 8 days after water deprivation. Alterations in hematobiochemical parameters, renal and hepatic oxidative stress markers, as well as histopathology of the kidney and liver, were evaluated. Glycerol treatment resulted in significant hematological and biochemical alterations as well as significant renal and hepatic oxidative stress. Administration of OLE has significantly ameliorated renal dysfunction, morphological alterations of kidney and liver, and relieved the oxidative stress. These findings show obviously the role of oxidative stress and its relevance to renal dysfunction and suggest the ameliorative impact of OLE in glycerol-induced acute kidney damage in rats, possibly due to its antioxidant properties.
Collapse
Affiliation(s)
- Amira Abugomaa
- Faculty of Veterinary Medicine|, Mansoura University, Mansoura, Dakahliya, 35516, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt.
| |
Collapse
|
18
|
Zager RA, Johnson ACM, Guillem A, Keyser J, Singh B. A Pharmacologic "Stress Test" for Assessing Select Antioxidant Defenses in Patients with CKD. Clin J Am Soc Nephrol 2020; 15:633-642. [PMID: 32291269 PMCID: PMC7269210 DOI: 10.2215/cjn.15951219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Oxidative stress is a hallmark and mediator of CKD. Diminished antioxidant defenses are thought to be partly responsible. However, there is currently no way to prospectively assess antioxidant defenses in humans. Tin protoporphyrin (SnPP) induces mild, transient oxidant stress in mice, triggering increased expression of select antioxidant proteins (e.g., heme oxygenase 1 [HO-1], NAD[P]H dehydrogenase [quinone] 1 [NQO1], ferritin, p21). Hence, we tested the hypothesis that SnPP can also variably increase these proteins in humans and can thus serve as a pharmacologic "stress test" for gauging gene responsiveness and antioxidant reserves. DESIGN , setting, participants, & measurementsA total of 18 healthy volunteers and 24 participants with stage 3 CKD (n=12; eGFR 30-59 ml/min per 1.73 m2) or stage 4 CKD (n=12; eGFR 15-29 ml/min per 1.73 m2) were injected once with SnPP (9, 27, or 90 mg). Plasma and/or urinary antioxidant proteins were measured at baseline and for up to 4 days post-SnPP dosing. Kidney safety was gauged by serial measurements of BUN, creatinine, eGFR, albuminuria, and four urinary AKI biomarkers (kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, cystatin C, and N-acetyl glucosaminidase). RESULTS Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (r=-0.85 to -0.95). All four proteins manifested statistically significant dose- and time-dependent elevations after SnPP injection. However, marked intersubject differences were observed. p21 responses to high-dose SnPP and HO-1 responses to low-dose SnPP were significantly suppressed in participants with CKD versus healthy volunteers. SnPP was well tolerated by all participants, and no evidence of nephrotoxicity was observed. CONCLUSIONS SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.
Collapse
Affiliation(s)
- Richard A Zager
- Clinical Research Division, The Fred Hutchinson Cancer Research Center, Seattle, Washington .,Department of Medicine, The University of Washington, Seattle, Washington
| | - Ali C M Johnson
- Clinical Research Division, The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Bhupinder Singh
- Renibus Therapeutics, Southlake, Texas.,Department of Medicine, The University of California, Irvine, California
| |
Collapse
|
19
|
Johnson ACM, Zager RA. Mechanisms and consequences of oxidant-induced renal preconditioning: an Nrf2-dependent, P21-independent, anti-senescence pathway. Nephrol Dial Transplant 2019. [PMID: 29522116 DOI: 10.1093/ndt/gfy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background P21, a cyclin kinase inhibitor, is upregulated by renal 'ischemic preconditioning' (IPC), and induces a 'cytoresistant' state. However, P21-induced cell cycle inhibition can also contribute to cellular senescence, a potential adverse renal event. Hence, this study assessed whether: (i) IPC-induced P21 upregulation is associated with subsequent renal senescence; and (ii) preconditioning can be established 'independent' of P21 induction and avoid a post-ischemic senescent state? Methods CD-1 mice were subjected to either IPC (5-15 min) or to a recently proposed 'oxidant-induced preconditioning' (OIP) strategy (tin protoporphyrin-induced heme oxygenase inhibition +/- parental iron administration). P21 induction [messenger RNA (mRNA)/protein], cell proliferation (KI-67, phosphohistone H3 nuclear staining), kidney senescence (P16ink4a; P19Arf mRNAs; senescence-associated beta-galactosidase levels) and resistance to ischemic acute kidney injury were assessed. Results IPC induced dramatic (10-25×) and persistent P21 activation and 'downstream' tubular senescence. Conversely, OIP did not upregulate P21, it increased, rather than decreased, cell proliferation markers, and it avoided a senescence state. OIP markedly suppressed ischemia-induced P21 up-regulation, it inhibited the development of post-ischemic senescence and it conferred near-complete protection against ischemic acute renal failure (ARF). To assess OIP's impact on a non-P21-dependent cytoprotective pathway, its ability to activate Nrf2, the so-called 'master regulator' of endogenous cell defenses, was assessed. Within 4 h, OIP activated each of three canonical Nrf2-regulated genes (NQO1, SRXN1, GCLC; 3- to 5-fold mRNA increases). Conversely, this gene activation pathway was absent in Nrf2-/- mice, confirming Nrf2 specificity. Nrf2-/- mice also did not develop significant OIP-mediated protection against ischemic ARF. Conclusions OIP (i) activates the cytoprotective Nrf2, but not the P21, pathway; (ii) suppresses post-ischemic P21 induction and renal senescence; and (iii) confers marked protection against ischemic ARF. In sum, these findings suggest that OIP may be a clinically feasible approach for safely activating the Nrf2 pathway, and thereby confer protection against clinical renal injury.
Collapse
Affiliation(s)
| | - Richard A Zager
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Johnson AC, Gooley T, Guillem A, Keyser J, Rasmussen H, Singh B, Zager RA. Parenterial iron sucrose-induced renal preconditioning: differential ferritin heavy and light chain expression in plasma, urine, and internal organs. Am J Physiol Renal Physiol 2019; 317:F1563-F1571. [PMID: 31608670 DOI: 10.1152/ajprenal.00307.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental data suggest that iron sucrose (FeS) injection, used either alone or in combination with other prooxidants, can induce "renal preconditioning," in part by upregulating cytoprotective ferritin levels. However, the rapidity, degree, composition (heavy vs. light chain), and renal ferritin changes after FeS administration in humans remain to be defined. To address these issues, healthy human volunteers (n = 9) and patients with stage 3-4 chronic kidney disease(n = 9) were injected once with FeS (120, 240, or 360 mg). Plasma ferritin was measured from 0 to 8 days postinjection as an overall index of ferritin generation. Urinary ferritin served as a "biomarker" of renal ferritin production. FeS induced rapid (≤2 h), dose-dependent, plasma ferritin increases in all study participants, peaking at approximately three to five times baseline within 24-48 h. Significant urinary ferritin increases (~3 times), without dose-dependent increases in albuminuria, neutrophil gelatinase-associated lipocalin, or N-acetyl-β-d-glucosaminidase excretion, were observed. Western blot analysis with ferritin heavy chain (Fhc)- and light chain (Flc)-specific antibodies demonstrated that FeS raised plasma Flc but not Fhc levels. Conversely, FeS increased both Fhc and Flc in urine. To assess sites of FeS-induced ferritin generation, organs from FeS-treated mice were probed for Fhc, Flc, and their mRNAs. FeS predominantly raised hepatic Flc. Conversely, marked Fhc and Flc elevations developed in the kidney and spleen. No cardiopulmonary ferritin increases occurred. Ferritin mRNAs remained unchanged throughout, implying posttranscriptional ferritin production. We conclude that FeS induces rapid, dramatic, and differential Fhc and Flc upregulation in organs. Renal Fhc and Flc increases, in the absence of nephrotoxicity, suggest potential FeS utility as a clinical renal "preconditioning" agent.
Collapse
Affiliation(s)
- Ali C Johnson
- The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ted Gooley
- The Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | | | | | - Richard A Zager
- The Fred Hutchinson Cancer Research Center, Seattle, Washington.,University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Chen Y, Tao Y, Zhang L, Xu W, Zhou X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad Med J 2019; 95:210-216. [PMID: 30948439 DOI: 10.1136/postgradmedj-2019-136409] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/31/2022]
Abstract
The incidence of acute myocardial infarction (AMI) has been increasing rapidly in recent years, seriously endangering human health. Cardiac biomarkers play critical roles in the diagnosis and prognosis of AMI. Troponin is a highly sensitive and specific biomarker for AMI diagnosis and can independently predict adverse cardiac events. Other biomarkers such as N-terminal B-type natriuretic peptide and C reactive protein are also valuable predictors of cardiovascular prognosis. Recently, several novel biomarkers have been identified for the diagnosis and risk assessment in patients with AMI. A multibiomarker approach can potentially enhance the diagnostic accuracy and provide more information for the early risk stratification of AMI. In this review, we will summarise the biomarkers discovered in recent years and focus on their diagnostic and prognostic value for patients with AMI.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yifei Tao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiting Xu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
22
|
M. Sorour S, A. Elnoury H. Forskolin Modulate Silent Information Regulator 1 (SIRT1) gene Expression and Halts Experimentally-Induced Acute Kidney Injury. EGYPTIAN JOURNAL OF BASIC AND CLINICAL PHARMACOLOGY 2019. [DOI: 10.32527/2019/101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
23
|
Fan L, Liu B, Guo R, Luo J, Li H, Li Z, Xu W. Elevated plasma S100A1 level is a risk factor for ST-segment elevation myocardial infarction and associated with post-infarction cardiac function. Int J Med Sci 2019; 16:1171-1179. [PMID: 31523180 PMCID: PMC6743283 DOI: 10.7150/ijms.35037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/17/2019] [Indexed: 01/20/2023] Open
Abstract
AIM To investigate the association between plasma S100A1 level and ST-segment elevation myocardial infarction (STEMI) and potential significance of S100A1 in post-infarction cardiac function. METHODS We examined the plasma S100A1 level in 207 STEMI patients (STEMI group) and 217 clinically healthy subjects for routine physical examination without a history of coronary artery disease (Control group). Baseline characteristics and concentrations of relevant biomarkers were compared. The relationship between S100A1 and other plasma biomarkers was detected using correlation analysis. The predictive role of S100A1 on occurrence of STEMI was then assessed using multivariate ordinal regression model analysis after adjusting for other covariates. RESULTS The plasma S100A1 level was found to be significantly higher (P<0.001) in STEMI group (3197.7±1576.0 pg/mL) than in Control (1423.5±1315.5 pg/mL) group. Furthermore, the correlation analysis demonstrated plasma S100A1 level was significantly associated correlated with hypersensitive cardiac troponin T (hs-cTnT) (r = 0.32; P < 0.001), creatine kinase MB (CK-MB) (r = 0.42, P < 0.001), left ventricular eject fraction (LVEF) (r = -0.12, P = 0.01), N-terminal prohormone of brain natriuretic peptide (NT-proBNP) (r = 0.61; P < 0.001) and hypersensitive C reactive protein (hs-CRP) (r = 0.38; P < 0.001). Moreover, the enrolled subjects who with a S100A1 concentration ≤ 1965.9 pg/mL presented significantly better cardiac function than the rest population. Multivariate Logistic regression analysis revealed that S100A1 was an independent predictor for STEMI patients (OR: 0.671, 95% CI 0.500-0.891, P<0.001). In addition, higher S100A1 concentration (> 1965.9 pg/mL) significantly increased the risk of STEMI as compared with the lower level (OR: 6.925; 95% CI: 4.15-11.375; P<0.001). CONCLUSION These results indicated that the elevated plasma S100A1 level is an important predictor of STEMI in combination with several biomarkers and also potentially reflects the cardiac function following the acute coronary ischemia.
Collapse
Affiliation(s)
- Linlin Fan
- Institute of Biomedical Sciences, Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, 200032, China.,Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiachen Luo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongqiang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhiqiang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weigang Xu
- Community Health Service Center of Pengpu New Estate, Jing'an District, Shanghai, 200435, China
| |
Collapse
|
24
|
Agmatine attenuates rhabdomyolysis-induced acute kidney injury in rats in a dose dependent manner. Life Sci 2018; 208:79-86. [DOI: 10.1016/j.lfs.2018.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
|
25
|
Pibiri M, Leoni VP, Atzori L. Heme oxygenase-1 inhibitor tin-protoporphyrin improves liver regeneration after partial hepatectomy. Life Sci 2018; 204:9-14. [PMID: 29738777 DOI: 10.1016/j.lfs.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
AIMS This study investigates the effects of the heme oxygenase-1 (HO-1) inhibitor tin protoporphyrin IX (SnPP), on rat liver regeneration following 2/3 partial hepatectomy (PH) in order to clarify the controversial role of HO-1 in the regulation of cellular growth. MAIN METHODS Male Wistar rats received a subcutaneous injection of either SnPP (10 μmoles/kg body weight) or saline 12 h before PH and 0, 12 and 24 h after surgery. Rats were killed from 0.5 to 36 h after PH. Bromodeoxyuridine (BrdU) incorporation was used to analyze cell proliferation. Immunohistochemistry, Western blot analysis and quantitative Real Time-PCR were used to assess molecular and cellular changes after PH. KEY FINDINGS Data obtained have shown that administration of SnPP caused an increased entry of hepatocytes into S phase after PH, as demonstrated by labeling (L.I.) and mitotic (M.I.) indexes. Furthermore, enhanced cell cycle entry in PH-animals pre-treated with SnPP was associated with an earlier activation of IL-6 and transcription factors involved in liver regeneration, such as phospho-JNK and phospho-STAT3. SIGNIFICANCE Summarizing, data here reported demonstrate that inhibition of HO-1 enhances rat liver regeneration after PH which is associated to a very rapid increase in the levels of inflammatory mediators such as IL-6, phopsho-JNK and phospho-STAT3, suggesting that HO-1 could act as a negative modulator of liver regeneration. Knowledge about the mechanisms of liver regeneration can be applied to clinical problems caused by delayed liver growth, and HO-1 repression may be a mechanism by which cells can faster proliferate in response to tissue damage.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Vera Piera Leoni
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| |
Collapse
|
26
|
Iron, hormesis, and protection in acute kidney injury. Kidney Int 2017; 90:16-7. [PMID: 27312440 DOI: 10.1016/j.kint.2016.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 11/20/2022]
Abstract
Iron is critical for cellular, organismal, and possibly universal existence. Use of iron complexes to treat human diseases is ancient and is described in detail in Ayurveda/Siddha systems of medicine. Old aphorisms from Siddha medicine ("Alavukku Minjinal Amirdhamum Nanjagum," an elixir turns poisonous when taken in excess) and Paracelsus ("Die Dosis macht das Gift," the dose makes the poison) are of practical relevance in understanding the role of this ancient metal in acute kidney injury.
Collapse
|
27
|
Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci Rep 2017; 7:10114. [PMID: 28860665 PMCID: PMC5579036 DOI: 10.1038/s41598-017-10693-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the protective role and underlying mechanisms of curcumin on glycerol-induced acute kidney injury (AKI) in rats. Glycerol (10 ml/kg BW, 50% v/v in sterile saline, i.m.) was used to induce AKI, followed by curcumin (200 mg/kg/day, p.o.) administration for 3 days. To confirm renal damage and the effects of curcumin on AKI, serum BUN, Scr, and CK as well as renal SOD, MDA, GSH-Px were measured. Additionally, morphological changes were identified by H&E staining and transmission electron microscopy. The expression of several factors including chemotactic factor MCP-1, proinflammatory cytokines including TNF-α and IL-6, as well as the kidney injury markers, as Kim-1 and Lipocalin-2 were also assessed using q-PCR. Finally, cell apoptosis in renal tissue was detected using in situ TUNEL apoptosis fluorescence staining and expression of proteins associated with apoptotic, oxidative stress and lipid oxidative related signaling pathways were detected using immunohistochemical staining and western blot. The results showed that curcumin exerts renoprotective effects by inhibiting oxidative stress in rhabdomyolysis-induced AKI through regulation of the AMPK and Nrf2/HO-1 signaling pathways, and also ameliorated RM-associated renal injury and cell apoptosis by activating the PI3K/Akt pathway.
Collapse
|
28
|
Johnson ACM, Delrow JJ, Zager RA. Tin protoporphyrin activates the oxidant-dependent NRF2-cytoprotective pathway and mitigates acute kidney injury. Transl Res 2017; 186:1-18. [PMID: 28586635 DOI: 10.1016/j.trsl.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/30/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Tin protoporphyrin (SnPP), a heme oxygenase (HO) inhibitor, can paradoxically protect against diverse forms of acute kidney injury (AKI). This study sought potential underlying mechanisms. CD-1 mice received intravenous SnPP, followed 4-18 hours later by a variety of renal biochemical, histologic, and genomic assessments. Renal resistance to ischemic-reperfusion injury (IRI) was also sought. SnPP was rapidly taken up by kidney and was confined to proximal tubules. Transient suppression of renal heme synthesis (decreased δ aminolevulinic acid synthase expression), a 2.5-fold increase in "catalytic" Fe levels and oxidant stress resulted (decreased glutathione; increased malondialdehyde, and protein carbonyl content). Nrf2 nuclear translocation (∼2x Nrf2 increase; detected by enzyme-linked immunosorbent assay, Western blotting), with corresponding activation of ∼20 Nrf2-sensitive genes (RNA-Seq) were observed. By 18 hours after SnPP injection, marked protection against IRI emerged. This represented "preconditioning", not a direct SnPP effect, given that SnPP administered at the time of IRI exerted no protective effect. The importance of transient oxidant stress in SnPP "preconditioning" was exemplified by the following: (1) oxidant stress induced by a different mechanism (myoglobin injection) recapitulated SnPP's protective action; (2) GSH treatment blunted SnPP's protective influence; (3) SnPP raised cytoprotective heavy chain ferritin (Fhc), a response enhanced by exogenous Fe injection; and (4) SnCl2, a ∼35- to 50-fold HO-1 inducer (not inhibitor) evoked neither oxidant stress nor mitigated IRI (seemingly excluding HO-1 activity in SnPP's protective effect). SnPP specifically accumulates within proximal tubule cells; transient "catalytic" Fe overload and oxidative stress result; Nrf2-cytoprotective pathways are upregulated; and these changes help protect against ischemic AKI.
Collapse
Affiliation(s)
| | - Jeff J Delrow
- The Fred Hutchinson Cancer Research Center, Seattle, Wash
| | - Richard A Zager
- The Fred Hutchinson Cancer Research Center, Seattle, Wash; The University of Washington, Seattle, Wash.
| |
Collapse
|
29
|
Biological Membrane-Packed Mesenchymal Stem Cells Treat Acute Kidney Disease by Ameliorating Mitochondrial-Related Apoptosis. Sci Rep 2017; 7:41136. [PMID: 28117405 PMCID: PMC5259718 DOI: 10.1038/srep41136] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
The mortality of rhabdomyolysis-induced AKI remains high because no effective therapy exists. We investigated a new therapeutic method using MSCs. The aim of this study was to investigate the therapeutic potential and anti-apoptotic mechanisms of action of MSCs in the treatment of AKI induced by glycerol in vivo and in vitro. We used Duragen as a biological membrane to pack MSCs on the glycerol-injured renal tissue in vivo. The anti-apoptotic mechanism was investigated. In vitro, HK-2 cells were incubated with ferrous myoglobin and MSCs-conditioned medium, followed by cell proliferation and apoptosis assays. We founded that packing MSCs on the injured renal tissue preserved renal function, ameliorated renal tubular lesions, and reduced apoptosis in the mice with glycerol-induced AKI. The MSC-conditioned medium improved HK-2 cell viability and inhibited apoptosis. These effects were reversed by the PI3K inhibitor LY294002. Biological membrane packing of MSCs on the renal tissue has a therapeutic rescue function by inhibiting cell apoptosis in vivo. MSCs protect renal cells from apoptosis induced by myoglobin in vitro. We have thus demonstrated MSCs reduced rhabdomyolysis-associated renal injury and cell apoptosis by activating the PI3K/Akt pathway and inhibiting apoptosis.
Collapse
|
30
|
Combined iron sucrose and protoporphyrin treatment protects against ischemic and toxin-mediated acute renal failure. Kidney Int 2016; 90:67-76. [PMID: 27165818 DOI: 10.1016/j.kint.2016.01.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 01/07/2023]
Abstract
Tissue preconditioning, whereby various short-term stressors initiate organ resistance to subsequent injury, is well recognized. However, clinical preconditioning of the kidney for protection against acute kidney injury (AKI) has not been established. Here we tested whether a pro-oxidant agent, iron sucrose, combined with a protoporphyrin (Sn protoporphyrin), can induce preconditioning and protect against acute renal failure. Mice were pretreated with iron sucrose, protoporphyrin, cyanocobalamin, iron sucrose and protoporphyrin, or iron sucrose and cyanocobalamin. Eighteen hours later, ischemic, maleate, or glycerol models of AKI were induced, and its severity was assessed the following day (blood urea nitrogen, plasma creatinine concentrations; post-ischemic histology). Agent impact on cytoprotective gene expression (heme oxygenase 1, hepcidin, haptoglobin, hemopexin, α1-antitrypsin, α1-microglobulin, IL-10) was assessed as renal mRNA and protein levels. AKI-associated myocardial injury was gauged by plasma troponin I levels. Combination agent administration upregulated multiple cytoprotective genes and, unlike single agent administration, conferred marked protection against each tested model of acute renal failure. Heme oxygenase was shown to be a marked contributor to this cytoprotective effect. Preconditioning also blunted AKI-induced cardiac troponin release. Thus, iron sucrose and protoporphyrin administration can upregulate diverse cytoprotective genes and protect against acute renal failure. Associated cardiac protection implies potential relevance to both AKI and its associated adverse downstream effects.
Collapse
|
31
|
Bolisetty S, Traylor A, Joseph R, Zarjou A, Agarwal A. Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2016; 310:F385-94. [PMID: 26672618 PMCID: PMC4868370 DOI: 10.1152/ajprenal.00335.2015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that catalyzes the breakdown of heme to biliverdin, carbon monoxide, and iron. The beneficial effects of HO-1 expression are not merely due to degradation of the pro-oxidant heme but are also credited to the by-products that have potent, protective effects, including antioxidant, anti-inflammatory, and prosurvival properties. This is well reflected in the preclinical animal models of injury in both renal and nonrenal settings. However, excessive accumulation of the by-products can be deleterious and lead to mitochondrial toxicity and oxidative stress. Therefore, use of the HO system in alleviating injury merits a targeted approach. Based on the higher susceptibility of the proximal tubule segment of the nephron to injury, we generated transgenic mice using cre-lox technology to enable manipulation of HO-1 (deletion or overexpression) in a cell-specific manner. We demonstrate the validity and feasibility of these mice by breeding them with proximal tubule-specific Cre transgenic mice. Similar to previous reports using chemical modulators and global transgenic mice, we demonstrate that whereas deletion of HO-1, specifically in the proximal tubules, aggravates structural and functional damage during cisplatin nephrotoxicity, selective overexpression of HO-1 in proximal tubules is protective. At the cellular level, cleaved caspase-3 expression, a marker of apoptosis, and p38 signaling were modulated by HO-1. Use of these transgenic mice will aid in the evaluation of the effects of cell-specific HO-1 expression in response to injury and assist in the generation of targeted approaches that will enhance recovery with reduced, unwarranted adverse effects.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Amie Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Reny Joseph
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|