1
|
Tulloch LB, Carvalho S, Lima M, Wall RJ, Tinti M, Pinto EG, MacLean L, Wyllie S. RES-Seq-a barcoded library of drug-resistant Leishmania donovani allowing rapid assessment of cross-resistance and relative fitness. mBio 2023; 14:e0180323. [PMID: 37929970 PMCID: PMC10746238 DOI: 10.1128/mbio.01803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Visceral leishmaniasis (VL) remains the third largest parasitic killer worldwide, responsible for 20,000-30,000 deaths each year. Control and ultimate elimination of VL will require a range of therapeutic options with diverse mechanisms of action to combat drug resistance. One approach to ensure that compounds in development exploit diverse mechanisms of action is to screen them against highly curated cell lines resistant to drugs already in the VL pipeline. The identification of cross-resistant cell lines indicates that test compounds are likely acting via previously established mechanisms. Current cross-resistance screens are limited by the requirement to profile individual resistant cell lines one at a time. Here, we introduce unique DNA barcodes into multiple resistant cell lines to facilitate parallel profiling. Utilizing the power of Illumina sequencing, growth kinetics and relative fitness under compound selection can be monitored revolutionizing our ability to identify and prioritize compounds acting via novel mechanisms.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marta Lima
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Erika G. Pinto
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, University of Dundee, Dundee, United Kingdom
| | - Lorna MacLean
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
2
|
Ornellas-Garcia U, Cuervo P, Ribeiro-Gomes FL. Malaria and leishmaniasis: Updates on co-infection. Front Immunol 2023; 14:1122411. [PMID: 36895563 PMCID: PMC9989157 DOI: 10.3389/fimmu.2023.1122411] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Malaria and leishmaniasis are endemic parasitic diseases in tropical and subtropical countries. Although the overlap of these diseases in the same host is frequently described, co-infection remains a neglected issue in the medical and scientific community. The complex relationship of concomitant infections with Plasmodium spp. and Leishmania spp. is highlighted in studies of natural and experimental co-infections, showing how this "dual" infection can exacerbate or suppress an effective immune response to these protozoa. Thus, a Plasmodium infection preceding or following Leishmania infection can impact the clinical course, accurate diagnosis, and management of leishmaniasis, and vice versa. The concept that in nature we are affected by concomitant infections reinforces the need to address the theme and ensure its due importance. In this review we explore and describe the studies available in the literature on Plasmodium spp. and Leishmania spp. co-infection, the scenarios, and the factors that may influence the course of these diseases.
Collapse
Affiliation(s)
- Uyla Ornellas-Garcia
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Malaria Research, Diagnosis and Training Center (CPD-Mal) of Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Patricia Cuervo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratory of Malaria Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Malaria Research, Diagnosis and Training Center (CPD-Mal) of Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Naylor-Leyland G, Collin SM, Gatluak F, den Boer M, Alves F, Mullahzada AW, Ritmeijer K. The increasing incidence of visceral leishmaniasis relapse in South Sudan: A retrospective analysis of field patient data from 2001-2018. PLoS Negl Trop Dis 2022; 16:e0010696. [PMID: 35981057 PMCID: PMC9426874 DOI: 10.1371/journal.pntd.0010696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/30/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Visceral Leishmaniasis (VL) is endemic in South Sudan, manifesting periodically in major outbreaks. Provision of treatment during endemic periods and as an emergency response is impeded by instability and conflict. Médecins Sans Frontières (MSF) has provided health care in South Sudan since the late 1980's, including treatment for 67,000 VL patients. In recent years, MSF monitoring data have indicated increasing numbers of VL relapse cases. A retrospective analysis of these data was performed in order to provide insight into the possible causes of this increase. METHODOLOGY/PRINCIPAL FINDINGS Programme monitoring data from the MSF hospital in Lankien, Jonglei State, South Sudan, for the period 2001-2018 were analysed to detect trends in VL relapse as a proportion of all VL cases presenting to MSF treatment centres. Routinely collected patient-level data from relapse and primary VL cases treated at all MSF sites in South Sudan over the same period were analysed to describe patient characteristics and treatments received. VL relapse as a proportion of all VL cases increased by 6.5% per annum (95% CI 0.3% to 13.0%, p = 0.04), from 5.2% during 2001-2003 to 14.4% during 2016-2018. Primary VL and VL relapse patients had similar age, sex and anthropometric characteristics, the latter indicating high indices of undernutrition which were relatively constant over time. Clinical factors (Hb, spleen size, and VL severity score) also did not vary substantially over time. SSG/PM was the main treatment regimen from 2001-2018, used in 68.7% of primary and 70.9% of relapse VL cases; AmBisome was introduced in 2013, received by 22.5% of primary VL and 32.6% of VL relapse cases from 2013-2018. CONCLUSION Increasing incidence of VL relapse in South Sudan does not appear to be explained by changes in patient characteristics or other factors. Our data are concerning and may indicate an emergence of treatment-resistant parasite strains, decreasing the effectiveness of treatment regimens. This warrants further investigation as a causal factor. New chemical entities that will enable safe and highly effective short-course oral treatments for VL are urgently needed.
Collapse
Affiliation(s)
| | - Simon M. Collin
- UK Health Security Agency (UKHSA), London, United Kingdom
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Fabiana Alves
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | | | | |
Collapse
|
4
|
Wijnant GJ, Dumetz F, Dirkx L, Bulté D, Cuypers B, Van Bocxlaer K, Hendrickx S. Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.837460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a tropical infectious disease caused by the protozoan Leishmania parasite. The disease is transmitted by female sand flies and, depending on the infecting parasite species, causes either cutaneous (stigmatizing skin lesions), mucocutaneous (destruction of mucous membranes of nose, mouth and throat) or visceral disease (a potentially fatal infection of liver, spleen and bone marrow). Although more than 1 million new cases occur annually, chemotherapeutic options are limited and their efficacy is jeopardized by increasing treatment failure rates and growing drug resistance. To delay the emergence of resistance to existing and new drugs, elucidating the currently unknown causes of variable drug efficacy (related to parasite susceptibility, host immunity and drug pharmacokinetics) and improved use of genotypic and phenotypic tools to define, measure and monitor resistance in the field are critical. This review highlights recent progress in our understanding of drug action and resistance in Leishmania, ongoing challenges (including setbacks related to the COVID-19 pandemic) and provides an overview of possible strategies to tackle this public health challenge.
Collapse
|
5
|
Visceral Leishmaniasis in pregnancy and vertical transmission: A systematic literature review on the therapeutic orphans. PLoS Negl Trop Dis 2021; 15:e0009650. [PMID: 34375339 PMCID: PMC8425569 DOI: 10.1371/journal.pntd.0009650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/08/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Background Reports on the occurrence and outcome of Visceral Leishmaniasis (VL) in pregnant women is rare in published literature. The occurrence of VL in pregnancy is not systematically captured and cases are rarely followed-up to detect consequences of infection and treatment on the pregnant women and foetus. Methods A review of all published literature was undertaken to identify cases of VL infections among pregnant women by searching the following database: Ovid MEDLINE; Ovid Embase; Cochrane Database of Systematic Reviews; Cochrane Central Register of Controlled Trials; World Health Organization Global Index Medicus: LILACS (Americas); IMSEAR (South-East Asia); IMEMR (Eastern Mediterranean); WPRIM (Western Pacific); ClinicalTrials.gov; and the WHO International Clinical Trials Registry Platform. Selection criteria included any clinical reports describing the disease in pregnancy or vertical transmission of the disease in humans. Articles meeting pre-specified inclusion criteria and non-primary research articles such as textbook, chapters, letters, retrospective case description, or reports of accidental inclusion in trials were also considered. Results The systematic literature search identified 272 unique articles of which 54 records were included in this review; a further 18 records were identified from additional search of the references of the included studies or from personal communication leading to a total of 72 records (71 case reports/case series; 1 retrospective cohort study; 1926–2020) describing 451 cases of VL in pregnant women. The disease was detected during pregnancy in 398 (88.2%), retrospectively confirmed after giving birth in 52 (11.5%), and the time of identification was not clear in 1 (0.2%). Of the 398 pregnant women whose infection was identified during pregnancy, 346 (86.9%) received a treatment, 3 (0.8%) were untreated, and the treatment status was not clear in the remaining 49 (12.3%). Of 346 pregnant women, Liposomal amphotericin B (L-AmB) was administered in 202 (58.4%) and pentavalent antimony (PA) in 93 (26.9%). Outcomes were reported in 176 pregnant women treated with L-AmB with 4 (2.3%) reports of maternal deaths, 5 (2.8%) miscarriages, and 2 (1.1%) foetal death/stillbirth. For PA, outcomes were reported in 88 of whom 4 (4.5%) died, 24 (27.3%) had spontaneous abortion, 2 (2.3%) had miscarriages. A total of 26 cases of confirmed, probable or suspected cases of vertical transmission were identified with a median detection time of 6 months (range: 0–18 months). Conclusions Outcomes of VL treatment during pregnancy is rarely reported and under-researched. The reported articles were mainly case reports and case series and the reported information was often incomplete. From the studies identified, it is difficult to derive a generalisable information on outcomes for pregnant women and babies, although reported data favours the usage of liposomal amphotericin B for the treatment of VL in pregnant women. Visceral Leishmaniasis (VL) is a neglected tropical disease with an estimated incidence of 50,000 to 90,000 cases in 2019. Women who are susceptible to becoming pregnant or those who are pregnant and lactating are regularly excluded from clinical studies of VL. A specific concern of public health relevance is the little knowledge of the consequences of VL and its treatment on the mother and the foetus. We did a systematic review of all published literature with an overarching aim of identifying cases of VL in pregnancy and assessing the risk-benefit balance of antileishmanial treatment to the pregnant women and the child. We identified a total of 72 records (1926–2020) describing 451 VL cases in pregnant women. In 398, infection was identified during pregnancy of whom 202 received Liposomal Amphotericin B (L-AmB) and 93 received pentavalent antimony (PA). In studies that reported maternal outcomes, reports of maternal death abortion/spontaneous abortion, and miscarriages were proportionally lower among those who received L-AmB compared to PA (no formal test of significance carried out). A total of 26 cases of confirmed, probable or suspected cases of vertical transmission were identified and the median time to detection was 6 months (range: 0–18 months). Our review brings together scattered observations of VL in pregnant women in the clinical literature and clearly highlights that the disease in pregnancy is under-reported and under-studied. The collated evidence derived mainly from case reports and case series indicate that L-AmB has a favourable safety profile than the antimony regimen and should be the preferred treatment for VL during pregnancy.
Collapse
|
6
|
Tamiru A, Mohammed R, Atnafu S, Medhin G, Hailu A. Efficacy and safety of a combined treatment of sodium stibogluconate at 20mg/kg/day with upper maximum daily dose limit of 850mg and Paromomycin 15mg/kg/day in HIV negative visceral leishmaniasis patients. A retrospective study, northwest Ethiopia. PLoS Negl Trop Dis 2021; 15:e0009713. [PMID: 34464401 PMCID: PMC8437273 DOI: 10.1371/journal.pntd.0009713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/13/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is one of the most neglected tropical infectious diseases. It is fatal if left untreated. The objective of this study was to assess the efficacy and safety of 17-day injections of combined regimen of sodium stibogluconate and paromomycin (SSG/PM) in HIV-negative VL patients. METHODS A retrospective analysis of medical records of VL patients treated in the University of Gondar Hospital during period 2012-2019 was carried out. RESULTS A total of 2836 patients were treated for VL from 2012 to 2019. Of these 1233 were treated with SSG-PM, and 1000 of them were included in the study. Initial cure was achieved in 922 (92.2%) patients. The frequency of treatment failure, treatment interruptions, default and deaths respectively were 30 (3%), 20 (2%), 13 (1.3%) and 15 (1.5%). Among 280 patients who completed 6-month follow up, the final cure was 93.9% (263/280), 4 (1.4%) relapsed and 13 (4.6%) developed post-kala-azar dermal leishmaniasis (PKDL). The most common adverse events (AEs) were raised liver transaminases (35.1%; 351 patients), injection site pain (29.1%, 291 patients) and raised serum alpha-amylase (29.1%, 291 patients). Factors associated with poor treatment outcomes were sepsis, pneumonia, and adverse events. CONCLUSION A combination of SSG at 20mg/kg with upper daily maximum dose of 850mg and PM was effective for achieving initial cure at end of treatment and safe for treatment of HIV negative VL patients in northwestern Ethiopia. Our data are consistent with previous reports and confirms effectiveness of SSG/PM treatment regimen in the Eastern African countries. Efficacy at 6-months (93.9%) was estimated on data derived from patients who completed follow up and needs to be interrogated by future studies.
Collapse
Affiliation(s)
- Aschalew Tamiru
- Leishmaniasis Research and Treatment Center, University of Gondar, College of Medicine and Health Science, Gondar, Ethiopia
| | - Rezika Mohammed
- Department of Internal Medicine, University of Gondar, College of Medicine and Health Sciences, Gondar, Ethiopia
| | - Saba Atnafu
- Leishmaniasis Research and Treatment Center, University of Gondar, College of Medicine and Health Science, Gondar, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Monge-Maillo B, López-Vélez R. Anfotericina B liposomal en el tratamiento de la leishmaniasis visceral. Rev Iberoam Micol 2021; 38:101-104. [PMID: 34127386 DOI: 10.1016/j.riam.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
A review on the current evidence of the efficacy and security of liposomal amphotericinB (L-AmB) for the treatment of visceral leishmaniasis (VL) has been performed. In the Indian subcontinent, a single dose of 10mg/kg has shown effectiveness in the treatment of VL due to Leishmania donovani. In contrast, higher doses of L-AmB (up to 30mg/kg) are required in Africa to treat a VL of the same etiology. When treating VL by Leishmania infantum acquired in the Americas and Europe the usual dose of L-AmB is 20-21mg/kg. In HIV co-infected patients the required doses are usually higher, up to 60mg/kg, and if it is administered in a prophylactic schedule after the treatment of VL relapses are reduced. L-AmB has shown synergism with other antiparasitic drugs, especially with paromomycin in the Indian subcontinent and with miltefosin in patients coinfected with HIV in East Africa. Due to its efficacy and safety profile, L-AmB is the first therapeutic option for VL.
Collapse
Affiliation(s)
- Begoña Monge-Maillo
- Unidad de Referencia Nacional para Enfermedades Tropicales, Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, Madrid, España
| | - Rogelio López-Vélez
- Unidad de Referencia Nacional para Enfermedades Tropicales, Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal, Madrid, España.
| |
Collapse
|
8
|
Paradela LS, Wall RJ, Carvalho S, Chemi G, Corpas-Lopez V, Moynihan E, Bello D, Patterson S, Güther MLS, Fairlamb AH, Ferguson MAJ, Zuccotto F, Martin J, Gilbert IH, Wyllie S. Multiple unbiased approaches identify oxidosqualene cyclase as the molecular target of a promising anti-leishmanial. Cell Chem Biol 2021; 28:711-721.e8. [PMID: 33691122 PMCID: PMC8153249 DOI: 10.1016/j.chembiol.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022]
Abstract
Phenotypic screening identified a benzothiophene compound with activity against Leishmania donovani, the causative agent of visceral leishmaniasis. Using multiple orthogonal approaches, oxidosqualene cyclase (OSC), a key enzyme of sterol biosynthesis, was identified as the target of this racemic compound and its enantiomers. Whole genome sequencing and screening of a genome-wide overexpression library confirmed that OSC gene amplification is associated with resistance to compound 1. Introduction of an ectopic copy of the OSC gene into wild-type cells reduced susceptibility to these compounds confirming the role of this enzyme in resistance. Biochemical analyses demonstrated the accumulation of the substrate of OSC and depletion of its product in compound (S)-1-treated-promastigotes and cell-free membrane preparations, respectively. Thermal proteome profiling confirmed that compound (S)-1 binds directly to OSC. Finally, modeling and docking studies identified key interactions between compound (S)-1 and the LdOSC active site. Strategies to improve the potency for this promising anti-leishmanial are proposed. Genetics and chemo-proteomics identify the target of a promising anti-leishmanial Biochemical assays confirm the direct inhibition of oxidosqualene cyclase in cells Docking and modeling studies identify key interactions between compound and target Strategies to improve the potency of this benzothiophene are proposed
Collapse
Affiliation(s)
- Luciana S Paradela
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Richard J Wall
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sandra Carvalho
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Giulia Chemi
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoriano Corpas-Lopez
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Eoin Moynihan
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Davide Bello
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Maria Lucia S Güther
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Fabio Zuccotto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Julio Martin
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
9
|
Oral administration of eugenol oleate cures experimental visceral leishmaniasis through cytokines abundance. Cytokine 2020; 145:155301. [PMID: 33127258 DOI: 10.1016/j.cyto.2020.155301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Visceral leishmaniasis (VL) is an endemic fatal infectious disease in tropical and subtropical nations. The limited treatment options, long treatment regimens, invasive mode of administration of drugs, and lack of effective vaccination are the main reasons for the search of new alternative therapeutics against VL. On this quest, from a series of eugenol derivatives, we had demonstrated eugenol oleate as a lead immunomodulatory anti-VL molecule earlier. In this report, the oral efficacy and mechanism of eugenol oleate in inducing immunomodulatory anti-VL activity has been studied in BALB/c mice model. The plasma pharmacokinetic and acute toxicity studies suggested that the eugenol oleate is safe with an appreciable pharmacokinetic profile. Eugenol oleate (30 mg/kg B.W.) showed 86.5% of hepatic and 84.1% of splenic parasite clearance. The increased Th1 cytokine profile and decreased Th2 cytokine profile observed from ELISA and qRTPCR suggested that the eugenol oleate induced the parasite clearance through the activation of the host immune system. Subsequently, the mechanistic insights behind the anti-leishmanial activity of eugenol oleate were studied in peritoneal macrophages in vitro by inhibitor response study and immunoblotting. The results inferred that eugenol oleate activated the PKC-βII-p38 MAPK and produced IL-12 and IFN-γ which intern activated the iNOS2 to produce NO free radicals that cleared the intracellular parasite.
Collapse
|
10
|
Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol 2020; 104:8965-8977. [PMID: 32875362 DOI: 10.1007/s00253-020-10856-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important tropical neglected diseases according to the World Health Organization. Even after more than a century, we still have few drugs for the disease therapy and their great toxicity and side effects put in check the treatment control program around the world. Moreover, the emergence of strains resistant to conventional drugs, co-infections such as HIV/Leishmania spp., the small therapeutic arsenal (pentavalent antimonials, amphotericin B and formulations, and miltefosine), and the low investment for the discovery/development of new drugs force researchers and world health agencies to seek new strategies to combat and control this important neglected disease. In this context, the aim of this review is to summarize new advances and new strategies used on leishmaniasis therapy addressing alternative and innovative treatment paths such as physical and local/topical therapies, combination or multi-drug uses, immunomodulation, drug repurposing, and the nanotechnology-based drug delivery systems.Key points• The treatment of leishmaniasis is a challenge for global health agencies.• Toxicity, side effects, reduced therapeutic arsenal, and drug resistance are the main problems.• New strategies and recent advances on leishmaniasis treatment are urgent.• Immunomodulators, nanotechnology, and drug repurposing are the future of leishmaniasis treatment.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rory Cristiane Fortes De Brito
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Rodrigo Dian de Oliveira Aguiar-Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil. .,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil. .,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil.
| |
Collapse
|
11
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
12
|
Abstract
Abstract
Leishmaniasis is a group of zoonotic diseases caused by a trypanosomatid parasite mostly in impoverished populations of low-income countries. In their different forms, leishmaniasis is prevalent in more than 98 countries all over the world and approximately 360-million people are at risk. Since no vaccine is currently available to prevent any form of the disease, the control strategy of leishmaniasis mainly relies on early case detection followed by adequate pharmacological treatment that may improve the prognosis and can reduce transmission. A handful of compounds and formulations are available for the treatment of leishmaniasis in humans, but only few of them are currently in use since most of these agents are associated with toxicity problems such as nephrotoxicity and cardiotoxicity in addition to resistance problems. In recent decades, very few novel drugs, new formulations of standard drugs or combinations of them have been approved against leishmaniasis. This review highlights the current drugs and combinations that are used medical practice and recent advances in new treatments against leishmaniasis that were pointed out in the recent 2nd Conference, Global Challenges in Neglected Tropical Diseases, held in San Juan, Puerto Rico in June 2018, emphasizing the plethora of new families of molecules that are bridging the gap between preclinical and first-in-man trials in next future.
Collapse
|
13
|
Thomas M, De Rycker M, Ajakane M, Albrecht S, Álvarez-Pedraglio AI, Boesche M, Brand S, Campbell L, Cantizani-Perez J, Cleghorn LA, Copley RC, Crouch SD, Daugan A, Drewes G, Ferrer S, Ghidelli-Disse S, Gonzalez S, Gresham SL, Hill AP, Hindley SJ, Lowe RM, MacKenzie CJ, MacLean L, Manthri S, Martin F, Miguel-Siles J, Nguyen VL, Norval S, Osuna-Cabello M, Woodland A, Patterson S, Pena I, Quesada-Campos MT, Reid IH, Revill C, Riley J, Ruiz-Gomez JR, Shishikura Y, Simeons FR, Smith A, Smith VC, Spinks D, Stojanovski L, Thomas J, Thompson S, Underwood T, Gray DW, Fiandor JM, Gilbert IH, Wyatt PG, Read KD, Miles TJ. Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis. J Med Chem 2019; 62:1180-1202. [PMID: 30570265 PMCID: PMC6407917 DOI: 10.1021/acs.jmedchem.8b01218] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/14/2022]
Abstract
The leishmaniases are diseases that affect millions of people across the world, in particular visceral leishmaniasis (VL) which is fatal unless treated. Current standard of care for VL suffers from multiple issues and there is a limited pipeline of new candidate drugs. As such, there is a clear unmet medical need to identify new treatments. This paper describes the optimization of a phenotypic hit against Leishmania donovani, the major causative organism of VL. The key challenges were to balance solubility and metabolic stability while maintaining potency. Herein, strategies to address these shortcomings and enhance efficacy are discussed, culminating in the discovery of preclinical development candidate GSK3186899/DDD853651 (1) for VL.
Collapse
Affiliation(s)
- Michael
G. Thomas
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Manu De Rycker
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Myriam Ajakane
- Cellzome
GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sébastian Albrecht
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | | | - Markus Boesche
- Cellzome
GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Stephen Brand
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Lorna Campbell
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Juan Cantizani-Perez
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Laura A.T. Cleghorn
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Royston C.B. Copley
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Sabrinia D. Crouch
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Alain Daugan
- Centre
de Recherche, GlaxoSmithKline, Les Ulis, 25,27 Avenue du Québec, 91140 Villebon sur Yvette France
| | - Gerard Drewes
- Cellzome
GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Santiago Ferrer
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Sonja Ghidelli-Disse
- Cellzome
GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Silvia Gonzalez
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Stephanie L. Gresham
- Platform
Technology & Science, GlaxoSmithKline, David Jack Centre for R&D, Park
Road, Ware, Hertfordshire SG12 0DP, U.K.
| | - Alan P. Hill
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Sean J. Hindley
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Rhiannon M. Lowe
- Platform
Technology & Science, GlaxoSmithKline, David Jack Centre for R&D, Park
Road, Ware, Hertfordshire SG12 0DP, U.K.
| | - Claire J. MacKenzie
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Lorna MacLean
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Sujatha Manthri
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Franck Martin
- Centre
de Recherche, GlaxoSmithKline, Les Ulis, 25,27 Avenue du Québec, 91140 Villebon sur Yvette France
| | - Juan Miguel-Siles
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Van Loc Nguyen
- Centre
de Recherche, GlaxoSmithKline, Les Ulis, 25,27 Avenue du Québec, 91140 Villebon sur Yvette France
| | - Suzanne Norval
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Maria Osuna-Cabello
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Andrew Woodland
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Stephen Patterson
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Imanol Pena
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | | | - Iain H. Reid
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Charlotte Revill
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Jennifer Riley
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Jose Ramon Ruiz-Gomez
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Yoko Shishikura
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Frederick R.C. Simeons
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Alasdair Smith
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Victoria C. Smith
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Daniel Spinks
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Laste Stojanovski
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - John Thomas
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Stephen Thompson
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Tim Underwood
- Platform
Technology & Science, GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - David W. Gray
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Jose M. Fiandor
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| | - Ian H. Gilbert
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Paul G. Wyatt
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Kevin D. Read
- Drug
Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Timothy J. Miles
- Global
Health R&D, GlaxoSmithKline, Calle Severo Ochoa, 2, 28760 Tres Cantos, Madrid Spain
| |
Collapse
|
14
|
Prestes-Carneiro LE, Spir PRN, Fontanesi M, Pereira Garcia KG, Silva FAD, Flores EF, Vasconcelos DDM. Unusual manifestations of visceral leishmaniasis in children: a case series and its spatial dispersion in the western region of São Paulo state, Brazil. BMC Infect Dis 2019; 19:70. [PMID: 30658589 PMCID: PMC6339277 DOI: 10.1186/s12879-018-3652-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is becoming endemic in São Paulo state, in the southeastern region of Brazil. Unusual manifestations with non-specific signs and symptoms may make diagnosis difficult and delay treatment, increasing the risk of severity and death, particularly in new endemic areas. There are few studies on patients with these characteristics in Brazil. We describe a case series of unusual manifestations of VL in children and its spatial dispersion in the western region of São Paulo state. Cases presentation From 2009 to 2014, five clinical cases involving children treated in the Regional Hospital of Presidente Prudente (RH) were selected. Two patients had multiple relapses requiring liposomal amphotericin B; one patient had VL-cytomegalovirus-dengue co-infection and liver injury; one patient was diagnosed with X-linked agammaglobulinemia, a primary immunodeficiency; and one patient was diagnosed with VL-human immunodeficiency virus/acquired immunodeficiency syndrome (VL-HIV/AIDS) co-infection. Primary or secondary immunodeficiencies were found in four children, and associated viral infections were found in three children. Three patients were referred from other hospitals to RH. With regard to the geographic spread of VL, more cases were found in the northern area, in the epicenter of the infection where the first cases were registered, flowing south; a spatial-temporal occurrence was found. Conclusions Primary and secondary immunodeficiencies and viral co-infectious should be considered among unusual manifestations of VL, especially in those with multiple relapses. Spatial-temporal occurrence was found. Thus, integrated actions and effective monitoring of the disease are needed to complement curative practices to stem the tide of the epidemic.
Collapse
Affiliation(s)
- Luiz Euribel Prestes-Carneiro
- Infectious Diseases and Immunology Department, Oeste Paulista University, Presidente Prudente, São Paulo, Brazil. .,Imunodeficiencies Outpatient Clinic, Pediatrics Outpatient Clinic, Regional Hospital of Presidente Prudente, Presidente Prudente, São Paulo, Brazil.
| | - Patricia Rodrigues Naufal Spir
- Pediatrics Department, Oeste Paulista University, Presidente Prudente, São Paulo, Brazil.,Imunodeficiencies Outpatient Clinic, Pediatrics Outpatient Clinic, Regional Hospital of Presidente Prudente, Presidente Prudente, São Paulo, Brazil
| | - Mateus Fontanesi
- Imunodeficiencies Outpatient Clinic, Pediatrics Outpatient Clinic, Regional Hospital of Presidente Prudente, Presidente Prudente, São Paulo, Brazil
| | - Karen Gabriella Pereira Garcia
- Imunodeficiencies Outpatient Clinic, Pediatrics Outpatient Clinic, Regional Hospital of Presidente Prudente, Presidente Prudente, São Paulo, Brazil
| | - Francisco Assis da Silva
- Infectious Diseases and Immunology Department, Oeste Paulista University, Presidente Prudente, São Paulo, Brazil
| | | | - Dewton de Moraes Vasconcelos
- Laboratory of Medical Investigation Unit 56, Hospital das Clınicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Corpas-Lopez V, Moniz S, Thomas M, Wall RJ, Torrie LS, Zander-Dinse D, Tinti M, Brand S, Stojanovski L, Manthri S, Hallyburton I, Zuccotto F, Wyatt PG, De Rycker M, Horn D, Ferguson MAJ, Clos J, Read KD, Fairlamb AH, Gilbert IH, Wyllie S. Pharmacological Validation of N-Myristoyltransferase as a Drug Target in Leishmania donovani. ACS Infect Dis 2019; 5:111-122. [PMID: 30380837 PMCID: PMC6332449 DOI: 10.1021/acsinfecdis.8b00226] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 01/23/2023]
Abstract
Visceral leishmaniasis (VL), caused by the protozoan parasites Leishmania donovani and L. infantum, is responsible for ∼30 000 deaths annually. Available treatments are inadequate, and there is a pressing need for new therapeutics. N-Myristoyltransferase (NMT) remains one of the few genetically validated drug targets in these parasites. Here, we sought to pharmacologically validate this enzyme in Leishmania. A focused set of 1600 pyrazolyl sulfonamide compounds was screened against L. major NMT in a robust high-throughput biochemical assay. Several potent inhibitors were identified with marginal selectivity over the human enzyme. There was little correlation between the enzyme potency of these inhibitors and their cellular activity against L. donovani axenic amastigotes, and this discrepancy could be due to poor cellular uptake due to the basicity of these compounds. Thus, a series of analogues were synthesized with less basic centers. Although most of these compounds continued to suffer from relatively poor antileishmanial activity, our most potent inhibitor of LmNMT (DDD100097, K i of 0.34 nM) showed modest activity against L. donovani intracellular amastigotes (EC50 of 2.4 μM) and maintained a modest therapeutic window over the human enzyme. Two unbiased approaches, namely, screening against our cosmid-based overexpression library and thermal proteome profiling (TPP), confirm that DDD100097 (compound 2) acts on-target within parasites. Oral dosing with compound 2 resulted in a 52% reduction in parasite burden in our mouse model of VL. Thus, NMT is now a pharmacologically validated target in Leishmania. The challenge in finding drug candidates remains to identify alternative strategies to address the drop-off in activity between enzyme inhibition and in vitro activity while maintaining sufficient selectivity over the human enzyme, both issues that continue to plague studies in this area.
Collapse
Affiliation(s)
- Victoriano Corpas-Lopez
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sonia Moniz
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Michael Thomas
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Richard J. Wall
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Leah S. Torrie
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Dorothea Zander-Dinse
- Leishmaniasis Group, Bernhard Nocht Institute
for Tropical Medicine, Hamburg D-20359, Germany
| | - Michele Tinti
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Brand
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Laste Stojanovski
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sujatha Manthri
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Irene Hallyburton
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Paul G. Wyatt
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Manu De Rycker
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - David Horn
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Michael A. J. Ferguson
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute
for Tropical Medicine, Hamburg D-20359, Germany
| | - Kevin D. Read
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alan H. Fairlamb
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Ian H. Gilbert
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Susan Wyllie
- The Wellcome Trust
Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
16
|
Wall RJ, Moniz S, Thomas MG, Norval S, Ko EJ, Marco M, Miles TJ, Gilbert IH, Horn D, Fairlamb AH, Wyllie S. Antitrypanosomal 8-Hydroxy-Naphthyridines Are Chelators of Divalent Transition Metals. Antimicrob Agents Chemother 2018; 62:e00235-18. [PMID: 29844044 PMCID: PMC6105827 DOI: 10.1128/aac.00235-18;e00235-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/18/2018] [Indexed: 08/22/2023] Open
Abstract
The lack of information regarding the mechanisms of action (MoA) or specific molecular targets of phenotypically active compounds can prove a barrier to their development as chemotherapeutic agents. Here, we report the results of our orthogonal genetic, molecular, and biochemical studies to determine the MoA of a novel 7-substituted 8-hydroxy-1,6-naphthyridine (8-HNT) series that displays promising activity against Trypanosoma brucei and Leishmania donovani High-throughput loss-of-function genetic screens in T. brucei highlighted two probable zinc transporters associated with resistance to these compounds. These transporters localized to the parasite Golgi apparatus. Directed by these findings, the role of zinc and other divalent cations in the MoA of these compounds was investigated. 8-HNT compounds were found to directly deplete intracellular levels of Zn2+, while the addition of exogenous Zn2+ and Fe2+ reduced the potency of compounds from this series. Detailed biochemical analyses confirmed that 8-HNT compounds bind directly to a number of divalent cations, predominantly Zn2+, Fe2+, and Cu2+, forming 2:1 complexes with one of these cations. Collectively, our studies demonstrate transition metal depletion, due to chelation, as the MoA of the 8-HNT series of compounds. Strategies to improve the selectivity of 8-HNT compounds are discussed.
Collapse
Affiliation(s)
- Richard J Wall
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sonia Moniz
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael G Thomas
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Suzanne Norval
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Eun-Jung Ko
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maria Marco
- Diseases of the Developing World, GlaxoSmithKline, Madrid, Spain
| | - Timothy J Miles
- Diseases of the Developing World, GlaxoSmithKline, Madrid, Spain
| | - Ian H Gilbert
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H Fairlamb
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
17
|
Antitrypanosomal 8-Hydroxy-Naphthyridines Are Chelators of Divalent Transition Metals. Antimicrob Agents Chemother 2018; 62:AAC.00235-18. [PMID: 29844044 PMCID: PMC6105827 DOI: 10.1128/aac.00235-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022] Open
Abstract
The lack of information regarding the mechanisms of action (MoA) or specific molecular targets of phenotypically active compounds can prove a barrier to their development as chemotherapeutic agents. Here, we report the results of our orthogonal genetic, molecular, and biochemical studies to determine the MoA of a novel 7-substituted 8-hydroxy-1,6-naphthyridine (8-HNT) series that displays promising activity against Trypanosoma brucei and Leishmania donovani High-throughput loss-of-function genetic screens in T. brucei highlighted two probable zinc transporters associated with resistance to these compounds. These transporters localized to the parasite Golgi apparatus. Directed by these findings, the role of zinc and other divalent cations in the MoA of these compounds was investigated. 8-HNT compounds were found to directly deplete intracellular levels of Zn2+, while the addition of exogenous Zn2+ and Fe2+ reduced the potency of compounds from this series. Detailed biochemical analyses confirmed that 8-HNT compounds bind directly to a number of divalent cations, predominantly Zn2+, Fe2+, and Cu2+, forming 2:1 complexes with one of these cations. Collectively, our studies demonstrate transition metal depletion, due to chelation, as the MoA of the 8-HNT series of compounds. Strategies to improve the selectivity of 8-HNT compounds are discussed.
Collapse
|
18
|
Cyclin-dependent kinase 12 is a drug target for visceral leishmaniasis. Nature 2018; 560:192-197. [PMID: 30046105 PMCID: PMC6402543 DOI: 10.1038/s41586-018-0356-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/11/2018] [Indexed: 01/28/2023]
Abstract
Visceral leishmaniasis causes considerable mortality and morbidity in many parts of the world. There is an urgent need for the development of new, effective treatments for this disease. Here we describe the development of an anti-leishmanial drug-like chemical series based on a pyrazolopyrimidine scaffold. The leading compound from this series (7, DDD853651/GSK3186899) is efficacious in a mouse model of visceral leishmaniasis, has suitable physicochemical, pharmacokinetic and toxicological properties for further development, and has been declared a preclinical candidate. Detailed mode-of-action studies indicate that compounds from this series act principally by inhibiting the parasite cdc-2-related kinase 12 (CRK12), thus defining a druggable target for visceral leishmaniasis.
Collapse
|
19
|
Abongomera C, Diro E, de Lima Pereira A, Buyze J, Stille K, Ahmed F, van Griensven J, Ritmeijer K. The initial effectiveness of liposomal amphotericin B (AmBisome) and miltefosine combination for treatment of visceral leishmaniasis in HIV co-infected patients in Ethiopia: A retrospective cohort study. PLoS Negl Trop Dis 2018; 12:e0006527. [PMID: 29799869 PMCID: PMC5991765 DOI: 10.1371/journal.pntd.0006527] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/07/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND North-west Ethiopia faces the highest burden world-wide of visceral leishmaniasis (VL) and HIV co-infection. VL-HIV co-infected patients have higher (initial) parasitological failure and relapse rates than HIV-negative VL patients. Whereas secondary prophylaxis reduces the relapse rate, parasitological failure rates remain high with the available antileishmanial drugs, especially when administered as monotherapy. We aimed to determine the initial effectiveness (parasitologically-confirmed cure) of a combination of liposomal amphotericin B (AmBisome) and miltefosine for treatment of VL in HIV co-infected patients. METHODOLOGY/PRINCIPAL FINDINGS We conducted a retrospective cohort study at a Médecins Sans Frontières-supported health center in north-west Ethiopia. We included VL-HIV co-infected adults, treated for VL between January 2011 and August 2014, with AmBisome infusion (30 mg/kg total dose) and miltefosine orally for 28 days (100 mg/day). Proportions of initial treatment outcome categories were calculated. Predictors of initial parasitological failure and of death were determined using multivariable logistic regression. Of the 173 patients included, 170 (98.3%) were male and the median age was 32 years. The proportion of patients with primary VL (48.0%) and relapse VL (52.0%) were similar. The majority had advanced HIV disease (n = 111; 73.5%) and were on antiretroviral therapy prior to VL diagnosis (n = 106; 64.2%). Initial cure rate was 83.8% (95% confidence interval [CI], 77.6-88.6); death rate 12.7% (95% CI, 8.5-18.5) and parasitological failure rate 3.5% (95% CI, 1.6-7.4). Tuberculosis co-infection at VL diagnosis was predictive of parasitological failure (adjusted odds ratio (aOR), 8.14; p = 0.02). Predictors of death were age >40 years (aOR, 5.10; p = 0.009), hemoglobin ≤6.5 g/dL (aOR, 5.20; p = 0.002) and primary VL (aOR, 8.33; p = 0.001). CONCLUSIONS/SIGNIFICANCE Initial parasitological failure rates were very low with AmBisome and miltefosine combination therapy. This regimen seems a suitable treatment option. Knowledge of predictors of poor outcome may facilitate better management. These findings remain to be confirmed in clinical trials.
Collapse
Affiliation(s)
- Charles Abongomera
- Médecins Sans Frontières, Abdurafi, Ethiopia
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | - Ermias Diro
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia
| | | | - Jozefien Buyze
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Johan van Griensven
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Koert Ritmeijer
- Public Health Department, Médecins Sans Frontières, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Abdu T, Adnan AB, Yimer S. Screening of some pyrazole derivatives as promising antileishmanial agent. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajpp2016.4401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Davidson RN. Leishmaniasis. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
22
|
Wyllie S, Roberts AJ, Norval S, Patterson S, Foth BJ, Berriman M, Read KD, Fairlamb AH. Activation of Bicyclic Nitro-drugs by a Novel Nitroreductase (NTR2) in Leishmania. PLoS Pathog 2016; 12:e1005971. [PMID: 27812217 PMCID: PMC5094698 DOI: 10.1371/journal.ppat.1005971] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/30/2016] [Indexed: 12/04/2022] Open
Abstract
Drug discovery pipelines for the “neglected diseases” are now heavily populated with nitroheterocyclic compounds. Recently, the bicyclic nitro-compounds (R)-PA-824, DNDI-VL-2098 and delamanid have been identified as potential candidates for the treatment of visceral leishmaniasis. Using a combination of quantitative proteomics and whole genome sequencing of susceptible and drug-resistant parasites we identified a putative NAD(P)H oxidase as the activating nitroreductase (NTR2). Whole genome sequencing revealed that deletion of a single cytosine in the gene for NTR2 that is likely to result in the expression of a non-functional truncated protein. Susceptibility of leishmania was restored by reintroduction of the wild-type gene into the resistant line, which was accompanied by the ability to metabolise these compounds. Overexpression of NTR2 in wild-type parasites rendered cells hyper-sensitive to bicyclic nitro-compounds, but only marginally to the monocyclic nitro-drugs, nifurtimox and fexinidazole sulfone, known to be activated by a mitochondrial oxygen-insensitive nitroreductase (NTR1). Conversely, a double knockout NTR2 null cell line was completely resistant to bicyclic nitro-compounds and only marginally resistant to nifurtimox. Sensitivity was fully restored on expression of NTR2 in the null background. Thus, NTR2 is necessary and sufficient for activation of these bicyclic nitro-drugs. Recombinant NTR2 was capable of reducing bicyclic nitro-compounds in the same rank order as drug sensitivity in vitro. These findings may aid the future development of better, novel anti-leishmanial drugs. Moreover, the discovery of anti-leishmanial nitro-drugs with independent modes of activation and independent mechanisms of resistance alleviates many of the concerns over the continued development of these compound series. Visceral leishmaniasis (kala-azar) is a serious vector borne disease afflicting people, particularly in parts of Asia, Africa and Latin America. There are approximately 400,000 new cases and an estimated 40,000 deaths each year, making it the second biggest parasitic killer after malaria. We recently discovered that delamanid–an oral nitro-drug used for the treatment of tuberculosis–shows promise for the treatment of leishmaniasis with potential to provide a much needed alternative to the current unsatisfactory anti-leishmanial drugs. Understanding how a drug works is important for selecting the most appropriate partner drugs to be used to increase efficacy and decrease toxicity in patients, to minimise the risk of drug resistance emerging and in designing second generation drugs. Using a combination of biochemical and genetic approaches we have discovered a novel nitroreductase (NTR2) that is necessary and sufficient for the anti-leishmanial activity of delamanid and related experimental drugs containing a nitro-group attached to two fused rings. This enzyme is responsible for activating bicyclic nitro-compounds to form toxic products that kill the parasite. In contrast, the previously identified nitroreductase (NTR1), which specifically activates monocyclic drugs, is not involved in this process. This knowledge can be applied to develop novel treatments for this disease.
Collapse
Affiliation(s)
- Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail: (SW); (AHF)
| | - Adam J. Roberts
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Suzanne Norval
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Bernardo J. Foth
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Kevin D. Read
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alan H. Fairlamb
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail: (SW); (AHF)
| |
Collapse
|
23
|
Rock KS, Quinnell RJ, Medley GF, Courtenay O. Progress in the Mathematical Modelling of Visceral Leishmaniasis. ADVANCES IN PARASITOLOGY 2016; 94:49-131. [PMID: 27756459 DOI: 10.1016/bs.apar.2016.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The leishmaniases comprise a complex of diseases characterized by clinical outcomes that range from self-limiting to chronic, and disfiguring and stigmatizing to life threatening. Diagnostic methods, treatments, and vector and reservoir control options exist, but deciding the most effective interventions requires a quantitative understanding of the population level infection and disease dynamics. The effectiveness of any set of interventions has to be determined within the context of operational conditions, including economic and political commitment. Mathematical models are the best available tools for studying quantitative systems crossing disciplinary spheres (biology, medicine, economics) within environmental and societal constraints. In 2005, the World Health Assembly and government health ministers of India, Nepal, and Bangladesh signed a Memorandum of Understanding to eliminate the life threatening form of leishmaniasis, visceral leishmaniasis (VL), on the Indian subcontinent by 2015 through a combination of early case detection, improved treatments, and vector control. The elimination target is <1 case/10,000 population at the district or subdistrict level compared to the current 20/10,000 in the regions of highest transmission. Towards this goal, this chapter focuses on mathematical models of VL, and the biology driving those models, to enable realistic predictions of the best combination of interventions. Several key issues will be discussed which have affected previous modelling of VL and the direction future modelling may take. Current understanding of the natural history of disease, immunity (and loss of immunity), and stages of infection and their durations are considered particularly for humans, and also for dogs. Asymptomatic and clinical infection are discussed in the context of their relative roles in Leishmania transmission, as well as key components of the parasite-sandfly-vector interaction and intervention strategies including diagnosis, treatment and vector control. Gaps in current biological knowledge and potential avenues to improve model structures and mathematical predictions are identified. Underpinning the marriage between biology and mathematical modelling, the content of this chapter represents the first step towards developing the next generation of models for VL.
Collapse
Affiliation(s)
- K S Rock
- University of Warwick, Coventry, United Kingdom
| | | | - G F Medley
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - O Courtenay
- University of Warwick, Coventry, United Kingdom
| |
Collapse
|
24
|
van den Bogaart E, de Bes HM, Balraadjsing PPS, Mens PF, Adams ER, Grobusch MP, van Die I, Schallig HDFH. Leishmania donovani infection drives the priming of human monocyte-derived dendritic cells during Plasmodium falciparum co-infections. Parasite Immunol 2015; 37:453-69. [PMID: 26173941 DOI: 10.1111/pim.12214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 11/28/2022]
Abstract
Functional impairment of dendritic cells (DCs) is part of a survival strategy evolved by Leishmania and Plasmodium parasites to evade host immune responses. Here, the effects of co-exposing human monocyte-derived DCs to Leishmania donovani promastigotes and Plasmodium falciparum-infected erythrocytes were investigated. Co-stimulation resulted in a dual, dose-dependent effect on DC differentiation which ranged from semi-mature cells, secreting low interleukin(-12p70 levels to a complete lack of phenotypic maturation in the presence of high parasite amounts. The effect was mainly triggered by the Leishmania parasites, as illustrated by their ability to induce semi-mature, interleukin-10-producing DCs, that poorly responded to lipopolysaccharide stimulation. Conversely, P. falciparum blood-stage forms failed to activate DCs and only slightly interfered with lipopolysaccharide effects. Stimulation with high L. donovani concentrations triggered phosphatidylserine translocation, whose onset presented after initiating the maturation impairment process. When added in combination, the two parasites could co-localize in the same DCs, confirming that the leading effects of Leishmania over Plasmodium may not be due to mutual exclusion. Altogether, these results suggest that in the presence of visceral leishmaniasis-malaria co-infections, Leishmania-driven effects may overrule the more silent response elicited by P. falciparum, shaping host immunity towards a regulatory pattern and possibly delaying disease resolution.
Collapse
Affiliation(s)
- E van den Bogaart
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - H M de Bes
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - P P S Balraadjsing
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - P F Mens
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands.,Division of Internal Medicine, Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - E R Adams
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| | - M P Grobusch
- Division of Internal Medicine, Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - I van Die
- Department of Molecular Cell Biology, VU University Medical Centre (VUMC), Amsterdam, the Netherlands
| | - H D F H Schallig
- Parasitology Unit, Department of Biomedical Research, Royal Tropical Institute (KIT), Amsterdam, the Netherlands
| |
Collapse
|
25
|
|
26
|
Abass E, Kang C, Martinkovic F, Semião-Santos SJ, Sundar S, Walden P, Piarroux R, el Harith A, Lohoff M, Steinhoff U. Heterogeneity of Leishmania donovani parasites complicates diagnosis of visceral leishmaniasis: comparison of different serological tests in three endemic regions. PLoS One 2015; 10:e0116408. [PMID: 25734336 PMCID: PMC4348478 DOI: 10.1371/journal.pone.0116408] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/01/2014] [Indexed: 12/01/2022] Open
Abstract
Diagnostic tests for visceral leishmaniasis that are based on antigens of a single Leishmania strain can have low diagnostic performance in regions where heterologous parasites predominate. The aim of this study was to investigate and compare the performance of five serological tests, based on different Leishmania antigens, in three endemic countries for visceral leishmaniasis. A total number of 231 sera of symptomatic and asymptomatic cases and controls from three endemic regions of visceral leishmaniasis in East Sudan, North India and South France were evaluated by following serological tests: rKLO8- and rK39 ELISA, DAT (ITMA-DAT) and two rapid tests of rK39 (IT LEISH) and rKE16 (Signal-KA). Overall, rKLO8- and rK39 ELISA were most sensitive in immunocompetent patients from all endemic regions (96–100%) and the sensitivity was reduced to 81.8% in HIV co-infected patients from France. Sera of patients from India demonstrated significantly higher antibody responses to rKLO8 and rK39 compared with sera from Sudan (p<0.0001) and France (p<0.0037). Further, some Indian and Sudanese patients reacted better with rKLO8 than rK39. Sensitivity of DAT (ITMA-DAT) was high in Sudan (94%) and India (92.3%) but low in France being 88.5% and 54.5% for VL and VL/HIV patients, respectively. In contrast, rapid tests displayed high sensitivity only in patients from India (96.2%) but not Sudan (64–88%) and France (73.1–88.5% and 63.6–81.8% in VL and VL/HIV patients, respectively). While the sensitivity varied, all tests showed high specificity in Sudan (96.7–100%) and India (96.6%).Heterogeneity of Leishmania parasites which is common in many endemic regions complicates the diagnosis of visceral leishmaniasis. Therefore, tests based on homologous Leishmania antigens are required for particular endemic regions to detect cases which are difficult to be diagnosed with currently available tests.
Collapse
Affiliation(s)
- Elfadil Abass
- Institute for Medical Microbiology and Hygiene, University of Marburg, 35043 Marburg, Germany
- Biomedical Research Laboratory, Ahfad University for Women, P.O. Box 167, Omdurman, Sudan
- Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan
- * E-mail: (EA); (US)
| | - Cholho Kang
- Institute for Medical Microbiology and Hygiene, University of Marburg, 35043 Marburg, Germany
| | - Franjo Martinkovic
- Department for Parasitology and Parasitic Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Saul J. Semião-Santos
- Department of Nursing, University Tiradentes (UNIT), Campus Farolândia, CEP 49.032-490, Aracaju, Sergipe- Brazil
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi—221 005 UP, India
| | - Peter Walden
- Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Abdallah el Harith
- Biomedical Research Laboratory, Ahfad University for Women, P.O. Box 167, Omdurman, Sudan
| | - Michael Lohoff
- Institute for Medical Microbiology and Hygiene, University of Marburg, 35043 Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, University of Marburg, 35043 Marburg, Germany
- * E-mail: (EA); (US)
| |
Collapse
|
27
|
Salih MAM, Fakiola M, Abdelraheem MH, Younis BM, Musa AM, ElHassan AM, Blackwell JM, Ibrahim ME, Mohamed HS. Insights into the possible role of IFNG and IFNGR1 in Kala-azar and Post Kala-azar Dermal Leishmaniasis in Sudanese patients. BMC Infect Dis 2014; 14:662. [PMID: 25466928 PMCID: PMC4265480 DOI: 10.1186/s12879-014-0662-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/24/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Little is known about the parasite/host factors that lead to Post Kala-azar Dermal Leishmaniasis (PKDL) in some visceral leishmaniasis (VL) patients after drug-cure. Studies in Sudan provide evidence for association between polymorphisms in the gene (IFNGR1) encoding the alpha chain of interferon-γ receptor type I and risk of PKDL. This study aimed to identify putative functional polymorphisms in the IFNGR1 gene, and to determine whether differences in expression of interferon-γ (IFNG) and IFNGR1 at the RNA level are associated with pathogenesis of VL and/or PKDL in Sudan. METHODS Sanger sequencing was used to re-sequence 841 bp of upstream, exon1 and intron1 of the IFNGR1 gene in DNA from 30 PKDL patients. LAGAN and SYNPLOT bioinformatics tools were used to compare human, chimpanzee and dog sequences to identify conserved noncoding sequences carrying putative regulatory elements. The relative expression of IFNG and IFNGR1 in paired pre- and post-treatment RNA samples from the lymph nodes of 24 VL patients, and in RNA samples from skin biopsies of 19 PKDL patients, was measured using real time PCR. Pre- versus post-treatment expression was evaluated statistically using the nonparametric Wilcoxon matched pairs signed-rank test. RESULTS Ten variants were identified in the 841 bp of sequence, four of which are novel polymorphisms at -77A/G, +10 C/T, +18C/T and +91G/T relative to the IFNGR1 initiation site. A cluster of conserved non-coding sequences with putative regulatory variants was identified in the distal promoter of IFNGR1. Variable expression of IFNG was detected in lymph node aspirates of VL patients before treatment, with a marked reduction (P = 0.006) in expression following treatment. IFNGR1 expression was also variable in lymph node aspirates from VL patients, with no significant reduction in expression with treatment. IFNG expression was undetectable in the skin biopsies of PKDL cases, while IFNGR1 expression was also uniformly low. CONCLUSIONS Uniformly low expression of IFN and IFNGR1 in PKDL skin biopsies could explain parasite persistence and is consistent with prior demonstration of genetic association with IFNGR1 polymorphisms. Identification of novel potentially functional rare variants at IFNGR1 makes an important general contribution to knowledge of rare variants of potential relevance in this Sudanese population.
Collapse
Affiliation(s)
- Mohamed A M Salih
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
- Central laboratory, Ministry of Science and Technology, Khartoum, Sudan.
| | - Michaela Fakiola
- Department of Medicine and Department of Pathology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Mohamed H Abdelraheem
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
| | - Brima M Younis
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
| | - Ahmed M Musa
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
| | - Ahmed M ElHassan
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
| | - Jenefer M Blackwell
- Department of Medicine and Department of Pathology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
- Telethon Kids Institute, The University of Western Australia, Crawley, Australia.
| | - Muntaser E Ibrahim
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
| | - Hiba S Mohamed
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102, Khartoum, Sudan.
| |
Collapse
|
28
|
Abstract
Visceral leishmaniasis (VL), also known as Kala-Azar, is a disseminated protozoal infection caused principally by Leishmania donovani and Leishmania infantum (known as Leishmania chagasi in South America). The therapeutic options for VL are diverse and depend on different factors, such as the geographical area of the infection, development of resistance to habitual treatments, HIV co-infection, malnourishment and other concomitant infections. This article provides an exhaustive review of the literature regarding studies published on the treatment of VL, and gives therapeutic recommendations stratified according to their level of evidence, the species of Leishmania implicated and the geographical location of the infection.
Collapse
Affiliation(s)
- Begoña Monge-Maillo
- Tropical Medicine and Clinical Parasitology, Infectious Diseases Department, Ramón y Cajal Hospital, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1, 28034, Madrid, Spain
| | | |
Collapse
|
29
|
Roatt BM, Aguiar-Soares RDDO, Coura-Vital W, Ker HG, Moreira NDD, Vitoriano-Souza J, Giunchetti RC, Carneiro CM, Reis AB. Immunotherapy and Immunochemotherapy in Visceral Leishmaniasis: Promising Treatments for this Neglected Disease. Front Immunol 2014; 5:272. [PMID: 24982655 PMCID: PMC4055865 DOI: 10.3389/fimmu.2014.00272] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis has several clinical forms: self-healing or chronic cutaneous leishmaniasis or post-kala-azar dermal leishmaniasis; mucosal leishmaniasis; visceral leishmaniasis (VL), which is fatal if left untreated. The epidemiology and clinical features of VL vary greatly due to the interaction of multiple factors including parasite strains, vectors, host genetics, and the environment. Human immunodeficiency virus infection augments the severity of VL increasing the risk of developing active disease by 100–2320 times. An effective vaccine for humans is not yet available. Resistance to chemotherapy is a growing problem in many regions, and the costs associated with drug identification and development, make commercial production for leishmaniasis, unattractive. The toxicity of currently drugs, their long treatment course, and limited efficacy are significant concerns. For cutaneous disease, many studies have shown promising results with immunotherapy/immunochemotherapy, aimed to modulate and activate the immune response to obtain a therapeutic cure. Nowadays, the focus of many groups centers on treating canine VL by using vaccines and immunomodulators with or without chemotherapy. In human disease, the use of cytokines like interferon-γ associated with pentavalent antimonials demonstrated promising results in patients that did not respond to conventional treatment. In mice, immunomodulation based on monoclonal antibodies to remove endogenous immunosuppressive cytokines (interleukin-10) or block their receptors, antigen-pulsed syngeneic dendritic cells, or biological products like Pam3Cys (TLR ligand) has already been shown as a prospective treatment of the disease. This review addresses VL treatment, particularly immunotherapy and/or immunochemotherapy as an alternative to conventional drug treatment in experimental models, canine VL, and human disease.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais , Belo Horizonte , Brazil
| | | | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Henrique Gama Ker
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Nádia das Dores Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Juliana Vitoriano-Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais , Belo Horizonte , Brazil
| |
Collapse
|
30
|
Vanaerschot M, Dumetz F, Roy S, Ponte-Sucre A, Arevalo J, Dujardin JC. Treatment failure in leishmaniasis: drug-resistance or another (epi-) phenotype? Expert Rev Anti Infect Ther 2014; 12:937-46. [PMID: 24802998 DOI: 10.1586/14787210.2014.916614] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two major leishmaniasis treatments have shown a significant decrease in effectiveness in the last few decades, mostly in the Indian subcontinent but also in other endemic areas. Drug resistance of Leishmania correlated only partially to treatment failure (TF) of pentavalent antimonials, and has so far proved not to be important for the increased miltefosine relapse rates observed in the Indian subcontinent. While other patient- or drug-related factors could also have played a role, recent studies identified several parasite features such as infectivity and host manipulation skills that might contribute to TF. This perspective aims to discuss how different parasitic features other than drug resistance can contribute to TF of leishmaniasis and how this may vary between different epidemiological contexts.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerpen, Belgium
| | | | | | | | | | | |
Collapse
|
31
|
Co-infection of visceral leishmaniasis and HIV-1: a surviving case in China and review of treatment strategies. Emerg Microbes Infect 2014; 3:e24. [PMID: 26038517 PMCID: PMC4008766 DOI: 10.1038/emi.2014.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/07/2013] [Accepted: 02/07/2014] [Indexed: 01/22/2023]
Abstract
Co-infection of visceral leishmaniasis (VL) and human immunodeficiency virus type 1 (HIV-1) is known to have higher rates of initial treatment failure, relapse and mortality than in those without HIV-1 infection. Co-infection of VL and HIV-1 usually results in death by the end of treatment in previously reported cases in China. Here we report on a patient with VL and HIV-1 co-infection who received a high dose and an extended course of sodium stibogluconate treatment in addition to antiretroviral therapy (ART). This treatment regimen resulted in good control of VL and HIV-1 infection, while the conventional protocol of sodium stibogluconate treatment was not able to prevent multiple VL relapses. To the best of our knowledge, this is the first surviving case of VL and HIV-1 co-infection with this particular treatment regimen in China.
Collapse
|
32
|
Liposomal amphotericin B for complicated visceral leishmaniasis (kala-azar) in eastern Sudan: how effective is treatment for this neglected disease? Trop Med Int Health 2014; 19:146-52. [DOI: 10.1111/tmi.12238] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Bottieau E, Vekemans M, Van Gompel A. Therapy of vector-borne protozoan infections in nonendemic settings. Expert Rev Anti Infect Ther 2014; 9:583-608. [DOI: 10.1586/eri.11.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Mueller YK, Kolaczinski JH, Koech T, Lokwang P, Riongoita M, Velilla E, Brooker SJ, Chappuis F. Clinical epidemiology, diagnosis and treatment of visceral leishmaniasis in the Pokot endemic area of Uganda and Kenya. Am J Trop Med Hyg 2013; 90:33-39. [PMID: 24218406 PMCID: PMC3886423 DOI: 10.4269/ajtmh.13-0150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Between 2000 and 2010, Médecins Sans Frontières diagnosed and treated 4,831 patients with visceral leishmaniasis (VL) in the Pokot region straddling the border between Uganda and Kenya. A retrospective analysis of routinely collected clinical data showed no marked seasonal or annual fluctuations. Males between 5 and 14 years of age were the most affected group. Marked splenomegaly and anemia were striking features. An rK39 antigen-based rapid diagnostic test was evaluated and found sufficiently accurate to replace the direct agglutination test and spleen aspiration as the first-line diagnostic procedure. The case-fatality rate with sodium stibogluconate as first-line treatment was low. The VL relapses were rare and often diagnosed more than 6 months post-treatment. Post-kala-azar dermal leishmaniasis was rare but likely to be underdiagnosed. The epidemiological and clinical features of VL in the Pokot area differed markedly from VL in Sudan, the main endemic focus in Africa.
Collapse
Affiliation(s)
- Yolanda K. Mueller
- *Address correspondence to Yolanda K. Mueller, Médecins Sans Frontières, 78, rue de Lausanne, CP 116, 1211 Geneva 21, Switzerland. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The R enantiomer of the antitubercular drug PA-824 as a potential oral treatment for visceral Leishmaniasis. Antimicrob Agents Chemother 2013; 57:4699-706. [PMID: 23856774 PMCID: PMC3811480 DOI: 10.1128/aac.00722-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The novel nitroimidazopyran agent (S)-PA-824 has potent antibacterial activity against Mycobacterium tuberculosisin vitro and in vivo and is currently in phase II clinical trials for tuberculosis (TB). In contrast to M. tuberculosis, where (R)-PA-824 is inactive, we report here that both enantiomers of PA-824 show potent parasiticidal activity against Leishmania donovani, the causative agent of visceral leishmaniasis (VL). In leishmania-infected macrophages, (R)-PA-824 is 6-fold more active than (S)-PA-824. Both des-nitro analogues are inactive, underlining the importance of the nitro group in the mechanism of action. Although the in vitro and in vivo pharmacological profiles of the two enantiomers are similar, (R)-PA-824 is more efficacious in the murine model of VL, with >99% suppression of parasite burden when administered orally at 100 mg kg of body weight−1, twice daily for 5 days. In M. tuberculosis, (S)-PA-824 is a prodrug that is activated by a deazaflavin-dependent nitroreductase (Ddn), an enzyme which is absent in Leishmania spp. Unlike the case with nifurtimox and fexinidazole, transgenic parasites overexpressing the leishmania nitroreductase are not hypersensitive to either (R)-PA-824 or (S)-PA-824, indicating that this enzyme is not the primary target of these compounds. Drug combination studies in vitro indicate that fexinidazole and (R)-PA-824 are additive whereas (S)-PA-824 and (R)-PA-824 show mild antagonistic behavior. Thus, (R)-PA-824 is a promising candidate for late lead optimization for VL and may have potential for future use in combination therapy with fexinidazole, currently in phase II clinical trials against VL.
Collapse
|
36
|
Recent advances in development of amphotericin B formulations for the treatment of visceral leishmaniasis. Curr Opin Infect Dis 2013; 25:695-702. [PMID: 23147810 DOI: 10.1097/qco.0b013e328359eff2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Amphotericin B (AmpB) is considered the first-line treatment for visceral leishmaniasis in areas in which resistance to antimony is prevalent. This review describes recent advances in clinically available and novel drug delivery systems of AmpB to treat visceral leishmaniasis. RECENT FINDINGS Over the past two decades, lipid-based AmpB formulations developed to tackle the toxicity of AmpB have been used clinically for the treatment of visceral leishmaniasis. Liposomal AmpB (AmBisome) has been the most successful lipid formulation, and recent clinical studies on visceral leishmaniasis have shown the potential of single-dose AmBisome treatment as well as its use in short course combinations with other antileishmanial drugs. Current research is focussed on the development of more stable and affordable nonlipid formulations of AmpB. Although a diverse range of nonlipid-based AmpB formulations have been evaluated, none have yet reached the clinic. SUMMARY Liposomal AmpB (AmBisome) has become a standard treatment, by intravenous infusion, for visceral leishmaniasis and the basis for new short course treatments. There have been extensive efforts to develop new AmpB formulations on the basis of polymers, lipids or physical aggregates of AmpB to replace the costly lipid-based formulations. However, no nonlipid-based AmpB delivery systems have yet reached the clinic.
Collapse
|
37
|
van den Bogaart E, Berkhout MMZ, Nour ABYM, Mens PF, Talha ABA, Adams ER, Ahmed HBM, Abdelrahman SH, Ritmeijer K, Nour BYM, Schallig HDFH. Concomitant malaria among visceral leishmaniasis in-patients from Gedarif and Sennar States, Sudan: a retrospective case-control study. BMC Public Health 2013; 13:332. [PMID: 23577673 PMCID: PMC3659061 DOI: 10.1186/1471-2458-13-332] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 04/01/2013] [Indexed: 11/15/2022] Open
Abstract
Background In areas where visceral leishmaniasis (VL) and malaria are co-endemic, co-infections are common. Clinical implications range from potential diagnostic delay to increased disease-related morbidity, as compared to VL patients. Nevertheless, public awareness of the disease remains limited. In VL-endemic areas with unstable and seasonal malaria, vulnerability to the disease persists through all age-groups, suggesting that in these populations, malaria may easily co-occur with VL, with potentially severe clinical effects. Methods A retrospective case-control study was performed using medical records of VL patients admitted to Tabarakallah and Gedarif Teaching Hospitals (Gedarif State) and Al`Azaza kala-azar Clinic (Sennar State), Sudan (2005-2010). Patients positively diagnosed with VL and malaria were identified as cases, and VL patients without microscopy-detectable malaria as controls. Associations between patient characteristics and the occurrence of the co-infection were investigated using logistic regression analysis. Confirmation of epidemiological outcomes was obtained with an independently collected dataset, composed by Médecins Sans Frontières (MSF) at Um-el-Kher and Kassab Hospitals, Gedarif State (1998). Results The prevalence of malaria co-infection among VL surveyed patients ranged from 3.8 to 60.8%, with a median of 26.2%. Co-infected patients presented at hospital with deteriorated clinical pictures. Emaciation (Odds Ratio (OR): 2.46; 95% Confidence Interval (95% CI): 1.72-3.50), jaundice (OR: 2.52; 95% CI: 1.04-6.09) and moderate anemia (OR: 1.58; 95% CI: 1.10-2.28) were found to be positively associated with the co-infection, while severity of splenomegaly (OR: 0.53; 95% CI: 0.35-0.81) and, to a less extent, hepatomegaly (OR: 0.52; 95% CI: 0.27-1.01) appeared to be reduced by concomitant VL and malaria. The in-hospital case-fatality rates did not significantly differ between co- and mono-infected patients (OR: 1.13; 95% CI: 0.59-2.17). Conversely, a significantly increased mortality rate (OR: 4.38; 95% CI: 1.83-10.48) was observed by MSF amongst co-infected patients enrolled at Um-el-Kher and Kassab Hospitals, who also suffered an enhanced risk of severe anemia (OR: 3.44; 95% CI: 1.68-7.02) compared to VL mono-infections. Conclusions In endemic VL areas with unstable seasonal malaria, like eastern Sudan, VL patients are highly exposed to the risk of developing concomitant malaria. Prompt diagnosis and effective treatment of malaria are essential to ensure that its co-infection does not result into poor prognoses.
Collapse
Affiliation(s)
- Erika van den Bogaart
- Department of Biomedical Research, Parasitology Unit, Royal Tropical Institute (KIT), Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Assessing the essentiality of Leishmania donovani nitroreductase and its role in nitro drug activation. Antimicrob Agents Chemother 2012. [PMID: 23208716 DOI: 10.1128/aac.01788-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitroimidazole fexinidazole has potential as a safe and effective oral drug therapy for the treatment of visceral leishmaniasis. To date, nitroheterocyclics have not been used in the treatment of leishmaniasis, and relatively little is known about their mechanism of action. In African trypanosomes, nitro drugs are reductively activated by a type I nitroreductase (NTR), absent in mammalian cells. Modulation of nitroreductase levels in Trypanosoma brucei directly affected sensitivity to nitro compounds, with reduced concentrations of the enzyme leading to moderate nitro drug resistance. In view of the progression of fexinidazole into clinical development for visceral leishmaniasis, here we assess the essentiality of the nitroreductase in Leishmania donovani and the effect of modulating nitroreductase levels on susceptibility to fexinidazole. The failure to directly replace both endogenous copies of the NTR gene, except in the presence of an ectopic copy of the gene, suggests that the NTR gene is essential for the growth and survival of L. donovani promastigotes. Loss of a single chromosomal copy of the L. donovani NTR gene resulted in parasites that were mildly resistant (<2-fold) to the predominant in vivo metabolite of fexinidazole, while parasites overexpressing NTR were 18-fold more susceptible. These data confirm that Leishmania NTR plays a pivotal role in fexinidazole activation. Reliance on a single enzyme for prodrug activation may leave fexinidazole vulnerable to the emergence of drug resistance. However, the essentiality of the NTR in L. donovani promastigotes, combined with the limited resistance shown by NTR single knockout cells, suggests that the potential for the spread of NTR-based resistance to fexinidazole may be limited.
Collapse
|
40
|
Balasegaram M, Ritmeijer K, Lima MA, Burza S, Ortiz Genovese G, Milani B, Gaspani S, Potet J, Chappuis F. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerg Drugs 2012; 17:493-510. [PMID: 23167833 PMCID: PMC3518293 DOI: 10.1517/14728214.2012.748036] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Leishmaniasis is a parasitic disease transmitted by phlebotomine sandflies. Between 700,000 and 1.2 million cases of cutaneous leishmaniasis and between 200,000 and 400,000 cases of visceral leishmaniasis (VL), which is fatal if left untreated, occur annually worldwide. Liposomal amphotericin B (LAMB), alone or in combination with other drugs, has been extensively studied as VL treatment, but data on routine field use are limited, and several challenges to patients' access to this life-saving drug remain. AREAS COVERED This article provides a review of clinical studies on LAMB for VL and other forms of leishmaniasis. The current development of generic versions of LAMB and related challenges are also discussed. EXPERT OPINION LAMB proved to be highly efficacious and safe in over 8000 VL patients treated by MÉdecins Sans Frontières in South Asia, and its use was feasible even at primary healthcare level. Despite requiring higher doses, LAMB is the drug of choice to treat vulnerable groups (e.g., pregnant or HIV positive) and relapsing VL patients in East Africa. LAMB should be included in national VL guidelines and registered in all VL endemic countries. Its cost should be further reduced and regulatory pathways to prove bioequivalence for generic LAMB products should be implemented.
Collapse
|
41
|
Prajapati VK, Mehrotra S, Gautam S, Rai M, Sundar S. In vitro antileishmanial drug susceptibility of clinical isolates from patients with Indian visceral leishmaniasis--status of newly introduced drugs. Am J Trop Med Hyg 2012; 87:655-7. [PMID: 22927497 DOI: 10.4269/ajtmh.2012.12-0022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Regional variations in susceptibility of Leishmania donovani clinical isolates have been reported to antimonials but not other antileishmanial drugs. Therefore, we evaluated the susceptibility of four antileishmanial drugs in clinical use in 28 clinical isolates from endemic and non-endemic regions in the J774A.1 macrophage cell line, and we found increased tolerance of miltefosine and paromomycin in isolates from a patient from a high endemic region. Effective dose for 90% killing (ED(90)) values were significantly higher for miltefosine (P = 0.005) and paromomycin (P = 0.02) in isolates from the high endemic region, although there were no significant differences between ED(50) values for paromomycin, miltefosine, and amphotericin B in the non- versus endemic region isolates. This report is the first of higher ED(90) values for miltefosine and paromomycin indicating susceptibility difference between regions for these newly introduced drugs by the parasite, and their use should be carefully monitored through directly observed therapy or multidrug treatment to preserve their efficacy for longer periods.
Collapse
Affiliation(s)
- Vijay Kumar Prajapati
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Wyllie S, Patterson S, Stojanovski L, Simeons FRC, Norval S, Kime R, Read KD, Fairlamb AH. The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis. Sci Transl Med 2012; 4:119re1. [PMID: 22301556 DOI: 10.1126/scitranslmed.3003326] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Safer and more effective oral drugs are required to treat visceral leishmaniasis, a parasitic disease that kills 50,000 to 60,000 people each year in parts of Asia, Africa, and Latin America. Here, we report that fexinidazole, a drug currently in phase 1 clinical trials for treating African trypanosomiasis, shows promise for treating visceral leishmaniasis. This 2-substituted 5-nitroimidazole drug is rapidly oxidized in vivo in mice, dogs, and humans to sulfoxide and sulfone metabolites. Both metabolites of fexinidazole were active against Leishmania donovani amastigotes grown in macrophages, whereas the parent compound was inactive. Pharmacokinetic studies with fexinidazole (200 mg/kg) showed that fexinidazole sulfone achieves blood concentrations in mice above the EC(99) (effective concentration inhibiting growth by 99%) value for at least 24 hours after a single oral dose. A once-daily regimen for 5 days at this dose resulted in a 98.4% suppression of infection in a mouse model of visceral leishmaniasis, equivalent to that seen with the drugs miltefosine and Pentostam, which are currently used clinically to treat this tropical disease. In African trypanosomes, the mode of action of nitro drugs involves reductive activation via a NADH (reduced form of nicotinamide adenine dinucleotide)-dependent bacterial-like nitroreductase. Overexpression of the leishmanial homolog of this nitroreductase in L. donovani increased sensitivity to fexinidazole by 19-fold, indicating that a similar mechanism is involved in both parasites. These findings illustrate the potential of fexinidazole as an oral drug therapy for treating visceral leishmaniasis.
Collapse
Affiliation(s)
- Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Evaluation of arylimidamides DB1955 and DB1960 as candidates against visceral leishmaniasis and Chagas' disease: in vivo efficacy, acute toxicity, pharmacokinetics, and toxicology studies. Antimicrob Agents Chemother 2012; 56:3690-9. [PMID: 22508306 DOI: 10.1128/aac.06404-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Arylimidamides (AIAs) have shown outstanding in vitro potency against intracellular kinetoplastid parasites, and the AIA 2,5-bis[2-(2-propoxy)-4-(2-pyridylimino)aminophenyl]furan dihydrochloride (DB766) displayed good in vivo efficacy in rodent models of visceral leishmaniasis (VL) and Chagas' disease. In an attempt to further increase the solubility and in vivo antikinetoplastid potential of DB766, the mesylate salt of this compound and that of the closely related AIA 2,5-bis[2-(2-cyclopentyloxy)-4-(2-pyridylimino)aminophenyl]furan hydrochloride (DB1852) were prepared. These two mesylate salts, designated DB1960 and DB1955, respectively, exhibited dose-dependent activity in the murine model of VL, with DB1960 inhibiting liver parasitemia by 51% at an oral dose of 100 mg/kg/day × 5 and DB1955 reducing liver parasitemia by 57% when given by the same dosing regimen. In a murine Trypanosoma cruzi infection model, DB1960 decreased the peak parasitemia levels that occurred at 8 days postinfection by 46% when given orally at 100 mg/kg/day × 5, while DB1955 had no effect on peak parasitemia levels when administered by the same dosing regimen. Distribution studies revealed that these compounds accumulated to micromolar levels in the liver, spleen, and kidneys but to a lesser extent in the heart, brain, and plasma. A 5-day repeat-dose toxicology study with DB1960 and DB1955 was also conducted with female BALB/c mice, with the compounds administered orally at 100, 200, and 500 mg/kg/day. In the high-dose groups, DB1960 caused changes in serum chemistry, with statistically significant increases in serum blood urea nitrogen, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase levels, and a 21% decrease in body weight was observed in this group. These changes were consistent with microscopic findings in the livers and kidneys of the treated animals. The incidences of observed clinical signs (hunched posture, tachypnea, tremors, and ruffled fur) were more frequent in DB1960-treated groups than in those treated with DB1955. However, histopathological examination of tissue samples indicated that both compounds had adverse effects at all dose levels.
Collapse
|
45
|
Old world Leishmania infantum cutaneous leishmaniasis unresponsive to liposomal amphotericin B treated with topical imiquimod. Pediatr Infect Dis J 2012; 31:97-100. [PMID: 21829140 DOI: 10.1097/inf.0b013e31822dfbf7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We present a case of a child with Leishmania infantum cutaneous leishmaniasis unresponsive to 2 courses of intravenous liposomal amphotericin B, a treatment failure that has not been reported in this Leishmania species. The patient responded to topical imiquimod and had no relapse. We review the literature on the treatment failure of liposomal amphotericin B for cutaneous leishmaniasis.
Collapse
|
46
|
Identification of new antileishmanial leads from hits obtained by high-throughput screening. Antimicrob Agents Chemother 2011; 56:1182-9. [PMID: 22143523 DOI: 10.1128/aac.05412-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previous screen of ~200,000 compounds from the PubChem database identified 70 compounds possessing 50% effective concentrations (EC(50)s) below 1 μM against Leishmania major promastigotes that were not toxic to mammalian epithelial cancer cells at this concentration (E. Sharlow et al., PLoS Negl. Trop. Dis. 3:e540, 2009). Based on availability and chemical exclusion criteria, 31 of these compounds were purchased from commercial suppliers and evaluated for in vitro activity against intracellular L. donovani and L. amazonensis parasites. Benzothiazole cyanine compounds (PubChem 16196319 and 16196223) displayed potent activity against intracellular amastigotes, prompting a search for commercially available compounds that were structurally related. Pubchem 123859 (the cyanine dye thiazole orange) showed exceptionally potent activity against intracellular L. donovani in vitro (50% inhibitory concentration [IC(50)] = 21 ± 12 nM) and low cytotoxicity against Vero cells (IC(50) = 7,800 ± 200 nM). Administration of 123859 and 16196319 at a dose of 1 mg/kg of body weight intraperitoneally (i.p.) daily for 5 days resulted in 44% ± 4% and 42% ± 3% suppression of liver parasitemia in L. donovani-infected BALB/c mice, respectively, compared to the untreated control group (the reductions in liver parasitemia were 30% ± 5% and 27% ± 4%, respectively, compared to the (2-hydroxypropyl)-β-cyclodextrin solution (HPβCD) vehicle control, which itself displayed some antileishmanial activity). Benzothiazole-containing cyanine dyes are thus potential lead compounds for the discovery of novel antileishmanial agents.
Collapse
|
47
|
Ritmeijer K, ter Horst R, Chane S, Aderie EM, Piening T, Collin SM, Davidson RN. Limited Effectiveness of High-Dose Liposomal Amphotericin B (AmBisome) for Treatment of Visceral Leishmaniasis in an Ethiopian Population With High HIV Prevalence. Clin Infect Dis 2011; 53:e152-8. [DOI: 10.1093/cid/cir674] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
Abstract
The available treatment options for visceral leishmaniasis (VL) have problems relating to efficacy, adverse effects and cost, making treatment a complex issue. We review the evidence relating to the different methods of treatment in relation to - efficacy and toxicity of the drugs in different areas of the world; ability to monitor side effects, length of treatment; ability of patients to pay for and stay safe during treatment, ability of the healthcare services to give intramuscular, intravenous or oral therapy; the sex and child-bearing potential of the patient and the immune status of the patient. The high mortality of untreated/ poorly treated VL infection makes the decisions paramount, but a unified and coordinated response by each area is likely to be more effective and informative to future policies than an ad hoc response. For patients in resource-rich countries, liposomal amphotericin B appears to be the optimal treatment. In South Asia, miltefosine is being used; the combination of single dose liposomal amphotericin B and short course miltefosine looks encouraging but has the problem of potential reproductive toxicities in females. In Africa, the evidence to switch from SSG is not yet compelling. The need to monitor and plan for evolving drug failure, secondary to leishmania parasite resistance, is paramount. With a few drugs the options may be limited; however, we await key ongoing trials in both Africa and India to explore the effects of combination treatment. If safe and reliable combinations are revealed by the ongoing studies, it is far from clear as to whether this will avoid leishmania parasite resistance. The development of new drugs to add to the armamentarium is paramount. Lessons can be learnt from the management of diseases such as tuberculosis and malaria in terms of planning the switch to combination treatment. As important as establishing the best choice for specific antileishmanial agent is ensuring treatment centers, which can best manage the problems encountered during treatment, specifically malnutrition, bleeding, intercurrent infections, drug side effects and detecting and treating underlying immunosuppression.
Collapse
Affiliation(s)
- E M Moore
- Hospital for Tropical Diseases, University College London Hospital
| | | |
Collapse
|
49
|
Matlashewski G, Arana B, Kroeger A, Battacharya S, Sundar S, Das P, Sinha PK, Rijal S, Mondal D, Zilberstein D, Alvar J. Visceral leishmaniasis: elimination with existing interventions. THE LANCET. INFECTIOUS DISEASES 2011; 11:322-5. [PMID: 21453873 DOI: 10.1016/s1473-3099(10)70320-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The world's burden of infectious diseases can be substantially reduced by more-effective use of existing interventions. Advances in case detection, diagnosis, and treatment strategies have made it possible to consider the elimination of visceral leishmaniasis in the Indian subcontinent. The priority must now be to effectively implement existing interventions at the community level by actively finding cases in endemic villages and treating them with single-dose liposomal amphotericin B at primary-health-care centres. Once the elimination target of one case per 10,000 population has been reached, combination therapies involving miltefosine and paromomycin can be introduced to ensure long-term availability of several drugs for visceral leishmaniasis and to protect against resistance.
Collapse
Affiliation(s)
- Greg Matlashewski
- Special Programme for Research and Training in Tropical Diseases, WHO, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mondal S, Bhattacharya P, Ali N. Current diagnosis and treatment of visceral leishmaniasis. Expert Rev Anti Infect Ther 2010; 8:919-44. [PMID: 20695748 DOI: 10.1586/eri.10.78] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human visceral leishmaniasis (VL), a potentially fatal disease, is most prevalent in the Indian subcontinent, East Africa and South America. Definite diagnosis and effective treatment are the primary needs for the control of VL. Diagnosis of VL has typically relied on microscopic examination of bone marrow/splenic aspirate, but serology and molecular methods are now better alternatives. The conventional drugs for treatment of VL have limitations including unresponsiveness, relapse, specific toxicities and parenteral administration lasting for long durations. Moreover, they are less effective in HIV-VL-coinfected patients. Registration of miltefosine and paromomycin, and preferential pricing of AmBisome has offered more choices for monotherapy and combination therapy for VL. Combination therapy will increase treatment efficacy and prevent the development of resistance. In addition, active case finding and vector control strategies will also have a positive impact in the control of VL. This article critically addresses the currently available diagnostic and treatment regimens for the control of VL.
Collapse
Affiliation(s)
- Smriti Mondal
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|