1
|
Mekuria M, Abebe G, Hasen H, Zeynudin A. Bacilli load in PTB- intestinal helminths co-infected and PTB non -infected patients at selected public health facilities in Jimma zone, Oromia, Ethiopia: comparative cross-sectional study. BMC Infect Dis 2024; 24:783. [PMID: 39103799 DOI: 10.1186/s12879-024-09673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) and intestinal helminths are diseases that pose a dual burden on public health in low-income countries. Previous studies have shown that helminths can affect the shedding of bacteria or the bacterial load in the sputum of active TB patients. However, there is limited information on bacterial load in TB patients with helminth infections. OBJECTIVE This study aimed to compare bacterial load in helminths-infected and non-infected pulmonary tuberculosis patients at selected public health facilities in Jimma zone, Oromia, Ethiopia. METHODS The study was conducted in Jimma Zone, Oromia, Ethiopia. A facility-based comparative cross-sectional study was employed from August 01, 2020, to January 2021. A total of 124 (55 intestinal helminths-infected and 69 non-infected) newly diagnosed smear-positive pulmonary tuberculosis (PTB) patients were included in the study. A convenience sampling technique was employed to recruit study participants, and a semi-structured questionnaire was used to collect data regarding socio-demographic characteristics and possible risk factors for intestinal helminths co-infection. Stool examination was performed using both wet mount and Kato Katz technique. Additionally, weight and height measurements, sputum, and blood samples were taken to determine body mass index, bacilli load, and diabetic mellitus, respectively. Data were entered into Epi-Data software version 3.1 and analyzed using Statistical Packages for Social Sciences (SPSS) Version 25. A statistically significant difference was defined as a P-value of less than 0.05. RESULTS Intestinal helminths reduced bacilli load 3 times more than intestinal helminths non-infected PTB (AOR = 3.44; 95% CI; 1.52, 7.79; P = 0.003) However, diabetes mellitus, HIV, drinking alcohol and cigarette smoking were not associated with bacilli load. The rate of co-infection TB with intestinal helminths was 44%. The three most prevalent parasites detected were Trichuris trichiura 29 (66%), hookworm 19 (43%), and Ascaris lumbricoides 11(25%)). Among co-infected patients about 36 (81.8%) had a single parasite infection, and 19 (43.2%) had multiple infections. A body mass index < 18.5 (AOR = 3.26; 95% CI; 1.25, 8.56;P = 0.016) and untrimmed fingernail status (AOR = 3.63; 95%CI;1.32,9.93;P = 0.012) were significantly associated with PTB- intestinal helminth -co-infection. CONCLUSION Helminth infection was associated with a lower bacilli load compared to helmenths non-infected PTB. The rate of co-infection TB with intestinal helminths was 44%. Trichuris trichiura was the most prevalent helminth. Untrimmed fingernail and a body mass index were associated with PTB-intestinal helminth co-infection.
Collapse
Affiliation(s)
- Melese Mekuria
- Department of Medical Laboratory Technology, Hossana College of Health Science, Hossana, Ethiopia
| | - Gemeda Abebe
- Department of Medical Laboratory Technology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Habtamu Hasen
- Department of Public Health, Hossana College of Health Science, Hossana, Ethiopia.
| | - Ahmed Zeynudin
- Department of Medical Laboratory Technology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
2
|
Zhuang L, Yang L, Li L, Ye Z, Gong W. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm (Beijing) 2024; 5:e419. [PMID: 38188605 PMCID: PMC10771061 DOI: 10.1002/mco2.419] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 01/09/2024] Open
Abstract
Although tuberculosis (TB) is an infectious disease, the progression of the disease following Mycobacterium tuberculosis (MTB) infection is closely associated with the host's immune response. In this review, a comprehensive analysis of TB prevention, diagnosis, and treatment was conducted from an immunological perspective. First, we delved into the host's immune response mechanisms against MTB infection as well as the immune evasion mechanisms of the bacteria. Addressing the challenges currently faced in TB diagnosis and treatment, we also emphasized the importance of protein, genetic, and immunological biomarkers, aiming to provide new insights for early and personalized diagnosis and treatment of TB. Building upon this foundation, we further discussed intervention strategies involving chemical and immunological treatments for the increasingly critical issue of drug-resistant TB and other forms of TB. Finally, we summarized TB prevention, diagnosis, and treatment challenges and put forward future perspectives. Overall, these findings provide valuable insights into the immunological aspects of TB and offer new directions toward achieving the WHO's goal of eradicating TB by 2035.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Ling Yang
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Linsheng Li
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Zhaoyang Ye
- Senior Department of TuberculosisHebei North UniversityZhangjiakouHebeiChina
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and TreatmentSenior Department of Tuberculosis, the Eighth Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
3
|
Clinical Significance of Negative Costimulatory Molecule PD-1/PD-L1 on Peripheral Blood Regulatory T Cell Levels among Patients with Pulmonary Tuberculosis. J Trop Med 2022; 2022:7526501. [PMID: 36035072 PMCID: PMC9410994 DOI: 10.1155/2022/7526501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Objective. This study aimed to investigate the expression and clinical significance of negative costimulatory molecules programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) on CD4+CD25+CD127low regulatory T cells (Tregs) in peripheral blood of patients with active pulmonary tuberculosis (TB). Methods. A total of 30 patients with active pulmonary TB and 20 healthy controls were enrolled. The proportions of peripheral blood CD4+CD25+CD127low Tregs and the expression of PD-1 and PD-L1 on CD4+CD25+CD127low Tregs were detected among active pulmonary TB patients using flow cytometry. The associations of proportions of CD4+CD25+CD127low Tregs with the demographic and clinical characteristics of active pulmonary TB patients were evaluated, and the correlation between PD-1/PD-L1 expression and proportions of peripheral blood CD4+CD25+CD127low Tregs was examined among patients with active pulmonary TB using Pearson correlation analysis. Results. Flow cytometry detected a significantly higher proportion of peripheral blood CD4+CD25+CD127low Tregs in the TB group than in the control group (9.14% ± 2.66% vs. 6.39% ± 1.73%; t = 4.067,
), and a higher proportion of peripheral blood CD4+CD25+CD127low Tregs among active pulmonary TB patients with a positive anti-M. tuberculosis antibody than in those with a negative antibody (Figure 2(a)); however, there were no gender, M. tuberculosis culture, tuberculin test, CT examination, or sputum smear test-specific proportions of CD4+CD25+CD127low Tregs among patients with active pulmonary TB. The PD-1 (6.13% ± 3.53% vs. 24.78% ± 7.73%,
) and PD-L1 levels (2.97% ± 2.00% vs. 9.23% ± 5.76%,
) were lower on peripheral blood CD4+CD25+CD127low Tregs among the TB group than in the control group. In addition, Pearson correlation analysis revealed a positive correlation between PD-1 and PD-L1 expression on peripheral blood CD4+CD25+CD127low Tregs among patients with active pulmonary TB (r = 0.435,
) and a negative correlation between the proportion of peripheral blood CD4+CD25+CD127low Tregs and PD-1 (r = ‒0.344,
) and PD-L1 expression among patients with active pulmonary TB (r = ‒0.310,
). Conclusion. The proportion of CD4+CD25+CD127low Tregs is higher in patients with active pulmonary TB than in healthy controls, and the negative costimulatory signal PD-1/PD-L1 expression is downregulated among active pulmonary TB patients. Our findings provide insights into the illustration of pathogenic mechanisms and immunotherapy of active pulmonary TB.
Collapse
|
4
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
5
|
Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution. Biomolecules 2021; 11:biom11121873. [PMID: 34944517 PMCID: PMC8699107 DOI: 10.3390/biom11121873] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
Arachidonic acid (AA) metabolism is critical in the initiation and resolution of inflammation. Prostaglandin E2 (PGE2) and leukotriene B4/D4/E4 (LTB4/LD4/LTE4), derived from AA, are involved in the initiation of inflammation and regulation of immune response, hematopoiesis, and M1 (pro-inflammatory) macrophage facilitation. Paradoxically, PGE2 suppresses interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and triggers the production of lipoxin A4 (LXA4) from AA to initiate inflammation resolution process and augment regeneration of tissues. LXA4 suppresses PGE2 and LTs' synthesis and action and facilitates M2 macrophage generation to resolve inflammation. AA inactivates enveloped viruses including SARS-CoV-2. Macrophages, NK cells, T cells, and other immunocytes release AA and other bioactive lipids to produce their anti-microbial actions. AA, PGE2, and LXA4 have cytoprotective actions, regulate nitric oxide generation, and are critical to maintain cell shape and control cell motility and phagocytosis, and inflammation, immunity, and anti-microbial actions. Hence, it is proposed that AA plays a crucial role in the pathobiology of ischemia/reperfusion injury, sepsis, COVID-19, and other critical illnesses, implying that its (AA) administration may be of significant benefit in the prevention and amelioration of these diseases.
Collapse
|
6
|
Differential effects of asymptomatic Ascaris lumbricoides, Schistosoma mansoni or hook worm infection on the frequency and TGF-beta-producing capacity of regulatory T cells during active tuberculosis. Tuberculosis (Edinb) 2021; 131:102126. [PMID: 34601265 DOI: 10.1016/j.tube.2021.102126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Helminth induced expansion of regulatory T cells (Tregs) may take part in suppressing protective host responses during tuberculosis (TB), although Tregs functionality and link to TB disease severity remains unexplored. We investigated the species-specific effect of helminths on frequency and TGF-β producing capacity of Tregs, and possible connection to TB disease severity. 89 pulmonary TB patients (PTB) and 69 community controls (CCs) from Gondar, Ethiopia, were included. Clinical disease severity was graded by TB score, and flow cytometry used to characterize Treg frequency and functionality measured as their TGF-β-producing capacity. In helminth positive PTB patients (Helminth+PTB+) compared to helminth negative PTB or CCs, TGF-β+ Tregs were significantly increased mainly in hookworm coinfection whereas S. mansoni increased TGF-β+ Tregs in CCs. Treatment of TB and helminths decreased TGF-β+ Tregs in Helminth+PTB+ at 2 months follow-up. There were no overall differences in the frequency of Tregs in CCs or PTB unless stratification on TB disease severity was performed. At inclusion Helminth+PTB+ had increased frequency of Tregs already at low disease severity, and TGF-β+ Tregs correlated to intermediate-to-high disease severity. In conclusion, helminth specific increase of TGF-β+ Tregs in PTB patients was correlated to TB disease severity and was restored following anti-helminth treatment.
Collapse
|
7
|
Stringari LL, Covre LP, da Silva FDC, de Oliveira VL, Campana MC, Hadad DJ, Palaci M, Salgame P, Dietze R, Gomes DCDO, Ribeiro-Rodrigues R. Increase of CD4+CD25highFoxP3+ cells impairs in vitro human microbicidal activity against Mycobacterium tuberculosis during latent and acute pulmonary tuberculosis. PLoS Negl Trop Dis 2021; 15:e0009605. [PMID: 34324509 PMCID: PMC8321116 DOI: 10.1371/journal.pntd.0009605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Regulatory T cells (Tregs) play a critical role during Mycobacterium tuberculosis (Mtb) infection, modulating host responses while neutralizing excessive inflammation. However, their impact on regulating host protective immunity is not completely understood. Here, we demonstrate that Treg cells abrogate the in vitro microbicidal activity against Mtb. Methods We evaluated the in vitro microbicidal activity of peripheral blood mononuclear cells (PBMCs) from patients with active tuberculosis (TB), individuals with latent tuberculosis infection (LTBI, TST+/IGRA+) and healthy control (HC, TST-/IGRA-) volunteers. PBMCs, depleted or not of CD4+CD25+ T-cells, were analyzed to determine frequency and influence on microbicidal activity during in vitro Mtb infection with four clinical isolates (S1, S5, R3, and R6) and one reference strain (H37Rv). Results The frequency of CD4+CD25highFoxP3+ cells were significantly higher in Mtb infected whole blood cultures from both TB patients and LTBI individuals when compared to HC. Data from CD4+CD25+ T-cells depletion demonstrate that increase of CD4+CD25highFoxP3+ is associated with an impairment of Th-1 responses and a diminished in vitro microbicidal activity of LTBI and TB groups. Conclusions Tregs restrict host anti-mycobacterial immunity during active disease and latent infection and thereby may contribute to both disease progression and pathogen persistence. Our immune system has an enormous capacity of recognizing and responding to foreign antigens and, likewise, presents an extremely efficient mechanism of controlling these responses. Here, we investigated how a specific cell type with regulatory abilities can interfere in the immunological response against tuberculosis bacillus. For this, we used blood samples from individuals sensitized with the bacillus and patients with active pulmonary tuberculosis to understand how these cells act and their impact on the host/parasite relationship in the development of the disease. We could observe the negative impact that such regulatory cells cause during the immune response against Mycobacterium tuberculosis, decreasing the control/elimination of the bacillus in asymptomatic individuals and patients with tuberculosis. We also observed a recovery in the immune response when Treg cells were removed during in vitro challenge, restoring the capacity of Mtb clearance. Thus, these regulatory cells, when present, may represent a possible facilitator of the asymptomatic permanence of the bacillus, or even of the development of the disease itself. These data allowed us to see latency and tuberculosis from a new angle and thus postulate new approaches to fight tuberculosis.
Collapse
Affiliation(s)
- Lorenzzo Lyrio Stringari
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- * E-mail: (LLS); (RR-R)
| | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | | | - David Jamil Hadad
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Moisés Palaci
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Padmini Salgame
- Center for Emerging Pathogens, Rutgers-New Jersey Medical School, International Center for Public Health, Newark, New Jersey, United States of America
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Daniel Cláudio de Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Rodrigo Ribeiro-Rodrigues
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- * E-mail: (LLS); (RR-R)
| |
Collapse
|
8
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
9
|
Barreto-Duarte B, Sterling TR, Fiske CT, Almeida A, Nochowicz CH, Smith RM, Barnett L, Warren C, Blackman A, Lapa e Silva JR, Andrade BB, Kalams SA. Increased Frequency of Memory CD4+ T-Cell Responses in Individuals With Previously Treated Extrapulmonary Tuberculosis. Front Immunol 2020; 11:605338. [PMID: 33391271 PMCID: PMC7774017 DOI: 10.3389/fimmu.2020.605338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Extrapulmonary TB (EPTB) occurs with increased frequency in persons with underlying immunodeficiency. Even after recovery from acute illness, differences in immune phenotype and activation persist. Studies defining characteristics of immune responses after recovery from extrapulmonary TB may provide insights into factors that increase TB risk. We performed two case-control studies (in the United States and Brazil) among HIV-seronegative adults with previous EPTB (n = 9; 25), previous pulmonary TB (n = 7; 25), latent M. tuberculosis (Mtb) infection (n = 11; 25), and uninfected TB contacts (n = 10; 25). We assessed the frequency of dual CD4+ interferon-γ and tumor necrosis factor-α responses after stimulation with overlapping Mtb peptides from ESAT-6 or CFP-10, or gamma-irradiated Mtb H37Rv, proliferative responses to Mtb antigens, T-regulatory cell (Treg) frequency and phenotype. In both study populations, individuals with prior EPTB had the highest frequency of intracellular cytokine-producing cells in response to Mtb antigens (p < 0.05; p <.0001). Persons with prior EPTB in Brazil had the highest levels of CD4 proliferation to Mtb antigens (p < 0.0001), and the highest expression of CD39 on Tregs (p < 0.0001). Individuals with treated EPTB maintained high frequencies of Mtb-specific memory responses and active Treg cells, suggesting that susceptibility to EPTB occurs despite the ability to develop and maintain enhanced adaptive immune responses.
Collapse
Affiliation(s)
- Beatriz Barreto-Duarte
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Timothy R. Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christina T. Fiske
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alexandre Almeida
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia H. Nochowicz
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rita M. Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Louise Barnett
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian Warren
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Amondrea Blackman
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
- Curso de Medicina, Centro Universitário Faculdades de Tecnologia e Ciências (UniFTC), Salvador, Brazil
- Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Tuberculosis Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Sudbury EL, Clifford V, Messina NL, Song R, Curtis N. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect 2020; 81:873-881. [PMID: 33007340 DOI: 10.1016/j.jinf.2020.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES New tests are needed to overcome the limitations of existing immunodiagnostic tests for tuberculosis (TB) infection, including their inability to differentiate between active TB and latent TB infection (LTBI). This review aimed to identify the most promising cytokine biomarkers for use as stage-specific markers of TB infection. METHODS A systematic review was done using electronic databases to identify studies that have investigated Mycobacterium tuberculosis (MTB)-specific cytokine responses as diagnostic tools to differentiate between LTBI and active TB. RESULTS The 56 studies included in this systematic review measured the MTB-specific responses of 100 cytokines, the most frequently studied of which were IFN-γ, IL-2, TNF-α, IP-10, IL-10 and IL-13. Ten studies assessed combinations of cytokines, most commonly IL-2 and IFN-γ. For most cytokines, findings were heterogenous between studies. The variation in results likely relates to differences in the study design and laboratory methods, as well as participant and environmental factors. CONCLUSIONS Although several cytokines show promise as stage-specific markers of TB infection, this review highlights the need for further well-designed studies, in both adult and paediatric populations, to establish which cytokine(s) will be of most use in a new generation of immunodiagnostic tests.
Collapse
Affiliation(s)
- Eva L Sudbury
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia.
| | - Vanessa Clifford
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Australia.
| | - Nicole L Messina
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia.
| | - Rinn Song
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia; Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Australia.
| |
Collapse
|
11
|
Keikha M, Soleimanpour S, Eslami M, Yousefi B, Karbalaei M. The mystery of tuberculosis pathogenesis from the perspective of T regulatory cells. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
12
|
Rv2626c and Rv2032 activate TH1 response and downregulate regulatory T cells in peripheral blood mononuclear cells of tuberculosis patients. Comp Immunol Microbiol Infect Dis 2019; 62:46-53. [DOI: 10.1016/j.cimid.2018.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
|
13
|
Satti I, McShane H. Current approaches toward identifying a correlate of immune protection from tuberculosis. Expert Rev Vaccines 2018; 18:43-59. [PMID: 30466332 DOI: 10.1080/14760584.2019.1552140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Mycobacterium tuberculosis kills more people than any other pathogen. Vaccination is the most cost-effective control measure for any infectious disease. Development of an effective vaccine against tuberculosis is hindered by the uncertain predictive value of preclinical animal models, incomplete understanding of protective immunity and lack of validated immune correlates of protection (COP). AREAS COVERED Here we review what is known about protective immunity against M.tb, the preclinical and clinical cohorts that can be utilized to identify COP, and COP that have been identified to date. EXPERT COMMENTARY The identification of COP would allow the rational design and development of vaccine candidates which can then be optimized and prioritized based on the induction of these immune responses. Once validated in field efficacy trials, such COP could potentially facilitate the development and licensure of vaccines, in combination with human efficacy data. The identification and validation of COP would represent a very significant advance in TB vaccine development. Every opportunity to collect samples and cohorts on which to cross-validate pre-existing COP and identify novel COP should be exploited. Furthermore, global cooperation and collaboration on such samples will ensure that the utility of such precious samples is fully exploited.
Collapse
Affiliation(s)
- Iman Satti
- a Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - Helen McShane
- a Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
14
|
Mubin N, Pahari S, Owais M, Zubair S. Mycobacterium tuberculosis host cell interaction: Role of latency associated protein Acr-1 in differential modulation of macrophages. PLoS One 2018; 13:e0206459. [PMID: 30395609 PMCID: PMC6218195 DOI: 10.1371/journal.pone.0206459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/13/2018] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) contrives intracellular abode as a strategy to combat antibody onslaught. Additionally, to thrive against hostile ambiance inside host macrophages, the pathogen inhibits phago-lysosomal fusion. Finally, to further defy host cell offensives, M.tb opts for dormant phase, where it turns off or slows down most of its metabolic process as an added stratagem. While M.tb restrains most of its metabolic activities during dormancy, surprisingly latency-associated alpha-crystallin protein (Acr-1) is expressed most prominently during this phase. Interestingly, several previous studies described the potential of Acr-1 to induce the robust immuno-prophylactic response in the immunized host. It is intriguing to comprehend the apparent discrepancy that the microbe M.tb overexpresses a protein that has the potential to prime host immune system against the pathogen itself. Keeping this apparent ambiguity into consideration, it is imperative to unravel intricacies involved in the exploitation of Acr-1 by M.tb during its interaction with host immune cells. The present study suggests that Acr-1 exhibits diverse role in the maturation of macrophages (MΦs) and related immunological responses. The early encounter of bone marrow derived immune cells (pre-exposure during differentiation to MΦs) with Acr-1 (AcrMΦpre), results in hampering of their function. The pre-exposure of naïve MΦs with Acr-1 induces the expression of TIM-3 and IL-10. In contrast, exposure of fully differentiated MΦs to Acr-1 results in their down-modulation and induces the phosphorylation of STAT-1 and STAT-4 in host MΦs. Furthermore, Acr-1 mediated activation of MΦs results in the induction of Th1 and Th17 phenotype by activated T lymphocyte.
Collapse
Affiliation(s)
- Nida Mubin
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (MO)
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
- * E-mail: (SZ); (MO)
| |
Collapse
|
15
|
Age-related waning of immune responses to BCG in healthy children supports the need for a booster dose of BCG in TB endemic countries. Sci Rep 2018; 8:15309. [PMID: 30333506 PMCID: PMC6193026 DOI: 10.1038/s41598-018-33499-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
In the absence of a more effective vaccine against TB and in the interest of developing one, it is essential to understand immune responses associated with BCG protection. We comprehensively characterized T cell populations in BCG-vaccinated children over time. Blood from 78 healthy, BCG-vaccinated children representing four age groups (<1 yr, ≥1 yr <2 yr, ≥2 yr <5 yr, ≥5 yr), was stimulated in vitro for 24 hours and 6 days with live BCG to induce effector and central memory responses. Antigen-specific CD4, CD8, γδ and regulatory T cell populations were phenotyped and intracellular and secreted cytokines measured by flow cytometry and multiplex ELISA respectively. Our results demonstrated that populations of naïve T cells predominated in infants, compared to older children. However, BCG-specific effector CD4 T cell responses were equivalent and antigen-specific CD4 T cell proliferative capacity was increased in infants compared to older children. Increases in innate immune responses including γδ T cell responses and secreted pro-inflammatory cytokines were noted with increasing age. In conclusion, we identified that the capacity to expand and differentiate effector T cells in response to BCG stimulation wanes with increasing age, which may indicate waning central memory immunity. Booster vaccination could be considered to maintain the antigen-specific central memory pool and possibly enhance the duration of protection.
Collapse
|
16
|
Ahmed A, Adiga V, Nayak S, Uday Kumar JAJ, Dhar C, Sahoo PN, Sundararaj BK, Souza GD, Vyakarnam A. Circulating HLA-DR+CD4+ effector memory T cells resistant to CCR5 and PD-L1 mediated suppression compromise regulatory T cell function in tuberculosis. PLoS Pathog 2018; 14:e1007289. [PMID: 30231065 PMCID: PMC6166982 DOI: 10.1371/journal.ppat.1007289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/01/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic T cell activation is a hallmark of pulmonary tuberculosis (PTB). The mechanisms underpinning this important phenomenon are however, poorly elucidated, though known to rely on control of T effector cells (Teff) by regulatory T cells (Treg). Our studies show that circulating natural Treg cells in adults with PTB preserve their suppressive potential but Teff cells from such subjects are resistant to Treg-mediated suppression. We found this to be due to expansion of an activated Teff subset identified by Human Leukocyte Antigen (HLA)-DR expression. Sensitivity to suppression was restored to control levels by depletion of this subset. Comparative transcriptome analysis of Teff cells that contain HLA-DR+ cells versus the fraction depleted of this population identified putative resistance mechanisms linked to IFNG, IL17A, IL22, PD-L1 and β-chemokines CCL3L3, CCL4 expression. Antibody blocking experiments confirmed HLA-DR+ Teff cells, but not the fraction depleted of HLA-DR+ effectors, to be resistant to Treg suppression mediated via CCR5 and PD-L1 associated pathways. In the presence of HLA-DR+ Teff cells, activation of NFκB downstream of CCR5 and PD-L1 was perturbed. In addition, HLA-DR+ Teff cells expressed significantly higher levels of Th1/Th17 cytokines that may regulate Treg function through a reciprocal counter-balancing relationship. Taken together, our study provides novel insight on how activated HLA-DR+CD4+ T cells may contribute to disease associated inflammation by compromising Treg-mediated suppression in PTB. An important marker of progression to PTB following Mycobacterium tuberculosis (Mtb) infection in humans is elevated frequencies of HLA-DR+CD4+ T cells, reflecting chronic T cell activation. However, the mechanisms by which activated HLA-DR+CD4+ T cells contribute to disease process is not known. We show that CD25- HLA-DR+CD4+ memory Teff from PTB patients are resistant to suppression mediated by Treg cells. An unbiased transcriptome analysis identified several key pathways that contribute to this resistance. Specifically, presence of HLA-DR+CD4+ T cells renders the effector population resistant to CCR5 and PD-L1 mediated suppression by Treg cells. In addition, the HLA-DR+CD4+ memory Teff cells express elevated levels of Th1/Th17 cytokines known to counter-regulate and dampen Treg suppression. These findings provide fresh insight to disease process in TB and identify HLA-DR+ Teff resistant to Treg suppression as a potential functional marker of disease.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Soumya Nayak
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | | - Chirag Dhar
- Division of Infectious Diseases, St John’s Research Institute, Bangalore, India
| | - Pravat Nalini Sahoo
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Bharath K. Sundararaj
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - George D. Souza
- Dept. of Pulmonary Medicine & Division of Infectious Diseases, St John’s Research Institute, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Department of Infectious Diseases, King’s College London, London, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, Guy's Campus, London, United Kingdom
- * E-mail: ,
| |
Collapse
|
17
|
Marakalala MJ, Martinez FO, Plüddemann A, Gordon S. Macrophage Heterogeneity in the Immunopathogenesis of Tuberculosis. Front Microbiol 2018; 9:1028. [PMID: 29875747 PMCID: PMC5974223 DOI: 10.3389/fmicb.2018.01028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Macrophages play a central role in tuberculosis, as the site of primary infection, inducers and effectors of inflammation, innate and adaptive immunity, as well as mediators of tissue destruction and repair. Early descriptions by pathologists have emphasized their morphological heterogeneity in granulomas, followed by delineation of T lymphocyte-dependent activation of anti-mycobacterial resistance. More recently, powerful genetic and molecular tools have become available to describe macrophage cellular properties and their role in host-pathogen interactions. In this review we discuss aspects of macrophage heterogeneity relevant to the pathogenesis of tuberculosis and, conversely, lessons that can be learnt from mycobacterial infection, with regard to the immunobiological functions of macrophages in homeostasis and disease.
Collapse
Affiliation(s)
- Mohlopheni J. Marakalala
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando O. Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
The Immunoregulation of Th17 in Host against Intracellular Bacterial Infection. Mediators Inflamm 2018; 2018:6587296. [PMID: 29743811 PMCID: PMC5884031 DOI: 10.1155/2018/6587296] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
T helper 17 cells (Th17) constitute a distinct subset of helper T cells with a unique transcriptional profile (STAT3, RORγ, and RORα), cytokine production pattern (IL17 family), and requirement of specific cytokines for their differentiation (TGF-β, IL6, IL21, and IL23). Recent studies involving experimental animals and humans have shown that Th17/IL17 plays a crucial role in host defense against a variety of pathogens, including bacteria and viruses. The underlying mechanisms by which Th17 performs include dendritic cell (DC) regulation, neutrophil recruitment, Th1 modulation, and T regulatory cell (Treg) balance. In recent years, researchers have generated an accumulating wealth of evidence on the role of Th17/IL17 in protective immunity to intracellular bacterial pathogens, such as Mycobacterium tuberculosis and Chlamydia trachomatis, which are one of the most important pathogens that inflict significant socioeconomic burden across the globe. In this article, we reviewed the current literature on the functions and mechanisms by which Th17/IL17 responds to intracellular bacterial infections. A better understanding of Th17/IL17 immunity to pathogens would be crucial for developing effective prophylactics and therapeutics.
Collapse
|
19
|
IFN-γ decreased the suppressive function of CD33+HLA-DRlow myeloid cells through down-regulation of PD-1/PD-L2 signaling pathway. Mol Immunol 2018; 94:107-120. [DOI: 10.1016/j.molimm.2017.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022]
|
20
|
Pathakumari B, Devasundaram S, Raja A. Altered expression of antigen-specific memory and regulatory T-cell subsets differentiate latent and active tuberculosis. Immunology 2017; 153:325-336. [PMID: 28881482 DOI: 10.1111/imm.12833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 01/20/2023] Open
Abstract
Although one-third of the world population is infected with Mycobacterium tuberculosis, only 5-10% of the infected individuals will develop active tuberculosis (TB) disease and the rest will remain infected with no symptoms, known as latent TB infection (LTBI). Identifying biomarkers that differentiate latent and active TB disease enables effective TB control, as early detection, treatment of active TB and preventive treatment of individuals with LTBI are crucial steps involved in TB control. Here, we have evaluated the frequency of antigen-specific memory and regulatory T (Treg) cells in 15 healthy household contacts (HHC) and 15 pulmonary TB patients (PTB) to identify biomarkers for differential diagnosis of LTBI and active TB. Among all the antigens tested in the present study, early secretory antigenic target-6 (ESAT-6) -specific CD4+ and CD8+ central memory (Tcm) cells showed 93% positivity in HHC and 20% positivity in PTB. The novel test antigens Rv0753c and Rv0009 both displayed 80% and 20% positivity in HHC and PTB, respectively. In contrast to Tcm cells, effector memory T (Tem) cells showed a higher response in PTB than HHC; both ESAT-6 and Rv0009 showed similar positivity of 80% in PTB and 33% in HHC. PTB patients have a higher proportion of circulating antigen-reactive Treg cells (CD4+ CD25+ FoxP3+ ) than LTBI. Rv2204c-specific Treg cells showed maximum positivity of 73% in PTB and 20% in HHC. Collectively, our data conclude that ESAT-6-specific Tcm cells and Rv2204c-specific Treg cells might be useful biomarkers to discriminate LTBI from active TB.
Collapse
Affiliation(s)
- Balaji Pathakumari
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Santhi Devasundaram
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| | - Alamelu Raja
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR), Chennai, India
| |
Collapse
|
21
|
da Silva TP, Giacoia-Gripp CBW, Schmaltz CA, Sant'Anna FM, Saad MH, Matos JAD, de Lima E Silva JCA, Rolla VC, Morgado MG. Risk factors for increased immune reconstitution in response to Mycobacterium tuberculosis antigens in tuberculosis HIV-infected, antiretroviral-naïve patients. BMC Infect Dis 2017; 17:606. [PMID: 28874142 PMCID: PMC5585929 DOI: 10.1186/s12879-017-2700-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/22/2017] [Indexed: 11/22/2022] Open
Abstract
Background Little is known regarding the restoration of the specific immune response after combined antiretroviral therapy (cART) and anti-tuberculosis (TB) therapy introduction among TB-HIV patients. In this study, we examined the immune response of TB-HIV patients to Mycobacterium tuberculosis (Mtb) antigens to evaluate the response dynamics to different antigens over time. Moreover, we also evaluated the influence of two different doses of efavirenz and the factors associated with immune reconstitution. Methods This is a longitudinal study nested in a clinical trial, where cART was initiated during the baseline visit (D0), which occurred 30 ± 10 days after the introduction of anti-TB therapy. Follow-up visits were performed at 30, 60, 90 and 180 days after cART initiation. The production of IFN-γ upon in vitro stimulation with Mtb antigens purified protein derivative (PPD), ESAT-6 and 38 kDa/CFP-10 using ELISpot was examined at baseline and follow-up visits. Results Sixty-one patients, all ART-naïve, were selected and included in the immune reconstitution analysis; seven (11.5%) developed Immune Reconstitution Inflammatory Syndrome (IRIS). The Mtb specific immune response was higher for the PPD antigen followed by 38 kDa/CFP-10 and increased in the first 60 days after cART initiation. In multivariate analysis, the variables independently associated with increased IFN-γ production in response to PPD antigen were CD4+ T cell counts <200 cells/mm3 at baseline, age, site of tuberculosis, 800 mg efavirenz dose and follow-up CD4+ T cell counts. Moreover, the factors associated with the production of IFN-γ in response to 38 kDa/CFP-10 were detectable HIV viral load (VL) and CD4+ T cell counts at follow-up visits of ≥200 cells/mm3. Conclusions These findings highlight the differences in immune response according to the specificity of the Mtb antigen, which contributes to a better understanding of TB-HIV immunopathogenesis. IFN-γ production elicited by PPD and 38 kDa/CFP-10 antigens have a greater magnitude compared to ESAT-6 and are associated with different factors. The low response to ESAT-6, even during immune restoration, suggests that this antigen is not adequate to assess the immune response of immunosuppressed TB-HIV patients.
Collapse
Affiliation(s)
- Tatiana Pereira da Silva
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| | | | - Carolina A Schmaltz
- Clinical Research Laboratory on Mycobacteria - National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Flavia Marinho Sant'Anna
- Clinical Research Laboratory on Mycobacteria - National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Maria Helena Saad
- Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Juliana Arruda de Matos
- Clinical Research Laboratory on Health Surveillance and Immunization - National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria - National Institute of Infectious Diseases Evandro Chagas (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariza Gonçalves Morgado
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Angerami MT, Suarez GV, Vecchione MB, Laufer N, Ameri D, Ben G, Perez H, Sued O, Salomón H, Quiroga MF. Expansion of CD25-Negative Forkhead Box P3-Positive T Cells during HIV and Mycobacterium tuberculosis Infection. Front Immunol 2017; 8:528. [PMID: 28536578 PMCID: PMC5422469 DOI: 10.3389/fimmu.2017.00528] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) and HIV alter the immune system, and coinfected (HIV-TB) individuals usually present deregulations of T-lymphocytic immune response. We previously observed an increased frequency of “unconventional” CD4+CD25−FoxP3+ Treg (uTreg) population during HIV-TB disease. Therefore, we aimed to explore the phenotype and function of uTreg and conventional CD4+CD25+FoxP3+ Treg subsets (cTreg) in this context. We evaluated the expression of CD39, programmed cell death protein 1 (PD1), glucocorticoid-induced tumor necrosis factor receptor (GITR), and the effector/memory distribution by flow cytometry in cTreg and uTreg. Also, IL-10, TGF-β, IFN-γ production, and the suppressor capacity of uTregs were analyzed in cocultures with effector lymphocytes and compared with the effect of regulatory T cells (Tregs). We found diminished expression of CD39 and higher levels of PD1 on uTreg compared to cTreg in both HIV-TB and healthy donors (HD). In addition, uTreg and cTreg showed differences in maturation status in both HIV-TB and HD groups, due to the expansion of effector memory uTregs. Interestingly, both HIV-TB and HD showed a pronounced production of IFN-γ in uTreg population, though no significant differences were observed for IL-10 and TGF-β production between uTreg and cTreg. Moreover, IFN-γ+ cells were restricted to the CD39− uTreg population. Finally, when the suppressor capacity was evaluated, both uTreg and cTreg inhibited polyclonal T cell-proliferation and IFN-γ production in a similar extent. These findings suggest that uTregs, which are expanded during HIV-TB coinfection, exert regulatory functions in a similar way to cTregs despite an altered surface expression of Treg characteristic markers and differences in cytokine production.
Collapse
Affiliation(s)
- Matías T Angerami
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guadalupe V Suarez
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María B Vecchione
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Laufer
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Ameri
- Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Graciela Ben
- Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Hector Perez
- Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Omar Sued
- Área de Investigaciones Médicas, Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomón
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Quiroga
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Jayashankar L, Hafner R. Adjunct Strategies for Tuberculosis Vaccines: Modulating Key Immune Cell Regulatory Mechanisms to Potentiate Vaccination. Front Immunol 2016; 7:577. [PMID: 28018344 PMCID: PMC5159487 DOI: 10.3389/fimmu.2016.00577] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette–Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell “immunometabolism” signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3β, wnt/β-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms, studies to improve TB vaccine responses using interventions based on “immuno-oncology” are needed to guide possible repurposing. Understanding the regulation of immune cell functions appropriated by Mtb to promote the imbalance between protective and pathogenic immune responses may guide the development of innovative drug-based adjunct approaches to substantially enhance the clinical efficacy of TB vaccines.
Collapse
Affiliation(s)
- Lakshmi Jayashankar
- Columbus Technologies, Inc., Contractor to the National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
24
|
Tonby K, Wergeland I, Lieske NV, Kvale D, Tasken K, Dyrhol-Riise AM. The COX- inhibitor indomethacin reduces Th1 effector and T regulatory cells in vitro in Mycobacterium tuberculosis infection. BMC Infect Dis 2016; 16:599. [PMID: 27776487 PMCID: PMC5078976 DOI: 10.1186/s12879-016-1938-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/18/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) causes a major burden on global health with long and cumbersome TB treatment regimens. Host-directed immune modulating therapies have been suggested as adjunctive treatment to TB antibiotics. Upregulated cyclooxygenase-2 (COX-2)-prostaglandin E2 (PGE2) signaling pathway may cause a dysfunctional immune response that favors survival and replication of Mycobacterium tuberculosis (Mtb). METHODS Blood samples were obtained from patients with latent TB (n = 9) and active TB (n = 33) before initiation of anti-TB chemotherapy. COX-2 expression in monocytes and ESAT-6 and Ag85 specific T cell cytokine responses (TNF-α, IFN-γ, IL-2), proliferation (carboxyfluorescein succinimidyl ester staining) and regulation (FOXP3+ T regulatory cells) were analysed by flow cytometry and the in vitro effects of the COX-1/2 inhibitor indomethacin were measured. RESULTS We demonstrate that indomethacin significantly down-regulates the fraction of Mtb specific FOXP3+ T regulatory cells (ESAT-6; p = 0.004 and Ag85; p < 0.001) with a concomitant reduction of Mtb specific cytokine responses and T cell proliferation in active TB. Although active TB tend to have higher levels, there are no significant differences in COX-2 expression between unstimulated monocytes from patients with active TB compared to latent infection. Monocytes in both TB groups respond with a significant upregulation of COX-2 after in vitro stimulation. CONCLUSIONS Taken together, our in vitro data indicate a modulation of the Th1 effector and T regulatory cells in Mtb infection in response to the COX-1/2 inhibitor indomethacin. The potential role as adjunctive host-directed therapy in TB disease should be further evaluated in both animal studies and in human clinical trials.
Collapse
Affiliation(s)
- Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.
| | - Ida Wergeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nora V Lieske
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Dag Kvale
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Kjetil Tasken
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway.,Biotechnology Centre, University of Oslo, Oslo, Norway
| | - Anne M Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway.,K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Corral-Fernández N, Cortez-Espinosa N, Salgado-Bustamante M, Romano-Moreno S, Medellín-Garibay S, Solis-Rodríguez M, Hernández-Castro B, Macías-Mendoza J, González-Amaro R, Portales-Pérez D. Induction of transcription factors, miRNAs and cytokines involved in T lymphocyte differentiation in BCG-vaccinated subjects. Mol Immunol 2016; 77:44-51. [DOI: 10.1016/j.molimm.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 06/25/2016] [Accepted: 07/11/2016] [Indexed: 11/26/2022]
|
26
|
Sharma RK, Gupta A, Kamal S, Bansal R, Singh N, Sharma K, Virk S, Sachdeva N. Role of Regulatory T Cells in Tubercular Uveitis. Ocul Immunol Inflamm 2016; 26:27-36. [DOI: 10.1080/09273948.2016.1196711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ravi K. Sharma
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amod Gupta
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Shivali Kamal
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Reema Bansal
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nirbhai Singh
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kusum Sharma
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sonia Virk
- Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
27
|
Zewdie M, Howe R, Hoff ST, Doherty TM, Getachew N, Tarekegne A, Tessema B, Yamuah L, Aseffa A, Abebe M. Ex-vivo characterization of regulatory T cells in pulmonary tuberculosis patients, latently infected persons, and healthy endemic controls. Tuberculosis (Edinb) 2016; 100:61-68. [PMID: 27553411 DOI: 10.1016/j.tube.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 06/02/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Regulatory T cells (Treg) are an essential arm of adaptive immunity not only in tolerance and autoimmunity but also in infectious diseases. In Tuberculosis (TB), it has been suggested that the frequency of Tregs is higher in the blood of TB patients when compared to healthy controls with subsequent decline after treatment. However, with the discovery that FOXP3, the hallmark marker of Tregs, is not exclusive to Tregs and the lack of specific markers for Tregs, it has been a challenge to fully understand the role of Tregs in TB. METHOD We isolated PBMC from smear positive TB patients (TB, N = 13) before and after treatment, latent TB infected participants (LTBI, N = 8), and healthy endemic controls (EC, N = 9) and evaluated the frequency of different populations of Tregs and expression of FOXP3 by flowcytometry using six markers. RESULTS The findings in this study showed that the association of Treg frequency with TB disease depends on the phenotypic markers used. While the frequency of CD4(+)CD25(+/hi) T cells was higher in TB patients compared to LTBI individuals, there was no difference in the frequency of CD4(+)CD25(+)FOXP3(+)CD127(lo) Treg among TB, LTBI, or EC. However, delineation of Tregs into active and naïve subsets revealed a significant increase in FOXP3 expression in active primed Tregs (CD4(+)CD25(+)FOXP3(+)CD127(lo)CD45RO(+)Ki-67(+)) of TB patients compared to LTBI and EC; and a significantly higher frequency of resting primed (CD45RO(+)Ki-67(-)) Treg in QuantiFERON negative EC compared to TB patients. After treatment completion, there was a significant decline in the frequency of active primed Treg, median (IQR) from 12.4% (9.5-21.9) of Tregs to 9.3% (7.0-12.2); P = 0.003 Wilcoxon signed rank test. We conclude that Treg subsets may be differentially regulated and expressed in TB disease, cure, and infection.
Collapse
Affiliation(s)
- Martha Zewdie
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Jimma Road, Addis Ababa, Ethiopia.
| | - Rawleigh Howe
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Jimma Road, Addis Ababa, Ethiopia
| | - Søren T Hoff
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark
| | - T Mark Doherty
- Department of Infectious Disease Immunology, Statens Serum Institut, Artillerivej 5, Copenhagen, Denmark
| | - Nahom Getachew
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Jimma Road, Addis Ababa, Ethiopia
| | - Azeb Tarekegne
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Jimma Road, Addis Ababa, Ethiopia
| | - Bamlak Tessema
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Jimma Road, Addis Ababa, Ethiopia
| | - Lawrence Yamuah
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Jimma Road, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Jimma Road, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute (AHRI), P.O. Box 1005, Jimma Road, Addis Ababa, Ethiopia
| |
Collapse
|
28
|
Savolainen LE, Kantele A, Knuuttila A, Pusa L, Karttunen R, Valleala H, Tuuminen T. Combined Expression of IFN-γ, IL-17, and IL-4 mRNA by Recall PBMCs Moderately Discriminates Active Tuberculosis from Latent Mycobacterium tuberculosis Infection in Patients with Miscellaneous Inflammatory Underlying Conditions. Front Immunol 2016; 7:239. [PMID: 27379100 PMCID: PMC4905973 DOI: 10.3389/fimmu.2016.00239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/03/2016] [Indexed: 11/23/2022] Open
Abstract
New biomarkers are needed for discriminating active tuberculosis (TB) from latent TB infection (LTBI), especially in vulnerable groups representing the major diagnostic challenge. This pilot study was carried out to explore the diagnostic potential of selected genes, IFN-γ, IL-17, IL-4, and FoxP3, associated with TB immunity and immunopathology. IFN-γ, IL-17, IL-4, and FoxP3 mRNA expression levels were measured by quantitative reverse transcription PCR (RT-qPCR) from antigen-stimulated peripheral blood mononuclear cells of patients with active TB (n = 25); patients with miscellaneous inflammatory disorders and concomitant LTBI (n = 20), rheumatoid arthritis (RA) being the most predominant in the group (n = 11); and in healthy Bacillus Calmette–Guérin (BCG) vaccinees (n = 8). While the levels of FoxP3 mRNA did not differ between the tested groups, the cumulative expression levels of purified protein derivative-stimulated IFN-γ, IL-17, and IL-4 mRNAs were found to distinguish active TB from the whole group of LTBI with 48% sensitivity and 85% specificity. When restricting the LTBI group to RA cases only, the sensitivity was 56% and specificity 100%. When interpreting the result as positive in at least one of the mRNAs IFN-γ, IL-17, or IL-4, sensitivity of 64% and specificities of 75% (heterogeneous group of LTBI) or 100% (LTBI with RA) were achieved. Moderate discrimination of active TB from LTBI with miscellaneous inflammatory underlying conditions by using combined quantitative expression of IFN-γ, IL-17, and IL-4 mRNA seems not to be of high diagnostic potential.
Collapse
Affiliation(s)
- Laura E Savolainen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| | - Anu Kantele
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Department of Medicine, Division of Infectious Diseases, Helsinki University Central Hospital, Helsinki, Finland; Department of Medicine, Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland
| | - Aija Knuuttila
- Heart and Lung Center, Helsinki University Central Hospital , Helsinki , Finland
| | - Liana Pusa
- Länsi-Uusimaa Hospital , Tammisaari , Finland
| | - Riitta Karttunen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Laboratory Division (HUSLAB), Helsinki University Central Hospital, Helsinki, Finland
| | - Heikki Valleala
- Department of Medicine, Division of Rheumatology, Helsinki University Central Hospital , Helsinki , Finland
| | - Tamara Tuuminen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland; Eastern Finland Laboratory Centre Joint Authority Enterprise, Mikkeli, Finland
| |
Collapse
|
29
|
Fan R, Xiang Y, Yang L, Liu Y, Chen P, Wang L, Feng W, Yin K, Fu M, Xu Y, Wu J. Impaired NK cells' activity and increased numbers of CD4 + CD25+ regulatory T cells in multidrug-resistant Mycobacterium tuberculosis patients. Tuberculosis (Edinb) 2016; 98:13-20. [PMID: 27156613 DOI: 10.1016/j.tube.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/01/2016] [Accepted: 02/08/2016] [Indexed: 01/07/2023]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) often causes persistent infection and chemotherapy failure, which brings heavy burden of society and family. Many immune cell subsets and regulatory mechanisms may operate throughout the various stages of infection. The presence of regulatory T cells (Tregs) is thought to be an important mechanism that TB successfully evades the immune system. Tregs play a central role in the prevention of autoimmunity and in the control of immune responses. The role of Tregs in MDR-TB infection and persistence is inadequately documented. The current study was designed to determine whether CD4 + CD25+ regulatory T cells may modulate innate immunity (such as NK cells) against human tuberculosis. Our results indicated that the numbers of CD4 + CD25+ Treg cells increased in MDR-TB patients' blood, and the cytokine production of IL-10 increased from MDR-patients compared with healthy subjects, along with the lower activity and low CD69 expression of NK cells in patients. These results suggested that immunity to MDR-TB patients induced circulating CD4 + CD25+ T regulatory cells expansion, which may be related to the persistence of Mycobacterium tuberculosis (M. tb) infection, and to the balance between effectors immune responses and suppression immune responses.
Collapse
Affiliation(s)
| | | | - Li Yang
- Changsha Central Hospital, China.
| | | | | | - Lei Wang
- Changsha Central Hospital, China
| | | | - Ke Yin
- Changsha Central Hospital, China
| | | | - Yixin Xu
- Changsha Central Hospital, China
| | | |
Collapse
|
30
|
Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev 2015; 264:74-87. [PMID: 25703553 DOI: 10.1111/imr.12274] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The adaptive immune response mediated by T cells is critical for control of Mycobacterium tuberculosis (M. tuberculosis) infection in humans. However, the M. tuberculosis antigens and host T-cell responses that are required for an effective adaptive immune response to M. tuberculosis infection are yet to be defined. Here, we review recent findings on CD4(+) and CD8(+) T-cell responses to M. tuberculosis infection and examine the roles of distinct M. tuberculosis-specific T-cell subsets in control of de novo and latent M. tuberculosis infection, and in the evolution of T-cell immunity to M. tuberculosis in response to tuberculosis treatment. In addition, we discuss recent studies that elucidate aspects of M. tuberculosis-specific adaptive immunity during human immunodeficiency virus co-infection and summarize recent findings from vaccine trials that provide insight into effective adaptive immune responses to M. tuberculosis infection.
Collapse
Affiliation(s)
- Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
31
|
Lieske NV, Tonby K, Kvale D, Dyrhol-Riise AM, Tasken K. Targeting Tuberculosis and HIV Infection-Specific Regulatory T Cells with MEK/ERK Signaling Pathway Inhibitors. PLoS One 2015; 10:e0141903. [PMID: 26544592 PMCID: PMC4636186 DOI: 10.1371/journal.pone.0141903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/14/2015] [Indexed: 02/02/2023] Open
Abstract
Human regulatory T cells (Tregs) are essential in maintaining immunological tolerance and suppress effector T cells. Tregs are commonly up-regulated in chronic infectious diseases such as tuberculosis (TB) and human immunodeficiency virus (HIV) infection and thereby hamper disease-specific immune responses and eradication of pathogens. The MEK/ERK signaling pathway is involved in regulation of the FoxP3 transcription factor, which directs a lineage-specific transcriptional program to define Tregs and control their suppressive function. Here, we aimed to target activation of disease-specific Tregs by inhibition of the MEK/ERK signaling pathway based on the hypothesis that this would improve anti-HIV and anti-TB immunity. Stimulation of T cells from untreated TB (n = 12) and HIV (n = 8) patients with disease-specific antigens in vitro in the presence of the MEK inhibitor (MEKI) trametinib (GSK1120212) resulted in significant down-regulation of both FoxP3 levels (MFI) and fractions of resting (CD45RA+FoxP3+) and activated (CD45RA−FoxP3++) Tregs. MEKI also reduced the levels of specific T effector cells expressing the pro-inflammatory cytokines (IFN-γ, TNF-α and IL-2) in both HIV and TB patients. In conclusion, MEKIs modulate disease antigen-specific Treg activation and may have potential application in new treatment strategies in chronic infectious diseases where reduction of Treg activity would be favorable. Whether MEKIs can be used in current HIV or TB therapy regimens needs to be further investigated.
Collapse
Affiliation(s)
- Nora V. Lieske
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Dag Kvale
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Anne M. Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
| | - Kjetil Tasken
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
- Biotechnology Centre, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
32
|
Complexity and Controversies over the Cytokine Profiles of T Helper Cell Subpopulations in Tuberculosis. J Immunol Res 2015; 2015:639107. [PMID: 26495323 PMCID: PMC4606092 DOI: 10.1155/2015/639107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/03/2015] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis (TB) is a contagious infectious disease caused by the TB-causing bacillus Mycobacterium tuberculosis and is considered a public health problem with enormous social impact. Disease progression is determined mainly by the balance between the microorganism and the host defense systems. Although the immune system controls the infection, this control does not necessarily lead to sterilization. Over recent decades, the patterns of CD4+ T cell responses have been studied with a goal of complete understanding of the immunological mechanisms involved in the maintenance of latent or active tuberculosis infection and of the clinical cure after treatment. Conflicting results have been suggested over the years, particularly in studies comparing experimental models and human disease. In recent years, in addition to Th1, Th2, and Th17 profiles, new standards of cellular immune responses, such as Th9, Th22, and IFN-γ-IL-10 double-producing Th cells, discussed here, have also been described. Additionally, many new roles and cellular sources have been described for IL-10, demonstrating a critical role for this cytokine as regulatory, rather than merely pathogenic cytokine, involved in the establishment of chronic latent infection, in the clinical cure after treatment and in keeping antibacillary effector mechanisms active to prevent immune-mediated damage.
Collapse
|
33
|
Boer MC, Joosten SA, Ottenhoff THM. Regulatory T-Cells at the Interface between Human Host and Pathogens in Infectious Diseases and Vaccination. Front Immunol 2015; 6:217. [PMID: 26029205 PMCID: PMC4426762 DOI: 10.3389/fimmu.2015.00217] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022] Open
Abstract
Regulatory T-cells (Tregs) act at the interface of host and pathogen interactions in human infectious diseases. Tregs are induced by a wide range of pathogens, but distinct effects of Tregs have been demonstrated for different pathogens and in different stages of infection. Moreover, Tregs that are induced by a specific pathogen may non-specifically suppress immunity against other microbes and parasites. Thus, Treg effects need to be assessed not only in homologous but also in heterologous infections and vaccinations. Though Tregs protect the human host against excessive inflammation, they probably also increase the risk of pathogen persistence and chronic disease, and the possibility of disease reactivation later in life. Mycobacterium leprae and Mycobacterium tuberculosis, causing leprosy and tuberculosis, respectively, are among the most ancient microbes known to mankind, and are master manipulators of the immune system toward tolerance and pathogen persistence. The majority of mycobacterial infections occur in settings co-endemic for viral, parasitic, and (other) bacterial coinfections. In this paper, we discuss recent insights in the activation and activity of Tregs in human infectious diseases, with emphasis on early, late, and non-specific effects in disease, coinfections, and vaccination. We highlight mycobacterial infections as important models of modulation of host responses and vaccine-induced immunity by Tregs.
Collapse
Affiliation(s)
- Mardi C Boer
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
34
|
Li XX, Chen JX, Wang LX, Sun J, Chen SH, Chen JH, Zhang XY, Zhou XN. Profiling B and T cell immune responses to co-infection of Mycobacterium tuberculosis and hookworm in humans. Infect Dis Poverty 2015; 4:20. [PMID: 25954506 PMCID: PMC4423492 DOI: 10.1186/s40249-015-0046-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/20/2015] [Indexed: 02/01/2023] Open
Abstract
Background Humoral and cellular immune responses play protective roles against Mycobacterium tuberculosis (MTB) infection. However, hookworm infection decreases the immune response to hookworm and bystander antigens. Currently, immune responses to co-infection of MTB and hookworm are still unknown, although co-infection has been one of the public health problems in co-endemic areas of pulmonary tuberculosis (PTB) and hookworm disease. Therefore, it is essential to evaluate B and T cell immune responses to the co-infection. Methods Seventeen PTB cases co-infected with hookworm, 26 PTB cases, 15 patients with hookworm infection, and 24 healthy controls without PTB or hookworm infection were enrolled in the study. Expressions of CD3, CD4, CD8, CD10, CD19, CD20, CD21, CD25, CD27, CD38, FoxP3, and PD-1 were assessed on B and T cell subsets using multicolor flow cytometry. Results For the B cell (CD19+) subsets, naïve B cells (CD10−CD27−CD21+CD20+), plasma cells (CD10−CD27+CD21−CD20−), and tissue-like memory B cells (CD10−CD27−CD21−CD20+) had higher proportions, whilst resting memory B cells (CD10−CD27+CD21+CD20+) had lower proportions in the group co-infected with MTB and hookworm as compared to other groups. Frequencies of activated memory B cells (CD10−CD27+CD21−CD20+) did not differ among the four groups. For the T cell (CD3+) subsets, frequencies of regulatory T cells (CD4+CD25+Foxp3+) and exhausted CD4+ and CD8+ T cells (CD4+PD-1+ and CD8+PD-1+) were higher, and frequencies of activated CD4+ and CD8+ T cells (CD4+CD38+ and CD8+CD38+) were lower in the co-infected group as compared to the other groups. Conclusion The change patterns of the cell profile of circulating lymphocytes were indentified in human co-infection of MTB and hookworm, which might indicate that the humoral and cellular immune responses are more suppressed. Electronic supplementary material The online version of this article (doi:10.1186/s40249-015-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Xu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC) ; National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 PR China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Li-Xia Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206 PR China
| | - Jun Sun
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508 PR China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| | - Xiao-Yan Zhang
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508 PR China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, 207 Rui Jin Er Road, Huangpu District, Shanghai, 200025 PR China (PRC)
| |
Collapse
|
35
|
Feruglio SL, Tonby K, Kvale D, Dyrhol-Riise AM. Early dynamics of T helper cell cytokines and T regulatory cells in response to treatment of active Mycobacterium tuberculosis infection. Clin Exp Immunol 2015; 179:454-65. [PMID: 25313008 PMCID: PMC4337678 DOI: 10.1111/cei.12468] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 02/07/2023] Open
Abstract
Biomarkers that can identify tuberculosis (TB) disease and serve as markers for efficient therapy are requested. We have studied T cell cytokine production [interferon (IFN)-γ, interleukin (IL)-2, tumour necrosis factor (TNF)-α] and degranulation (CD107a) as well as subsets of CD4(+) T regulatory cells (Tregs ) after in-vitro Mycobacterium tuberculosis (Mtb) antigen stimulation [early secretory antigenic target (ESAT)-6, culture filtrate protein (CFP)-10, antigen 85 (Ag85)] in 32 patients with active tuberculosis (TB) disease throughout 24 weeks of effective TB treatment. A significant decline in the fraction of Mtb-specific total IFN-γ and single IFN-γ-producing T cells was already observed after 2 weeks of treatment, whereas the pool of single IL-2(+) cells increased over time for both CD4(+) and CD8(+) T cells. The Treg subsets CD25(high) CD127(low) , CD25(high) CD147(++) and CD25(high) CD127(low) CD161(+) expanded significantly after Mtb antigen stimulation in vitro at all time-points, whereas the CD25(high) CD127(low) CD39(+) Tregs remained unchanged. The fraction of CD25(high) CD127(low) Tregs increased after 8 weeks of treatment. Thus, we revealed an opposing shift of Tregs and intracellular cytokine production during treatment. This may indicate that functional signatures of the CD4(+) and CD8(+) T cells can serve as immunological correlates of early curative host responses. Whether such signatures can be used as biomarkers in monitoring and follow-up of TB treatment needs to be explored further.
Collapse
Affiliation(s)
- S L Feruglio
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | |
Collapse
|
36
|
Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in Mycobacterium-specific Th1, Th2, and Th17 cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:591237. [PMID: 26000298 PMCID: PMC4427018 DOI: 10.1155/2015/591237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) remains a major global health problem and is the second biggest cause of death by infectious disease worldwide. Here, we investigate in vitro the Th1, Th2, Th17, and Treg cytokines and transcriptional factors produced after Mycobacterium-specific antigen stimulation in patients with active pulmonary tuberculosis, clinically cured pulmonary tuberculosis, and healthy donors with a positive tuberculin skin test (TST+). Together, our data indicate that clinical cure after treatment increases the percentages of Mycobacterium-specific Th1, Th2, and Th17 cells compared with those found in active-TB and TST+ healthy donors. These results show that the host-parasite equilibrium in latent TB breaks in favor of the microorganism and that the subsequent clinical recovery posttreatment does not return the percentage levels of such cells to those observed in latent tuberculosis. Additionally, our results indicate that rather than showing an increase in the percentage of Mycobacterium-specific Tregs, active-TB patients display lower Th1 : Treg and Th17 : Treg ratios. These data, together with lower Th1 : Th2 and Th17 : Th2 ratios, may indicate a mechanism by which the breakdown of the host-parasite equilibrium leads to active-TB and changes in the repertoire of Mycobacterium-specific Th cells that are associated with clinical cure after treatment of pulmonary tuberculosis.
Collapse
|
37
|
Increased frequency of CD4+ CD25+ FoxP3+ T regulatory cells in pulmonary tuberculosis patients undergoing specific treatment and its relationship with their immune-endocrine profile. J Immunol Res 2015; 2015:985302. [PMID: 25969837 PMCID: PMC4417597 DOI: 10.1155/2015/985302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis (TB) is a major health problem requiring an appropriate cell immune response (IR) to be controlled. Since regulatory T cells (Tregs) are relevant in IR regulation, we analyzed Tregs variations throughout the course of TB treatment and its relationship with changes in immune-endocrine mediators dealing with disease immunopathology. The cohort was composed of 41 adult patients, 20 of them completing treatment and follow-up. Patients were bled at diagnosis (T0) and at 2 (T2), 4 (T4), 6 (T6), and 9 months following treatment initiation. Twenty-four age- and sex-matched healthy controls (HCo) were also included. Tregs (flow cytometry) from TB patients were increased at T0 (versus HCo P < 0.05), showing even higher values at T2 (versus T0 P < 0.01) and T4 (versus T0 P < 0.001). While IL-6, IFN-γ, TGF-β (ELISA), and Cortisol (electrochemiluminescence, EQ) were augmented, DHEA-S (EQ) levels were diminished at T0 with respect to HCo, with cytokines and Cortisol returning to normal values at T9. Tregs correlated positively with IFN-γ (R = 0.868, P < 0.05) at T2 and negatively at T4 (R = −0.795, P < 0.05). Lowered levels of proinflammatory cytokines together with an increased frequency of Tregs of patients undergoing specific treatment might reflect a downmodulatory effect of these cells on the accompanying inflammation.
Collapse
|
38
|
Ghazalsofala R, Rezaee SA, Rafatpanah H, Vakili R, Ghazvini K, Heidarnejad F, Sobhani S, Valizadeh N, Azami M, Rahimzadegan M, Asnaashari A. Evaluation of CD4+ CD25+ FoxP3+ Regulatory T cells and FoxP3 and CTLA-4 gene Expression in Patients wwith Newly Diagnosed Tuberculosis in Northeast of Iran. Jundishapur J Microbiol 2015; 8:e17726. [PMID: 26034548 PMCID: PMC4449857 DOI: 10.5812/jjm.8(4)2015.17726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/08/2014] [Accepted: 08/02/2014] [Indexed: 01/06/2023] Open
Abstract
Background: Tuberculosis (TB) is the world's second most common infectious disease after Human Immunodeficiency Virus Infection/Acquired Immunodeficiency Syndrome (HIV/AID) and the most frequent cause of mortality especially in developing countries. T regulatory (Treg) cells, which have suppressive activity and express forkhead winged-helix family transcriptional repressor p3 (FoxP3), suppress the immune responses against pathogens such as Mycobacterium tuberculosis. There are controversial results regarding the role of FoxP3 expressing cells in the blood of patients with TB. Objectives: The aim of this study was to evaluate the frequency CD4+ CD25+ Treg cells, and FoxP3 and Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) gene expressions in peripheral blood of patients with tuberculosis and patients with positive tuberculin skin test before and after Peripheral Blood Mononuclear Cells (PBMCs) activation with Purified Protein Derivative (PPD). Patients and Methods: In this cross-sectional study, Peripheral Mononuclear Cells (PBMCs) were isolated from peripheral blood of 29 patients with newly diagnosed pulmonary TB and 19 patients with positive tuberculin skin test. The PBMCs were activated with PPD for 72 hours. Activated cells were harvested, RNA was extracted and cDNA was synthesized. A real-time Taqman method was designed and optimized for evaluation of Foxp3 gene expression and SYBR Green method was used and optimized for evaluation of CTLA-4 gene expression. A flow cytometry analysis was used to evaluate the frequency of CD4+ CD25+ Foxp3+ regulatory T cells in both groups. Results: There was no significant difference in the frequency of CD4+ CD25+ FoxP3+ regulatory T cells between the two groups. Expression of FoxP3 and CTLA-4 in peripheral blood of patients with newly diagnosed TB was significantly lower than the control group after and before activation with PPD. Conclusions: The expression of FoxP3 and CTLA-4 in PBMCs of patients with newly diagnosed TB was low, which might suggest that Treg cells may be sequestered in the lungs.
Collapse
Affiliation(s)
- Roghayeh Ghazalsofala
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Houshang Rafatpanah
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Rosita Vakili
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Fatemeh Heidarnejad
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Somaye Sobhani
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Narges Valizadeh
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Marayam Azami
- Chronic Obstructive Pulmonary Disease Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Marzieh Rahimzadegan
- Infection Diseases Department, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Amir Asnaashari
- Chronic Obstructive Pulmonary Disease Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Corresponding author: Amir Asnaashari, Chronic Obstructive Pulmonary Disease Research Center, Mashhad University of Medical Sciences, Mashhad, IR Iran. Tel/Fax: + 98-38002376, E-mail:
| |
Collapse
|
39
|
Regulatory T-cell subsets in response to specific Mycobacterium tuberculosis antigens in vitro distinguish among individuals with different QTF and TST reactivity. Clin Immunol 2015; 157:145-55. [PMID: 25728490 DOI: 10.1016/j.clim.2015.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/20/2015] [Accepted: 02/18/2015] [Indexed: 11/21/2022]
Abstract
Regulatory T cells (Tregs), a subset of CD4+ T cells related with immune regulation, have been associated with active and latent tuberculosis infection (LTBI). Treg frequencies were evaluated by multicolor flow cytometry (FC) in peripheral blood mononuclear cells (PBMCs) stimulated with mycobacterial antigens ESAT-6, CFP-10, and TB7.7 to assess their capacity to distinguish subjects with different reactivity to the QuantiFERON-TB® Gold In-Tube (QFT-IT) test and the tuberculin skin test (TST). Increased frequencies of CD4+CD25highCD39+ cells were found for the [TST+, QTF+] compared with the [TST+, QTF-] group. Also, higher frequencies were observed for the [TST+, QTF+] compared with the [TST+, QTF-] and [TST-, QTF-] groups in CD4+CD25highFoxp3+ and CD4+CD25highCD39+Foxp3+ populations. Receiver operating characteristics (ROC curve) analysis confirmed these discriminating results. QFT-IT and TST quantitative values correlated with several Treg population frequencies.
Collapse
|
40
|
Parkash O. T Regulatory Cells and BCG as a Vaccine against Tuberculosis: An Overview. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/wjv.2015.52012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Abate E, Elias D, Getachew A, Alemu S, Diro E, Britton S, Aseffa A, Stendahl O, Schön T. Effects of albendazole on the clinical outcome and immunological responses in helminth co-infected tuberculosis patients: a double blind randomised clinical trial. Int J Parasitol 2014; 45:133-40. [PMID: 25486494 DOI: 10.1016/j.ijpara.2014.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 11/25/2022]
Abstract
Despite several review papers and experimental studies concerning the impact of chronic helminth infection on tuberculosis in recent years, there is a scarcity of data from clinical field studies in highly endemic areas for these diseases. We believe this is the first randomised clinical trial investigating the impact of albendazole treatment on the clinical and immunological outcomes of helminth co-infected tuberculosis patients. A randomised, double-blind, placebo-controlled trial of albendazole (400mg per day for 3 days) in helminth-positive tuberculosis patients was conducted in Gondar, Ethiopia. The primary outcome was clinical improvement (ΔTB score) after 2 months. Among secondary outcomes were changes in the levels of eosinophils, CD4+ T cells, regulatory T cells, IFN-γ, IL-5 and IL-10 after 3 months. A total of 140 helminth co-infected tuberculosis patients were included with an HIV co-infection rate of 22.8%. There was no significant effect on the primary outcome (ΔTB score: 5.6±2.9 for albendazole versus 5.9±2.5 for placebo, P=0.59). The albendazole-treated group showed a decline in eosinophil cells (P=0.001) and IL-10 (P=0.017) after 3 months. In an exploratory analysis after 12 weeks, the albendazole treated group showed a trend towards weight gain compared with the placebo group (11.2±8.5 kg versus 8.2±8.7 kg, P=0.08)). The reductions in eosinophil counts and IL-10 show that asymptomatic helminth infection significantly affects host immunity during tuberculosis and can be effectively reversed by albendazole treatment. The clinical effects of helminth infection on chronic infectious diseases such as tuberculosis merit further characterisation.
Collapse
Affiliation(s)
- E Abate
- Department of Immunology and Molecular Biology, University of Gondar, Gondar, Ethiopia; Department of Medical Microbiology, Linköping University, Sweden.
| | - D Elias
- University of Southern Denmark, Institute of Molecular Medicine, Department of Cancer and Inflammation, Odense, Denmark
| | - A Getachew
- Department of Radiology, University of Gondar, Gondar, Ethiopia
| | - S Alemu
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia
| | - E Diro
- Department of Internal Medicine, University of Gondar, Gondar, Ethiopia
| | - S Britton
- Department of Infectious Diseases, Karolinska Hospital, Stockholm, Sweden
| | - A Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - O Stendahl
- Department of Medical Microbiology, Linköping University, Sweden
| | - T Schön
- Department of Medical Microbiology, Linköping University, Sweden; Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden
| |
Collapse
|
42
|
Urdahl KB. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin Immunol 2014; 26:578-87. [PMID: 25453230 PMCID: PMC4314386 DOI: 10.1016/j.smim.2014.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Despite the overwhelming success of immunization in reducing, and even eliminating, the global threats posed by a wide spectrum of infectious diseases, attempts to do the same for tuberculosis (TB) have failed to date. While most effective vaccines act by eliciting neutralizing antibodies, T cells are the primary mediators of adaptive immunity against TB. Unfortunately, the onset of the T cell response after aerosol infection with Mycobacterium tuberculosis (Mtb), the bacterium that causes TB, is exceedingly slow, and systemically administered vaccines only modestly accelerate the recruitment of effector T cells to the lungs. This delay seems to be orchestrated by Mtb itself to prolong the period of unrestricted bacterial replication in the lung that characterizes the innate phase of the response. When T cells finally arrive at the site of infection, multiple layers of regulation have been established that limit the ability of T cells to control or eradicate Mtb. From this understanding, emerges a strategy for achieving immunity. Lung resident memory T cells may recognize Mtb-infected cells shortly after infection and confer protection before regulatory networks are allowed to develop. Early studies using vaccines that elicit lung resident T cells by targeting the lung mucosa have been promising, but many questions remain. Due to the fundamental nature of these questions, and the need to understand and manipulate the early events in the lung after aerosol infection, only coordinated approaches that utilize tractable animal models to inform human TB vaccine trials will move the field toward its goal.
Collapse
Affiliation(s)
- Kevin B Urdahl
- Seattle Biomedical Research Institute, Seattle, WA, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA; Department of Global Health, University of Washington School of Medicine, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
43
|
Pro- and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis. Semin Immunol 2014; 26:543-51. [DOI: 10.1016/j.smim.2014.09.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/19/2022]
|
44
|
Zhang M, Zeng G, Yang Q, Zhang J, Zhu X, Chen Q, Suthakaran P, Zhang Y, Deng Q, Liu H, Zhou B, Chen X. Anti-tuberculosis treatment enhances the production of IL-22 through reducing the frequencies of regulatory B cell. Tuberculosis (Edinb) 2014; 94:238-44. [PMID: 24566282 DOI: 10.1016/j.tube.2013.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/08/2013] [Accepted: 12/11/2013] [Indexed: 01/30/2023]
Abstract
IL-22 has been suggested to play an important role in immune response against Mycobacterium tuberculosis infection. However, the exact role of IL-22 in human tuberculosis (TB) infection remains unclear and the regulatory mechanism of IL-22 response in human TB is unknown. In this study, we observed that successful anti-tuberculosis treatment induced an enhanced and sustained M. tuberculosis antigen-specific IL-22 response, correlated with the decrease of the frequencies of CD19(+)CD5(+)CD1d(+) regulatory B cells. We also found that depletion of CD19(+) B cells significantly enhanced M. tuberculosis antigen-specific IL-22 production by peripheral blood mononuclear cells. More importantly, we observed that purified CD19(+) B cells, and more efficiently, CD19(+)CD5(+)CD1d(+) regulatory B cells, suppressed IL-22 production. In summary, we showed here for the first time that effective anti-tuberculosis treatment restores M. tuberculosis antigen-specific IL-22 response through a novel mechanism by reducing the frequencies of CD19(+)CD5(+)CD1d(+) regulatory B cells in human TB.
Collapse
Affiliation(s)
- Mingxia Zhang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China; Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou 510120, China
| | - Qianting Yang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China; Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Jieyun Zhang
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Xiuyun Zhu
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Qi Chen
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Pichaimuthu Suthakaran
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China; Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Ying Zhang
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Qunyi Deng
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Haiying Liu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Boping Zhou
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China
| | - Xinchun Chen
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China; Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen 518020, China.
| |
Collapse
|
45
|
Parkash O. How to avoid the impact of environmental mycobacteria towards the efficacy of BCG vaccination against tuberculosis? Int J Mycobacteriol 2014; 3:1-4. [PMID: 26786215 DOI: 10.1016/j.ijmyco.2014.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) remains the only widely used vaccine against tuberculosis (TB). Consistent efficacy has been proved in infants but not in adults from developing countries. Epidemiological and experimental studies have pointed out that, prior exposure to prevailing environmental mycobacteria could be responsible for the poor efficacy of BCG as an anti-TB vaccine in adults living in developing countries. Sensitization by environmental mycobacteria may down-modulate the immunologic behavior of BCG on the one hand and may mask its efficacy on the other hand. Some of the important deciding factors for poor efficacy of BCG, due to exposure of the subjects to prevailing environmental mycobacteria, are thought to be (i) Life stage: neonatus versus adolescence; (ii) shared antigens between prevailing environmental mycobacteria and BCG; and (iii) generation of cross-reactive T-regulatory cells against environmental mycobacteria and BCG. In this communication, some novel strategies have been discussed for countering the down modulating impact of environmental mycobacteria towards performance of BCG as an anti-TB vaccine.
Collapse
Affiliation(s)
- Om Parkash
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| |
Collapse
|
46
|
Katara GK, Raj A, Kumar R, Avishek K, Kaushal H, Ansari NA, Bumb RA, Salotra P. Analysis of localized immune responses reveals presence of Th17 and Treg cells in cutaneous leishmaniasis due to Leishmania tropica. BMC Immunol 2013; 14:52. [PMID: 24267152 PMCID: PMC3840658 DOI: 10.1186/1471-2172-14-52] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/13/2013] [Indexed: 12/26/2022] Open
Abstract
Purpose The interaction between the Leishmania parasite and the host cell involves complex, multifaceted processes. The disease severity in cutaneous leishmaniasis (CL) is largely dependent on the causative species. Most of the information on immune responses in human CL is available with respect to L. major infection and is lacking for L. tropica species. In this study, we employed cytokine/chemokine/receptor membrane cDNA array to capture comprehensive picture of immuno-determinants in localized human tissue during L. tropica infection. Expression of selected molecules was evaluated by real time PCR in dermal lesion tissues at pre- and post treatment stages. Plasma IL-17 level was estimated by sandwich ELISA. Results The cDNA array analysis identified several immuno-determinants in tissue lesions of Indian CL including cytokines (IFN-γ, TNF-α, IL-1β, IL-10, IL-13), chemokines (IL-8, CCL2, CCL3, CCL4) and apoptotic molecules (Fas, TRAIL, IRF-1). Elevated mRNA levels of Th17 (IL-17, IL-23 and RORγt) and Treg (CD25, CTLA-4 and Foxp3) markers were observed in lesion tissues of CL patients compared to the control group, which subsided post treatment. Plasma IL-17 levels were found to be significantly higher in CL samples compared to controls. Conclusions In addition to defining comprehensive immunological responses inside lesion tissues of CL patients, our study demonstrated the presence of Th17 and Treg cells in CL caused by L. tropica.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Poonam Salotra
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi 110029, India.
| |
Collapse
|
47
|
Quaresma JAS, Pagliari C, Medeiros DBA, Duarte MIS, Vasconcelos PFC. Immunity and immune response, pathology and pathologic changes: progress and challenges in the immunopathology of yellow fever. Rev Med Virol 2013; 23:305-18. [PMID: 23873723 DOI: 10.1002/rmv.1752] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 11/06/2022]
Abstract
Yellow fever is a viral hemorrhagic fever, which affects people living in Africa and South America and is caused by the yellow fever virus, the prototype species in the Flavivirus genus (Flaviviridae family). Yellow fever virus infection can produce a wide spectrum of symptoms, ranging from asymptomatic infection or oligosymptomatic illness to severe disease with a high fatality rate. In this review, we focus in the mechanisms associated with the physiopathology of yellow fever in humans and animal models. It has been demonstrated that several factors play a role in the pathological outcome of the severe form of the disease including direct viral cytopathic effect, necrosis and apoptosis of hepatocyte cells in the midzone, and a minimal inflammatory response as well as low-flow hypoxia and cytokine overproduction. New information has filled several gaps in the understanding of yellow fever pathogenesis and helped comprehend the course of illness. Finally, we discuss prospects for an immune therapy in the light of new immunologic, viral, and pathologic tools.
Collapse
Affiliation(s)
- Juarez A S Quaresma
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil.
| | | | | | | | | |
Collapse
|
48
|
Foxp3(+) regulatory T cells in tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:165-80. [PMID: 23468109 DOI: 10.1007/978-1-4614-6111-1_9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The immune response to Mycobacterium tuberculosis (Mtb) must be tightly regulated to mount a sufficient response to limit bacterial growth and dissemination while avoiding excessive inflammation that could damage host tissues. A wide variety of cell types, cell surface molecules, and cytokines are likely to contribute to this regulation, but recent studies have revealed that a subset of CD4 T cells expressing the transcription factor Foxp3, called regulatory T (reg) cells, play a critical role [1-3]. Although the first reports of T reg cells in tuberculosis (TB) occurred only recently (i.e., 2006) [4, 5], we have already gained many insights into their activity during TB. While it is likely that T reg cells do play some beneficial roles by preventing inflammation-mediated damage to host tissues during TB, this aspect of their function has not been well studied to date. What is clear, however, is that during the initial T cell response to Mtb infection, Mtb induces the expansions of T reg cells that delay the onset of adaptive immunity, suggesting that Mtb has hijacked T reg cell-mediated immune suppression to allow it to replicate unabated in the lung until T cells finally arrive [6]. In this chapter, we will first provide an overview of the delayed T cell response to Mtb and a brief introduction to regulatory T cells. We will then review what is known about T reg cells from observations in human populations, discuss mechanistic insights revealed in the mouse model, and speculate about the relevance of this understanding for future efforts to prevent and treat TB.
Collapse
|
49
|
Jackson-Sillah D, Cliff JM, Mensah GI, Dickson E, Sowah S, Tetteh JKA, Addo KK, Ottenhoff THM, Bothamley G, Dockrell HM. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB. PLoS One 2013; 8:e68121. [PMID: 23826366 PMCID: PMC3694917 DOI: 10.1371/journal.pone.0068121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/30/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. METHODS Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. RESULTS The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. CONCLUSIONS These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.
Collapse
Affiliation(s)
- Dolly Jackson-Sillah
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom ; Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lim HJ, Park JS, Cho YJ, Yoon HI, Park KU, Lee CT, Lee JH. CD4(+)FoxP3(+) T regulatory cells in drug-susceptible and multidrug-resistant tuberculosis. Tuberculosis (Edinb) 2013; 93:523-8. [PMID: 23810735 DOI: 10.1016/j.tube.2013.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 01/09/2023]
Abstract
Regulatory T cells (Treg) increase in active tuberculosis (TB). However, whether Treg-mediated immune suppression affect the susceptibility to active TB or development of multidrug-resistant (MDR) TB is not yet clear. We compared circulatory Treg frequencies in drug susceptible (DS) and MDR TB before and after anti-TB treatment. Circulatory Treg frequencies were measured in blood samples from 33 DS TB, 7 mycobacterial culture-positive active MDR TB, 16 stable MDR TB who had been culture negative for at least 6 months, and 14 healthy controls before and after treatment. Treg frequency was measured by flow cytometry using cell-surface marker CD4 and intracellular marker FoxP3. Treg frequency was higher in DS TB and active MDR TB patients than in healthy controls (p < 0.05), with no significant difference between the former. Treg frequency was higher in patients with sputum acid-fast bacilli smear-positive TB than in patients with smear-negative TB, but the increase did not correlate with the radiologic extent of TB or presence of a cavity. After successful treatment, Treg decreased to control levels in DS TB and MDR TB patents. The pattern of change, in which Treg frequency increased during active infection and normalized to control levels after successful treatment, was similar in DS and MDR TB patients.
Collapse
Affiliation(s)
- Hyo-Jeong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine and Lung Institute of Medical Research Center, Seoul National University Bundang Hospital, 166, Gumi-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do 463-707, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|