1
|
Dunière L, Ruiz P, Lebbaoui Y, Guillot L, Bernard M, Forano E, Chaucheyras-Durand F. Effects of rearing mode on gastro-intestinal microbiota and development, immunocompetence, sanitary status and growth performance of lambs from birth to two months of age. Anim Microbiome 2023; 5:34. [PMID: 37461095 DOI: 10.1186/s42523-023-00255-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Artificial rearing system, commonly used in prolific sheep breeds, is associated to increased mortality and morbidity rates before weaning, which might be linked to perturbations in digestive tract maturation, including microbiota colonization. This study evaluated the effect of rearing mode (mothered or artificially reared) on the establishment of the rumen and intestinal microbiome of lambs from birth to weaning. We also measured immunological and zootechnical parameters to assess lambs' growth and health. GIT anatomy as well as rumen and intestinal epithelium gene expression were also analysed on weaned animals to assess possible long-term effects of the rearing practice. RESULTS Total VFA concentrations were higher in mothered lambs at 2 months of age, while artificially-reared lambs had lower average daily gain, a more degraded sanitary status and lower serum IgG concentration in the early growth phase. Metataxonomic analysis revealed higher richness of bacterial and eukaryote populations in mothered vs. artificially-reared lambs in both Rumen and Feces. Beta diversity analysis indicated an evolution of rumen and fecal bacterial communities in mothered lambs with age, not observed in artificially-reared lambs. Important functional microorganisms such as the cellulolytic bacterium Fibrobacter succinogenes and rumen protozoa did not establish correctly before weaning in artificially-reared lambs. Enterobacteriaceae and Escherichia coli were dominant in the fecal microbiota of mothered lambs, but main E. coli virulence genes were not found differential between the two groups, suggesting they are commensal bacteria which could exert a protective effect against pathogens. The fecal microbiota of artificially-reared lambs had a high proportion of lactic acid bacteria taxa. No difference was observed in mucosa gene expression in the two lamb groups after weaning. CONCLUSIONS The rearing mode influences gastrointestinal microbiota and health-associated parameters in offspring in early life: rumen maturation was impaired in artificially-reared lambs which also presented altered sanitary status and higher risk of gut dysbiosis. The first month of age is thus a critical period where the gastrointestinal tract environment and microbiota are particularly unstable and special care should be taken in the management of artificially fed newborn ruminants.
Collapse
Affiliation(s)
- Lysiane Dunière
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Philippe Ruiz
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Yacine Lebbaoui
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Laurie Guillot
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Mickael Bernard
- UE 1414 (Unité Expérimentale), INRAE, Herbipôle, Saint-Genès Champanelle, 63122, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, CEDEX, 19 rue des Briquetiers, BP 59, Blagnac, 31702, France.
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS (Microbiologie Environnement Digestif et Santé), Clermont-Ferrand, 63000, France.
| |
Collapse
|
2
|
Villegas-Vázquez EY, Quintas-Granados LI, Cortés H, González-Del Carmen M, Leyva-Gómez G, Rodríguez-Morales M, Bustamante-Montes LP, Silva-Adaya D, Pérez-Plasencia C, Jacobo-Herrera N, Reyes-Hernández OD, Figueroa-González G. Lithium: A Promising Anticancer Agent. Life (Basel) 2023; 13:537. [PMID: 36836894 PMCID: PMC9966411 DOI: 10.3390/life13020537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lithium is a therapeutic cation used to treat bipolar disorders but also has some important features as an anti-cancer agent. In this review, we provide a general overview of lithium, from its transport into cells, to its innovative administration forms, and based on genomic, transcriptomic, and proteomic data. Lithium formulations such as lithium acetoacetate (LiAcAc), lithium chloride (LiCl), lithium citrate (Li3C6H5O7), and lithium carbonate (Li2CO3) induce apoptosis, autophagy, and inhibition of tumor growth and also participate in the regulation of tumor proliferation, tumor invasion, and metastasis and cell cycle arrest. Moreover, lithium is synergistic with standard cancer therapies, enhancing their anti-tumor effects. In addition, lithium has a neuroprotective role in cancer patients, by improving their quality of life. Interestingly, nano-sized lithium enhances its anti-tumor activities and protects vital organs from the damage caused by lipid peroxidation during tumor development. However, these potential therapeutic activities of lithium depend on various factors, such as the nature and aggressiveness of the tumor, the type of lithium salt, and its form of administration and dosage. Since lithium has been used to treat bipolar disorder, the current study provides an overview of its role in medicine and how this has changed. This review also highlights the importance of this repurposed drug, which appears to have therapeutic cancer potential, and underlines its molecular mechanisms.
Collapse
Affiliation(s)
- Edgar Yebrán Villegas-Vázquez
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Miguel Rodríguez-Morales
- Licenciatura en Médico Cirujano, Facultad de Ciencias de la Salud Universidad Anáhuac Norte, Academia de Genética Médica, Naucalpan de Juárez 52786, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México 14269, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Ciudad de México 14080, Mexico
- Laboratorio de Genómica, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México 14080, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| |
Collapse
|
3
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
4
|
Zhong C, Griffin LL, Heussaff O, O’Dea R, Whelan C, Stewart G. Sex-Related Differences in UT-B Urea Transporter Abundance in Fallow Deer Rumen. Vet Sci 2022; 9:vetsci9020073. [PMID: 35202326 PMCID: PMC8878845 DOI: 10.3390/vetsci9020073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Rumen studies have focused almost exclusively on livestock species under strictly regimented diets. This means that the ruminal condition of free-living and free-feeding wildlife remains practically unstudied. Urea nitrogen salvaging, a process by which urea is passed into the rumen, to both provide a valuable source of nitrogen for bacterial growth and to buffer the potentially harmful acidic effects of bacterial short chain fatty acids, has remained unexplored in wild ruminants, such as deer. UT-B2 transporters are the key proteins reported to facilitate the transepithelial ruminal urea transport. In this study, we investigate the expression, abundance and localisation of urea transporters in the rumen of a semi-wild fallow deer (Dama dama) population. Physical measurements confirmed that males had larger rumen than females, while adults had longer papillae than juveniles. Initial RT-PCR experiments confirmed the expression of UT-B2, while immunolocalisation studies revealed that strong UT-B staining was present in the stratum basale of deer rumen. Western blotting analysis demonstrated that a 50 kDa UT-B2 protein was significantly more abundant in adult females compared to adult males. This study confirms the presence of UT-B2 urea transporters in deer rumen and suggests that sex-related differences occur, bringing new insight into our understanding of rumen physiology.
Collapse
Affiliation(s)
- Chongliang Zhong
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Laura L. Griffin
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
| | - Orla Heussaff
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
| | - Ruairi O’Dea
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
| | - Conor Whelan
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
| | - Gavin Stewart
- School of Biology & Environmental Science, University College Dublin, D04 V1W8 Dublin, Ireland; (C.Z.); (L.L.G.); (O.H.); (R.O.); (C.W.)
- Correspondence:
| |
Collapse
|
5
|
Ramos SC, Jeong CD, Mamuad LL, Kim SH, Kang SH, Kim ET, Cho YI, Lee SS, Lee SS. Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows. Animals (Basel) 2021; 11:838. [PMID: 33809588 PMCID: PMC8002347 DOI: 10.3390/ani11030838] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Effects of changing diet on rumen fermentation parameters, bacterial community composition, and transcriptome profiles were determined in three rumen-cannulated Holstein Friesian cows using a 3 × 4 cross-over design. Treatments include HF-1 (first high-forage diet), HC-1 (first high-concentrate diet), HC-2 (succeeding high-concentrate diet), and HF-2 (second high-forage diet as a recovery period). Animal diets contained Klein grass and concentrate at ratios of 8:2, 2:8, 2:8, and 8:2 (two weeks each), respectively. Ammonia-nitrogen and individual and total volatile fatty acid concentrations were increased significantly during HC-1 and HC-2. Rumen species richness significantly increased for HF-1 and HF-2. Bacteroidetes were dominant for all treatments, while phylum Firmicutes significantly increased during the HC period. Prevotella, Erysipelothrix, and Galbibacter significantly differed between HF and HC diet periods. Ruminococcus abundance was lower during HF feeding and tended to increase during successive HC feeding periods. Prevotellaruminicola was the predominant species for all diets. The RNA sequence analysis revealed the keratin gene as differentially expressed during the HF diet, while carbonic-anhydrase I and S100 calcium-binding protein were expressed in the HC diet. Most of these genes were highly expressed for HC-1 and HC-2. These results suggested that ruminal bacterial community composition, transcriptome profile, and rumen fermentation characteristics were altered by the diet transitions in dairy cows.
Collapse
Affiliation(s)
- Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| | - Chang Dae Jeong
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| | - Lovelia L. Mamuad
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| | - Seon Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| | - Seung Ha Kang
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Eun Tae Kim
- Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea;
| | - Yong Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea;
| | - Sung Sill Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju 52828, Korea;
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea; (S.C.R.); (C.D.J.); (L.L.M.); (S.H.K.)
| |
Collapse
|
6
|
Wang G, Zhao L, Jiang Q, Sun Y, Zhao D, Sun M, He Z, Sun J, Wang Y. Intestinal OCTN2- and MCT1-targeted drug delivery to improve oral bioavailability. Asian J Pharm Sci 2020; 15:158-173. [PMID: 32256846 PMCID: PMC7118283 DOI: 10.1016/j.ajps.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Various drug transporters are widely expressed throughout the intestine and play important roles in absorbing nutrients and drugs, thus providing high quality targets for the design of prodrugs or nanoparticles to facilitate oral drug delivery. In particular, intestinal carnitine/organic cation transporter 2 (OCTN2) and mono-carboxylate transporter protein 1 (MCT1) possess high transport capacities and complementary distributions. Therefore, we outline recent developments in transporter-targeted oral drug delivery with regard to the OCTN2 and MCT1 proteins in this review. First, basic information of the two transporters is reviewed, including their topological structures, characteristics and functions, expression and key features of their substrates. Furthermore, progress in transporter-targeting prodrugs and nanoparticles to increase oral drug delivery is discussed, including improvements in the oral absorption of anti-inflammatory drugs, antiepileptic drugs and anticancer drugs. Finally, the potential of a dual transporter-targeting strategy is discussed.
Collapse
Affiliation(s)
- Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning 530200, China
| | - Lichun Zhao
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning 530200, China.,School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning 530200, China
| | - Qikun Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Wang
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
7
|
Sun Y, Zhao D, Wang G, Jiang Q, Guo M, Kan Q, He Z, Sun J. A novel oral prodrug-targeting transporter MCT 1: 5-fluorouracil-dicarboxylate monoester conjugates. Asian J Pharm Sci 2019; 14:631-639. [PMID: 32104489 PMCID: PMC7032090 DOI: 10.1016/j.ajps.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 11/05/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) is responsible for oral absorption of short-chain monocarboxylic acids from small intestine, hence, it's likely to serve as an ideal design target for the development of oral prodrugs. However, potential application of MCT1 to facilitate the oral delivery is still unclear. Irregular oral absorption, poor permeability and bioavailability greatly limit the oral delivery efficiency of 5-fluorouracil (5-FU). Herein, we design three 5-FU-fatty acid conjugates targeting intestinal MCT1 with different lipophilic linkages. Interestingly, due to high MCT1 affinity and good gastrointestinal stability, 5-FU-octanedioic acid monoester prodrug exhibited significant improvement in membrane permeability (13.1-fold) and oral bioavailability (4.1-fold) compared to 5-FU. More surprisingly, stability experiment in intestinal homogenates showed that 5-FU prodrugs could be properly activated to release 5-FU within intestinal cells, which provides an ideal foundation for the improvement of oral bioavailability. In summary, good gastrointestinal stability, high membrane permeability and appropriate intestinal cell bioactivation are the important factors for high-efficiency 5-FU oral prodrugs, and such work provides a good platform for the development of novel oral prodrugs targeting intestinal transporters.
Collapse
Affiliation(s)
- Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nangning 530200, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengran Guo
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Qiming Kan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
8
|
Jones RS, Tu C, Zhang M, Qu J, Morris ME. Characterization and Proteomic-Transcriptomic Investigation of Monocarboxylate Transporter 6 Knockout Mice: Evidence of a Potential Role in Glucose and Lipid Metabolism. Mol Pharmacol 2019; 96:364-376. [PMID: 31436537 DOI: 10.1124/mol.119.116731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Monocarboxylate transporter 6 [(MCT6), SLC16A5] is an orphan transporter with no known endogenous substrates or physiological role. Previous in vitro and in vivo experiments investigated MCT6 substrate/inhibitor specificity in Xenopus laevis oocytes; however, these data remain limited. Transcriptomic changes in the livers of mice undergoing different dieting schemes have suggested that Mct6 plays a role in glucose and lipid metabolism. The objectives of this study were 1) to develop a novel knockout (KO) mouse model (Mct6-/-) using CRISPR/Cas9 technology, 2) to characterize the KO animal model by examining physiological and biochemical parameters, and 3) to understand the physiological role of MCT6 in vivo through global proteomic and liver transcriptomic profiling. mRNA tissue analysis demonstrated knockout of Mct6, which showed greater than 90% knockdown of Mct6 (Slc16a5) gene expression in all major tissues analyzed when normalized to Mct6+/+ mice. Proteomic analyses identified greater than 4000 unique proteins in kidney, liver, and colon tissues, among which 51, 38, and 241 proteins were significantly altered, respectively (for each tissue), between Mct6+/+ and Mct6-/- mice. Additionally, Mct6-/- mice demonstrated significant changes in 199 genes in the liver compared with Mct6+/+ mice. In silico biological pathway analyses revealed significant changes in proteins and genes involved in glucose and lipid metabolism-associated pathways. This study is the first to provide evidence for an association of Mct6 in the regulation of glucose and lipid metabolism. SIGNIFICANCE STATEMENT: This paper focuses on elucidating the innate biological role of an orphan transporter in vivo, which has not been investigated thus far. Using efficient and high-throughput technologies, such as CRISPR/Cas9 gene editing, liquid chromatography-tandem mass spectrometry-based proteomic and RNA-sequencing transcriptomic analyses, our laboratory provides the first existence and characterization of a Mct6 knockout mouse model. The evidence gathered in this paper, as well as other laboratories, support the importance of MCT6 in regulating a variety of glucose and lipid metabolic pathways, which may indicate its significance in metabolic diseases.
Collapse
Affiliation(s)
- Robert S Jones
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| | - Ming Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| |
Collapse
|
9
|
Pérez-Escuredo J, Van Hée VF, Sboarina M, Falces J, Payen VL, Pellerin L, Sonveaux P. Monocarboxylate transporters in the brain and in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2481-97. [PMID: 26993058 PMCID: PMC4990061 DOI: 10.1016/j.bbamcr.2016.03.013] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/01/2016] [Accepted: 03/12/2016] [Indexed: 12/20/2022]
Abstract
Monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 facilitate the passive transport of monocarboxylates such as lactate, pyruvate and ketone bodies together with protons across cell membranes. Their anchorage and activity at the plasma membrane requires interaction with chaperon protein such as basigin/CD147 and embigin/gp70. MCT1-4 are expressed in different tissues where they play important roles in physiological and pathological processes. This review focuses on the brain and on cancer. In the brain, MCTs control the delivery of lactate, produced by astrocytes, to neurons, where it is used as an oxidative fuel. Consequently, MCT dysfunctions are associated with pathologies of the central nervous system encompassing neurodegeneration and cognitive defects, epilepsy and metabolic disorders. In tumors, MCTs control the exchange of lactate and other monocarboxylates between glycolytic and oxidative cancer cells, between stromal and cancer cells and between glycolytic cells and endothelial cells. Lactate is not only a metabolic waste for glycolytic cells and a metabolic fuel for oxidative cells, but it also behaves as a signaling agent that promotes angiogenesis and as an immunosuppressive metabolite. Because MCTs gate the activities of lactate, drugs targeting these transporters have been developed that could constitute new anticancer treatments. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Jhudit Pérez-Escuredo
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Vincent F Van Hée
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Martina Sboarina
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Jorge Falces
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium
| | - Luc Pellerin
- Laboratory of Neuroenergetics, Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Avenue Emmanuel Mounier 52 box B1.53.09, 1200 Brussels, Belgium.
| |
Collapse
|
10
|
Al-Mosauwi H, Ryan E, McGrane A, Riveros-Beltran S, Walpole C, Dempsey E, Courtney D, Fearon N, Winter D, Baird A, Stewart G. Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract. Cell Biol Int 2016; 40:1303-1312. [PMID: 27634412 DOI: 10.1002/cbin.10684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 09/05/2016] [Indexed: 11/06/2022]
Abstract
Bacterially derived short chain fatty acids (SCFAs), such as butyrate, are vital in maintaining the symbiotic relationship that exists between humans and their gastrointestinal microbial populations. A key step in this process is the transport of SCFAs across colonic epithelial cells via MCT1 transporters. This study investigated MCT1 protein abundance in various human intestinal tissues. Initial RT-PCR analysis confirmed the expected MCT1 RNA expression pattern of colon > small intestine > stomach. Using surgical resection samples, immunoblot analysis detected higher abundance of a 45 kDa MCT1 protein in colonic tissue compared to ileum tissue (P < 0.001, N = 4, unpaired t-test). Importantly, MCT1 abundance was found to be significantly lower in sigmoid colon compared to ascending colon (P < 0.01, N = 8-11, ANOVA). Finally, immunolocalization studies confirmed MCT1 to be abundant in the basolateral membranes of surface epithelial cells of the ascending, transverse, and descending colon, but significantly less prevalent in the sigmoid colon (P < 0.05, N = 5-21, ANOVA). In conclusion, these data confirm that basolateral MCT1 protein abundance is correlated to levels of bacterially derived SCFAs along the human gastrointestinal tract. These findings highlight the importance of precise tissue location in studies comparing colonic MCT1 abundance between normal and diseased states.
Collapse
Affiliation(s)
- Hashemeya Al-Mosauwi
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Elizabeth Ryan
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Alison McGrane
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Stefanie Riveros-Beltran
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Caragh Walpole
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Eugene Dempsey
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| | - Danielle Courtney
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Naomi Fearon
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland.,College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond Winter
- Institute for Clinical Outcomes Research and Education, St.Vincent's University Hospital, Dublin, Ireland
| | - Alan Baird
- College of Life Sciences and Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Gavin Stewart
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Room 2.55, Belfield, Dublin 4, Ireland
| |
Collapse
|
11
|
Dengler F, Rackwitz R, Benesch F, Pfannkuche H, Gäbel G. Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium. Acta Physiol (Oxf) 2014; 210:403-14. [PMID: 23927569 DOI: 10.1111/apha.12155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/06/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022]
Abstract
AIM This study aimed to assess the role of HCO₃⁻ in the transport of acetate and butyrate across the basolateral membrane of rumen epithelium and to identify transport proteins involved. METHODS The effects of basolateral variation in HCO₃⁻ concentrations on acetate and butyrate efflux out of the epithelium and the transepithelial flux of these short-chain fatty acids were tested in Ussing chamber experiments using (14)C-labelled substrates. HCO₃⁻-dependent transport mechanisms were characterized by adding specific inhibitors of candidate proteins to the serosal side. RESULTS Effluxes of acetate and butyrate out of the epithelium were higher to the serosal side than to the mucosal side. Acetate and butyrate effluxes to both sides of rumen epithelium consisted of HCO₃⁻-independent and -dependent parts. HCO₃⁻-dependent transport across the basolateral membrane was confirmed in studies of transepithelial fluxes. Mucosal to serosal fluxes of acetate and butyrate decreased with lowering serosal HCO₃⁻ concentrations. In the presence of 25 mm HCO₃⁻, transepithelial flux of acetate was inhibited effectively by p-hydroxymercuribenzoic acid or α-cyano-4-hydroxycinnamic acid, while butyrate flux was unaffected by the blockers. Fluxes of both acetate and butyrate from the serosal to the mucosal side were diminished largely by the addition of NO₃⁻ to the serosal side, with this effect being more pronounced for acetate. CONCLUSION Our results indicate the existence of a basolateral short-chain fatty acid/HCO₃⁻ exchanger, with monocarboxylate transporter 1 as a primary candidate for acetate transfer.
Collapse
Affiliation(s)
- F. Dengler
- Institute of Veterinary Physiology; University of Leipzig; Leipzig Germany
| | - R. Rackwitz
- Institute of Veterinary Physiology; University of Leipzig; Leipzig Germany
| | - F. Benesch
- Institute of Veterinary Physiology; University of Leipzig; Leipzig Germany
| | - H. Pfannkuche
- Institute of Veterinary Physiology; University of Leipzig; Leipzig Germany
| | - G. Gäbel
- Institute of Veterinary Physiology; University of Leipzig; Leipzig Germany
| |
Collapse
|
12
|
Kekuda R, Manoharan P, Baseler W, Sundaram U. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. Dig Dis Sci 2013; 58:660-7. [PMID: 23344966 DOI: 10.1007/s10620-012-2407-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 09/06/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Short chain fatty acids (SCFA) are absorbed by carrier mediated uptake in the small intestine by pH-dependent SCFA/HCO3 (-) exchangers on the apical membrane of epithelial cells. Conventional assumption is that MCT1 mediates SCFA/HCO3 (-) exchange in the intestine. Further, due to the presence of multiple such anion exchangers, the identity of the intestinal SCFA/HCO3 (-) has been controversial. AIMS The aim of this study was to determine the identities of the butyrate transporter in the intestinal epithelial cells (IEC-18). METHODS IEC-18 cells were treated with specific siRNAs for MCT1 and MCT4, and butyrate and lactate uptake studies were performed. RESULTS Alpha-cyano-4-hydroxycinnamic acid inhibited lactate uptake but not butyrate uptake in IEC-18 cells, indicating that these two substrates are transported via two different transporter systems. MCT1 siRNA treatment abolished both MCT1 mRNA by more than 95 % and protein expression by 83 % as evidenced by RTQ-PCR and western blotting experiments. However, MCT1 siRNA treatment inhibited butyrate uptake upto 24 %, whereas it inhibited lactate uptake significantly by 70 %. Treatment with MCT4 siRNA inhibited MCT4 mRNA expression by 75 % and protein expression by 85 % in these cells. MCT4 siRNA inhibited butyrate uptake by 40 %. Further, several non-steroidal anti-inflammatory drugs (NSAIDs) are transported by the butyrate transporter. Finally, MCT4 siRNA inhibited salicylate uptake by 27 % indicating direct evidence for the transport of salicylate by MCT4. CONCLUSIONS These data indicate that MCT1 is the high affinity lactate transporter and MCT4 is the high affinity butyrate transporter in the intestinal epithelial cell line IEC-18.
Collapse
Affiliation(s)
- Ramesh Kekuda
- Section of Digestive Diseases, West Virginia Clinical and Translational Science Institute, West Virginia University Health Sciences Center, One Medical Center Drive, PO Box 9161, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
13
|
Pfannkuche H, Taifour F, Steinhoff-Wagner J, Hammon HM, Gäbel G. Post-natal changes in MCT1 expression in the forestomach of calves. J Anim Physiol Anim Nutr (Berl) 2013; 98:140-8. [PMID: 23432418 DOI: 10.1111/jpn.12057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/27/2013] [Indexed: 11/26/2022]
Abstract
The monocarboxylate transporter 1 (MCT1) has been demonstrated to be involved in the transfer of short-chain fatty acids (SCFA) and/or their intraepithelial metabolites from the rumen to the blood. As MCT1 plays a role in SCFA transfer, it is assumed that SCFA are the main substrates influencing its expression. However, there are hints that MCT1 may also be expressed during the early life of the animal when SCFA are not released in the forestomach. To figure out whether MCT1 expression in the forestomach is influenced independently of SCFA during that period, we studied post-natal MCT1 expression immunohistochemically in the epithelia of omasum, atrium ruminis, saccus dorsalis ruminis, saccus ventralis ruminis and reticulum of calves born preterm and at term. The calves were nourished by colostrum or by milk-based formula diet. MCT1 could be found in all the forestomach compartments tested, even in preterm calves. The protein was mainly oriented to the luminal side in the immature epithelium 24 h after birth. Orientation to the blood side of the cells developed during the first 4 days after birth. In the rumen epithelia (but not in the other forestomach compartments tested), orientation of MCT1 to the blood side of the cells was paralleled by an increase in the overall expression rate during the first 4 days after birth. As lactate levels were very high directly after birth, a lactate-dependent substrate induction may have been the underlying mechanism. However, non-specific changes due to general differential processes might also be the cause. Both early upregulation of MCT1 and high blood lactate levels may provide the epithelia with lactate as energy source.
Collapse
Affiliation(s)
- H Pfannkuche
- Faculty of Veterinary Medicine, Institute of Veterinary Physiology, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
14
|
Expression and cellular localization of monocarboxylate transporters (MCT2, MCT7, and MCT8) along the cattle gastrointestinal tract. Cell Tissue Res 2013; 352:585-98. [DOI: 10.1007/s00441-013-1570-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
15
|
Abstract
Lactose malabsorption is associated with rapid production of high levels of osmotic compounds, such as organic acids and SCFA in the colon, suspected to contribute to the onset of lactose intolerance. Adult rats are lactase deficient and the present study was conducted to evaluatein vivothe metabolic consequences of acute lactose ingestion, including host–microbiota interactions. Rats received diets of 25 % sucrose (S25 control group) or 25 % lactose (L25 experimental group). SCFA and lactic acid were quantified in intestinal contents and portal blood. Expression of SCFA transporter genes was quantified in the colonic mucosa. Carbohydrate oxidation (Cox) and lipid oxidation (Lox) were computed by indirect calorimetry. Measurements were performed over a maximum of 13 h. Time, diet and time × diet variables had significant effects on SCFA concentration in the caecum (P< 0·001,P= 0·004 andP= 0·007, respectively) and the portal blood (P< 0·001,P= 0·04 andP< 0·001, respectively). Concomitantly, expression of sodium monocarboxylate significantly increased in the colonic mucosa of the L25 group (P= 0·003 att= 6 h andP< 0·05 att= 8 h). During 5 h after the meal, the L25 group's changes in metabolic parameters (Cox, Lox) were significantly lower than those of the S25 group (P= 0·02). However, after 5 h, L25 Cox became greater than S25 (P= 0·004). Thus, enhanced production and absorption of SCFA support the metabolic changes observed in calorimetry. These results underline the consequences of acute lactose malabsorption and measured compensations occurring in the host's metabolism, presumably through the microbiota fermentations and microbiota–host interactions.
Collapse
|
16
|
The vacuolar-type H-ATPase in ovine rumen epithelium is regulated by metabolic signals. J Biomed Biotechnol 2010; 2010:525034. [PMID: 20069127 PMCID: PMC2804115 DOI: 10.1155/2010/525034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/13/2009] [Indexed: 12/21/2022] Open
Abstract
In this study, the effect of metabolic inhibition (MI) by glucose substitution with 2-deoxyglucose (2-DOG) and/or application of antimycin A on ovine rumen epithelial cells (REC) vacuolar-type H+-ATPase (vH+-ATPase) activity was investigated. Using fluorescent spectroscopy, basal pHi of REC was measured to be 7.3 ± 0.1 in HCO3−-free, glucose-containing NaCl medium. MI induced a strong pHi reduction (−0.44 ± 0.04 pH units) with a more pronounced effect of 2-DOG compared to antimycin A (−0.30 ± 0.03 versus −0.21 ± 0.03 pH units). Treatment with foliomycin, a specific vH+-ATPase inhibitor, decreased REC pHi by 0.21 ± 0.05 pH units. After MI induction, this effect was nearly abolished (−0.03 ± 0.02 pH units). In addition, membrane-associated localization of vH+-ATPase B subunit disappeared. Metabolic control of vH+-ATPase involving regulation of its assembly state by elements of the glycolytic pathway could provide a means to adapt REC ATP consumption according to energy availability.
Collapse
|
17
|
Gene expression in the digestive tissues of ruminants and their relationships with feeding and digestive processes. Animal 2010; 4:993-1007. [DOI: 10.1017/s1751731109991285] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Evolution and functional divergence of monocarboxylate transporter genes in vertebrates. Gene 2008; 423:14-22. [PMID: 18674605 DOI: 10.1016/j.gene.2008.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/28/2008] [Accepted: 07/03/2008] [Indexed: 11/22/2022]
Abstract
Monocarboxylate transporters (MCTs) form a gene family with an ancient past. The identification of MCTs (MCHs) from bacteria, protozoa, fungi, invertebrates, as well as vertebrates, but not from plants and virus, allowed illuminating the phylogenetic and evolutionary history of this gene family. The significant expansion of vertebrate MCT genes should have primarily occurred after the divergence of vertebrates and invertebrates, but before the divergence time between ray-finned fish and mammals. The divergence of insect MCTs should have at least occurred in the common ancestor of fruit fly, beetle, and honeybee. Fungi monocarboxylate transporter homologues (MCHs) might evolve independently from an ancient ancestor. The results of functional divergence analysis provided statistical evidences for shifted evolutionary rate and/or changes of amino acid property after gene duplication. The sliding window analysis of the d(N)/d(S) ratio values showed that strong functional constraints must impose on the N- and C-terminal domains of vertebrate MCTs. These corresponding regions may play crucial roles for functionality of MCT proteins.
Collapse
|
19
|
Shimoyama Y, Kirat D, Akihara Y, Kawasako K, Komine M, Hirayama K, Matsuda K, Okamoto M, Iwano H, Kato S, Taniyama H. Expression of monocarboxylate transporter 1 (MCT1) in the dog intestine. J Vet Med Sci 2007; 69:599-604. [PMID: 17611355 DOI: 10.1292/jvms.69.599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, the expression and distribution of monocarboxyolate transporter 1 (MCT1) along the intestines (duodenum, jejunum, ileum, cecum, colon and rectum) of dogs were investigated at both the mRNA and protein levels. The expression of MCT1 protein and its distribution were confirmed by Western blotting and immunohistochemical staining using the antibody for MCT1. We identified mRNA coding for MCT1 and a 43-kDa band of MCT1 protein in all regions from the duodenum to the rectum. Immunoreactive staining for MCT1 was also observed in epithelial cells throughout the intestines. MCT1 immunoreactivity was greater in the large intestine than in the small intestine. MCT1 protein was predominantly expressed on the basolateral membranes along intestinal epithelial cells, suggesting that MCT1 may play an important role in lactate efflux and transport of short-chain fatty acids (SCFAs) to the bloodstream across the basolateral membranes of the dog intestine.
Collapse
Affiliation(s)
- Yumiko Shimoyama
- Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kirat D, Masuoka J, Hayashi H, Iwano H, Yokota H, Taniyama H, Kato S. Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. J Physiol 2006; 576:635-47. [PMID: 16901943 PMCID: PMC1890357 DOI: 10.1113/jphysiol.2006.115931] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite the importance of short-chain fatty acids (SCFA) in maintaining the ruminant physiology, the mechanism of SCFA absorption is still not fully studied. The goal of this study was to elucidate the possible involvement of monocarboxylate transporter 1 (MCT1) in the mechanism of SCFA transport in the caprine rumen, and to delineate the precise cellular localization and the level of MCT1 protein along the entire caprine gastrointestinal tract. RT-PCR revealed the presence of mRNA encoding for MCT1 in all regions of the caprine gastrointestinal tract. Quantitative Western blot analysis showed that the level of MCT1 protein was in the order of rumen >/= reticulum > omasum > caecum > proximal colon > distal colon > abomasum > small intestine. Immunohistochemistry and immunofluorescence confocal analyses revealed widespread immunoreactive positivities for MCT1 in the caprine stomach and large intestine. Amongst the stratified squamous epithelial cells of the forestomach, MCT1 was predominantly expressed on the cell boundaries of the stratum basale and stratum spinosum. Double-immunofluorescence confocal laser-scanning microscopy confirmed the co-localization of MCT1 with its ancillary protein, CD147 in the caprine gastrointestinal tract. In vivo and in vitro functional studies, under the influence of the MCT1 inhibitors, p-chloromercuribenzoate (pCMB) and p-chloromercuribenzoic acid (pCMBA), demonstrated significant inhibitory effect on acetate and propionate transport in the rumen. This study provides evidence, for the first time in ruminants, that MCT1 has a direct role in the transepithelial transport and efflux of the SCFA across the stratum spinosum and stratum basale of the forestomach toward the blood side.
Collapse
Affiliation(s)
- Doaa Kirat
- Department of Veterinary Physiology, School of Veterinary Medicine, Rakuno Gakuen, University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Kirat D, Kato S. Monocarboxylate transporter 1 (MCT1) mediates transport of short-chain fatty acids in bovine caecum. Exp Physiol 2006; 91:835-44. [PMID: 16857719 DOI: 10.1113/expphysiol.2006.033837] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study was undertaken to investigate the functional role of monocarboxylate transporter 1 (MCT1) in the ruminant large intestine. Messenger RNA encoding for MCT1 was verified by reverse transcriptase-polymerase chain reaction in caecum, proximal colon and distal colon of adult cattle. Both immunohistochemistry and confocal laser microscopy verified that the MCT1 protein was abundant in the surface epithelium of the large intestine, and the amount decreased from the opening of the crypt to its base. In the immunopositive cells, MCT1 was primarily localized in the basolateral membranes of epithelium lining the large intestine. Western blotting indicated that the levels of MCT1 protein were highest in the caecum, followed by proximal colon and then distal colon. In vitro studies were conducted to elucidate the possible involvement of MCT1 in the transport of short-chain fatty acids (SCFA) across the isolated mucosal sheets of cattle caecum using the Ussing chamber technique. Acetate absorption was found to be pH dependent, and the rate of acetate absorption increased as pH decreased. The serosal application of the MCT1 inhibitor 'p-chloromercuribenzoic acid (pCMB)' significantly reduced the transport of acetate across the caecal epithelium of cows. In addition, the transport of acetate was significantly reduced in the presence of its analogue, propionate, indicating that acetate and propionate compete for binding to the same transporter. The results show that MCT1 is a major route for SCFA efflux across the basolateral membrane of bovine large intestine and that it could play a role in the regulation of intracellular pH.
Collapse
Affiliation(s)
- Doaa Kirat
- Department of Veterinary Physiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | |
Collapse
|