1
|
Lee J, Lee CW, Suarez DL, Lee SA, Kim T, Spackman E. Efficacy of commercial recombinant HVT vaccines against a North American clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus in chickens. PLoS One 2024; 19:e0307100. [PMID: 39012858 PMCID: PMC11251577 DOI: 10.1371/journal.pone.0307100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
The outbreak of clade 2.3.4.4b H5 highly pathogenic avian influenza (HPAI) in North America that started in 2021 has increased interest in applying vaccination as a strategy to help control and prevent the disease in poultry. Two commercially available vaccines based on the recombinant herpes virus of turkeys (rHVT) vector were tested against a recent North American clade 2.3.4.4b H5 HPAI virus isolate: A/turkey/Indiana/22-003707-003/2022 H5N1 in specific pathogen free white leghorn (WL) chickens and commercial broiler chickens. One rHVT-H5 vaccine encodes a hemagglutinin (HA) gene designed by the computationally optimized broadly reactive antigen method (COBRA-HVT vaccine). The other encodes an HA gene of a clade 2.2 virus (2.2-HVT vaccine). There was 100% survival of both chicken types COBRA-HVT vaccinated groups and in the 2.2-HVT vaccinated groups there was 94.8% and 90% survival of the WL and broilers respectively. Compared to the 2.2-HVT vaccinated groups, WL in the COBRA-HVT vaccinated group shed significantly lower mean viral titers by the cloacal route and broilers shed significantly lower titers by the oropharyngeal route than broilers. Virus titers detected in oral and cloacal swabs were otherwise similar among both vaccine groups and chicken types. To assess antibody-based tests to identify birds that have been infected after vaccination (DIVA-VI), sera collected after the challenge were tested with enzyme-linked lectin assay-neuraminidase inhibition (ELLA-NI) for N1 neuraminidase antibody detection and by commercial ELISA for detection of antibodies to the NP protein. As early as 7 days post challenge (DPC) 100% of the chickens were positive by ELLA-NI. ELISA was less sensitive with a maximum of 75% positive at 10DPC in broilers vaccinated with 2.2-HVT. Both vaccines provided protection from challenge to both types of chickens and ELLA-NI was sensitive at identifying antibodies to the challenge virus therefore should be evaluated further for DIVA-VI.
Collapse
MESH Headings
- Animals
- Chickens/virology
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Influenza in Birds/immunology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- North America
- Vaccination
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Poultry Diseases/immunology
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/genetics
Collapse
Affiliation(s)
- Jiho Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Chang-Won Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - David L. Suarez
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Scott A. Lee
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Taejoong Kim
- U.S. Department of Agriculture, Endemic Poultry Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| | - Erica Spackman
- U.S. Department of Agriculture, Exotic and Emerging Avian Viral Diseases Unit, U.S. National Poultry Research Center, Agricultural Research Service, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Islam A, Rahman MZ, Hassan MM, Epstein JH, Klaassen M. Farm biosecurity practices affecting avian influenza virus circulation in commercial chicken farms in Bangladesh. One Health 2024; 18:100681. [PMID: 39010948 PMCID: PMC11247270 DOI: 10.1016/j.onehlt.2024.100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/17/2024] [Indexed: 07/17/2024] Open
Abstract
Avian influenza virus (AIV) is of major concern to livestock, wildlife, and human health. In many countries in the world, including Bangladesh, AIV is endemic in poultry, requiring improving biosecurity. In Bangladesh, we investigated how variation in biosecurity practices in commercial chicken farms affected their AIV infection status to help guide AIV mitigation strategies. We collected pooled fecal swabs from 225 farms and tested the samples for the AIV matrix gene followed by H5, H7, and H9 subtyping using rRT-PCR. We found that 39.6% of chicken farms were AIV positive, with 13% and 14% being positive for subtypes H5 and H9, respectively. Using a generalized linear mixed effects model, we identified as many as 12 significant AIV risk factors. Two major factors promoting AIV risk that cannot be easily addressed in the short term were farm size and the proximity of the farm to a live bird market. However, the other ten significant determinants of AIV risk can be more readily addressed, of which the most important ones were limiting access by visitors (reducing predicted AIV risk from 42 to 6%), isolation and treatment of sick birds (42 to 7%), prohibiting access of vehicles to poultry sheds (38 to 8%), improving hand hygiene (from 42 to 9%), not sharing farm workers across farms (37 to 8%), and limiting access by wild birds to poultry sheds (37 to 8%). Our findings can be applied to developing practical and cost-effective measures that significantly decrease the prevalence of AIV in chicken farms. Notably, in settings with limited resources, such as Bangladesh, these measures can help governments strengthen biosecurity practices in their poultry industry to limit and possibly prevent the spread of AIV.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- EcoHealth Alliance, New York, NY 10018, USA
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
3
|
Kapczynski DR, Chrzastek K, Shanmugasundaram R, Zsak A, Segovia K, Sellers H, Suarez DL. Efficacy of recombinant H5 vaccines delivered in ovo or day of age in commercial broilers against the 2015 U.S. H5N2 clade 2.3.4.4c highly pathogenic avian Influenza virus. Virol J 2023; 20:298. [PMID: 38102683 PMCID: PMC10724940 DOI: 10.1186/s12985-023-02254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Avian influenza is a highly contagious, agriculturally relevant disease that can severely affect the poultry industry and food supply. Eurasian-origin H5Nx highly pathogenic avian influenza viruses (HPAIV) (clade 2.3.4.4) have been circulating globally in wild birds with spill over into commercial poultry operations. The negative impact to commercial poultry renewed interest in the development of vaccines against these viruses to control outbreaks in the U.S. METHODS The efficacy of three recombinant H5 vaccines delivered in ovo or day of age were evaluated in commercial broilers challenged with the 2015 U.S. H5N2 clade 2.3.4.4c HPAIV. The recombinant vaccines included an alphavirus RNA particle vaccine (RP-H5), an inactivated reverse genetics-derived (RG-H5) and recombinant HVT vaccine (rHVT-AI) expressing H5 hemagglutinin (HA) genes. In the first experiment, in ovo vaccination with RP-H5 or rHVT-AI was tested against HPAI challenge at 3 or 6 weeks of age. In a second experiment, broilers were vaccinated at 1 day of age with a dose of either 107 or 108 RP-H5, or RG-H5 (512 HA units (HAU) per dose). RESULTS In experiment one, the RP-H5 provided no protection following in ovo application, and shedding titers were similar to sham vaccinated birds. However, when the RP-H5 was delivered in ovo with a boost at 3 weeks, 95% protection was demonstrated at 6 weeks of age. The rHVT-AI vaccine demonstrated 95 and 100% protection at 3 and 6 weeks of age, respectively, of challenged broilers with reduced virus shedding compared to sham vaccinated birds. Finally, when the RP-H5 and rHVT vaccines were co-administered at one day of age, 95% protection was demonstrated with challenge at either 3 or 6 weeks age. In the second experiment, the highest protection (92%) was observed in the 108 RP-H5 vaccinated group. Significant reductions (p < 0.05) in virus shedding were observed in groups of vaccinated birds that were protected from challenge. The RG-H5 provided 62% protection from challenge. In all groups of surviving birds, antibody titers increased following challenge. CONCLUSIONS Overall, these results demonstrated several strategies that could be considered to protected broiler chickens during a H5 HPAI challenge.
Collapse
Affiliation(s)
- Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Klaudia Chrzastek
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Revathi Shanmugasundaram
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Aniko Zsak
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Karen Segovia
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S
| | - Holly Sellers
- Department of Population Health, College of Veterinary Medicine, The University of Georgia, 956 College Station Road, 30602, Athens, Athens, GA, U.S
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, 30605, Athens, GA, U.S..
| |
Collapse
|
4
|
Wein Y, Loeb V, Asmare A, Tal S, Finger A, Friedman A. Immunization and Host Responses to MB-1, a Live Hatchery Vaccine against Infectious Bursal Disease. Vaccines (Basel) 2023; 11:1316. [PMID: 37631884 PMCID: PMC10458767 DOI: 10.3390/vaccines11081316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
MB-1 is an attenuated infectious bursal disease virus vaccine. Previously, we observed a temporal delay of vaccine virus replication in the bursae of chicks due to maternally derived antibodies (MDAs). The mechanism that allowed its survival despite MDA neutralization remained unclear. We hypothesized that after vaccination at 1 day of age (DOA), the MB-1 virus penetrates and resides in local macrophages that are then distributed to lymphoid organs. Furthermore, MB-1's ability to survive within macrophages ensures its survival during effective MDA protection. PCR analysis of lymphoid organs from chicks with MDA, vaccinated on 1 DOA, demonstrated that the MB-1 virus was identified at low levels solely in the spleen pre-14 days of age. Fourteen days after vaccination, the virus was identified using PCR in the bursa, with viral levels increasing with time. The possible delay in viral colonization of the bursa was attributed to the presence of anti-IBDV capsid VP2 maternal IgA and IgY in the bursa interstitium. These indicate that during the period of high MDA levels, a small but viable MB-1 viral reservoir was maintained in the spleen, which might have served to colonize the bursa after MDA levels declined. Thereafter, individual immunization of chicks against Gumboro disease was achieved.
Collapse
Affiliation(s)
- Yossi Wein
- Department of Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Virginie Loeb
- Phibro Animal Health Corporation, P.O. Box 489, Beit Shemesh 99100, Israel; (V.L.)
| | - Aderajew Asmare
- Phibro Animal Health Corporation, P.O. Box 489, Beit Shemesh 99100, Israel; (V.L.)
| | - Saar Tal
- Phibro Animal Health Corporation, P.O. Box 489, Beit Shemesh 99100, Israel; (V.L.)
| | - Avner Finger
- Phibro Animal Health Corporation, P.O. Box 489, Beit Shemesh 99100, Israel; (V.L.)
| | - Aharon Friedman
- Department of Animal Sciences, R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Criado MF, Kassa A, Bertran K, Kwon JH, Sá E Silva M, Killmaster L, Ross TM, Mebatsion T, Swayne DE. Efficacy of multivalent recombinant herpesvirus of turkey vaccines against high pathogenicity avian influenza, infectious bursal disease, and Newcastle disease viruses. Vaccine 2023; 41:2893-2904. [PMID: 37012117 DOI: 10.1016/j.vaccine.2023.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recombinant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus protein 2 (VP2) of infectious bursal disease virus (IBDV) (vHVT-IBD-AI) or fusion (F) protein of Newcastle disease virus (NDV) (vHVT-ND-AI). In vaccinated chickens, all three vHVT vaccines provided 90-100% clinical protection against three divergent clades of high pathogenicity avian influenza viruses (HPAIVs), and significantly decreased number of birds and oral viral shedding titers at 2 days post-challenge compared to shams. Four weeks after vaccination, most vaccinated birds had H5 hemagglutination inhibition antibody titers, which significantly increased post-challenge. The vHVT-IBD-AI and vHVT-ND-AI vaccines provided 100% clinical protection against IBDVs and NDV, respectively. Our findings demonstrate that multivalent HVT vector vaccines were efficacious for simultaneous control of HPAIV and other viral infections.
Collapse
Affiliation(s)
- Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, 166 Greene Hall, Auburn, AL 36849, USA.
| | - Aemro Kassa
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Kateri Bertran
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain; IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA). Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain.
| | - Jung-Hoon Kwon
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA; College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Mariana Sá E Silva
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Dr, Athens, GA 30602, USA.
| | - Teshome Mebatsion
- Boehringer Ingelheim Animal Health USA Inc., 1730 Olympic Drive, Athens, GA 30601, USA.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center (USNPRC), Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| |
Collapse
|
6
|
Soliman RM, Nishioka K, Daidoji T, Noyori O, Nakaya T. Chimeric Newcastle Disease Virus Vectors Expressing Human IFN-γ Mediate Target Immune Responses and Enable Multifaceted Treatments. Biomedicines 2023; 11:biomedicines11020455. [PMID: 36830991 PMCID: PMC9953603 DOI: 10.3390/biomedicines11020455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The therapeutic potential of Newcastle disease virus (NDV) has been reported as both an oncolytic agent and a vaccine vector against many antigens. However, in the individuals already immunized with NDVs, second and subsequent administration does not provide substantial benefits. In this study, two types of recombinant chimeric NDVs using APMV-2 F and HN genes were generated. In rNDV-2HN, the wild-type NDV HN gene was replaced with the APMV-2 HN gene, and in rNDV-2F/2HN, both wild-type F and HN genes were replaced with APMV-2 F and HN genes, respectively. We enhanced the immune responses of these chimeric viruses by inserting the human IFN-γ gene. To examine the escape from NDV antiserum, each virus was treated with diluted NDV antiserum, and HEp-2 cells were infected with these virus particles. The two constructed chimeric viruses indicated notably lower virus-neutralizing titer compared to wild-type NDV and escaped the action of NDV antiserum. These two chimeric viruses infected both respiratory and colon cancer cell lines, indicating their potential as a cancer treatment tool. Chimeric viruses with enhanced immune responses can be considered a novel therapeutic strategy in cancer treatment that can be administered multiple times and used to enhance immune cells interaction.
Collapse
Affiliation(s)
- Rofaida Mostafa Soliman
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence: ; Tel.: +81-75-251-5325
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Osamu Noyori
- Laboratory of Immunology and Microbiology, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
7
|
Sączyńska V, Romanik-Chruścielewska A, Florys-Jankowska K, Cecuda-Adamczewska V, Kęsik-Brodacka M. Chitosan-based formulation of hemagglutinin antigens for oculo-nasal booster vaccination of chickens against influenza viruses. Vet Immunol Immunopathol 2022; 247:110406. [DOI: 10.1016/j.vetimm.2022.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
|
8
|
The Expression of Hemagglutinin by a Recombinant Newcastle Disease Virus Causes Structural Changes and Alters Innate Immune Sensing. Vaccines (Basel) 2021; 9:vaccines9070758. [PMID: 34358174 PMCID: PMC8310309 DOI: 10.3390/vaccines9070758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Recombinant Newcastle disease viruses (rNDV) have been used as bivalent vectors for vaccination against multiple economically important avian pathogens. NDV-vectored vaccines expressing the immunogenic H5 hemagglutinin (rNDV-H5) are considered attractive candidates to protect poultry from both highly pathogenic avian influenza (HPAI) and Newcastle disease (ND). However, the impact of the insertion of a recombinant protein, such as H5, on the biological characteristics of the parental NDV strain has been little investigated to date. The present study compared a rNDV-H5 vaccine and its parental NDV LaSota strain in terms of their structural and functional characteristics, as well as their recognition by the innate immune sensors. Structural analysis of the rNDV-H5 demonstrated a decreased number of fusion (F) and a higher number of hemagglutinin-neuraminidase (HN) glycoproteins compared to NDV LaSota. These structural differences were accompanied by increased hemagglutinating and neuraminidase activities of rNDV-H5. During in vitro rNDV-H5 infection, increased mRNA expression of TLR3, TLR7, MDA5, and LGP2 was observed, suggesting that the recombinant virus is recognized differently by sensors of innate immunity when compared with the parental NDV LaSota. Given the growing interest in using NDV as a vector against human and animal diseases, these data highlight the importance of thoroughly understanding the recombinant vaccines’ structural organization, functional characteristics, and elicited immune responses.
Collapse
|
9
|
Bertran K, Kassa A, Criado MF, Nuñez IA, Lee DH, Killmaster L, Sá E Silva M, Ross TM, Mebatsion T, Pritchard N, Swayne DE. Efficacy of recombinant Marek's disease virus vectored vaccines with computationally optimized broadly reactive antigen (COBRA) hemagglutinin insert against genetically diverse H5 high pathogenicity avian influenza viruses. Vaccine 2021; 39:1933-1942. [PMID: 33715903 DOI: 10.1016/j.vaccine.2021.02.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/27/2022]
Abstract
The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computationally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and genetically divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was confirmed for all the tested constructs, which provided clinical protection against the homologous and heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades 2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be used against antigenically distinct co-circulating viruses and future drift variants.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Aemro Kassa
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Ivette A Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Dong-Hun Lee
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, CT 06269, USA.
| | - Lindsay Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| | - Mariana Sá E Silva
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Teshome Mebatsion
- Boehringer Ingelheim Animal Health USA Inc, 1730 Olympic Drive, Athens, GA 30601, USA.
| | - Nikki Pritchard
- Boehringer Ingelheim Animal Health USA Inc, 1112 Airport Parkway, Gainesville, GA 30503, USA.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Rd, Athens, GA 30605, USA.
| |
Collapse
|
10
|
Salvesen HA, Whitelaw CBA. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manag 2021; 7:23. [PMID: 33648602 PMCID: PMC7917534 DOI: 10.1186/s40813-021-00196-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Influenza A Viruses (IAV) are endemic pathogens of significant concern in humans and multiple keystone livestock species. Widespread morbidity in swine herds negatively impacts animal welfare standards and economic performance whilst human IAV pandemics have emerged from pigs on multiple occasions. To combat the rising prevalence of swine IAV there must be effective control strategies available. MAIN BODY The most basic form of IAV control on swine farms is through good animal husbandry practices and high animal welfare standards. To control inter-herd transmission, biosecurity considerations such as quarantining of pigs and implementing robust health and safety systems for workers help to reduce the likelihood of swine IAV becoming endemic. Closely complementing the physical on-farm practices are IAV surveillance programs. Epidemiological data is critical in understanding regional distribution and variation to assist in determining an appropriate response to outbreaks and understanding the nature of historical swine IAV epidemics and zoonoses. Medical intervention in pigs is restricted to vaccination, a measure fraught with the intrinsic difficulties of mounting an immune response against a highly mutable virus. It is the best available tool for controlling IAV in swine but is far from being a perfect solution due to its unreliable efficacy and association with an enhanced respiratory disease. Because IAV generally has low mortality rates there is a reticence in the uptake of vaccination. Novel genetic technologies could be a complementary strategy for IAV control in pigs that confers broad-acting resistance. Transgenic pigs with IAV resistance are useful as models, however the complexity of these reaching the consumer market limits them to research models. More promising are gene-editing approaches to prevent viral exploitation of host proteins and modern vaccine technologies that surpass those currently available. CONCLUSION Using the suite of IAV control measures that are available for pigs effectively we can improve the economic productivity of pig farming whilst improving on-farm animal welfare standards and avoid facing the extensive social and financial costs of a pandemic. Fighting 'Flu in pigs will help mitigate the very real threat of a human pandemic emerging, increase security of the global food system and lead to healthier pigs.
Collapse
Affiliation(s)
- Hamish A. Salvesen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
11
|
Hautefeuille C, Azzouguen B, Mouchel S, Dauphin G, Peyre M. Evaluation of vaccination strategies to control an avian influenza outbreak in French poultry production networks using EVACS tool. Prev Vet Med 2020; 184:105129. [PMID: 33002655 DOI: 10.1016/j.prevetmed.2020.105129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/31/2020] [Accepted: 08/23/2020] [Indexed: 11/27/2022]
Abstract
France recently faced two epizootic waves of highly pathogenic avian influenza (HPAI) in poultry (H5N6 in 2015-2016 and H5N8 in 2016-2017), mainly in the fattening duck production sector. Vaccination against avian influenza (AI) is currently not authorised in France even though its potential benefits were discussed during these epizootic events. The objective of this work was to evaluate the potential efficiency of different vaccination strategies that could be applied against AI in France. The EVACS tool, which is a decision support tool developed to evaluate vaccination strategies, was applied in several French poultry production sectors: broiler, layer, turkey, duck and guinea fowl. EVACS was used to simulate the performance of vaccination strategies in terms of vaccination coverage, immunity levels and spatial distribution of the immunity level. A cost-benefit analysis was then applied based on EVACS results to identify the most efficient strategy. For each sector, vaccination protocols were tested according to the production type (breeders/production, indoor/outdoor), the integration level (integrated/independent) and the type of vaccine (hatchery vaccination using a recombinant vaccine/farm vaccination using an inactivated vaccine). The most efficient protocols for each sector were then combined to test different overall vaccination strategies at the national level. Even if it was not possible to compare vaccination protocols with the two vaccines types in "foie gras" duck, meat duck and guinea fowl production sectors as no hatchery vaccine currently exist for these species, these production sectors were also described and included in this simulation. Both types of vaccination (at hatchery and farm level) enabled protective immunity levels for the control of AI, but higher poultry population immunity level was reached (including independent farms) using hatchery vaccination. We also showed that hatchery vaccination was more efficient (higher benefit-cost ratio) than farm vaccination. Sufficient and homogeneously spatially distributed protective levels were reached in the overall poultry population with vaccination strategies targeting breeders, chicken layers and broilers and turkeys, without the need to include ducks and guinea fowls. However, vaccination strategies involving the highest number of species and production types were the most efficient in terms of cost-benefit. This study provides critical information on the efficiency of different vaccination strategies to support future decision making in case vaccination was applied to prevent and control HPAI in France.
Collapse
Affiliation(s)
- Claire Hautefeuille
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France; CEVA Santé animale, 33500, Libourne, France.
| | - Billal Azzouguen
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | | | | | - Marisa Peyre
- CIRAD, UMR ASTRE, F-34398, Montpellier, France; ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
12
|
Nassif S, Zaki F, Mourad A, Fouad E, Saad A, Setta A, Felföldi B, Mató T, Kiss I, Palya V. Herpesvirus of turkey-vectored avian influenza vaccine offers cross-protection against antigenically drifted H5Nx highly pathogenic avian influenza virus strains. Avian Pathol 2020; 49:547-556. [PMID: 32615785 DOI: 10.1080/03079457.2020.1790502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Among the different vaccines used to control highly pathogenic avian influenza, an HVT vector-based live recombinant avian influenza vaccine, expressing the haemagglutinin gene of an H5N1 HPAI virus, has been used by the poultry industry since 2012. The objective of the study presented in this paper was to test the efficacy of the commercially available HVT-based recombinant H5 vaccine against antigenically drifted H5N1, H5N8 and H5N2 HPAI virus circulating in Egypt recently. Groups of SPF chicks vaccinated at day-old with the HVT-based recombinant H5 vaccine were challenged, along with non-vaccinated controls, with 106 EID50 each of H5N1, H5N2 or H5N8 HPAI virus at 28 days of age. The birds were monitored for clinical protection and virus shedding during a 10-day postchallenge period. Clinical protection levels were 90%, 90% and 80% following challenge with the H5N1, H5N2 and H5N8 field isolates, respectively. Challenge virus shedding was significantly reduced in vaccinated groups, with up to 40%, 30% and 20% of non-shedders, and 3.8, 3.3 and 2.8 log10 reduction in the amount of excreted virus following challenge with H5N1, H5N2 and H5N8 viruses, respectively. Analyses of the amino acid sequences of the HA proteins of challenge viruses and serological relatedness with the vaccine insert revealed significant antigenic divergences between the vaccine and the challenge viruses. These results provide further evidence of the potential of HVT-based recombinant H5 vaccine to provide cross-protection against antigenically drifted HPAI H5Nx viruses with strong control on virus shedding.
Collapse
Affiliation(s)
- Samir Nassif
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Farid Zaki
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Ahlam Mourad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Esraa Fouad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Asem Saad
- The Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agriculture Research Centre (ARC), Cairo, Egypt
| | - Ahmed Setta
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Ceva-Phylaxia, Ceva Sante Animale, Cairo, Egypt
| | | | - Tamás Mató
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| | - Istvan Kiss
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| | - Vilmos Palya
- Ceva-Phylaxia, Ceva Sante Animale, Budapest, Hungary
| |
Collapse
|
13
|
Schön J, Ran W, Gorka M, Schwemmle M, Beer M, Hoffmann D. A modified live bat influenza A virus-based vaccine prototype provides full protection against HPAIV H5N1. NPJ Vaccines 2020; 5:40. [PMID: 32435514 PMCID: PMC7229168 DOI: 10.1038/s41541-020-0185-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 are a major threat for poultry holdings worldwide, here especially the zoonotic Asian H5N1 viruses. These HPAIVs have caused more than 500 fatal spillover infections from poultry to humans, with a looming danger of a new pandemic by establishing human-to-human transmissions. Besides culling measures in infected farms in endemic areas, vaccination is the major tool against HPAIV. However, the mainly used inactivated preparations have several limitations, like application to the individual animal by injection and a reduced efficiency. Here we present a modified live influenza vaccine prototype, which is based on the H17N10 bat influenza virus. The new chimeric vaccine strain R65mono/H17N10 was able to provide full protection against a lethal challenge infection with HPAIV H5N1 of juvenile and subadult chickens, as well as ferrets after oronasal immunization. In addition, the H5 vaccine prototype cannot reassort with avian influenza viruses and therefore is a promising tool against HPAIV H5 infection, allowing new vaccination strategies for efficient disease control.
Collapse
Affiliation(s)
- Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Wei Ran
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Gorka
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
Elaish M, Xia M, Ngunjiri JM, Ghorbani A, Jang H, Kc M, Abundo MC, Dhakal S, Gourapura R, Jiang X, Lee CW. Protective immunity against influenza virus challenge by norovirus P particle-M2e and HA2-AtCYN vaccines in chickens. Vaccine 2019; 37:6454-6462. [PMID: 31506195 DOI: 10.1016/j.vaccine.2019.08.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/28/2019] [Accepted: 08/31/2019] [Indexed: 01/12/2023]
Abstract
Development of a broadly reactive influenza vaccine that can provide protection against emerging type A influenza viruses is a big challenge. We previously demonstrated that a vaccine displaying the extracellular domain of the matrix protein 2 (M2e) on the surface loops of norovirus P-particle (M2eP) can partially protect chickens against several subtypes of avian influenza viruses. In the current study, a chimeric vaccine containing a conserved peptide from the subunit 2 of hemagglutinin (HA) glycoprotein (HA2) and Arabidopsis thaliana cyanase protein (AtCYN) (HA2-AtCYN vaccine) was evaluated in 2-weeks-old chickens. Depending on the route of administration, the HA2-AtCYN vaccine was shown to induce various levels of HA2-specific IgA in tears as well as serum IgG, which were associated with partial protection of chickens against tracheal shedding of a low pathogenicity H5N2 challenge virus. Furthermore, intranasal administration with a combination of HA2-AtCYN and M2eP vaccines resulted in enhanced protection compared to each vaccine alone. Simultaneous intranasal administration of the vaccines did not interfere with secretory IgA induction by each vaccine. Additionally, significantly higher M2eP-specific proliferative responses were observed in peripheral blood mononuclear cells of all M2eP-vaccinated groups when compared with the mock-vaccinated group. Although tripling the number of M2e copies did not enhance the protective efficacy of the chimeric vaccine, it significantly reduced immunodominance of P-particle epitopes without affecting the robustness of M2e-specific immune responses. Taken together, our data suggests that mucosal immunization of chickens with combinations of mechanistically different cross-subtype-conserved vaccines has the potential to enhance the protective efficacy against influenza virus challenge.
Collapse
Affiliation(s)
- Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Hyesun Jang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mahesh Kc
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael C Abundo
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Renukaradhya Gourapura
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA; Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Sączyńska V, Romanik-Chruścielewska A, Florys K, Cecuda-Adamczewska V, Łukasiewicz N, Sokołowska I, Kęsik-Brodacka M, Płucienniczak G. Prime-Boost Vaccination With a Novel Hemagglutinin Protein Produced in Bacteria Induces Neutralizing Antibody Responses Against H5-Subtype Influenza Viruses in Commercial Chickens. Front Immunol 2019; 10:2006. [PMID: 31552018 PMCID: PMC6736996 DOI: 10.3389/fimmu.2019.02006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
The highly pathogenic (HP) avian influenza virus (AIV), H5N1 and reassortant H5-subtype HPAIVs, H5N2, H5N6, and H5N8, cause high mortality in domestic birds, resulting in economic losses in the poultry industry. H5N1 and H5N6 also pose significant public health risks and H5N1 viruses are a permanent pandemic threat. To control HPAIVs, eukaryotic expression systems have traditionally been exploited to produce vaccines based on hemagglutinin (HA), a protective viral antigen. In contrast, we used a bacterial expression system to produce vaccine targeting the HA protein. A fragment of the HA ectodomain from H5N1, with a multibasic cleavage site deletion, was expressed in Escherichia coli, refolded, and chromatographically purified from inclusion bodies. The resulting antigen, rH5-E. coli, was validated in terms of conformational integrity and oligomerization status. Previously, the protective efficacy of rH5-E. coli adjuvanted with aluminum hydroxide, has been positively verified by challenging the specific pathogen-free layer chickens with homologous and heterologous H5N1 HPAIVs. Protection was provided primarily by the H5 subtype-specific antibodies, as detected in the FluAC H5 test. The present studies were conducted to assess the performance of alum-adjuvanted rH5-E. coli in commercial birds. Broiler chickens were vaccinated twice with 25 μg of rH5-E. coli at 2- and 4-week intervals, while the layer chickens were vaccinated with 5- to 25-μg antigen doses at 4- and 6-week intervals. Post-vaccination sera were analyzed for anti-H5 HA antibodies, using homologous ELISA and heterologous FluAC H5 and hemagglutination inhibition (HI) tests. Prime-boost immunizations with rH5-E. coli elicited H5 HA-specific antibodies in all the chickens tested. Two antigen doses administered at 4- or 6-week intervals were sufficient to induce neutralizing antibodies against H5-subtype HAs; however, they were ineffective when applied with a 2-week delay. In the layers, 80% to 100% of individuals developed antibodies that were active in the FluAC H5 and/or HI tests. A dose-sparing effect was seen when using the longer prime-boost interval. In the broiler chickens, 62.5% positivity was achieved in the FluAC H5 and/or HI tests. The trials confirmed the vaccine potential of rH5-E. coli and provided indications for anti-influenza vaccination with respect to the chicken type and immunization scheme.
Collapse
Affiliation(s)
- Violetta Sączyńska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Katarzyna Florys
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Natalia Łukasiewicz
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | - Iwona Sokołowska
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| | | | - Grażyna Płucienniczak
- ŁUKASIEWICZ Research Network-Institute of Biotechnology and Antibiotics, Warsaw, Poland
| |
Collapse
|
16
|
Dai M, Xu C, Chen W, Liao M. Progress on chicken T cell immunity to viruses. Cell Mol Life Sci 2019; 76:2779-2788. [PMID: 31101935 PMCID: PMC11105491 DOI: 10.1007/s00018-019-03117-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/14/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
Avian virus infection remains one of the most important threats to the poultry industry. Pathogens such as avian influenza virus (AIV), avian infectious bronchitis virus (IBV), and infectious bursal disease virus (IBDV) are normally controlled by antibodies specific for surface proteins and cellular immune responses. However, standard vaccines aimed at inducing neutralizing antibodies must be administered annually and can be rendered ineffective because immune-selective pressure results in the continuous mutation of viral surface proteins of different strains circulating from year to year. Chicken T cells have been shown to play a crucial role in fighting virus infection, offering lasting and cross-strain protection, and offer the potential for developing universal vaccines. This review provides an overview of our current knowledge of chicken T cell immunity to viruses. More importantly, we point out the limitations and barriers of current research and a potential direction for future studies.
Collapse
Affiliation(s)
- Manman Dai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China
| | - Weisan Chen
- T Cell Lab, Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, Australia.
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, People's Republic of China.
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, People's Republic of China.
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, People's Republic of China.
| |
Collapse
|
17
|
Ladman BS, Gelb J, Sauble LA, Murphy MV, Spackman E. Protection afforded by avian influenza vaccination programmes consisting of a novel RNA particle and an inactivated avian influenza vaccine against a highly pathogenic avian influenza virus challenge in layer chickens up to 18 weeks post-vaccination. Avian Pathol 2019; 48:371-381. [PMID: 30961360 DOI: 10.1080/03079457.2019.1605148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The efficacies of an oil adjuvanted-inactivated reverse genetics-derived H5 avian influenza virus (AIV) vaccine and an alphavirus replicon RNA particle (RP) AIV vaccine were evaluated in commercial Leghorn chickens. Challenge utilized A/turkey/MN/12582/2015, an isolate representing the U.S. H5N2 Clade 2.3.4.4 responsible for the 2015 highly pathogenic avian influenza (HPAI) epornitic in commercial poultry the United States. As part of a long-term, 36-week study, chickens were challenged at seven weeks of age after receiving a single vaccination, at 18 weeks of age following a vaccine prime-single boost, and at 36 weeks of age after a prime- double-boost. All vaccine programmes reduced virus oropharyngeal and cloacal shedding and mortality compared to the non-vaccinated control birds; however, chickens receiving at least one administration of the RP vaccine generally had diminished viral shedding especially from the cloacal swabbings. A detectable serum antibody response and protection were observed through 18 weeks post-vaccination. Our data suggest that, in conjunction with a comprehensive eradication, enhanced biosecurity and controlled marketing plan, vaccination programmes of commercial layer chickens with novel RP vaccines may represent an important tool for preventing HPAI-related mortalities and decreasing viral load during a catastrophic influenza outbreak. RESEARCH HIGHLIGHTS Immunization of poultry following a vaccination schedule consisting of inactivated and RNA particle vaccines offered significant protection against lethal disease following HPAIV challenge. Virus shedding was significantly (P < 0.05) reduced in chickens vaccinated with either inactivated and/or recombinant vaccines. Serum antibody titres were not a reliable indicator of protection. An inactivated vaccine containing 384 HAU of the homologous antigen was unable to induce complete protection.
Collapse
Affiliation(s)
- Brian S Ladman
- a Department of Animal and Food Sciences, Avian Biosciences Center , University of Delaware , Newark , DE , USA
| | - Jack Gelb
- a Department of Animal and Food Sciences, Avian Biosciences Center , University of Delaware , Newark , DE , USA
| | - Lauren A Sauble
- a Department of Animal and Food Sciences, Avian Biosciences Center , University of Delaware , Newark , DE , USA
| | - Marcella V Murphy
- a Department of Animal and Food Sciences, Avian Biosciences Center , University of Delaware , Newark , DE , USA
| | - Erica Spackman
- b Southeast Poultry Research Laboratory, US National Poultry Research Center , U.S. Department of Agriculture, Agricultural Research Service (ARS) , Athens , GA , USA
| |
Collapse
|
18
|
Innovation in Newcastle Disease Virus Vectored Avian Influenza Vaccines. Viruses 2019; 11:v11030300. [PMID: 30917500 PMCID: PMC6466292 DOI: 10.3390/v11030300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/12/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) and Newcastle disease are economically important avian diseases worldwide. Effective vaccination is critical to control these diseases in poultry. Live attenuated Newcastle disease virus (NDV) vectored vaccines have been developed for bivalent vaccination against HPAI viruses and NDV. These vaccines have been generated by inserting the hemagglutinin (HA) gene of avian influenza virus into NDV genomes. In laboratory settings, several experimental NDV-vectored vaccines have protected specific pathogen-free chickens from mortality, clinical signs, and virus shedding against H5 and H7 HPAI viruses and NDV challenges. NDV-vectored H5 vaccines have been licensed for poultry vaccination in China and Mexico. Recently, an antigenically chimeric NDV vector has been generated to overcome pre-existing immunity to NDV in poultry and to provide early protection of poultry in the field. Prime immunization of one-day-old poults with a chimeric NDV vector followed by boosting with a conventional NDV vector has shown to protect broiler chickens against H5 HPAI viruses and a highly virulent NDV. This novel vaccination approach can provide efficient control of HPAI viruses in the field and facilitate poultry vaccination.
Collapse
|
19
|
Huyvaert KP, Russell RE, Patyk KA, Craft ME, Cross PC, Garner MG, Martin MK, Nol P, Walsh DP. Challenges and Opportunities Developing Mathematical Models of Shared Pathogens of Domestic and Wild Animals. Vet Sci 2018; 5:E92. [PMID: 30380736 PMCID: PMC6313884 DOI: 10.3390/vetsci5040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023] Open
Abstract
Diseases that affect both wild and domestic animals can be particularly difficult to prevent, predict, mitigate, and control. Such multi-host diseases can have devastating economic impacts on domestic animal producers and can present significant challenges to wildlife populations, particularly for populations of conservation concern. Few mathematical models exist that capture the complexities of these multi-host pathogens, yet the development of such models would allow us to estimate and compare the potential effectiveness of management actions for mitigating or suppressing disease in wildlife and/or livestock host populations. We conducted a workshop in March 2014 to identify the challenges associated with developing models of pathogen transmission across the wildlife-livestock interface. The development of mathematical models of pathogen transmission at this interface is hampered by the difficulties associated with describing the host-pathogen systems, including: (1) the identity of wildlife hosts, their distributions, and movement patterns; (2) the pathogen transmission pathways between wildlife and domestic animals; (3) the effects of the disease and concomitant mitigation efforts on wild and domestic animal populations; and (4) barriers to communication between sectors. To promote the development of mathematical models of transmission at this interface, we recommend further integration of modern quantitative techniques and improvement of communication among wildlife biologists, mathematical modelers, veterinary medicine professionals, producers, and other stakeholders concerned with the consequences of pathogen transmission at this important, yet poorly understood, interface.
Collapse
Affiliation(s)
- Kathryn P Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Robin E Russell
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA.
| | - Kelly A Patyk
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO 80526, USA.
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA.
| | - M Graeme Garner
- European Commission for the Control of Foot-and-Mouth Disease-Food and Agriculture Organization of the United Nations, 00153 Roma RM, Italy.
| | - Michael K Martin
- Livestock Poultry Health Division, Clemson University, Columbia, SC 29224, USA.
| | - Pauline Nol
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Animal and Plant Health Inspection Service, Fort Collins, CO 80526, USA.
| | - Daniel P Walsh
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA.
| |
Collapse
|
20
|
Creating Disease Resistant Chickens: A Viable Solution to Avian Influenza? Viruses 2018; 10:v10100561. [PMID: 30326625 PMCID: PMC6213529 DOI: 10.3390/v10100561] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) represents an ongoing threat to human and animal health worldwide. The generation of IAV-resistant chickens through genetic modification and/or selective breeding may help prevent viral spread. The feasibility of creating genetically modified birds has already been demonstrated with the insertion of transgenes that target IAV into the genomes of chickens. This approach has been met with some success in minimising the spread of IAV but has limitations in terms of its ability to prevent the emergence of disease. An alternate approach is the use of genetic engineering to improve host resistance by targeting the antiviral immune responses of poultry to IAV. Harnessing such resistance mechanisms in a “genetic restoration” approach may hold the greatest promise yet for generating disease resistant chickens. Continuing to identify genes associated with natural resistance in poultry provides the opportunity to identify new targets for genetic modification and/or selective breeding. However, as with any new technology, economic, societal, and legislative barriers will need to be overcome before we are likely to see commercialisation of genetically modified birds.
Collapse
|
21
|
Bertran K, Lee DH, Criado MF, Balzli CL, Killmaster LF, Kapczynski DR, Swayne DE. Maternal antibody inhibition of recombinant Newcastle disease virus vectored vaccine in a primary or booster avian influenza vaccination program of broiler chickens. Vaccine 2018; 36:6361-6372. [PMID: 30241684 DOI: 10.1016/j.vaccine.2018.09.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/24/2022]
Abstract
Maternally-derived antibodies (MDA) provide early protection from disease, but may interfere with active immunity in young chicks. In highly pathogenic avian influenza virus (HPAIV)-enzootic countries, broiler chickens typically have MDA to Newcastle disease virus (NDV) and H5 HPAIV, and their impact on active immunity from recombinant vectored vaccines is unclear. We assessed the effectiveness of a spray-applied recombinant NDV vaccine with H5 AIV insert (rNDV-H5) and a recombinant turkey herpesvirus (HVT) vaccine with H5 AIV insert (rHVT-H5) in commercial broilers with MDA to NDV alone (MDA:AIV-NDV+) or to NDV plus AIV (MDA:AIV+NDV+) to provide protection against homologous HPAIV challenge. In Experiment 1, chicks were spray-vaccinated with rNDV-H5 at 3 weeks (3w) and challenged at 5 weeks (5w). All sham-vaccinated progeny lacked AIV antibodies and died following challenge. In rNDV-H5 vaccine groups, AIV and NDV MDA had completely declined to non-detectable levels by vaccination, enabling rNDV-H5 spray vaccine to elicit a protective AIV antibody response by 5w, with 70-78% survival and significant reduction of virus shedding compared to shams. In Experiment 2, progeny were vaccinated with rHVT-H5 and rNDV-H5 at 1 day (1d) or 3w and challenged at 5w. All sham-vaccinated progeny lacked AIV antibodies and died following challenge. In rHVT-H5(1d) vaccine groups, irrespective of rNDV-H5(3w) boost, AIV antibodies reached protective levels pre-challenge, as all progeny survived and virus shedding significantly decreased compared to shams. In contrast, rNDV-H5-vaccinated progeny had AIV and/or NDV MDA at the time of vaccination (1d and/or 3w) and failed to develop a protective immune response by 5w, resulting in 100% mortality after challenge. Our results demonstrate that MDA to AIV had minimal impact on the effectiveness of rHVT-H5, but MDA to AIV and/or NDV at the time of vaccination can prevent development of protective immunity from a primary or booster rNDV-H5 vaccine.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, 30605 Athens, GA, USA.
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, 30605 Athens, GA, USA.
| | - Miria F Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, 30605 Athens, GA, USA.
| | - Charles L Balzli
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, 30605 Athens, GA, USA.
| | - Lindsay F Killmaster
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, 30605 Athens, GA, USA.
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, 30605 Athens, GA, USA.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Rd, 30605 Athens, GA, USA.
| |
Collapse
|
22
|
Rajão DS, Pérez DR. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front Microbiol 2018; 9:123. [PMID: 29467737 PMCID: PMC5808216 DOI: 10.3389/fmicb.2018.00123] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches.
Collapse
Affiliation(s)
- Daniela S. Rajão
- Department of Population Health, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
23
|
Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res 2018; 7:1-15. [PMID: 29399575 PMCID: PMC5795040 DOI: 10.7774/cevr.2018.7.1.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/28/2022] Open
Abstract
Influenza A viruses (IAVs) are genetically diverse and variable pathogens that share various hosts including human, swine, and domestic poultry. Interspecies and intercontinental viral spreads make the ecology of IAV more complex. Beside endemic IAV infections, human has been exposed to pandemic and zoonotic threats from avian and swine influenza viruses. Animal health also has been threatened by high pathogenic avian influenza viruses (in domestic poultry) and reverse zoonosis (in swine). Considering its dynamic interplay between species, prevention and control against IAV should be conducted effectively in both humans and animal sectors. Vaccination is one of the most efficient tools against IAV. Numerous vaccines against animal IAVs have been developed by a variety of vaccine technologies and some of them are currently commercially available. We summarize several challenges in control of IAVs faced by human and animals and discuss IAV vaccines for animal use with those application in susceptible populations.
Collapse
Affiliation(s)
- Sung J. Yoo
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Taeyong Kwon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Young S. Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
24
|
Kapczynski DR, Sylte MJ, Killian ML, Torchetti MK, Chrzastek K, Suarez DL. Protection of commercial turkeys following inactivated or recombinant H5 vaccine application against the 2015U.S. H5N2 clade 2.3.4.4 highly pathogenic avian influenza virus. Vet Immunol Immunopathol 2017; 191:74-79. [PMID: 28895870 DOI: 10.1016/j.vetimm.2017.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
Abstract
Between December 2014 and June 2015, North America experienced the largest recorded foreign animal disease outbreak with over 47 million poultry dead or euthanized from viral exposure to a clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) epizootic. Soon after the epizootic began, the U.S. Department of Agriculture (USDA) began testing the efficacy of different vaccines as a possible future control strategy. The aim of these studies were to evaluate the efficacy three H5 vaccines to aid in control of HPAI in commercial turkeys. Three different vaccine technologies were evaluated for efficacy: 1) inactivated reverse genetic laboratory-generated virus encoding a clade 2.3.4.4 H5 hemagglutinin (HA) gene (rgH5), 2) recombinant turkey herpesvirus encoding a clade 2.2. H5 HA (rHVT-AI), and 3) recombinant replication-deficient alphavirus RNA particle vaccine encoding a clade 2.3.4.4 H5 HA (RP-H5). All vaccines tested significantly (P<0.01) increased survival rates between vaccinated and sham vaccinated groups of poults challenged with A/turkey/Minnesota/12582/2015 clade 2.3.4.4 H5N2 HPAI. The rgH5 vaccine had detectable serum hemagglutination inhibition (HI) antibody against the challenge virus, and significantly reduced the frequency and level of viral shedding from oropharyngeal and cloacal swabs at days 2 and 4 post-challenge. Vaccination with only rHVT-AI or RP-H5 was not 100% protective, and failed to significantly reduce viral shedding post-challenge. A combined prime and boost strategy with the rHVT-AI and RP-H5, or rHVT-AI and rgH5, was 100% protective against lethal H5N2 HPAI challenge. Results of these studies led to USDA conditional approval of commercially available recombinant vaccines for use in turkeys as a control measure for clade 2.3.4.4 H5 HPAI epizootics.
Collapse
Affiliation(s)
- Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA, 30605, United States.
| | - Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, 1920 Dayton Avenue, Ames, IA, 50010, United States
| | - Mary L Killian
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA 50010, United States
| | - Mia K Torchetti
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA 50010, United States
| | - Klaudia Chrzastek
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA, 30605, United States
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA, 30605, United States
| |
Collapse
|
25
|
Kim SH, Samal SK. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses. Vaccine 2017; 35:4133-4139. [PMID: 28668574 DOI: 10.1016/j.vaccine.2017.06.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/07/2017] [Accepted: 06/15/2017] [Indexed: 11/24/2022]
Abstract
Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| |
Collapse
|
26
|
Bertran K, Balzli C, Lee DH, Suarez DL, Kapczynski DR, Swayne DE. Protection of White Leghorn chickens by U.S. emergency H5 vaccination against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus. Vaccine 2017; 35:6336-6344. [PMID: 28554502 DOI: 10.1016/j.vaccine.2017.05.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/01/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses with devastating consequences for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or currently licensed technologies, were evaluated for possible use: an inactivated reverse genetics H5N1 vaccine (rgH5N1) and an RNA particle vaccine (RP-H5), both containing the hemagglutinin gene of clade 2.3.4.4 strain, and a recombinant herpesvirus turkey vectored vaccine (rHVT-H5) containing the hemagglutinin gene of clade 2.2 strain. The efficacy of the three vaccines, alone or in combination, was assessed in White Leghorn chickens against clade 2.3.4.4 H5N2 HPAI virus challenge. In Study 1, single (rHVT-H5) and prime-boost (rHVT-H5+rgH5N1 or rHVT-H5+RP-H5) vaccination strategies protected chickens with high levels of protective immunity and significantly reduced virus shedding. In Study 2, single vaccination with either rgH5N1 or RP-H5 vaccines provided clinical protection in adult chickens and significantly reduced virus shedding. In Study 3, double rgH5N1 vaccination protected adult chickens from clinical signs and mortality when challenged 20weeks post-boost, with high levels of long-lasting protective immunity and significantly reduced virus shedding. These studies support the use of genetically related vaccines, possibly in combination with a broad protective priming vaccine, for emergency vaccination programs against clade 2.3.4.4 H5Nx HPAI virus in young and adult layer chickens.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Charles Balzli
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Dong-Hun Lee
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - David L Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934, College Station Rd, Athens, GA 30605, United States.
| |
Collapse
|
27
|
Kim SH, Paldurai A, Samal SK. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus. Virology 2017; 503:31-36. [PMID: 28110247 DOI: 10.1016/j.virol.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
28
|
Wibowo N, Wu Y, Fan Y, Meers J, Lua LH, Middelberg AP. Non-chromatographic preparation of a bacterially produced single-shot modular virus-like particle capsomere vaccine for avian influenza. Vaccine 2015; 33:5960-5. [DOI: 10.1016/j.vaccine.2015.08.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/24/2015] [Indexed: 11/26/2022]
|