1
|
Kida M, Abe J, Hori H, Hirai Y. PRSS3/mesotrypsin as a putative regulator of the biophysical characteristics of epidermal keratinocytes in superficial layers. Sci Rep 2024; 14:12383. [PMID: 38811772 PMCID: PMC11137022 DOI: 10.1038/s41598-024-63271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Mesotrypsin, encoded by the PRSS3 gene, is a distinctive trypsin isoform renowned for its exceptional resistance to traditional trypsin inhibitors and unique substrate specificity. Within the skin epidermis, this protein primarily expresses in the upper layers of the stratified epidermis and plays a crucial role in processing pro-filaggrin (Pro-FLG). Although prior studies have partially elucidated its functions using primary cultured keratinocytes, challenges persist due to these cells' differentiation-activated cell death program. In the present study, HaCaT keratinocytes, characterized by minimal endogenous mesotrypsin expression and sustained proliferation in differentiated states, were utilized to further scrutinize the function of mesotrypsin. Despite the ready degradation of the intact form of active mesotrypsin in these cells, fusion with Venus, flanked by a peptide linker, enables evasion from the protein elimination machinery, thus facilitating activation of the Pro-FLG processing system. Inducing Venus-mesotrypsin expression in the cells resulted in a flattened phenotype and reduced proliferative capacity. Moreover, these cells displayed altered F-actin assembly, enhanced E-cadherin adhesive activity, and facilitated tight junction formation without overtly influencing epidermal differentiation. These findings underscore mesotrypsin's potentially pivotal role in shaping the characteristic cellular morphology of upper epidermal layers.
Collapse
Affiliation(s)
- Moeko Kida
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Junya Abe
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Haruna Hori
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan
| | - Yohei Hirai
- Department of Biomedical Sciences, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, 669-1330, Japan.
| |
Collapse
|
2
|
Ogorodnik E, Karsai A, Liu YX, Di Lucente J, Huang Y, Keel T, Haudenschild DR, Jin LW, Liu GY. Mechanical Cues for Triggering and Regulating Cellular Movement Selectively at the Single-Cell Level. J Phys Chem B 2023; 127:866-873. [PMID: 36652348 DOI: 10.1021/acs.jpcb.2c06461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell motility plays important roles in many biophysical and physiological processes ranging from in vitro biomechanics, wound healing, to cancer metastasis. This work introduces a new means to trigger and regulate motility individually using transient mechanical stimulus applied to designated cells. Using BV2 microglial cells, our investigations indicate that motility can be reproducibly and reliably initiated using mechanical compression of the cells. The location and magnitude of the applied force impact the movement of the cell. Based on observations from this investigation and current knowledge of BV2 cellular motility, new physical insights are revealed into the underlying mechanism of force-induced single cellular movement. The process involves high degrees of myosin activation to repair actin cortex breakages induced by the initial mechanical compression, which leads to focal adhesion degradation, lamellipodium detachment, and finally, cell polarization and movement. Modern technology enables accurate control over force magnitude and location of force delivery, thus bringing us closer to programming cellular movement at the single-cell level. This approach is of generic importance to other cell types beyond BV2 cells and has the intrinsic advantages of being transient, non-toxic, and non-destructive, thus exhibiting high translational potentials including mechano-based therapy.
Collapse
Affiliation(s)
- Evgeny Ogorodnik
- Biophysics Graduate Group, University of California, Davis, California 95616, United States
| | - Arpad Karsai
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ying X Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Jacopo Di Lucente
- M.I.N.D. Institute, Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California 95817, United States
| | - Yuqi Huang
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Terell Keel
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Dominik R Haudenschild
- Department of Orthopedic Surgery, University of California Davis School of Medicine, Sacramento, California 95817, United States
| | - Lee-Way Jin
- M.I.N.D. Institute, Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, California 95817, United States
| | - Gang-Yu Liu
- Biophysics Graduate Group, University of California, Davis, California 95616, United States.,Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
3
|
Yang N, Zhang Y, Su C, Zhu C, Jia J, Nishinari K. The effect of sodium alginate on the nanomechanical properties and interaction between oil body droplets studied using atomic force microscopy. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
5
|
Li Y, Tang W, Guo M. The Cell as Matter: Connecting Molecular Biology to Cellular Functions. MATTER 2021; 4:1863-1891. [PMID: 35495565 PMCID: PMC9053450 DOI: 10.1016/j.matt.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viewing cell as matter to understand the intracellular biomolecular processes and multicellular tissue behavior represents an emerging research area at the interface of physics and biology. Cellular material displays various physical and mechanical properties, which can strongly affect both intracellular and multicellular biological events. This review provides a summary of how cells, as matter, connect molecular biology to cellular and multicellular scale functions. As an impact in molecular biology, we review recent progresses in utilizing cellular material properties to direct cell fate decisions in the communities of immune cells, neurons, stem cells, and cancer cells. Finally, we provide an outlook on how to integrate cellular material properties in developing biophysical methods for engineered living systems, regenerative medicine, and disease treatments.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wenhui Tang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Évora AS, Adams MJ, Johnson SA, Zhang Z. Corneocytes: Relationship between Structural and Biomechanical Properties. Skin Pharmacol Physiol 2021; 34:146-161. [PMID: 33780956 DOI: 10.1159/000513054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Skin is the interface between an organism and the external environment, and hence the stratum corneum (SC) is the first to withstand mechanical insults that, in certain conditions, may lead to integrity loss and the development of pressure ulcers. The SC comprises corneocytes, which are vital elements to its barrier function. These cells are differentiated dead keratinocytes, without organelles, composed of a cornified envelope and a keratin-filled interior, and connected by corneodesmosomes (CDs). SUMMARY The current review focusses on the relationship between the morphological, structural, and topographical features of corneocytes and their mechanical properties, to understand how they assist the SC in maintaining skin integrity and in responding to mechanical insults. Key Messages: Corneocytes create distinct regions in the SC: the inner SC is characterized by immature cells with a fragile cornified envelope and a uniform distribution of CDs; the upper SC has resilient cornified envelopes and a honeycomb distribution of CDs, with a greater surface area and a smaller thickness than cells from the inner layer. The literature indicates that this upward maturation process is one of the most important steps in the mechanical resistance and barrier function of the SC. The morphology of these cells is dependent on the body site: the surface area in non-exposed skin is about 1,000-1,200 μm2, while for exposed skin, for example, the cheek and forehead, is about 700-800 μm2. Corneocytes are stiff cells compared to other cellular types, for example, the Young's modulus of muscle and fibroblast cells is typically a few kPa, while that of corneocytes is reported to be about hundreds of MPa. Moreover, these skin cells have 2 distinct mechanical regions: the cornified envelope (100-250 MPa) and the keratin matrix (250-500 MPa).
Collapse
Affiliation(s)
- Ana S Évora
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Michael J Adams
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Simon A Johnson
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Zemljič Jokhadar Š, Stojković B, Vidak M, Sorčan T, Liovic M, Gouveia M, Travasso RDM, Derganc J. Cortical stiffness of keratinocytes measured by lateral indentation with optical tweezers. PLoS One 2021; 15:e0231606. [PMID: 33382707 PMCID: PMC7774922 DOI: 10.1371/journal.pone.0231606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/04/2020] [Indexed: 01/20/2023] Open
Abstract
Keratin intermediate filaments are the principal structural element of epithelial cells. Their importance in providing bulk cellular stiffness is well recognized, but their role in the mechanics of cell cortex is less understood. In this study, we therefore compared the cortical stiffness of three keratinocyte lines: primary wild type cells (NHEK2), immortalized wild type cells (NEB1) and immortalized mutant cells (KEB7). The cortical stiffness was measured by lateral indentation of cells with AOD-steered optical tweezers without employing any moving mechanical elements. The method was validated on fixed cells and Cytochalasin-D treated cells to ensure that the observed variations in stiffness within a single cell line were not a consequence of low measurement precision. The measurements of the cortical stiffness showed that primary wild type cells were significantly stiffer than immortalized wild type cells, which was also detected in previous studies of bulk elasticity. In addition, a small difference between the mutant and the wild type cells was detected, showing that mutation of keratin impacts also the cell cortex. Thus, our results indicate that the role of keratins in cortical stiffness is not negligible and call for further investigation of the mechanical interactions between keratins and elements of the cell cortex.
Collapse
Affiliation(s)
- Špela Zemljič Jokhadar
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Biljana Stojković
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Vidak
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Sorčan
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marcos Gouveia
- Department of Physics, Centro de Física da Universidade de Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
| | - Rui D. M. Travasso
- Department of Physics, Centro de Física da Universidade de Coimbra (CFisUC), University of Coimbra, Coimbra, Portugal
| | - Jure Derganc
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
8
|
Brill-Karniely Y. Mechanical Measurements of Cells Using AFM: 3D or 2D Physics? Front Bioeng Biotechnol 2020; 8:605153. [PMID: 33330437 PMCID: PMC7731794 DOI: 10.3389/fbioe.2020.605153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yifat Brill-Karniely
- Faculty of Medicine, The School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Ying Y, Lu L, Banerjee S, Xu L, Zhao Q, Wu H, Li R, Xu X, Yu H, Neculai D, Xi Y, Yang F, Qin J, Li C. KVarPredDB: a database for predicting pathogenicity of missense sequence variants of keratin genes associated with genodermatoses. Hum Genomics 2020; 14:45. [PMID: 33287903 PMCID: PMC7720490 DOI: 10.1186/s40246-020-00295-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Germline variants of ten keratin genes (K1, K2, K5, K6A, K6B, K9, K10, K14, K16, and K17) have been reported for causing different types of genodermatoses with an autosomal dominant mode of inheritance. Among all the variants of these ten keratin genes, most of them are missense variants. Unlike pathogenic and likely pathogenic variants, understanding the clinical importance of novel missense variants or variants of uncertain significance (VUS) is the biggest challenge for clinicians or medical geneticists. Functional characterization is the only way to understand the clinical association of novel missense variants or VUS but it is time consuming, costly, and depends on the availability of patient’s samples. Existing databases report the pathogenic variants of the keratin genes, but never emphasize the systematic effects of these variants on keratin protein structure and genotype-phenotype correlation. Results To address this need, we developed a comprehensive database KVarPredDB, which contains information of all ten keratin genes associated with genodermatoses. We integrated and curated 400 reported pathogenic missense variants as well as 4629 missense VUS. KVarPredDB predicts the pathogenicity of novel missense variants as well as to understand the severity of disease phenotype, based on four criteria; firstly, the difference in physico-chemical properties between the wild type and substituted amino acids; secondly, the loss of inter/intra-chain interactions; thirdly, evolutionary conservation of the wild type amino acids and lastly, the effect of the substituted amino acids in the heptad repeat. Molecular docking simulations based on resolved crystal structures were adopted to predict stability changes and get the binding energy to compare the wild type protein with the mutated one. We use this basic information to determine the structural and functional impact of novel missense variants on the keratin coiled-coil heterodimer. KVarPredDB was built under the integrative web application development framework SSM (SpringBoot, Spring MVC, MyBatis) and implemented in Java, Bootstrap, React-mutation-mapper, MySQL, Tomcat. The website can be accessed through http://bioinfo.zju.edu.cn/KVarPredDB. The genomic variants and analysis results are freely available under the Creative Commons license. Conclusions KVarPredDB provides an intuitive and user-friendly interface with computational analytical investigation for each missense variant of the keratin genes associated with genodermatoses.
Collapse
Affiliation(s)
- Yuyi Ying
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Lu
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, China
| | - Lizhen Xu
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Zhao
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Li
- Chu Kochen Honors College, Undergraduate School of Zhejiang University, Hangzhou, China
| | - Xiao Xu
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Yu
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Dante Neculai
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongmei Xi
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Yang
- Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiale Qin
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chen Li
- Department of Human Genetics, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Roig-Rosello E, Rousselle P. The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules 2020; 10:E1607. [PMID: 33260936 PMCID: PMC7760980 DOI: 10.3390/biom10121607] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
One of the most important functions of skin is to act as a protective barrier. To fulfill this role, the structural integrity of the skin depends on the dermal-epidermal junction-a complex network of extracellular matrix macromolecules that connect the outer epidermal layer to the underlying dermis. This junction provides both a structural support to keratinocytes and a specific niche that mediates signals influencing their behavior. It displays a distinctive microarchitecture characterized by an undulating pattern, strengthening dermal-epidermal connectivity and crosstalk. The optimal stiffness arising from the overall molecular organization, together with characteristic anchoring complexes, keeps the dermis and epidermis layers extremely well connected and capable of proper epidermal renewal and regeneration. Due to intrinsic and extrinsic factors, a large number of structural and biological changes accompany skin aging. These changes progressively weaken the dermal-epidermal junction substructure and affect its functions, contributing to the gradual decline in overall skin physiology. Most changes involve reduced turnover or altered enzymatic or non-enzymatic post-translational modifications, compromising the mechanical properties of matrix components and cells. This review combines recent and older data on organization of the dermal-epidermal junction, its mechanical properties and role in mechanotransduction, its involvement in regeneration, and its fate during the aging process.
Collapse
Affiliation(s)
- Eva Roig-Rosello
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
- Roger Gallet SAS, 4 rue Euler, 75008 Paris, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, 69367 Lyon, France;
| |
Collapse
|
11
|
Yang N, Su C, Zhang Y, Jia J, Leheny RL, Nishinari K, Fang Y, Phillips GO. In situ nanomechanical properties of natural oil bodies studied using atomic force microscopy. J Colloid Interface Sci 2020; 570:362-374. [PMID: 32182477 DOI: 10.1016/j.jcis.2020.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
Natural oil bodies (OBs) from plant organs represent an important category of functional ingredients and materials in a variety of industrial sectors. Their applications are closely related to the membrane mechanical properties on a single droplet level, which remain difficult to determine. In this research, the mechanical properties of the membranes of OBs from soybean, sesame, and peanut were investigated in-situ by atomic force microscopy (AFM). Different regions of the force-deformation curves obtained during compression were analyzed to extract the stiffness Kb or Young's modulus of the OB membranes using Hooke's law, Reissner theory, and the elastic membrane theory. At higher strains (ε = 0.15-0.20), the elastic membrane theory breaks down. We propose an extension of the theory that includes a contribution to the force from interfacial tension based on the Gibbs energy, allowing effective determination of Young's modulus and interfacial tension of the OB membranes in the water environment simultaneously. The mechanical properties of the OBs of different sizes and species, as well as a comparison with other phospholipid membrane materials, are discussed and related to their membrane compositions and structures. It was found that the natural OBs are soft droplets but do not rupture and can fully recover following compressive strains as large as 0.3. The OBs with higher protein/oil ratio, have smaller size and stronger mechanical properties, and thus are more stable. The low interfacial tension due to the existence of phospholipid-protein membrane also contributes to the stability of the OBs. This is the first report measuring the mechanical properties of OB membranes in-situ directly.
Collapse
Affiliation(s)
- Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Chunxia Su
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yuemei Zhang
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Junji Jia
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Glyn O Phillips
- Glyn O. Phillips Hydrocolloid Research Centre, 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
12
|
Griffith CM, Huang SA, Cho C, Khare TM, Rich M, Lee GH, Ligler FS, Diekman BO, Polacheck WJ. Microfluidics for the study of mechanotransduction. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:224004. [PMID: 33840837 PMCID: PMC8034607 DOI: 10.1088/1361-6463/ab78d4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and in vitro cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells. These devices and systems have proven to be powerful for uncovering and defining mechanisms of mechanotransduction. In this review, we first give an overview of the main mechanotransduction pathways that function at sites of cell adhesion, many of which have been investigated with microfluidics. We then discuss how distinct microfluidic fabrication methods can be harnessed to gain biological insight, with description of both monolithic and replica molding approaches. Finally, we present examples of how microfluidics can be used to apply both solid forces (substrate mechanics, strain, and compression) and fluid forces (luminal, interstitial) to cells. Throughout the review, we emphasize the advantages and disadvantages of different fabrication methods and applications of force in order to provide perspective to investigators looking to apply forces to cells in their own research.
Collapse
Affiliation(s)
- Christian M Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Tanmay M Khare
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC
| | - Matthew Rich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Gi-Hun Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
| | - Brian O Diekman
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
- Cancer Cell Biology Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| |
Collapse
|
13
|
Keratin intermediate filaments: intermediaries of epithelial cell migration. Essays Biochem 2020; 63:521-533. [PMID: 31652439 DOI: 10.1042/ebc20190017] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Migration of epithelial cells is fundamental to multiple developmental processes, epithelial tissue morphogenesis and maintenance, wound healing and metastasis. While migrating epithelial cells utilize the basic acto-myosin based machinery as do other non-epithelial cells, they are distinguished by their copious keratin intermediate filament (KF) cytoskeleton, which comprises differentially expressed members of two large multigene families and presents highly complex patterns of post-translational modification. We will discuss how the unique mechanophysical and biochemical properties conferred by the different keratin isotypes and their modifications serve as finely tunable modulators of epithelial cell migration. We will furthermore argue that KFs together with their associated desmosomal cell-cell junctions and hemidesmosomal cell-extracellular matrix (ECM) adhesions serve as important counterbalances to the contractile acto-myosin apparatus either allowing and optimizing directed cell migration or preventing it. The differential keratin expression in leaders and followers of collectively migrating epithelial cell sheets provides a compelling example of isotype-specific keratin functions. Taken together, we conclude that the expression levels and specific combination of keratins impinge on cell migration by conferring biomechanical properties on any given epithelial cell affecting cytoplasmic viscoelasticity and adhesion to neighboring cells and the ECM.
Collapse
|
14
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
15
|
Gosenca Matjaž M, Škarabot M, Gašperlin M, Janković B. Lamellar liquid crystals maintain keratinocytes' membrane fluidity: An AFM qualitative and quantitative study. Int J Pharm 2019; 572:118712. [PMID: 31593808 DOI: 10.1016/j.ijpharm.2019.118712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/21/2023]
Abstract
Despite extensive investigations of lamellar liquid crystals for dermal application, the effects of these systems at the cellular level are still not well elucidated. The key aim of this study was to determine the elasticity and morphological features of keratinocytes after exposure to a lamellar liquid crystal system (LLCS) using atomic force microscopy (AFM) as the method of choice. Prior to AFM assessment, a cell proliferation test and light plus fluorescence imaging were applied to determine the sub-toxic concentration of LLCS. According to the AFM results, slightly altered morphology was observed in the case of fixed keratinocytes, while an intact morphology was visualized on live cells. From the quantitative study, decreased Young's moduli were determined for fixed cells (i.e., 8.6 vs. 15.2 MPa and 1.3 vs. 2.9 MPa for ethanol or PFA-fixed LLCS-treated vs. control cells, respectively) and live cells (i.e., ranging from 0.6 to 2.8 for LLCS-treated vs. 1.1-4.5 MPa for untreated cells), clearly demonstrating increased cell elasticity. This is related to improved membrane fluidity as a consequence of interactions between the acyl chains of cell membrane phosphatidylcholine and those of LLCS. What seems to be of major importance is that the study confirms the potential clinical relevance of such systems in treatment of aged skin with characteristically more rigid epithelial cells.
Collapse
Affiliation(s)
- Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Miha Škarabot
- Jožef Stefan Institute, Department of Condensed Matter Physics, Jamova cesta 39, Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Biljana Janković
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
16
|
Dulińska-Molak I, Pasikowska-Piwko M, Dębowska R, Święszkowski W, Rogiewicz K, Eris I. Determining the effectiveness of vitamin C in skin care by atomic force microscope. Microsc Res Tech 2019; 82:1430-1437. [PMID: 31099952 DOI: 10.1002/jemt.23295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/17/2019] [Accepted: 05/05/2019] [Indexed: 02/02/2023]
Abstract
This article presents the results of experiments, which examine cell mechanisms with the goal of confirming the effective action of the active ingredients used in anti-aging cosmetics. Skin stiffness measurements with the use of an atomic force microscope on two forms of vitamin C (ascorbyl tetraisopalmitate and l-ascorbic acid) have been presented. The estimated Young's modulus for three types of cells (a control as well as cells treated with two forms of vitamin C) has shown significant differences in the stiffness of the tested cells which was confirmed in the histological staining experiment. The presented results indicate the dependence between collagen synthesis and the stiffness of cells treated with two forms of vitamin C.
Collapse
Affiliation(s)
- Ida Dulińska-Molak
- Faculty of Materials Science and Engineering, Dr Irena Eris Cosmetic Laboratories (DIECL), Warsaw, Poland.,Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), Warsaw, Poland
| | - Monika Pasikowska-Piwko
- Faculty of Materials Science and Engineering, Dr Irena Eris Cosmetic Laboratories (DIECL), Warsaw, Poland
| | - Renata Dębowska
- Faculty of Materials Science and Engineering, Dr Irena Eris Cosmetic Laboratories (DIECL), Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), Warsaw, Poland
| | - Katarzyna Rogiewicz
- Faculty of Materials Science and Engineering, Dr Irena Eris Cosmetic Laboratories (DIECL), Warsaw, Poland
| | - Irena Eris
- Faculty of Materials Science and Engineering, Dr Irena Eris Cosmetic Laboratories (DIECL), Warsaw, Poland
| |
Collapse
|
17
|
Mobasseri SA, Zijl S, Salameti V, Walko G, Stannard A, Garcia-Manyes S, Watt FM. Patterning of human epidermal stem cells on undulating elastomer substrates reflects differences in cell stiffness. Acta Biomater 2019; 87:256-264. [PMID: 30710711 PMCID: PMC6401207 DOI: 10.1016/j.actbio.2019.01.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 11/27/2022]
Abstract
In human skin the junction between epidermis and dermis undulates, the width and depth of the undulations varying with age and disease. When primary human epidermal keratinocytes are seeded on collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the epidermal-dermal interface, the stem cells become patterned by 24 h, resembling their organisation in living skin. We found that cell density and nuclear height were higher at the base than the tips of the PDMS features. Cells on the tips not only expressed higher levels of the stem cell marker β1 integrin but also had elevated E-cadherin, Desmoglein 3 and F-actin than cells at the base. In contrast, levels of the transcriptional cofactor MAL were higher at the base. AFM measurements established that the Young’s modulus of cells on the tips was lower than on the base or cells on flat substrates. The differences in cell stiffness were dependent on Rho kinase activity and intercellular adhesion. On flat substrates the Young’s modulus of calcium-dependent intercellular junctions was higher than that of the cell body, again dependent on Rho kinase. Cell patterning was influenced by the angle of the slope on undulating substrates. Our observations are consistent with the concept that epidermal stem cell patterning is dependent on mechanical forces exerted at intercellular junctions in response to undulations in the epidermal-dermal interface. Statement of significance In human skin the epidermal-dermal junction undulates and epidermal stem cells are patterned according to their position. We previously created collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the undulations and provide sufficient topographical information for stem cells to cluster on the tips. Here we show that the stiffness of cells on the tips is lower than cells on the base. The differences in cell stiffness depend on Rho kinase activity and intercellular adhesion. We propose that epidermal stem cell patterning is determined by mechanical forces exerted at intercellular junctions in response to the slope of the undulations.
Collapse
|
18
|
Ho KKY, Wang YL, Wu J, Liu AP. Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells. Front Bioeng Biotechnol 2018; 6:148. [PMID: 30386779 PMCID: PMC6198036 DOI: 10.3389/fbioe.2018.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cells in our body experience different types of stress including compression, tension, and shear. It has been shown that some cells experience permanent plastic deformation after a mechanical tensile load was removed. However, it was unclear whether cells are plastically deformed after repetitive compressive loading and unloading. There have been few tools available to exert cyclic compression at the single cell level. To address technical challenges found in a previous microfluidic compression device, we developed a new single-cell microfluidic compression device that combines an elastomeric membrane block geometry to ensure a flat contact surface and microcontact printing to confine cell spreading within cell trapping chambers. The design of the block geometry inside the compression chamber was optimized by using computational simulations. Additionally, we have implemented step-wise pneumatically controlled cell trapping to allow more compression chambers to be incorporated while minimizing mechanical perturbation on trapped cells. Using breast epithelial MCF10A cells stably expressing a fluorescent actin marker, we successfully demonstrated the new device design by separately trapping single cells in different chambers, confining cell spreading on microcontact printed islands, and applying cyclic planar compression onto single cells. We found that there is no permanent deformation after a 0.5 Hz cyclic compressive load for 6 min was removed. Overall, the development of the single-cell compression microfluidic device opens up new opportunities in mechanobiology and cell mechanics studies.
Collapse
Affiliation(s)
- Kenneth K. Y. Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Ying Lin Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jing Wu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
- Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Pietka W, Khnykin D, Bertelsen V, Lossius AH, Stav-Noraas TE, Hol Fosse J, Galtung HK, Haraldsen G, Sundnes O. Hypo-osmotic Stress Drives IL-33 Production in Human Keratinocytes-An Epidermal Homeostatic Response. J Invest Dermatol 2018; 139:81-90. [PMID: 30120934 DOI: 10.1016/j.jid.2018.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022]
Abstract
Although inflammation has traditionally been considered a response to either exogenous pathogen-associated signals or endogenous signals of cell damage, other perturbations of homeostasis, generally referred to as stress, may also induce inflammation. The relationship between stress and inflammation is, however, not well defined. Here, we describe a mechanism of IL-33 induction driven by hypo-osmotic stress in human keratinocytes and also report interesting differences when comparing the responsiveness of other inflammatory mediators. The induction of IL-33 was completely dependent on EGFR and calcium signaling, and inhibition of calcium signaling not only abolished IL-33 induction but also dramatically changed the transcriptional pattern of other cytokines upon hypo-osmotic stress. IL-33 was not secreted but instead showed nuclear sequestration, conceivably acting as a failsafe mechanism whereby it is induced by potential danger but released only upon more extreme homeostatic perturbations that result in cell death. Finally, stress-induced IL-33 was also confirmed in an ex vivo human skin model, translating this mechanism to a potential tissue-relevant signal in the human epidermis. In conclusion, we describe hypo-osmotic stress as an inducer of IL-33 expression, linking cellular stress to nuclear accumulation of a strong proinflammatory cytokine.
Collapse
Affiliation(s)
- Wojciech Pietka
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Denis Khnykin
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Vibeke Bertelsen
- Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Astrid Haaskjold Lossius
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tor Espen Stav-Noraas
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Johanna Hol Fosse
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Hilde Kanli Galtung
- Department of Oral Biology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Guttorm Haraldsen
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Olav Sundnes
- K.G. Jebsen Inflammation Research Centre, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Pathology, University of Oslo and Oslo University Hospital, Oslo, Norway; Department of Rheumatology, Dermatology and Infectious Diseases, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
20
|
Tanadchangsaeng N, Kitmongkolpaisarn S, Boonyagul S, Koobkokkruad T. Chemomechanical and morphological properties with proliferation of keratinocyte cells of electrospun poyhydroxyalkanoate fibers incorporated with essential oil. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Sani Boonyagul
- Faculty of Biomedical Engineering; Rangsit University; Lak-Hok Pathumthani 12000 Thailand
| | - Thongchai Koobkokkruad
- Nanocosmeceutical laboratory, National Nanotechnology Center (NANOTEC); National Science and Technology Development Agency (NSTDA); Pathumthani 12120 Thailand
| |
Collapse
|
21
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
22
|
Orzechowska B, Pabijan J, Wiltowska-Zuber J, Zemła J, Lekka M. Fibroblasts change spreading capability and mechanical properties in a direct interaction with keratinocytes in conditions mimicking wound healing. J Biomech 2018; 74:134-142. [DOI: 10.1016/j.jbiomech.2018.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023]
|
23
|
Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1609-1621. [PMID: 29409756 PMCID: PMC5906731 DOI: 10.1016/j.bbadis.2018.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Mutations in VPS33B and VIPAS39 cause the severe multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis (ARC) syndrome. Amongst other symptoms, patients with ARC syndrome suffer from severe ichthyosis. Roles for VPS33B and VIPAR have been reported in lysosome-related organelle biogenesis, integrin recycling, collagen homeostasis and maintenance of cell polarity. Mouse knockouts of Vps33b or Vipas39 are good models of ARC syndrome and develop an ichthyotic phenotype. We demonstrate that the skin manifestations in Vps33b and Vipar deficient mice are histologically similar to those of patients with ARC syndrome. Histological, immunofluorescent and electron microscopic analysis of Vps33b and Vipar deficient mouse skin biopsies and isolated primary cells showed that epidermal lamellar bodies, which are essential for skin barrier function, had abnormal morphology and the localisation of lamellar body cargo was disrupted. Stratum corneum formation was affected, with increased corneocyte thickness, decreased thickness of the cornified envelope and reduced deposition of lipids. These defects impact epidermal homeostasis and lead to abnormal barrier formation causing the skin phenotype in Vps33b and Vipar deficient mice and patients with ARC syndrome.
Collapse
Affiliation(s)
- Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute of Child Health, University College London, London WC1N 1EH, UK.
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute of Child Health, University College London, London WC1N 1EH, UK; Inherited Metabolic Diseases Unit, Great Ormond Street Hospital, London WC1N 3JH, UK.
| |
Collapse
|
24
|
Petty HR. Frontiers of Complex Disease Mechanisms: Membrane Surface Tension May Link Genotype to Phenotype in Glaucoma. Front Cell Dev Biol 2018; 6:32. [PMID: 29682502 PMCID: PMC5897435 DOI: 10.3389/fcell.2018.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Although many monogenic diseases are understood based upon structural changes of gene products, less progress has been made concerning polygenic disease mechanisms. This article presents a new interdisciplinary approach to understand complex diseases, especially their genetic polymorphisms. I focus upon primary open angle glaucoma (POAG). Although elevated intraocular pressure (IOP) and oxidative stress are glaucoma hallmarks, the linkages between these factors and cell death are obscure. Reactive oxygen species (ROS) promote the formation of oxidatively truncated phosphoglycerides (OTP), free fatty acids, lysophosphoglycerides, oxysterols, and other chemical species that promote membrane disruption and decrease membrane surface tension. Several POAG-linked gene polymorphisms identify proteins that manage damaged lipids and/or influence membrane surface tension. POAG-related genes expected to participate in these processes include: ELOVL5, ABCA1, APOE4, GST, CYP46A1, MYOC, and CAV. POAG-related gene products are expected to influence membrane surface tension, strength, and repair. I propose that heightened IOP overcomes retinal ganglion cell (RGC) membrane compressive strength, weakened by damaged lipid accumulation, to form pores. The ensuing structural failure promotes apoptosis and blindness. The linkage between glaucoma genotype and phenotype is mediated by physical events. Force balancing between the IOP and compressive strength regulates pore nucleation; force balancing between pore line tension and membrane surface tension regulates pore growth. Similar events may contribute to traumatic brain injury, Alzheimer's disease, and macular degeneration.
Collapse
Affiliation(s)
- Howard R Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Puzzi L, Borin D, Martinelli V, Mestroni L, Kelsell DP, Sbaizero O. Cellular biomechanics impairment in keratinocytes is associated with a C-terminal truncated desmoplakin: An atomic force microscopy investigation. Micron 2017; 106:27-33. [PMID: 29291530 DOI: 10.1016/j.micron.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022]
Abstract
In a tissue continuously challenged by mechanical stresses, such as the skin or the heart, cells perceive information about their microenvironment through several adhesive protein complexes and activate cell-signaling events to maintain tissue cohesion. Consequently, alteration of cell adhesion components leads to aberrant assembly of the associated cytoplasmic scaffolding and signaling pathways, which may reflect changes to the tissue physiology and mechanical resistance. Desmoplakin is an essential component of the cell-cell junction, anchoring the desmosomal protein complex to the intermediate filaments (IFs). Inherited mutations in desmoplakin are associated with both heart and skin disease (cardiocutaneous syndrome). In this study, we investigated the mechanical properties of human keratinocytes harboring a cardiocutaneous-associated homozygous C-terminal truncation in desmoplakin (JD-1) compared to a control keratinocyte line (K1). Using Single Cell Force Spectroscopy (SCFS) AFM-based measurements, JD-1 keratinocytes displayed an overall alteration in morphology, elasticity, adhesion capabilities and viscoelastic properties, highlighting the profound interconnection between the adhesome pathways and the IF scaffold.
Collapse
Affiliation(s)
- Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Daniele Borin
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Valentina Martinelli
- Molecular Medicine, International Center for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - Luisa Mestroni
- Cardiovascular Institute & Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, 80045 Aurora, CO, United States
| | - David P Kelsell
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, Whitechapel, E1 2AD London, United Kingdom
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy.
| |
Collapse
|
26
|
Kobiela T, Milner-Krawczyk M, Pasikowska-Piwko M, Bobecka-Wesołowska K, Eris I, Święszkowski W, Dulinska-Molak I. The Effect of Anti-aging Peptides on Mechanical and Biological Properties of HaCaT Keratinocytes. Int J Pept Res Ther 2017; 24:577-587. [PMID: 30416406 PMCID: PMC6208634 DOI: 10.1007/s10989-017-9648-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 01/13/2023]
Abstract
Atomic force microscopy (AFM) and fluorescence microscopy was applied to determine the influence of the anti-aging peptides on the morphology and the mechanical properties of keratinocytes. Immortalized human keratinocytes (HaCaT) were treated with two anti-aging bioactive peptides: Acetyl Tetrapeptide-2 and Acetyl Hexapeptide-50 (Lipotec). The AFM measurement of the keratinocyte stiffness were carried after 48 h exposure at an indentation depth of 200 nm. AFM analysis showed increase of the cell stiffness for cells treated with Acetyl Tetrapeptide-2 (P1) in concentration range. Acetyl Hexapeptide-50 (P2) at concentration of 0.05 µg/ml also increased the stiffness of HaCaT cells but at higher concentrations 0.5 and 5 µg/ml cell stiffness was lower as compared to untreated control. Fluorescence microscopy revealed remodeling of actin filaments dependent on the concentration of P2 peptide. The mechanical response of HaCaT cells treated with P2 peptide corresponds to change of transcription level of ACTN1 and SOD2 which activity was expected to be modulated by P2 treatment.
Collapse
Affiliation(s)
- Tomasz Kobiela
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Małgorzata Milner-Krawczyk
- Institute of Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Monika Pasikowska-Piwko
- Dr Irena Eris Cosmetic Laboratories, Centre for Science and Research, Armii Krajowej 12, 05-500 Piaseczno, Poland
| | - Konstancja Bobecka-Wesołowska
- Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
| | - Irena Eris
- Dr Irena Eris Cosmetic Laboratories, Centre for Science and Research, Armii Krajowej 12, 05-500 Piaseczno, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Ida Dulinska-Molak
- Dr Irena Eris Cosmetic Laboratories, Centre for Science and Research, Armii Krajowej 12, 05-500 Piaseczno, Poland
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| |
Collapse
|
27
|
Even C, Abramovici G, Delort F, Rigato AF, Bailleux V, de Sousa Moreira A, Vicart P, Rico F, Batonnet-Pichon S, Briki F. Mutation in the Core Structure of Desmin Intermediate Filaments Affects Myoblast Elasticity. Biophys J 2017; 113:627-636. [PMID: 28793217 DOI: 10.1016/j.bpj.2017.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022] Open
Abstract
Elastic properties of cells are mainly derived from the actin cytoskeleton. However, intermediate filaments are emerging as major contributors to the mechanical properties of cells. Using atomic force microscopy, we studied the elasticity of mouse myoblasts expressing a mutant form of the gene encoding for desmin intermediate filaments, p.D399Y. This variant produces desmin aggregates, the main pathological symptom of myofibrillar myopathies. Here we show that desmin-mutated cells display a 39% increased median elastic modulus compared to wild-type cells. Desmin-mutated cells required higher forces than wild-type cells to reach high indentation depths, where desmin intermediate filaments are typically located. In addition, heat-shock treatment increased the proportion of cells with aggregates and induced a secondary peak in the distribution of Young's moduli. By performing atomic force microscopy mechanical mapping combined with fluorescence microscopy, we show that higher Young's moduli were measured where desmin aggregates were located, indicating that desmin aggregates are rigid. Therefore, we provide evidence that p.D399Y stiffens mouse myoblasts. Based on these results, we suggest that p.D399Y-related myofibrillar myopathy is at least partly due to altered mechanical properties at the single-cell scale, which are propagated to the tissue scale.
Collapse
Affiliation(s)
- Catherine Even
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France.
| | - Gilles Abramovici
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Florence Delort
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Anna F Rigato
- Bio AFM Lab, U1006, Inserm, Aix-Marseille Université, Marseille, France
| | - Virginie Bailleux
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Abel de Sousa Moreira
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Patrick Vicart
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Felix Rico
- Bio AFM Lab, U1006, Inserm, Aix-Marseille Université, Marseille, France
| | - Sabrina Batonnet-Pichon
- Unité de Biologie Fonctionnelle et Adaptative,UMR 8251, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fatma Briki
- Laboratoire de Physique des Solides, CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
28
|
Hatzfeld M, Keil R, Magin TM. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. Cold Spring Harb Perspect Biol 2017; 9:a029157. [PMID: 28096266 PMCID: PMC5453391 DOI: 10.1101/cshperspect.a029157] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
29
|
The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes. Int J Med Microbiol 2017; 307:116-125. [DOI: 10.1016/j.ijmm.2017.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 11/20/2022] Open
|
30
|
Liu YX, Karsai A, Anderson DS, Silva RM, Uyeminami DL, Van Winkle LS, Pinkerton KE, Liu GY. Single-Cell Mechanics Provides an Effective Means To Probe in Vivo Interactions between Alveolar Macrophages and Silver Nanoparticles. J Phys Chem B 2015; 119:15118-29. [PMID: 26562364 DOI: 10.1021/acs.jpcb.5b07656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-cell mechanics, derived from atomic force microscopy-based technology, provides a new and effective means to investigate nanomaterial-cell interactions upon in vivo exposure. Lung macrophages represent initial and important responses upon introducing nanoparticles into the respiratory tract, as well as particle clearance with time. Cellular mechanics has previously proven effective to probe in vitro nanomaterial-cell interactions. This study extends technology further to probe the interactions between primary alveolar macrophages (AM) and silver nanoparticles (AgNPs) upon in vivo exposure. Two types of AgNPs, 20 and 110 nm, were instilled to rat lung at 0.5 mg AgNPs/kg body weight, and allowed 24 h interaction. The consequences of these interactions were investigated by harvesting the primary AMs while maintaining their biological status. Cellular mechanics measurements revealed the diverse responses among AM cells, due to variations in AgNP uptake and oxidative dissolving into Ag(+). Three major responses are evident: zero to low uptake that does not alter cellular mechanics, intracellular accumulation of AgNPs trigger cytoskeleton rearrangement resulting in the stiffening of mechanics, and damage of cytoskeleton that softens the mechanical profile. These effects were confirmed using confocal imaging of F-actin and measurements of reactive oxygen species production. More detailed intracellular interactions will also be discussed on the basis of this study in conjunction with prior knowledge of AgNP toxicity.
Collapse
Affiliation(s)
- Ying X Liu
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Arpad Karsai
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Donald S Anderson
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Rona M Silva
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Dale L Uyeminami
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Laura S Van Winkle
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Kent E Pinkerton
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| | - Gang-yu Liu
- Department of Chemistry, ‡Center for Health and the Environment, §Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, and ∥Department of Pediatrics, School of Medicine, University of California , Davis, California 95616, United States
| |
Collapse
|
31
|
Jahnel O, Hoffmann B, Merkel R, Bossinger O, Leube RE. Mechanical Probing of the Intermediate Filament-Rich Caenorhabditis Elegans Intestine. Methods Enzymol 2015; 568:681-706. [PMID: 26795489 DOI: 10.1016/bs.mie.2015.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is commonly accepted that intermediate filaments have an important mechanical function. This function relies not only on intrinsic material properties but is also determined by dynamic interactions with other cytoskeletal filament systems, distinct cell adhesion sites, and cellular organelles which are fine-tuned by multiple signaling pathways. While aspects of these properties and processes can be studied in vitro, their full complexity can only be understood in a viable tissue context. Yet, suitable and easily accessible model systems for monitoring tissue mechanics at high precision are rare. We show that the dissected intestine of the genetic model organism Caenorhabditis elegans fulfills this requirement. The 20 intestinal cells, which are arranged in an invariant fashion, are characterized by a dense subapical mesh of intermediate filaments that are attached to the C. elegans apical junction. We present procedures to visualize details of the characteristic intermediate filament-junctional complex arrangement in living animals. We then report on methods to prepare intestines with a fully intact intermediate filament cytoskeleton and detail procedures to assess their viability. A dual micropipette assay is described to measure mechanical properties of the dissected intestine while monitoring the spatial arrangement of the intermediate filament system. Advantages of this approach are (i) the high reproducibility of measurements because of the uniform architecture of the intestine and (ii) the high degree of accessibility allowing not only mechanical manipulation of an intact tissue but also control of culture medium composition and addition of drugs as well as visualization of cell structures. With this method, examination of worms carrying mutations in the intermediate filament system, its interacting partners and its regulators will become feasible.
Collapse
Affiliation(s)
- Oliver Jahnel
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems, ICS-7: Biomechanics, Jülich, Germany
| | - Rudolf Merkel
- Institute of Complex Systems, ICS-7: Biomechanics, Jülich, Germany
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
32
|
Mendez MG, Restle D, Janmey PA. Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys J 2015; 107:314-323. [PMID: 25028873 DOI: 10.1016/j.bpj.2014.04.050] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/04/2014] [Accepted: 04/30/2014] [Indexed: 02/05/2023] Open
Abstract
Vimentin intermediate filament expression is a hallmark of epithelial-to-mesenchymal transitions, and vimentin is involved in the maintenance of cell mechanical properties, cell motility, adhesion, and other signaling pathways. A common feature of vimentin-expressing cells is their routine exposure to mechanical stress. Intermediate filaments are unique among cytoskeletal polymers in resisting large deformations in vitro, yet vimentin's mechanical role in the cell is not clearly understood. We use atomic force microscopy to compare the viscoelastic properties of normal and vimentin-null (vim(-/-)) mouse embryo fibroblasts (mEFs) on substrates of different stiffnesses, spread to different areas, and subjected to different compression patterns. In minimally perturbed mEF, vimentin contributes little to the elastic modulus at any indentation depth in cells spread to average areas. On a hard substrate however, the elastic moduli of maximally spread mEFs are greater than those of vim(-/-)mEF. Comparison of the plastic deformation resulting from controlled compression of the cell cortex shows that vimentin's enhancement of elastic behavior increases with substrate stiffness. The elastic moduli of normal mEFs are more stable over time than those of vim(-/-)mEFs when cells are subject to ongoing oscillatory compression, particularly on a soft substrate. In contrast, increasing compressive strain over time shows a greater role for vimentin on a hard substrate. Under both conditions, vim(-/-)mEFs exhibit more variable responses, indicating a loss of regulation. Finally, normal mEFs are more contractile in three-dimensional collagen gels when seeded at low density, when cell-matrix contacts dominate, whereas contractility of vim(-/-)mEF is greater at higher densities when cell-cell contacts are abundant. Addition of fibronectin to gel constructs equalizes the contractility of the two cell types. These results show that the Young's moduli of normal and vim(-/-)mEFs are substrate stiffness dependent even when the spread area is similar, and that vimentin protects against compressive stress and preserves mechanical integrity by enhancing cell elastic behavior.
Collapse
Affiliation(s)
- M G Mendez
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D Restle
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - P A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing. Toxicol Appl Pharmacol 2015; 286:198-206. [DOI: 10.1016/j.taap.2015.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/03/2015] [Accepted: 04/22/2015] [Indexed: 11/20/2022]
|
34
|
Morgan JT, Raghunathan VK, Chang YR, Murphy CJ, Russell P. The intrinsic stiffness of human trabecular meshwork cells increases with senescence. Oncotarget 2015; 6:15362-74. [PMID: 25915531 PMCID: PMC4558157 DOI: 10.18632/oncotarget.3798] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/20/2015] [Indexed: 12/26/2022] Open
Abstract
Dysfunction of the human trabecular meshwork (HTM) plays a central role in the age-associated disease glaucoma, a leading cause of irreversible blindness. The etiology remains poorly understood but cellular senescence, increased stiffness of the tissue, and the expression of Wnt antagonists such as secreted frizzled related protein-1 (SFRP1) have been implicated. However, it is not known if senescence is causally linked to either stiffness or SFRP1 expression. In this study, we utilized in vitro HTM senescence to determine the effect on cellular stiffening and SFRP1 expression. Stiffness of cultured cells was measured using atomic force microscopy and the morphology of the cytoskeleton was determined using immunofluorescent analysis. SFRP1 expression was measured using qPCR and immunofluorescent analysis. Senescent cell stiffness increased 1.88±0.14 or 2.57±0.14 fold in the presence or absence of serum, respectively. This was accompanied by increased vimentin expression, stress fiber formation, and SFRP1 expression. In aggregate, these data demonstrate that senescence may be a causal factor in HTM stiffening and elevated SFRP1 expression, and contribute towards disease progression. These findings provide insight into the etiology of glaucoma and, more broadly, suggest a causal link between senescence and altered tissue biomechanics in aging-associated diseases.
Collapse
Affiliation(s)
- Joshua T. Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Yow-Ren Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Ophthalmology &; Vision Science, School of Medicine, University of California, Davis, CA, USA
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
35
|
Shiomi A, Izumi K, Uenoyama A, Saito T, Saito N, Ohnuki H, Kato H, Kanatani M, Nomura S, Egusa H, Maeda T. Cyclic mechanical pressure-loading alters epithelial homeostasis in a three-dimensional in vitro oral mucosa model: clinical implications for denture-wearers. J Oral Rehabil 2014; 42:192-201. [PMID: 25472623 DOI: 10.1111/joor.12254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2014] [Indexed: 11/28/2022]
Abstract
Denture-wearing affects the quality and quantity of epithelial cells in the underlying healthy oral mucosa. The physiologic mechanisms, however, are poorly understood. This study aimed to compare histologic changes and cellular responses of an epithelial cell layer to cyclic mechanical pressure-loading mimicking denture-wearing using an organotypic culture system to develop a three-dimensional in vitro oral mucosa model (3DOMM). Primary human oral keratinocytes and fibroblasts were serially grown in a monolayer culture, and cell viability was measured under continuous cyclic mechanical pressure (50 kPa) for 7 days (cycles of 60 min on, 20 s off to degas and inject air). Upon initiation of an air-liquid interface culture for epithelial stratification, the cyclic pressure, set to the mode above mentioned, was applied to the 3DOMMs for 7 days. Paraffin-embedded 3DOMMs were examined histologically and immunohistochemically. In the monolayer culture, the pressure did not affect the viability of oral keratinocytes or fibroblasts. Few histologic changes were observed in the epithelial layer of the control and pressure-loaded 3DOMMs. Immunohistochemical examination, however, revealed a significant decrease in Ki-67 labelling and an increase in filaggrin and involucrin expression in the suprabasal layer of the pressure-loaded 3DOMMs. Pressure-loading attenuated integrin β1 expression and increased matrix metalloproteinase-9 activity. Incomplete deposition of laminin and type IV collagen beneath the basal cells was observed only in the pressure-loaded 3DOMM. Cyclic pressure-loading appeared to disrupt multiple functions of the basal cells in the 3DOMM, resulting in a predisposition towards terminal differentiation. Thus, denture-wearing could compromise oral epithelial homeostasis.
Collapse
Affiliation(s)
- A Shiomi
- Division of Dental Educational Research Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rheological behaviour of reconstructed skin. J Mech Behav Biomed Mater 2014; 37:251-63. [DOI: 10.1016/j.jmbbm.2014.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
|
37
|
Li M, Liu L, Xi N, Wang Y. Research progress in quantifying the mechanical properties of single living cells using atomic force microscopy. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0581-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076602. [PMID: 25006689 DOI: 10.1088/0034-4885/77/7/076602] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
39
|
Hu Y, Wan JMF, Yu ACH. Cytomechanical perturbations during low-intensity ultrasound pulsing. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:1587-98. [PMID: 24642219 DOI: 10.1016/j.ultrasmedbio.2014.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 05/24/2023]
Abstract
To establish the therapeutic potential of low-intensity ultrasound, it is important to characterize its biophysical interactions with living cells. Here, through a series of single-cell direct observations, we show that low-intensity ultrasound pulsing would give rise to a dynamic course of cytomechanical perturbations at both the membrane and nucleus levels. Our investigation was conducted using a composite platform that coupled a 1-MHz ultrasound exposure hardware to a confocal microscopy system. Short ultrasound pulses (5 cycles, 2-kHz pulse repetition frequency) with a spatial-peak time-averaged intensity of 0.24 W/cm(2) (0.85-MPa peak positive acoustic pressure) were delivered over a 10-min period to adherent Neuro-2a neuroblastoma cells, and live imaging of cellular dynamics was performed before, during and after the exposure period. Bright-field imaging results revealed progressive shrinkage of cellular cross-sectional area (25%-45%, N = 7) during low-intensity ultrasound pulsing; the initial rate of size decrease was estimated to be 8%-14% per minute. This shrinkage was found to be transient, as the sonicated cells had recovered (at a rate of size increase of 0.4%-0.9% per minute) to their pre-exposure size within 30 min after the end of exposure. Three-dimensional confocal imaging results further revealed that (i) ultrasound-induced membrane contraction was volumetric in nature (21%-45% reduction), and (ii) a concomitant decrease in nucleus volume was evident (12%-25% reduction). Together, these findings indicate that low-intensity ultrasound pulsing, if applied on the order of minutes, would reversibly perturb the physical and subcellular structures of living cells.
Collapse
Affiliation(s)
- Yaxin Hu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | - Jennifer M F Wan
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | - Alfred C H Yu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
40
|
Lorencini M, Brohem CA, Dieamant GC, Zanchin NI, Maibach HI. Active ingredients against human epidermal aging. Ageing Res Rev 2014; 15:100-15. [PMID: 24675046 DOI: 10.1016/j.arr.2014.03.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
The decisive role of the epidermis in maintaining body homeostasis prompted studies to evaluate the changes in epidermal structure and functionality over the lifetime. This development, along with the identification of molecular mechanisms of epidermal signaling, maintenance, and differentiation, points to a need for new therapeutic alternatives to treat and prevent skin aging. In addition to recovering age- and sun-compromised functions, proper treatment of the epidermis has important esthetic implications. This study reviews active ingredients capable of counteracting symptoms of epidermal aging, organized according to the regulation of specific age-affected epidermal functions: (1) several compounds, other than retinoids and derivatives, act on the proliferation and differentiation of keratinocytes, supporting the protective barrier against mechanical and chemical insults; (2) natural lipidic compounds, as well as glycerol and urea, are described as agents for maintaining water-ion balance; (3) regulation of immunological pathogen defense can be reinforced by natural extracts and compounds, such as resveratrol; and (4) antioxidant exogenous sources enriched with flavonoids and vitamin C, for example, improve solar radiation protection and epidermal antioxidant activity. The main objective is to provide a functional classification of active ingredients as regulatory elements of epidermal homeostasis, with potential cosmetic and/or dermatological applications.
Collapse
|
41
|
Zimmer CC, Liu YX, Morgan JT, Yang G, Wang KH, Kennedy IM, Barakat AI, Liu GY. New approach to investigate the cytotoxicity of nanomaterials using single cell mechanics. J Phys Chem B 2014; 118:1246-55. [PMID: 24417356 PMCID: PMC3980960 DOI: 10.1021/jp410764f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Current in vitro methods to assess nanomaterial cytotoxicity involve various assays to monitor specific cellular dysfunction, such as metabolic imbalance or inflammation. Although high throughput, fast, and animal-free, these in vitro methods suffer from unreliability and lack of relevance to in vivo situations. New approaches, especially with the potential to reliably relate to in vivo studies directly, are in critical need. This work introduces a new approach, single cell mechanics, derived from atomic force microscopy-based single cell compression. The single cell based approach is intrinsically advantageous in terms of being able to directly correlate to in vivo investigations. Its reliability and potential to measure cytotoxicity is evaluated using known systems: zinc oxide (ZnO) and silicon dioxide (SiO2) nanoparticles (NP) on human aortic endothelial cells (HAECs). This investigation clearly indicates the reliability of single cell compression. For example, ZnO NPs cause significant changes in force vs relative deformation profiles, whereas SiO2 NPs do not. New insights into NPs-cell interactions pertaining to cytotoxicity are also revealed from this single cell mechanics approach, in addition to a qualitative cytotoxicity conclusion. The advantages and disadvantages of this approach are also compared with conventional cytotoxicity assays.
Collapse
Affiliation(s)
- Christopher C Zimmer
- Department of Chemistry, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. J Biomech 2014; 47:625-30. [DOI: 10.1016/j.jbiomech.2013.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/12/2022]
|
43
|
Vedula SRK, Hirata H, Nai MH, Brugués A, Toyama Y, Trepat X, Lim CT, Ladoux B. Epithelial bridges maintain tissue integrity during collective cell migration. NATURE MATERIALS 2014; 13:87-96. [PMID: 24292420 DOI: 10.1038/nmat3814] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 10/17/2013] [Indexed: 05/22/2023]
Abstract
The ability of skin to act as a barrier is primarily determined by the efficiency of skin cells to maintain and restore its continuity and integrity. In fact, during wound healing keratinocytes migrate collectively to maintain their cohesion despite heterogeneities in the extracellular matrix. Here, we show that monolayers of human keratinocytes migrating along functionalized micropatterned surfaces comprising alternating strips of extracellular matrix (fibronectin) and non-adherent polymer form suspended multicellular bridges over the non-adherent areas. The bridges are held together by intercellular adhesion and are subjected to considerable tension, as indicated by the presence of prominent actin bundles. We also show that a model based on force propagation through an elastic material reproduces the main features of bridge maintenance and tension distribution. Our findings suggest that multicellular bridges maintain tissue integrity during wound healing when cell-substrate interactions are weak and may prove helpful in the design of artificial scaffolds for skin regeneration.
Collapse
Affiliation(s)
| | - Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Mui Hoon Nai
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Agustí Brugués
- Institut de Bioenginyeria de Catalunya (IBEC), ICREA, and Facultat de Medicina-Universitat de Barcelona, 08028 Barcelona, Spain
| | - Yusuke Toyama
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Department of Biological Sciences, National University of Singapore and Temasek Life Sciences Laboratory, 117543, Singapore
| | - Xavier Trepat
- Institut de Bioenginyeria de Catalunya (IBEC), ICREA, and Facultat de Medicina-Universitat de Barcelona, 08028 Barcelona, Spain
| | - Chwee Teck Lim
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Department of Biomedical Engineering and Department of Mechanical Engineering, National University of Singapore, 117576, Singapore
| | - Benoit Ladoux
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris 75013, France
| |
Collapse
|
44
|
Keratins as the main component for the mechanical integrity of keratinocytes. Proc Natl Acad Sci U S A 2013; 110:18513-8. [PMID: 24167246 DOI: 10.1073/pnas.1313491110] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Keratins are major components of the epithelial cytoskeleton and are believed to play a vital role for mechanical integrity at the cellular and tissue level. Keratinocytes as the main cell type of the epidermis express a differentiation-specific set of type I and type II keratins forming a stable network and are major contributors of keratinocyte mechanical properties. However, owing to compensatory keratin expression, the overall contribution of keratins to cell mechanics was difficult to examine in vivo on deletion of single keratin genes. To overcome this problem, we used keratinocytes lacking all keratins. The mechanical properties of these cells were analyzed by atomic force microscopy (AFM) and magnetic tweezers experiments. We found a strong and highly significant softening of keratin-deficient keratinocytes when analyzed by AFM on the cell body and above the nucleus. Magnetic tweezers experiments fully confirmed these results showing, in addition, high viscous contributions to magnetic bead displacement in keratin-lacking cells. Keratin loss neither affected actin or microtubule networks nor their overall protein concentration. Furthermore, depolymerization of actin preserves cell softening in the absence of keratin. On reexpression of the sole basal epidermal keratin pair K5/14, the keratin filament network was reestablished, and mechanical properties were restored almost to WT levels in both experimental setups. The data presented here demonstrate the importance of keratin filaments for mechanical resilience of keratinocytes and indicate that expression of a single keratin pair is sufficient for almost complete reconstitution of their mechanical properties.
Collapse
|
45
|
Keratins significantly contribute to cell stiffness and impact invasive behavior. Proc Natl Acad Sci U S A 2013; 110:18507-12. [PMID: 24167274 DOI: 10.1073/pnas.1310493110] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell motility and cell shape adaptations are crucial during wound healing, inflammation, and malignant progression. These processes require the remodeling of the keratin cytoskeleton to facilitate cell-cell and cell-matrix adhesion. However, the role of keratins for biomechanical properties and invasion of epithelial cells is only partially understood. In this study, we address this issue in murine keratinocytes lacking all keratins on genome engineering. In contrast to predictions, keratin-free cells show about 60% higher cell deformability even for small deformations. This response is compared with the less pronounced softening effects for actin depolymerization induced via latrunculin A. To relate these findings with functional consequences, we use invasion and 3D growth assays. These experiments reveal higher invasiveness of keratin-free cells. Reexpression of a small amount of the keratin pair K5/K14 in keratin-free cells reverses the above phenotype for the invasion but does not with respect to cell deformability. Our data show a unique role of keratins as major players of cell stiffness, influencing invasion with implications for epidermal homeostasis and pathogenesis. This study supports the view that down-regulation of keratins observed during epithelial-mesenchymal transition directly contributes to the migratory and invasive behavior of tumor cells.
Collapse
|
46
|
Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage. PLoS One 2013; 8:e73499. [PMID: 24023686 PMCID: PMC3758302 DOI: 10.1371/journal.pone.0073499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA) and sodium (Nav) channels trigger excitotoxic neuron death. Na+, Ca++ and H2O influx into affected neurons elicits swelling (increased cell volume) and pathological blebbing (disassociation of the plasma membrane’s bilayer from its spectrin-actomyosin matrix). Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM)-based force spectroscopy) upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine). Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be feasible.
Collapse
|
47
|
Kim JS, Lee CH, Su BY, Coulombe PA. Mathematical modeling of the impact of actin and keratin filaments on keratinocyte cell spreading. Biophys J 2013. [PMID: 23199911 DOI: 10.1016/j.bpj.2012.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Keratin intermediate filaments (IFs) form cross-linked arrays to fulfill their structural support function in epithelial cells and tissues subjected to external stress. How the cross-linking of keratin IFs impacts the morphology and differentiation of keratinocytes in the epidermis and related surface epithelia remains an open question. Experimental measurements have established that keratinocyte spreading area is inversely correlated to the extent of keratin IF bundling in two-dimensional culture. In an effort to quantitatively explain this relationship, we developed a mathematical model in which isotropic cell spreading is considered as a first approximation. Relevant physical properties such as actin protrusion, adhesion events, and the corresponding response of lamellum formation at the cell periphery are included in this model. Through optimization with experimental data that relate time-dependent changes in keratinocyte surface area during spreading, our simulation results confirm the notion that the organization and mechanical properties of cross-linked keratin filaments affect cell spreading; in addition, our results provide details of the kinetics of this effect. These in silico findings provide further support for the notion that differentiation-related changes in the density and intracellular organization of keratin IFs affect tissue architecture in epidermis and related stratified epithelia.
Collapse
Affiliation(s)
- Jin Seob Kim
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
48
|
Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS One 2013; 8:e57147. [PMID: 23451167 PMCID: PMC3579816 DOI: 10.1371/journal.pone.0057147] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k0 and k1 (with k0>k1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation.
Collapse
|
49
|
Pan X, Hobbs RP, Coulombe PA. The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr Opin Cell Biol 2013; 25:47-56. [PMID: 23270662 PMCID: PMC3578078 DOI: 10.1016/j.ceb.2012.10.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 12/17/2022]
Abstract
Intermediate filaments are assembled from a diverse group of evolutionary conserved proteins and are specified in a tissue-dependent, cell type-dependent, and context-dependent fashion in the body. Genetic mutations in intermediate filament proteins account for a large number of diseases, ranging from skin fragility conditions to cardiomyopathies and premature aging. Keratins, the epithelial-specific intermediate filaments, are now recognized as multi-faceted effectors in their native context. In this review, we emphasize the recent progress made in defining the role of keratins towards the regulation of cytoarchitecture, cell growth and proliferation, apoptosis, and cell motility during embryonic development, in normal adult tissues, and in select diseases such as cancer.
Collapse
Affiliation(s)
- Xiaoou Pan
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan P. Hobbs
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Pierre A. Coulombe
- Dept. of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Dermatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
50
|
Development of a novel liquid crystal based cell traction force transducer system. Biosens Bioelectron 2012; 39:14-20. [PMID: 22809522 DOI: 10.1016/j.bios.2012.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/10/2012] [Indexed: 11/23/2022]
Abstract
Keratinocyte traction forces play a crucial role in wound healing. The aim of this study was to develop a novel cell traction force (CTF) transducer system based on cholesteryl ester liquid crystals (LC). Keratinocytes cultured on LC induced linear and isolated deformation lines in the LC surface. As suggested by the fluorescence staining, the deformation lines appeared to correlate with the forces generated by the contraction of circumferential actin filaments which were transmitted to the LC surface via the focal adhesions. Due to the linear viscoelastic behavior of the LC, Hooke's equation was used to quantify the CTFs by associating Young's modulus of LC to the cell induced stresses and biaxial strain in forming the LC deformation. Young's modulus of the LC was profiled by using spherical indentation and determined at approximately 87.1±17.2kPa. A new technique involving cytochalasin-B treatment was used to disrupt the intracellular force generating actin fibers, and consequently the biaxial strain in the LC induced by the cells was determined. Due to the improved sensitivity and spatial resolution (∼1μm) of the LC based CTF transducer, a wide range of CTFs was determined (10-120nN). These were found to be linearly proportional to the length of the deformations. The linear relationship of CTF-deformations was then applied in a bespoke CTF mapping software to estimate CTFs and to map CTF fields. The generated CTF map highlighted distinct distributions and different magnitude of CTFs were revealed for polarized and non-polarized keratinocytes.
Collapse
|