1
|
Kugaevskaya EV, Timoshenko OS, Gureeva TA, Radko SP, Lisitsa AV. MicroRNAs as promising diagnostic and prognostic markers for the human genitourinary cancer. BIOMEDITSINSKAIA KHIMIIA 2024; 70:191-205. [PMID: 39239894 DOI: 10.18097/pbmc20247004191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Genitourinary cancer (GUC) represents more than one fifth of all human cancers. This makes the development of approaches to its early diagnosis an important task of modern biomedicine. Circulating microRNAs, short (17-25 nucleotides) non-coding RNA molecules found in human biological fluids and performing a regulatory role in the cell, are considered as promising diagnostic and prognostic biomarkers of cancers, including GUC. In this review we have considered the current state of research aimed at assessing microRNAs as biomarkers of such human GUC types as malignant tumors of the bladder, kidney, prostate, testicles, ovaries, and cervix. A special attention has been paid to studies devoted to the identification of microRNAs in urine as a surrogate "liquid biopsy" that may provide the simplest and cheapest approach to mass non-invasive screening of human GUC. The use of microRNA panels instead of single types of microRNA generally leads to higher sensitivity and specificity of the developed diagnostic tests. However, to date, work on the microRNAs assessment as biomarkers of human GUC is still of a research nature, and the further introduction of diagnostic tests based on microRNAs into practice requires successful clinical trials.
Collapse
Affiliation(s)
| | | | - T A Gureeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Tee CCL, Chong MC, Cooke MB, Rahmat N, Yeo WK, Camera DM. Effects of exercise modality combined with moderate hypoxia on blood glucose regulation in adults with overweight. Front Physiol 2024; 15:1396108. [PMID: 38903909 PMCID: PMC11188384 DOI: 10.3389/fphys.2024.1396108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose: This study aimed to investigate the combined effects of moderate hypoxia with three different exercise modes on glucose regulation in healthy overweight adults. Methods: Thirteen overweight males (age: 31 ± 4 years; body fat 26.3 ± 3.2%) completed three exercise trials in a randomized crossover design involving 60 min cycling exercise at 90% lactate threshold (LOW), sprint interval training (20 × 4 s all-out; SIT) and lower limb functional bodyweight exercises (8 sets of 4 × 20 s; FEX) under moderate hypoxia (FiO2 = 16.5%). Post-exercise oral glucose tolerance test (OGTT) was performed following each trial. Heart rate, oxygen saturation (SpO2), physical activity enjoyment scale (PACES), and perceptual measures were recorded during each exercise session. Venous blood was collected pre-, immediately post-, and 24 h post-exercise and analysed for plasma glucose and insulin, incremental area under curve (iAUC), and circulating microRNA expression (c-miRs-486-5p, -126-5p, and -21-5p). Interstitial glucose concentrations were measured using continuous glucose monitoring (CGM). Results: Post-exercise OGTT iAUC for plasma glucose and insulin concentration were lower in SIT and LOW vs. control (p < 0.05) while post-exercise interstitial glucose iAUC and c-miRs were not different between exercise modes. Heart rate was greater in SIT vs. LOW and FEX, and FEX vs. LOW (p < 0.05), SpO2 was lower in SIT, while PACES was not different between exercise modes. Perceptual measures were greater in SIT vs. LOW and FEX. Conclusion: Acute SIT and LOW under moderate hypoxia improved post-exercise plasma insulin compared to FEX exercises. Considering SIT was also time-efficient, well tolerated, and enjoyable for participants, this may be the preferred exercise modality for improving glucose regulation in adult males with overweight when combined with moderate hypoxia.
Collapse
Affiliation(s)
- Chris Chow Li Tee
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
- Sport and Exercise Medicine Group, Swinburne University of Technology Melbourne, Hawthorn, Australia
| | - Mee Chee Chong
- Sport and Exercise Medicine Group, Swinburne University of Technology Melbourne, Hawthorn, Australia
| | - Matthew B. Cooke
- Sport, Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - Nurhamizah Rahmat
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Wee Kian Yeo
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Donny M. Camera
- Sport and Exercise Medicine Group, Swinburne University of Technology Melbourne, Hawthorn, Australia
| |
Collapse
|
3
|
Boychev N, Lee S, Yeung V, Ross AE, Kuang L, Chen L, Dana R, Ciolino JB. Contact lenses as novel tear fluid sampling vehicles for total RNA isolation, precipitation, and amplification. Sci Rep 2024; 14:11727. [PMID: 38778161 PMCID: PMC11111455 DOI: 10.1038/s41598-024-62215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The tear fluid is a readily accessible, potential source for biomarkers of disease and could be used to monitor the ocular response to contact lens (CL) wear or ophthalmic pathologies treated by therapeutic CLs. However, the tear fluid remains largely unexplored as a biomarker source for RNA-based molecular analyses. Using a rabbit model, this study sought to determine whether RNA could be collected from commercial CLs and whether the duration of CL wear would impact RNA recovery. The results were referenced to standardized strips of filtered paper (e.g., Shirmer Strips) placed in the inferior fornix. By performing total RNA isolation, precipitation, and amplification with commercial kits and RT-PCR methods, CLs were found to have no significant differences in RNA concentration and purity compared to Schirmer Strips. The study also identified genes that could be used to normalize RNA levels between tear samples. Of the potential control genes or housekeeping genes, GAPDH was the most stable. This study, which to our knowledge has never been done before, provides a methodology for the detection of RNA and gene expression changes from tear fluid that could be used to monitor or study eye diseases.
Collapse
Affiliation(s)
- Nikolay Boychev
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA.
| | - Seokjoo Lee
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Amy E Ross
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Lin Chen
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Reza Dana
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| | - Joseph B Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, and Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Huang X, Bai S, Luo Y. Advances in research on biomarkers associated with acute myocardial infarction: A review. Medicine (Baltimore) 2024; 103:e37793. [PMID: 38608048 PMCID: PMC11018244 DOI: 10.1097/md.0000000000037793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Acute myocardial infarction (AMI), the most severe cardiovascular event in clinical settings, imposes a significant burden with its annual increase in morbidity and mortality rates. However, it is noteworthy that mortality due to AMI in developed countries has experienced a decline, largely attributable to the advancements in medical interventions such as percutaneous coronary intervention. This trend highlights the importance of accurate diagnosis and effective treatment to preserve the myocardium at risk and improve patient outcomes. Conventional biomarkers such as myoglobin, creatine kinase isoenzymes, and troponin have been instrumental in the diagnosis of AMI. However, recent years have witnessed the emergence of new biomarkers demonstrating the potential to further enhance the accuracy of AMI diagnosis. This literature review focuses on the recent advancements in biomarker research in the context of AMI diagnosis.
Collapse
Affiliation(s)
| | - Suwen Bai
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Yumei Luo
- Guangdong Medical University, Zhanjiang, China
- Cardiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
5
|
Cheng F, Chapman T, Zhang S, Morsch M, Chung R, Lee A, Rayner SL. Understanding age-related pathologic changes in TDP-43 functions and the consequence on RNA splicing and signalling in health and disease. Ageing Res Rev 2024; 96:102246. [PMID: 38401571 DOI: 10.1016/j.arr.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
TAR DNA binding protein-43 (TDP-43) is a key component in RNA splicing which plays a crucial role in the aging process. In neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal dementia and limbic-predominant age-related TDP-43 encephalopathy, TDP-43 can be mutated, mislocalised out of the nucleus of neurons and glial cells and form cytoplasmic inclusions. These TDP-43 alterations can lead to its RNA splicing dysregulation and contribute to mis-splicing of various types of RNA, such as mRNA, microRNA, and circular RNA. These changes can result in the generation of an altered transcriptome and proteome within cells, ultimately changing the diversity and quantity of gene products. In this review, we summarise the findings of novel atypical RNAs resulting from TDP-43 dysfunction and their potential as biomarkers or targets for therapeutic development.
Collapse
Affiliation(s)
- Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| |
Collapse
|
6
|
Samir H, Samir M, Radwan F, Mandour AS, El-Sherbiny HR, Ahmed AE, Al Syaad KM, Al-Saeed FA, Watanabe G. Effect of pre-treatment of melatonin on superovulation response, circulatory hormones, and miRNAs in goats during environmental heat stress conditions. Vet Res Commun 2024; 48:459-474. [PMID: 37831382 DOI: 10.1007/s11259-023-10239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Environmental heat stress has a deleterious impact on farm animal reproductive performance. The purpose of this study was to see how the addition of melatonin affected the efficacy of the superovulation regimen in goats in hot climatic conditions. Sixteen Shiba goats were synchronized and divided into two equal groups (n = 8, each): the melatonin group, which received a single S/C dose of melatonin, and a control group, treated with one ml of corn oil only. Ultrasonographic assessment of ovarian structures (Graafian follicles; GFs and corpus lutea; CLs) morphometry and hemodynamics were performed during the estrous phase of the superovulation (D0) and at day7 after ovulation (D7) of the superovulation regimen. The peripheral reproductive hormones were measured, and microRNAs were characterized. The mean diameter and the total-colored area of GFs during the D0 were significantly (P˂0.05) higher in the melatonin group (5.42 ± 0.11 mm and 1592.20 ± 45.26 pixels, respectively) compared to the control group (4.62 ± 0.12 mm and 1052.55 ± 29.47 pixels, respectively). Concentrations of LH and E2 increased significantly (P˂0.05) in the melatonin group (1.06 ± 0.06 ng/ml and 46.34 ± 2.77 pg/ml, respectively) compared to the control group (0.75 ± 0.12 ng/ml and 29.33 ± 1.89 pg/ml, respectively). At D7, the melatonin-received goats attained greater values in the mean count (6.75 ± 0.33, P˂0.005), diameters (6.08 ± 0.12 mm, P˂0.01), and total-colored area (17137.30 ± 128.53 pixels, P˂0.01) of detected CLs and progesterone concentrations (4.08 ± 0.24 ng/ml) compared to control goats (4.00 ± 0.28, 4.50 ± 0.19 mm, 11156.87 ± 117.90 pixels, and 2.90 ± 0.18 ng/ml respectively). MiRNA expression analysis was identified during both stages denoting several up and downregulated miRNA candidates among the studied groups. In conclusion, incorporating melatonin enhanced the efficiency of the superovulation regimen in goats under hot climatic conditions.
Collapse
Affiliation(s)
- Haney Samir
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan.
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Immunogenetics Department, Pirbright Institute, Woking, UK
| | - Faten Radwan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
- Veterinarian graduated from the Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
| | - Ahmed S Mandour
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Hossam R El-Sherbiny
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Fatimah A Al-Saeed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-Cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
7
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
8
|
Martins EP, Vieira de Castro J, Fontes R, Monteiro-Reis S, Henrique R, Jerónimo C, Costa BM. Relevance of HOTAIR rs920778 and rs12826786 Genetic Variants in Bladder Cancer Risk and Survival. Cancers (Basel) 2024; 16:434. [PMID: 38275875 PMCID: PMC10814037 DOI: 10.3390/cancers16020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The long non-coding RNA HOX transcript antisense intergenic RNA (HOTAIR) is associated with oncogenic features in bladder cancer and is predictive of poor clinical outcomes in patients diagnosed with this disease. In this study, we evaluated the impact of the HOTAIR single nucleotide polymorphisms rs920778 and rs12826786 on bladder cancer risk and survival. This case-control study included 106 bladder cancer patients and 199 cancer-free controls. Polymorphisms were evaluated through PCR-restriction fragment length polymorphism. The odds ratio and 95% confidence intervals were tested using univariable and multivariable logistic regressions. The effects on patient survival were evaluated using the log-rank test and Cox regression models. Our data showed that the HOTAIR rs920778 and rs12826786 genetic variants are not associated with the risk of developing bladder cancer. Nevertheless, survival analyses suggested that the HOTAIR rs920778 TT genotype and rs12826786 CC genotype are associated with increased survival in male bladder cancer patients and in patients, both male and female, who have primary tumors with a pathological stage of pT2. Together, these results suggest that, despite not being associated with bladder cancer risk, HOTAIR rs920778 and rs12826786 polymorphisms might represent new prognostic factors in this type of cancer. This is particularly important as these polymorphisms might be easily evaluated in bladder cancer patients in a minimally invasive manner to better predict their clinical outcomes.
Collapse
Affiliation(s)
- Eduarda P. Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (E.P.M.); (J.V.d.C.); (R.F.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Joana Vieira de Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (E.P.M.); (J.V.d.C.); (R.F.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Rita Fontes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (E.P.M.); (J.V.d.C.); (R.F.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Sara Monteiro-Reis
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (S.M.-R.); (R.H.); (C.J.)
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), University of Porto, 4200-465 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (S.M.-R.); (R.H.); (C.J.)
- Department of Pathology & Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), 4200-072 Porto, Portugal; (S.M.-R.); (R.H.); (C.J.)
- Department of Pathology & Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (E.P.M.); (J.V.d.C.); (R.F.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Raveendran S, Al Massih A, Al Hashmi M, Saeed A, Al-Azwani I, Mathew R, Tomei S. Urinary miRNAs: Technical Updates. Microrna 2024; 13:110-123. [PMID: 38778602 DOI: 10.2174/0122115366305985240502094814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Due to its non-invasive nature and easy accessibility, urine serves as a convenient biological fluid for research purposes. Furthermore, urine samples are uncomplicated to preserve and relatively inexpensive. MicroRNAs (miRNAs), small molecules that regulate gene expression post-transcriptionally, play vital roles in numerous cellular processes, including apoptosis, cell differentiation, development, and proliferation. Their dysregulated expression in urine has been proposed as a potential biomarker for various human diseases, including bladder cancer. To draw reliable conclusions about the roles of urinary miRNAs in human diseases, it is essential to have dependable and reproducible methods for miRNA extraction and profiling. In this review, we address the technical challenges associated with studying urinary miRNAs and provide an update on the current technologies used for urinary miRNA isolation, quality control assessment, and miRNA profiling, highlighting both their advantages and limitations.
Collapse
Affiliation(s)
- Santhi Raveendran
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Asma Saeed
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Iman Al-Azwani
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
10
|
Li S, Qiu N, Ni A, Hamblin MH, Yin KJ. Role of regulatory non-coding RNAs in traumatic brain injury. Neurochem Int 2024; 172:105643. [PMID: 38007071 PMCID: PMC10872636 DOI: 10.1016/j.neuint.2023.105643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Traumatic brain injury (TBI) is a potentially fatal health event that cannot be predicted in advance. After TBI occurs, it can have enduring consequences within both familial and social spheres. Yet, despite extensive efforts to improve medical interventions and tailor healthcare services, TBI still remains a major contributor to global disability and mortality rates. The prompt and accurate diagnosis of TBI in clinical contexts, coupled with the implementation of effective therapeutic strategies, remains an arduous challenge. However, a deeper understanding of changes in gene expression and the underlying molecular regulatory processes may alleviate this pressing issue. In recent years, the study of regulatory non-coding RNAs (ncRNAs), a diverse class of RNA molecules with regulatory functions, has been a potential game changer in TBI research. Notably, the identification of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other ncRNAs has revealed their potential as novel diagnostic biomarkers and therapeutic targets for TBI, owing to their ability to regulate the expression of numerous genes. In this review, we seek to provide a comprehensive overview of the functions of regulatory ncRNAs in TBI. We also summarize regulatory ncRNAs used for treatment in animal models, as well as miRNAs, lncRNAs, and circRNAs that served as biomarkers for TBI diagnosis and prognosis. Finally, we discuss future challenges and prospects in diagnosing and treating TBI patients in the clinical settings.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Na Qiu
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA
| | - Andrew Ni
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI, 02903, USA
| | - Milton H Hamblin
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 1212 Webber Hall, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ke-Jie Yin
- Department of Neurology, School of Medicine, University of Pittsburgh, S514 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
11
|
Tavares NT, Lobo J, Bagrodia A. MicroRNAs for detecting occult genitourinary cancer. Curr Opin Urol 2024; 34:20-26. [PMID: 37916954 DOI: 10.1097/mou.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW Genitourinary (GU) malignancies are a real burden in global health worldwide. Each model has its own clinical challenges, and the early screening and/or detection of occult cancer in follow-up is transversal to all of them. MicroRNAs (miRNAs) have been proposed as minimally invasive liquid biopsy cancer biomarkers, due to their stability and low degradation. RECENT FINDINGS The different GU tumor models are in different stages concerning miRNAs as biomarkers for cancer detection. Testicular germ cell tumors (TGCTs) already have a specific defined target, miR-371a-3p, that has shown high sensitivity and specificity in different clinical settings, and is now in final stages of preanalytical testing before entering the clinic. The other GU malignancies are in a different stage, with many liquid biopsy studies (both in urine and plasma/serum) being currently performed, but there is not an agreeable miRNA or set of miRNAs that is ready to follow the footsteps of miR-371a-3p in TGCTs. SUMMARY Further studies with proper molecular characterization of miRNA profiles of GU malignancies and standardization of sampling, biobanking and formal analysis may aid in the advance and choosing of specific target sets to be used for occult cancer detection.
Collapse
Affiliation(s)
- Nuno Tiago Tavares
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Doctoral Programme in Biomedical Sciences, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP)
| | - João Lobo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Department of Pathology, Portuguese Oncology Institute of Porto/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Aditya Bagrodia
- Department of Urology, University of California - San Diego Health, San Diego, California
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Maas M, Todenhöfer T, Black PC. Urine biomarkers in bladder cancer - current status and future perspectives. Nat Rev Urol 2023; 20:597-614. [PMID: 37225864 DOI: 10.1038/s41585-023-00773-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Urine markers to detect bladder cancer have been the subject of research for decades. The idea that urine - being in continuous contact with tumour tissue - should provide a vector of tumour information remains an attractive concept. Research on this topic has resulted in a complex landscape of many different urine markers with varying degrees of clinical validation. These markers range from cell-based assays to proteins, transcriptomic markers and genomic signatures, with a clear trend towards multiplex assays. Unfortunately, the number of different urine markers and the efforts in research and development of clinical grade assays are not reflected in the use of these markers in clinical practice, which is currently limited. Numerous prospective trials are in progress with the aim of increasing the quality of evidence about urinary biomarkers in bladder cancer to achieve guideline implementation. The current research landscape suggests a division of testing approaches. Some efforts are directed towards addressing the limitations of current assays to improve the performance of urine markers for a straightforward detection of bladder cancer. Additionally, comprehensive genetic analyses are emerging based on advances in next-generation sequencing and are expected to substantially affect the potential application of urine markers in bladder cancer.
Collapse
Affiliation(s)
- Moritz Maas
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, University of Tübingen, Tübingen, Germany
| | - Tilman Todenhöfer
- Clinical Trials Unit Studienpraxis Urologie, Nürtingen, Germany
- Eberhard-Karls-University, Tübingen, Germany
| | - Peter C Black
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Wu Q, Li L, Jia Y, Xu T, Zhou X. Advances in studies of circulating microRNAs: origination, transportation, and distal target regulation. J Cell Commun Signal 2023; 17:445-455. [PMID: 36357651 PMCID: PMC9648873 DOI: 10.1007/s12079-022-00705-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the past few years, numerous advances emerged in terms of circulating microRNA(miRNA) regulating gene expression by circulating blood to the distal tissues and cells. This article reviewed and summarized the process of circulating miRNAs entering the circulating system to exert gene regulation, especially exogenous miRNAs (such as plant miRNAs), from the perspective of the circulating miRNAs source (cell secretion or gastrointestinal absorption), the transport form and pharmacokinetics in circulating blood, and the evidence of distal regulation to gene expression, thereby providing a basis for their in-depth research and even application prospects.
Collapse
Affiliation(s)
- Qingni Wu
- Evidence Based Medicine Research Center, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Longxue Li
- Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
- Key Laboratory of Animal Model of TCM Syndromes of Depression, Jiangxi Administration of traditional Chinese Medicine, 330004, Nanchang, China
| | - Yao Jia
- Evidence Based Medicine Research Center, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Tielong Xu
- Evidence Based Medicine Research Center, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| | - Xu Zhou
- Evidence Based Medicine Research Center, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, 610000, Chengdu, China.
| |
Collapse
|
14
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
15
|
Hanžek A, Siatka C, Duc ACE. Extracellular urinary microRNAs as non-invasive biomarkers of endometrial and ovarian cancer. J Cancer Res Clin Oncol 2023; 149:7981-7993. [PMID: 36914786 DOI: 10.1007/s00432-023-04675-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Gynecological cancers account for a large number of cancer-related deaths in women. Endometrial cancer is the most prevalent, while ovarian cancer is the deadliest gynecological cancer worldwide. To overcome the clinical need for easy and rapid testing, there is a growing interest in cancer detection in non-invasive modalities. With a growing field of liquid biopsy, urine became interesting source of cancer biomarkers. OBJECTIVES The aim of this manuscript is to provide an overview on the origin, analysis and the clinical significance of urine microRNAs in gynecological cancers, with a focus on ovarian and endometrial cancer. MicroRNAs, a class of small non-coding nucleic acids, are emerging as a non-invasive biomarkers due to the feasibility and the extreme stability in body fluids. Specific miRNA expression signatures have been previously identified in ovarian and endometrial cancer. RESULTS The aim of this manuscript is to provide an overview on the origin, analysis and the clinical significance of urine microRNAs in gynecological cancers, with the focus on ovarian and endometrial cancer. CONCLUSION: The advantages and limitations of urine microRNA utility and technologies are discussed. Previously detected microRNA from urine of the patients are summarized to evaluate their potential as non-invasive clinical biomarkers in gynecological oncology.
Collapse
Affiliation(s)
- Antonija Hanžek
- UPR CHROME, Université de Nîmes, CEDEX 1, 30021, Nîmes, France
| | | | | |
Collapse
|
16
|
Duquesne I, Abou Chakra M, Hage L, Pinar U, Loriot Y. Liquid biopsies for detection, surveillance, and prognosis of urothelial cancer: a future standard? Expert Rev Anticancer Ther 2023; 23:995-1007. [PMID: 37542214 DOI: 10.1080/14737140.2023.2245144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Liquid biopsies are used for the detection of tumor-specific elements in body fluid. Their application in prognosis and diagnosis of muscle/non-muscle invasive bladder cancer (MIBC/NMIBC) or upper tract urothelial cancer (UTUC) remains poorly known and rarely mentioned in clinical guidelines. AREAS COVERED Herein, we provide an overview of current data regarding the use of liquid biopsies in urothelial tumors. EXPERT OPINION Studies that were included analyzed liquid biopsies using the detection of circulating tumor cells (CTCs), deoxyribonucleic acid (DNA), ribonucleic acid (RNA), exosomes, or metabolomics. The sensitivity of blood CTC detection in patients with localized cancer was 35% and raised to 50% in patients with metastatic cancer. In NMIBC patients, blood CTC was associated with poor prognosis, whereas discrepancies were seen in MIBC patients. Circulating plasma DNA presented a superior sensitivity to urine and was a good indicator for diagnosis, follow-up, and oncological outcome. In urine, specific bladder cancer (BC) microRNA had an overall sensitivity of 85% and a specificity of 86% in the diagnosis of urothelial cancer. These results are in favor of the use of liquid biopsies as biomarkers for in urothelial cancer management.
Collapse
Affiliation(s)
- Igor Duquesne
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Mohamad Abou Chakra
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Lory Hage
- Department of Urology, Cochin Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Cite, Paris, France
| | - Ugo Pinar
- Department of Urology, Pitie Salpetriere Hospital, Assistance Publique-Hopitaux de Paris, Universite Paris Sorbonne, Paris, France
| | - Yohann Loriot
- Department of Cancer Medicine, Gustave Roussy Institute, Cancer Campus, Grand Paris, Universite Paris-Sud, Villejuif, France
| |
Collapse
|
17
|
Zaidi N, Siddiqui Z, Sankhwar SN, Srivastava AN. Urinary microRNA-10a levels in diagnosis and prognosis of urinary bladder cancer. J Cancer Res Ther 2023; 19:1324-1329. [PMID: 37787302 DOI: 10.4103/jcrt.jcrt_1014_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Urinary bladder cancer (UBC) is a disease quite common in developed countries; however, its incidence is increasing in developing countries as well. The diagnosis of UBC is generally based on a number of methods, of which urinary cytology is a very commonly used one. But it is not very reliable. Therefore many new markers and methods are being investigated to make non-invasive diagnosis of UBC easy and reliable. Objective This study was carried out to find the usefulness of microRNA (miRNA)-10a as a diagnostic and prognostic marker in non-muscle-invasive urinary bladder carcinoma. Material and Method Twenty patients with UBC were taken as cases with 20 controls. Urine cytological examination was done, as well as histopathological examination of tumor tissue of cases. Urinary miRNA-10a estimation of both the cases and controls were done. Result and Conclusion It was found that miRNA-10a is significantly high in urine of patients with UBC. Its value also significantly correlated with the grade and stage of the tumor. Hence it can be concluded that urinary miRNA-10a is a potential candidate in the diagnosis and prognosis of UBC.
Collapse
Affiliation(s)
- Noorin Zaidi
- Department of Pathology, Eras Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Zainab Siddiqui
- Department of Pathology, Eras Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Satya N Sankhwar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anand N Srivastava
- Director Research, Eras Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
18
|
miRNAs in Herpesvirus Infection: Powerful Regulators in Small Packages. Viruses 2023; 15:v15020429. [PMID: 36851643 PMCID: PMC9965283 DOI: 10.3390/v15020429] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
microRNAs are a class of small, single-stranded, noncoding RNAs that regulate gene expression. They can be significantly dysregulated upon exposure to any infection, serving as important biomarkers and therapeutic targets. Numerous human DNA viruses, along with several herpesviruses, have been found to encode and express functional viral microRNAs known as vmiRNAs, which can play a vital role in host-pathogen interactions by controlling the viral life cycle and altering host biological pathways. Viruses have also adopted a variety of strategies to prevent being targeted by cellular miRNAs. Cellular miRNAs can act as anti- or proviral components, and their dysregulation occurs during a wide range of infections, including herpesvirus infection. This demonstrates the significance of miRNAs in host herpesvirus infection. The current state of knowledge regarding microRNAs and their role in the different stages of herpes virus infection are discussed in this review. It also delineates the therapeutic and biomarker potential of these microRNAs in future research directions.
Collapse
|
19
|
Brittney W, Kozar R, Wei C. EMERGING ROLE OF EXTRACELLULAR RNA IN INNATE IMMUNITY, SEPSIS, AND TRAUMA. Shock 2023; 59:190-199. [PMID: 36730864 PMCID: PMC9957828 DOI: 10.1097/shk.0000000000002032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Sepsis and trauma remain the leading causes of morbidity and mortality. Our understanding of the molecular pathogenesis in the development of multiple organ dysfunction in sepsis and trauma has evolved as more focus is on secondary injury from innate immunity, inflammation, and the potential role of endogenous danger molecules. Studies of the past several decades have generated evidence for extracellular RNAs (exRNAs) as biologically active mediators in health and disease. Here, we review studies on plasma exRNA profiling in mice and humans with sepsis and trauma, the role and mode of action by exRNAs, such as ex-micro(mi)RNAs, in host innate immune response, and their potential implications in various organ injury during sepsis and trauma.
Collapse
Affiliation(s)
- Williams Brittney
- Translational Research Program, Department of Anesthesiology, and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rosemary Kozar
- Shock Trauma Center and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chao Wei
- Translational Research Program, Department of Anesthesiology, and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
21
|
BlaDimiR: A Urine-based miRNA Score for Accurate Bladder Cancer Diagnosis and Follow-up. Eur Urol 2022; 82:663-667. [PMID: 36085102 DOI: 10.1016/j.eururo.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/18/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
|
22
|
BC-miR: Monitoring Breast Cancer-Related miRNA Profile in Blood Sera—A Prosperous Approach for Tumor Detection. Cells 2022; 11:cells11172721. [PMID: 36078129 PMCID: PMC9454447 DOI: 10.3390/cells11172721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer is the most frequent cancer with a high fatality rate amongst women worldwide. Diagnosing at an early stage is challenging, and due to the limitations of the currently used techniques, including mammography and imaging diagnostics, it still remains unascertained. Serum biomarkers can be a solution for this as they can be isolated in a less painful, more cost-effective, and minimally invasive manner. In this study, we shed light on the relevant role of multiple microRNAs (miRNAs) as potential biomarkers in breast cancer diagnosis. We monitored the expressional changes of 15 pre-selected miRNAs in a large cohort, including 65 patients with breast cancer and 42 healthy individuals. We performed thorough statistical analyses on the cohort sample set and determined the diagnostic accuracy of individual and multiple miRNAs. Our study reveals a potential improvement in diagnostics by implicating the monitoring of miR-15a+miR-16+miR-221 expression in breast cancer management.
Collapse
|
23
|
Wang Y, Gao Y, Song Y. Microfluidics-Based Urine Biopsy for Cancer Diagnosis: Recent Advances and Future Trends. ChemMedChem 2022; 17:e202200422. [PMID: 36040297 DOI: 10.1002/cmdc.202200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Indexed: 11/08/2022]
Abstract
Urine biopsy, allowing for the detection, analysis and monitoring of numerous cancer-associated urinary biomarkers to provide insights into cancer occurrence, progression and metastasis, has emerged as an attractive liquid biopsy strategy with enormous advantages over traditional tissue biopsy, such as noninvasiveness, large sample volume, and simple sampling operation. Microfluidics enables precise manipulation of fluids in a tiny chip and exhibits outstanding performance in urine biopsy owing to its minimization, low cost, high integration, high throughput and low sample consumption. Herein, we review recent advances in microfluidic techniques employed in urine biopsy for cancer detection. After briefly summarizing the major urinary biomarkers used for cancer diagnosis, we provide an overview of the typical microfluidic techniques utilized to develop urine biopsy devices. Some prospects along with the major challenges to be addressed for the future of microfluidic-based urine biopsy are also discussed.
Collapse
Affiliation(s)
- Yanping Wang
- Nanjing University of Science and Technology, Sino-French Engineer School, CHINA
| | - Yanfeng Gao
- Nanjing University, College of Engineering and Applied Sciences, CHINA
| | - Yujun Song
- Nanjing University, Biomedical Engineering, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
24
|
Jeong SH, Ku JH. Urinary Markers for Bladder Cancer Diagnosis and Monitoring. Front Cell Dev Biol 2022; 10:892067. [PMID: 35586337 PMCID: PMC9108179 DOI: 10.3389/fcell.2022.892067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/20/2022] [Indexed: 01/08/2023] Open
Abstract
Hematuria is a typical symptom of bladder cancer which enables early detection of bladder cancer. However, reliable diagnostic tools for bladder cancer using urine samples or other non-invasive methods are lacking. Tremendous attempts have been tried and revealed fancy works to convey definitive diagnostic power using urine samples. In this paper, we reviewed urinary markers for bladder cancer and compared their efficacies.
Collapse
Affiliation(s)
- Seung-Hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Ja Hyeon Ku,
| |
Collapse
|
25
|
Pouya FD, Rasmi Y, Gazouli M, Zografos E, Nemati M. MicroRNAs as therapeutic targets in breast cancer metastasis. Drug Deliv Transl Res 2022; 12:1029-1046. [PMID: 33987801 DOI: 10.1007/s13346-021-00999-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is a complex disease with multiple risk factors involved in its pathogenesis. Among these factors, microRNAs are considered for playing a fundamental role in the development and progression of malignant breast tumors. In recent years, various studies have demonstrated that several microRNAs exhibit increased or decreased expression in metastatic breast cancer, acting as indicators of metastatic potential in body fluids and tissue samples. The identification of these microRNA expression patterns could prove instrumental for the development of novel therapeutic molecules that either mimic or inhibit microRNA action. Additionally, an efficient delivery system mediated by viral vectors, nonviral carriers, or scaffold biomaterials is a prerequisite for implementing microRNA-based therapies; therefore, this review attempts to highlight essential microRNA molecules involved in the metastatic process of breast cancer and discuss recent advances in microRNA-based therapeutic approaches with potential future applications to the treatment sequence of breast cancer.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eleni Zografos
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
26
|
Kakouri AC, Koutalianos D, Koutsoulidou A, Oulas A, Tomazou M, Nikolenko N, Turner C, Roos A, Lusakowska A, Janiszewska K, Papadimas GK, Papadopoulos C, Kararizou E, Papanicolaou EZ, Gorman G, Lochmüller H, Spyrou GM, Phylactou LA. Circulating small RNA signatures differentiate accurately the subtypes of muscular dystrophies: small-RNA next-generation sequencing analytics and functional insights. RNA Biol 2022; 19:507-518. [PMID: 35388741 PMCID: PMC8993092 DOI: 10.1080/15476286.2022.2058817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscular dystrophies are a group of rare and severe inherited disorders mainly affecting the muscle tissue. Duchene Muscular Dystrophy, Myotonic Dystrophy types 1 and 2, Limb Girdle Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy are some of the members of this family of disorders. In addition to the current diagnostic tools, there is an increasing interest for the development of novel non-invasive biomarkers for the diagnosis and monitoring of these diseases. miRNAs are small RNA molecules characterized by high stability in blood thus making them ideal biomarker candidates for various diseases. In this study, we present the first genome-wide next-generation small RNA sequencing in serum samples of five different types of muscular dystrophy patients and healthy individuals. We identified many small RNAs including miRNAs, lncRNAs, tRNAs, snoRNAs and snRNAs, that differentially discriminate the muscular dystrophy patients from the healthy individuals. Further analysis of the identified miRNAs showed that some miRNAs can distinguish the muscular dystrophy patients from controls and other miRNAs are specific to the type of muscular dystrophy. Bioinformatics analysis of the target genes for the most significant miRNAs and the biological role of these genes revealed different pathways that the dysregulated miRNAs are involved in each type of muscular dystrophy investigated. In conclusion, this study shows unique signatures of small RNAs circulating in five types of muscular dystrophy patients and provides a useful resource for future studies for the development of miRNA biomarkers in muscular dystrophies and for their involvement in the pathogenesis of the disorders.
Collapse
Affiliation(s)
- Andrea C Kakouri
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Demetris Koutalianos
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Andreas Roos
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, Germany.,Division of Neurology, Department of Medicine, Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | - George K Papadimas
- Department of Neurology, Eginitio hospital, Medical School of Athens, Athens, Greece
| | | | - Evangelia Kararizou
- Department of Neurology, Eginitio hospital, Medical School of Athens, Athens, Greece
| | | | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Hanns Lochmüller
- Division of Neurology, Department of Medicine, Childrens Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.,Centro Nacional de AnálisisGenómico, Center for Genomic Regulation (CNAG-CRG), Barcelona Institute of Science and Technology (Bist), Barcelona, Spain
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
27
|
Jia M, Wang Z. MicroRNAs as Biomarkers for Ionizing Radiation Injury. Front Cell Dev Biol 2022; 10:861451. [PMID: 35309926 PMCID: PMC8927810 DOI: 10.3389/fcell.2022.861451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Accidental radiation exposures such as industrial accidents and nuclear catastrophes pose a threat to human health, and the potential or substantial injury caused by ionizing radiation (IR) from medical treatment that cannot be ignored. Although the mechanisms of IR-induced damage to various organs have been gradually investigated, medical treatment of irradiated individuals is still based on clinical symptoms. Hence, minimally invasive biomarkers that can predict radiation damage are urgently needed for appropriate medical management after radiation exposure. In the field of radiation biomarker, finding molecular biomarkers to assess different levels of radiation damage is an important direction. In recent years, microRNAs have been widely reported as several diseases’ biomarkers, such as cancer and cardiovascular diseases, and microRNAs are also of interest to the ionizing radiation field as radiation response molecules, thus researchers are turning attention to the potential of microRNAs as biomarkers in tumor radiation response and the radiation toxicity prediction of normal tissues. In this review, we summarize the distribution of microRNAs, the progress on research of microRNAs as markers of IR, and make a hypothesis about the origin and destination of microRNAs in vivo after IR.
Collapse
|
28
|
Brain innate immune response via miRNA-TLR7 sensing in polymicrobial sepsis. Brain Behav Immun 2022; 100:10-24. [PMID: 34808293 PMCID: PMC8766937 DOI: 10.1016/j.bbi.2021.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) occurs in sepsis survivors and is associated with breakdown of the blood-brain barrier (BBB), brain inflammation, and neurological dysfunction. We have previously identified a group of extracellular microRNAs (ex-miRNAs), such as miR-146a-5p, that were upregulated in the plasma of septic mice and human, and capable of inducing potent pro-inflammatory cytokines and complements. Here, we established a clinically relevant mouse model of SAE and investigated the role of extracellular miRNAs and their sensor Toll-like receptor 7 (TLR7) in brain inflammation and neurological dysfunction. We observed BBB disruption and a profound neuroinflammatory responses in the brain for up to 14 days post-sepsis; these included increased pro-inflammatory cytokines production, microglial expansion, and peripheral leukocyte accumulation in the CNS. In a battery of neurobehavioral tests, septic mice displayed impairment of motor coordination and neurological function. Sepsis significantly increased plasma RNA and miRNA levels for up to 7 days, such as miR-146a-5p. Exogenously added miR-146a-5p induces innate immune responses in both cultured microglia/astrocytes and the intact brain via a TLR7-dependent manner. Moreover, mice genetically deficient of miR-146a showed reduced accumulation of monocytes and neutrophils in the brain compared to WT after sepsis. Finally, ablation of TLR7 in the TLR7-/- mice preserved BBB integrity, reduced microglial expansion and leukocyte accumulation, and attenuated GSK3β signaling in the brain, but did not improve neurobehavioral recovery following sepsis. Taken together, these data establish an important role of extracellular miRNA and TLR7 sensing in sepsis-induced brain inflammation.
Collapse
|
29
|
Koutalianos D, Koutsoulidou A, Mytidou C, Kakouri AC, Oulas A, Tomazou M, Kyriakides TC, Prokopi M, Kapnisis K, Nikolenko N, Turner C, Lusakowska A, Janiszewska K, Papadimas GK, Papadopoulos C, Kararizou E, Spyrou GM, Gourdon G, Zamba Papanicolaou E, Gorman G, Anayiotos A, Lochmüller H, Phylactou LA. miR-223-3p and miR-24-3p as novel serum-based biomarkers for myotonic dystrophy type 1. Mol Ther Methods Clin Dev 2021; 23:169-183. [PMID: 34703840 PMCID: PMC8517008 DOI: 10.1016/j.omtm.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, primarily characterized by muscle wasting and weakness. Many biomarkers already exist in the rapidly developing biomarker research field that aim to improve patients' care. Limited work, however, has been performed on rare diseases, including DM1. We have previously shown that specific microRNAs (miRNAs) can be used as potential biomarkers for DM1 progression. In this report, we aimed to identify novel serum-based biomarkers for DM1 through high-throughput next-generation sequencing. A number of miRNAs were identified that are able to distinguish DM1 patients from healthy individuals. Two miRNAs were selected, and their association with the disease was validated in a larger panel of patients. Further investigation of miR-223-3p, miR-24-3p, and the four previously identified miRNAs, miR-1-3p, miR-133a-3p, miR-133b-3p, and miR-206-3p, showed elevated levels in a DM1 mouse model for all six miRNAs circulating in the serum compared to healthy controls. Importantly, the levels of miR-223-3p, but not the other five miRNAs, were found to be significantly downregulated in five skeletal muscles and heart tissues of DM1 mice compared to controls. This result provides significant evidence for its involvement in disease manifestation.
Collapse
Affiliation(s)
- Demetris Koutalianos
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Chrystalla Mytidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Andrea C. Kakouri
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Anastasis Oulas
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Marios Tomazou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Tassos C. Kyriakides
- Yale Center for Analytical Sciences, Yale School of Public Health, 300 George Street, Suite 555, New Haven, CT 06520, USA
| | - Marianna Prokopi
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Str., 3041 Limassol, Cyprus
- Theramir Ltd, 13 Georgiou Karaiskaki Str., 3032 Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Str., 3041 Limassol, Cyprus
| | - Nikoletta Nikolenko
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Chris Turner
- National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Anna Lusakowska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Janiszewska
- Department of Neurology, Central Hospital of Medical University of Warsaw, Warsaw, Poland
| | - George K. Papadimas
- Department of Neurology, Eginitio Hospital, Medical School of Athens, 74 Vasilissis Sofias, 11528 Athens, Greece
| | - Constantinos Papadopoulos
- Department of Neurology, Eginitio Hospital, Medical School of Athens, 74 Vasilissis Sofias, 11528 Athens, Greece
| | - Evangelia Kararizou
- Department of Neurology, Eginitio Hospital, Medical School of Athens, 74 Vasilissis Sofias, 11528 Athens, Greece
| | - George M. Spyrou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Geneviève Gourdon
- Inserm, Sorbonne University, Institute of Myology, Center of Research in Myology, Paris, France
| | - Eleni Zamba Papanicolaou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| | - Grainne Gorman
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, University of Newcastle, Newcastle, UK
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 45 Kitiou Kyprianou Str., 3041 Limassol, Cyprus
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Centre–University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
30
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
31
|
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D’Agostino DM, Ciminale V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers (Basel) 2021; 13:5874. [PMID: 34884985 PMCID: PMC8656820 DOI: 10.3390/cancers13235874] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers. This review provides a summary of the role of miR-200 family members in EMT, factors that regulate their expression, and important targets for miR-200-mediated repression that are involved in EMT. The second part of the review discusses the potential utility of circulating miR-200 family members as diagnostic/prognostic biomarkers for breast, colorectal, lung, ovarian, prostate and bladder cancers.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Francesco Ciccarese
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Evgeniya Sharova
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Loredana Urso
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| | - Vittoria Raimondi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Micol Silic-Benussi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Donna M. D’Agostino
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| |
Collapse
|
32
|
Cardona E, Guyomar C, Desvignes T, Montfort J, Guendouz S, Postlethwait JH, Skiba-Cassy S, Bobe J. Circulating miRNA repertoire as a biomarker of metabolic and reproductive states in rainbow trout. BMC Biol 2021; 19:235. [PMID: 34781956 PMCID: PMC8594080 DOI: 10.1186/s12915-021-01163-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Circulating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well-established non-invasive biomarkers of many human pathologies. However, their features in non-pathological contexts and whether their expression profiles reflect normal life history events have received little attention, especially in non-mammalian species. The aim of the present study was to investigate the potential of c-miRNAs to serve as biomarkers of reproductive and metabolic states in fish. Results The blood plasma was sampled throughout the reproductive cycle of female rainbow trout subjected to two different feeding regimes that triggered contrasting metabolic states. In addition, ovarian fluid was sampled at ovulation, and all samples were subjected to small RNA-seq analysis, leading to the establishment of a comprehensive miRNA repertoire (i.e., miRNAome) and enabling subsequent comparative analyses to a panel of RNA-seq libraries from a wide variety of tissues and organs. We showed that biological fluid miRNAomes are complex and encompass a high proportion of the overall rainbow trout miRNAome. While sharing a high proportion of common miRNAs, the blood plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further revealed that the blood plasma miRNAome significantly changed depending on metabolic and reproductive states. We subsequently identified three evolutionarily conserved muscle-specific miRNAs or myomiRs (miR-1-1/2-3p, miR-133a-1/2-3p, and miR-206-3p) that accumulated in the blood plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality. Conclusions Together, these promising results reveal the high potential of c-miRNAs, including evolutionarily conserved myomiRs, as physiologically relevant biomarker candidates and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01163-5.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Cervin Guyomar
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,GenPhySE, University of Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Thomas Desvignes
- Institute of Neurosciences, University of Oregon, Eugene, OR, 97403, USA
| | - Jérôme Montfort
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France
| | - Samia Guendouz
- Institute of Functional Genomics, MGX, UMR 5203 CNRS - U1191 INSERM, F-34094, Montpellier, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
33
|
Dubois J, Sczakiel G. The human TRAM1 locus expresses circular RNAs. Sci Rep 2021; 11:22114. [PMID: 34764360 PMCID: PMC8586232 DOI: 10.1038/s41598-021-01548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Numerous indirect and in silico produced evidences suggest circular RNAs (circRNA) in mammals while thorough experimental proofs of their existence have rarely been reported. Biological studies of circRNA, however, should be based on experimentally verified circRNAs. Here, we describe the identification of two circRNAs originating from the gene locus of the translocation associated membrane protein 1 (TRAM1). Linear and potentially circular TRAM1-specific transcripts were identified in a transcriptome analysis of urine RNA of bladder cancer (BCa) patients versus healthy donors. Thus, we first focused on the topology of TRAM1-specific transcripts. We describe conclusive experimental evidence for the existence of TRAM1-specific circRNAs in the human BCa cell lines ECV-304 and RT-4. PCR-based methodology followed by cloning and sequencing strongly indicated the circular topology of two TRAM1 RNAs. Further, studies with exon fusion sequence-specific antisense oligonucleotides (asON) and RNase H as well as studies in the use of RNase R contribute to conclusive set of experiments supporting the circular topology of TRAM1 transcripts. On the biological side, TRAM1-specific circRNAs showed low expression levels and minor differences in BCa cell lines while linear TRAM1 transcripts displayed down-regulated expression in the higher cancer stage model ECV-304 versus more differentiated RT-4 cells.
Collapse
Affiliation(s)
- Josephine Dubois
- grid.4562.50000 0001 0057 2672Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany ,grid.214458.e0000000086837370Present Address: Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI USA
| | - Georg Sczakiel
- Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
34
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
35
|
Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers. Trends Genet 2021; 38:379-394. [PMID: 34728089 DOI: 10.1016/j.tig.2021.10.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Alterations in microRNAs (miRNAs) expression are causative in the initiation and progression of human cancers. The molecular events responsible for the widespread differential expression of miRNAs in malignancy are exemplified by their location in cancer-associated genomic regions, epigenetic mechanisms, transcriptional dysregulation, chemical modifications and editing, and alterations in miRNA biogenesis proteins. The classical miRNA function is synonymous with post-transcriptional repression of target protein genes. However, several studies have reported miRNAs functioning outside this paradigm and some of these novel modes of regulation of gene expression have been implicated in cancers. Here, we summarize key aspects of miRNA involvement in cancer, with a special focus on these lesser-studied mechanisms of action.
Collapse
Affiliation(s)
- Mihnea P Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
36
|
Archacka K, Ciemerych MA, Florkowska A, Romanczuk K. Non-Coding RNAs as Regulators of Myogenesis and Postexercise Muscle Regeneration. Int J Mol Sci 2021; 22:ijms222111568. [PMID: 34768999 PMCID: PMC8583994 DOI: 10.3390/ijms222111568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022] Open
Abstract
miRNAs and lncRNAs do not encode proteins, but they play an important role in the regulation of gene expression. They differ in length, biogenesis, and mode of action. In this work, we focus on the selected miRNAs and lncRNAs involved in the regulation of myogenesis and muscle regeneration. We present selected miRNAs and lncRNAs that have been shown to control myogenic differentiation and show that manipulation of their levels could be used to improve myogenic differentiation of various types of stem and progenitor cells. Finally, we discuss how physical activity affects miRNA and lncRNA expression and how it affects muscle well-being.
Collapse
|
37
|
Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, Samadi-khouzani A, Yousefi M, Azhdari S, Salmaninejad A, Sahebkar A. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3408937. [PMID: 34721577 PMCID: PMC8553480 DOI: 10.1155/2021/3408937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.
Collapse
Affiliation(s)
- Yegane Mirahmadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fourough Taheri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Samadi-khouzani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
The oncogenic role of HIF-1α/miR-182-5p/ZFP36L1 signaling pathway in nasopharyngeal carcinoma. Cancer Cell Int 2021; 21:462. [PMID: 34465330 PMCID: PMC8406720 DOI: 10.1186/s12935-021-02177-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating evidence indicates that dysregulation of miR-182-5p can serve as diagnostic and prognostic biomarkers for some cancers, whereas the role of miR-182-5p has not been explored in nasopharyngeal carcinoma (NPC). Our study aims to elucidate the biological function of miR-182-5p in NPC and the potential molecular mechanism involved. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine miR-182-5p expression in NPC primary tissues and cell lines. Immunohistochemistry (IHC) for ZFP36L1 was conducted in NPC samples. Western blot was used to evaluate protein expression in cell lines. A series of functional assays were carried out to evaluate the roles of miR-182-5p and ZFP36L1 in tumor development and progression of NPC. Bioinformatics tools and luciferase reporter assays were utilized to identify the potential mechanisms of action. Moreover, rescue experiments were applied to explore whether ZFP36L1 mediated the effects of miR-182-5p in NPC. Results Up-regulation of miR-182-5p was significantly associated with tumor development and poor prognosis in patients with NPC. Functional study demonstrated that miR-182-5p overexpression enhanced, whereas suppression of miR-182-5p impeded NPC cell proliferation, migration, tumorigenesis and metastasis. Mechanistically, miR-182-5p interacted with ZFP36L1 at two sites in its 3′ un-translated region (UTR) and repressed ZFP36L1 expression in NPC. Consistently, an inverse correlation was observed between the expression levels of miR-182-5p and ZFP36L1 using clinical NPC tissues, and down-regulation of ZFP36L1 in NPC predicts poor survival. Furthermore, overexpression of miR-182-5p in NPC was partly attributable to the transcriptional activation effect induced by hypoxia-inducible factor 1α (HIF-1α). Conclusions Our data suggests that miR-182-5p facilitates cell proliferation and migration in NPC through its ability to down-regulate ZFP36L1 expression, and that the HIF-1α/miR-182-5p/ZFP36L1 axis may serve as a novel therapeutic target in the management of NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02177-3.
Collapse
|
39
|
Sampling, Logistics, and Analytics of Urine for RT-qPCR-based Diagnostics. Cancers (Basel) 2021; 13:cancers13174381. [PMID: 34503191 PMCID: PMC8430584 DOI: 10.3390/cancers13174381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Body fluids in the context of cancer diagnosis are the primary source of liquid biopsy, i.e., biomarker detection that includes blood and serum, urine, and saliva. RNA represents a particular class of biomarkers because it is thought to monitor the current status of gene expression in humans, in organs, and if present, also in tumors. In case of bladder cancer, we developed a scheme that describes, in detail, all steps from the collection of urine samples from patients, stabilization of samples, their transportation, storage, and marker analysis by qPCR-based technology. We find that urine samples prepared according to this protocol show stability of RNA over more than 10 days at unchilled temperatures during shipping. A specific procedure of primer design and amplicon evaluation allows a specific assignment of PCR products to human genomics and transcriptomics data collections. In summary, we describe a technical option for the robust acquisition of urine samples and the quantitative detection of RNA-based tumor markers in case of bladder cancer patients. This protocol is for general use, and we describe that it works for any RNA-based tumor marker in urine of cancer patients.
Collapse
|
40
|
Maggio I, Franceschi E, Gatto L, Tosoni A, Di Nunno V, Tonon C, Brandes AA. Radiomics, mirnomics, and radiomirRNomics in glioblastoma: defining tumor biology from shadow to light. Expert Rev Anticancer Ther 2021; 21:1265-1272. [PMID: 34433354 DOI: 10.1080/14737140.2021.1971518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Glioblastoma is a highly aggressive brain tumor with an extremely poor prognosis. Genetic characterization of this tumor has identified alterations with prognostic and therapeutic impact, and many efforts are being made to improve molecular knowledge on glioblastoma. Invasive procedures, such as tumor biopsy or radical resection, are needed to characterize the tumor. AREAS COVERED The role of microRNA in cancer is an expanding field of research as many microRNAs have been shown to correlate with patient prognosis and treatment response. Novel methodologies like radiomics, radiogenomics, and radiomiRNomics are under evaluation to improve the amount of prognostic and predictive biomarkers available. EXPERT OPINION The role of radiomics, radiogenomics, and radiomiRNomic for the characterization of glioblastoma will further improve in the coming years.
Collapse
Affiliation(s)
- Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Alicia Tosoni
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | | | - Caterina Tonon
- Ircss Istituto di Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alba A Brandes
- Medical Oncology Department, Azienda USL, Bologna, Italy
| |
Collapse
|
41
|
Khan MT, Irlam-Jones JJ, Pereira RR, Lane B, Valentine HR, Aragaki K, Dyrskjøt L, McConkey DJ, Hoskin PJ, Choudhury A, West CML. A miRNA signature predicts benefit from addition of hypoxia-modifying therapy to radiation treatment in invasive bladder cancer. Br J Cancer 2021; 125:85-93. [PMID: 33846523 PMCID: PMC8257670 DOI: 10.1038/s41416-021-01326-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND miRNAs are promising biomarkers in oncology as their small size makes them less susceptible to degradation than mRNA in FFPE tissue. We aimed to derive a hypoxia-associated miRNA signature for bladder cancer. METHODS Taqman miRNA array cards identified miRNA seed genes induced under hypoxia in bladder cancer cell lines. A signature was derived using feature selection methods in a TCGA BLCA training data set. miRNA expression data were generated for 190 tumours from the BCON Phase 3 trial and used for independent validation. RESULTS A 14-miRNA hypoxia signature was derived, which was prognostic for poorer overall survival in the TCGA BLCA cohort (n = 403, p = 0.001). Univariable analysis showed that the miRNA signature predicted an overall survival benefit from having carbogen-nicotinamide with radiotherapy (HR = 0.30, 95% CI 0.094-0.95, p = 0.030) and performed similarly to a 24-gene mRNA signature (HR = 0.47, 95% CI 0.24-0.92, p = 0.025). Combining the signatures improved performance (HR = 0.26, 95% CI 0.08-0.82, p = 0.014) with borderline significance for an interaction test (p = 0.065). The interaction test was significant for local relapse-free survival LRFS (p = 0.033). CONCLUSION A 14-miRNA hypoxia signature can be used with an mRNA hypoxia signature to identify bladder cancer patients benefitting most from having carbogen and nicotinamide with radiotherapy.
Collapse
Affiliation(s)
- Mairah T. Khan
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Joely J. Irlam-Jones
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Ronnie Rodrigues Pereira
- grid.5379.80000000121662407Translational Oncogenomics, Cancer Research UK Manchester Institute, Oglesby Cancer Research Building, University of Manchester, Manchester, UK
| | - Brian Lane
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Helen R. Valentine
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Kai Aragaki
- grid.21107.350000 0001 2171 9311Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD USA
| | - Lars Dyrskjøt
- grid.154185.c0000 0004 0512 597XDepartment of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J. McConkey
- grid.21107.350000 0001 2171 9311Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD USA
| | - Peter J. Hoskin
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Ananya Choudhury
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| | - Catharine M. L. West
- grid.5379.80000000121662407Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Christie NHS Foundation Trust Hospital, Manchester, UK
| |
Collapse
|
42
|
Nazarian H, Novin MG, Khaleghi S, Habibi B. Small non-coding RNAs in embryonic pre-implantation. Curr Mol Med 2021; 22:287-299. [PMID: 34042034 DOI: 10.2174/1566524021666210526162917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/22/2022]
Abstract
Failure of embryo implantation has been introduced as an important limiting parameter in early assisted reproduction and pregnancy. The embryo-maternal interactions, endometrial receptivity, and detections of implantation consist of the embryo viability. For regulating the implantation, multiple molecules may be consisted, however, their specific regulatory mechanisms still stand unclear. MicroRNAs (miRNAs) have been highly concerned due to their important effect on human embryo implantation. MicroRNA (miRNA), which acts as the transcriptional regulator of gene expression, is consisted in embryo implantation. Scholars determined that miRNAs cannot affect the cells and release by cells in the extracellular environment considering facilitating intercellular communication, multiple packaging forms, and preparing indicative data in the case of pathological and physiological conditions. The detection of extracellular miRNAs provided new information in cases of implantation studies. For embryo-maternal communication, MiRNAs offered novel approaches. In addition, in assisted reproduction, for embryo choice and prediction of endometrial receptivity, they can act as non-invasive biomarkers and can enhance the accuracy in the process of reducing the mechanical damage for the tissue.
Collapse
Affiliation(s)
- Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khaleghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Habibi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Chorley BN, Atabakhsh E, Doran G, Gautier JC, Ellinger-Ziegelbauer H, Jackson D, Sharapova T, Yuen PST, Church RJ, Couttet P, Froetschl R, McDuffie J, Martinez V, Pande P, Peel L, Rafferty C, Simutis FJ, Harrill AH. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit Rev Toxicol 2021; 51:264-282. [PMID: 34038674 DOI: 10.1080/10408444.2021.1907530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | - David Jackson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Church
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
44
|
Bratu O, Marcu D, Anghel R, Spinu D, Iorga L, Balescu I, Bacalbasa N, Diaconu C, Savu C, Savu C, Cherciu A. Tumoral markers in bladder cancer (Review). Exp Ther Med 2021; 22:773. [PMID: 34055072 DOI: 10.3892/etm.2021.10205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/12/2021] [Indexed: 01/15/2023] Open
Abstract
Bladder tumors are frequently diagnosed urologic malignant diseases with an extremely high recurrence rate compared to other neoplastic tumors. Urothelial bladder carcinomas are mostly identified in their incipient form, as non-muscle invasive, but despite that, a third of them develop into aggressive recurrent disease. The diagnosis of bladder carcinoma at this moment is established using cytology and cystoscopy and is a great challenge for clinicians due to the lack of sensitivity. Urinary biomarkers could improve and enhance the diagnosis and screening techniques and determine a more accurate recurrence rate. However, bladder cancer is a heterogeneous disease and the existence of a single marker test with reduced cost is unlikely; thus, until then, the use of a panel of markers to obtain valuable information is inevitable even though suboptimal for use. To improve this deadlock, new biomarker panels should be identified and prepared to equalize the cost-efficiency balance. The present paper is a literature review concerning the most commonly used tumor markers in urinary bladder cancer as well as the most commonly encountered genetic modifications in such patients.
Collapse
Affiliation(s)
- Ovidiu Bratu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania.,Department of Urology, Academy of Romanian Scientists, 020021 Bucharest, Romania
| | - Dragos Marcu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Radu Anghel
- Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Dan Spinu
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Lucian Iorga
- Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Irina Balescu
- Department of Visceral Surgery, 'Ponderas' Academic Hospital, 021188 Bucharest, Romania
| | - Nicolae Bacalbasa
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 023991 Bucharest, Romania.,Department of Visceral Surgery, Center of Excellence in Translational Medicine, 'Fundeni' Clinical Institute, 022328 Bucharest, Romania.,Department of Obstetrics and Gynecology, 'I. Cantacuzino' Clinical Hospital, 030167 Bucharest, Romania
| | - Camelia Diaconu
- Department of Internal Medicine, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania.,Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Cornel Savu
- Department of Thoracic Surgery, 'Marius Nasta' National Institute of Pneumophtisiology, 050159 Bucharest, Romania.,Department of Thoracic Surgery, 'Carol Davila' University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Savu
- Department of Anesthesiology, 'Fundeni' Clinical Institute, 022328 Bucharest, Romania
| | - Alexandru Cherciu
- Department of Urology, University Emergency Central Military Hospital, 010825 Bucharest, Romania
| |
Collapse
|
45
|
de Faria Junior GM, Murata FHA, Lorenzi HA, Castro BBP, Assoni LCP, Ayo CM, Brandão CC, de Mattos LC. The Role of microRNAs in the Infection by T. gondii in Humans. Front Cell Infect Microbiol 2021; 11:670548. [PMID: 34055667 PMCID: PMC8160463 DOI: 10.3389/fcimb.2021.670548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are molecules belonging to an evolutionarily conserved family of small non-coding RNAs, which act on post-transcriptional gene regulation, causing messenger RNA (mRNA) degradation or inhibiting mRNA translation into proteins. These molecules represent potential biomarkers for diagnosis, non-invasive prognosis, and monitoring the development of the disease. Moreover, they may provide additional information on the pathophysiology of parasitic infections and guide strategies for treatment. The Apicomplexan parasite Toxoplasma gondii modifies the levels of microRNAs and mRNAs in infected host cells by modulating the innate and adaptive immune responses, facilitating its survival within the host. Some studies have shown that microRNAs are promising molecular markers for developing diagnostic tools for human toxoplasmosis. MicroRNAs can be detected in human specimens collected using non-invasive procedures. changes in the circulating host microRNAs have been associated with T. gondii infection in mice and ocular toxoplasmosis in humans. Besides, microRNAs can be amplified from samples using sensitive and molecular-specific approaches such as real-time PCR. This review presents recent findings of the role that microRNAs play during T. gondii infection and discuss their potential use of these small nuclei acid molecules to different approaches such as laboratory diagnosis, modulation of cell and tissue infected as other potential applications in human toxoplasmosis.
Collapse
Affiliation(s)
- Geraldo Magela de Faria Junior
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Fernando Henrique Antunes Murata
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | | | - Bruno Bello Pede Castro
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Letícia Carolina Paraboli Assoni
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Christiane Maria Ayo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| |
Collapse
|
46
|
Dubois J, Rueger J, Haubold B, Far RKK, Sczakiel G. Transcriptome analyses of urine RNA reveal tumor markers for human bladder cancer: validated amplicons for RT-qPCR-based detection. Oncotarget 2021; 12:1011-1023. [PMID: 34012513 PMCID: PMC8121610 DOI: 10.18632/oncotarget.27954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
Non-invasive clinical diagnostics of bladder cancer is feasible via a set of chemically distinct molecules including macromolecular tumor markers such as polypeptides and nucleic acids. In terms of tumor-related aberrant gene expression, RNA transcripts are the primary indicator of tumor-specific gene expression as for polypeptides and their metabolic products occur subsequently. Thus, in case of bladder cancer, urine RNA represents an early potentially useful diagnostic marker. Here we describe a systematic deep transcriptome analysis of representative pools of urine RNA collected from healthy donors versus bladder cancer patients according to established SOPs. This analysis revealed RNA marker candidates reflecting coding sequences, non-coding sequences, and circular RNAs. Next, we designed and validated PCR amplicons for a set of novel marker candidates and tested them in human bladder cancer cell lines. We identified linear and circular transcripts of the S100 Calcium Binding Protein 6 (S100A6) and translocation associated membrane protein 1 (TRAM1) as highly promising potential tumor markers. This work strongly suggests exploiting urine RNAs as diagnostic markers of bladder cancer and it suggests specific novel markers. Further, this study describes an entry into the tumor-biology of bladder cancer and the development of gene-targeted therapeutic drugs.
Collapse
Affiliation(s)
- Josephine Dubois
- Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Lübeck D-23538, Germany
| | - Jacqueline Rueger
- Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Lübeck D-23538, Germany
| | - Bernhard Haubold
- Max-Planck-Institute for Evolutionary Biology, Department of Evolutionary Genetics, Ploen 24306, Germany
| | | | - Georg Sczakiel
- Institut für Molekulare Medizin, Universität zu Lübeck and UKSH, Campus Lübeck, Lübeck D-23538, Germany
| |
Collapse
|
47
|
Research Progress of Urine Biomarkers in the Diagnosis, Treatment, and Prognosis of Bladder Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33959906 DOI: 10.1007/978-3-030-63908-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bladder cancer (BC) is one of the most common tumor with high incidence. Relative to other cancers, BC has a high rate of recurrence, which results in increased mortality. As a result, early diagnosis and life-long monitoring are clinically significant for improving the long-term survival rate of BC patients. At present, the main methods of BC detection are cystoscopy and biopsy; however, these procedures can be invasive and expensive. This can lead to patient refusal and reluctance for monitoring. There are several BC biomarkers that have been approved by the FDA, but their sensitivity, specificity, and diagnostic accuracy are not ideal. More research is needed to identify suitable biomarkers that can be used for early detection, evaluation, and observation. There has been heavy research in the proteomics and genomics of BC and many potential biomarkers have been found. Although the advent of metabonomics came late, with the recent development of advanced analytical technology and bioinformatics, metabonomics has become a widely used diagnostic tool in clinical and biomedical research. It should be emphasized that despite progress in new biomarkers for BC diagnosis, there remains challenges and limitations in metabonomics research that affects its translation into clinical practice. In this chapter, the latest literature on BC biomarkers was reviewed.
Collapse
|
48
|
MicroRNA biomarkers of type 2 diabetes: A protocol for corroborating evidence by computational genomics and meta-analyses. PLoS One 2021; 16:e0247556. [PMID: 33822793 PMCID: PMC8023490 DOI: 10.1371/journal.pone.0247556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background Few microRNAs were found consistently dysregulated in type 2 diabetes (T2D) that would gain confidence from Big Pharma to develop diagnostic or therapeutic biomarkers. This study aimed to corroborate evidence from eligible microRNAs-T2D association studies according to stringent quality criteria covering both biological and statistical significance in T2D for biomarker development. Methods and analyses Controlled microRNA expression profiling studies on human with T2D will be retrieved from PubMed, ScienceDirect, and Embase for selecting the statistically significant microRNAs according to pre-specified search strategies and inclusion criteria. Multiple meta-analyses with restricted maximum-likelihood estimation and empirical Bayes estimation under the random-effects model will be conducted by metafor package in R. Subgroup and sensitivity analyses further examine the microRNA candidates for their disease specificity, tissue specificity, blood fraction specificity, and statistical robustness of evidence. Biologically relevant microRNAs will then be selected through genomic database corroboration. Their association with T2D is further measured by area under the curve (AUC) of receive operating characteristic (ROC). Meta-analysis of AUC of potential biomarkers will also be conducted. Enrichment analysis on potential microRNA biomarkers and their target genes will be performed by iPathwayGuide and clusterProfiler, respectively. The corresponding reporting guidelines will be used to assess the quality of included studies according to their profiling methods (microarray, RT-PCR, and RNA-Seq). Ethics and dissemination No ethics approval is required since this study does not include identifiable personal patient data. Protocol registration number CRD42017081659.
Collapse
|
49
|
Ferro M, La Civita E, Liotti A, Cennamo M, Tortora F, Buonerba C, Crocetto F, Lucarelli G, Busetto GM, Del Giudice F, de Cobelli O, Carrieri G, Porreca A, Cimmino A, Terracciano D. Liquid Biopsy Biomarkers in Urine: A Route towards Molecular Diagnosis and Personalized Medicine of Bladder Cancer. J Pers Med 2021; 11:jpm11030237. [PMID: 33806972 PMCID: PMC8004687 DOI: 10.3390/jpm11030237] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer (BC) is characterized by high incidence and recurrence rates together with genomic instability and elevated mutation degree. Currently, cystoscopy combined with cytology is routinely used for diagnosis, prognosis and disease surveillance. Such an approach is often associated with several side effects, discomfort for the patient and high economic burden. Thus, there is an essential demand of non-invasive, sensitive, fast and inexpensive biomarkers for clinical management of BC patients. In this context, liquid biopsy represents a very promising tool that has been widely investigated over the last decade. Liquid biopsy will likely be at the basis of patient selection for precision medicine, both in terms of treatment choice and real-time monitoring of therapeutic effects. Several different urinary biomarkers have been proposed for liquid biopsy in BC, including DNA methylation and mutations, protein-based assays, non-coding RNAs and mRNA signatures. In this review, we summarized the state of the art on different available tests concerning their potential clinical applications for BC detection, prognosis, surveillance and response to therapy.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology of European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.F.); (O.d.C.)
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.)
| | - Antonietta Liotti
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.)
| | - Michele Cennamo
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.)
| | - Fabiana Tortora
- Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy;
| | - Carlo Buonerba
- CRTR Rare Tumors Reference Center, AOU Federico II, 80131 Naples, Italy;
- Environment & Health Operational Unit, Zoo-Prophylactic Institute of Southern Italy, 80055 Portici, Italy
| | - Felice Crocetto
- Department of Neurosciences, Sciences of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy;
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy;
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, 71122 Foggia, Italy;
| | - Francesco Del Giudice
- Department of Urology, Sapienza University of Rome, 00185 Rome, Italy; (F.D.G.); (G.C.)
| | - Ottavio de Cobelli
- Department of Urology of European Institute of Oncology (IEO), IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.F.); (O.d.C.)
- Dipartimento di Oncologia ed Ematoncologia-DIPO-Università degli Studi di Milano, 20122 Milan, Italy
| | - Giuseppe Carrieri
- Department of Urology, Sapienza University of Rome, 00185 Rome, Italy; (F.D.G.); (G.C.)
| | - Angelo Porreca
- Department of Urology, Veneto Institute of Oncology, 31033 Padua, Italy;
| | - Amelia Cimmino
- Institute of Genetics and Biophysics, National Research Council, 80131 Naples, Italy
- Correspondence: or (A.C.); (D.T.); Tel.: +39-81-746-3617 (D.T.)
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (A.L.); (M.C.)
- Correspondence: or (A.C.); (D.T.); Tel.: +39-81-746-3617 (D.T.)
| |
Collapse
|
50
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|