1
|
Liao D, Su X, Wang J, Yu J, Luo H, Tian W, Ye Z, He J. Pushing the envelope: Immune mechanism and application landscape of macrophage-activating lipopeptide-2. Front Immunol 2023; 14:1113715. [PMID: 36761746 PMCID: PMC9902699 DOI: 10.3389/fimmu.2023.1113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Mycoplasma fermentans can cause respiratory diseases, arthritis, genitourinary tract infections, and chronic fatigue syndrome and have been linked to the development of the human immunodeficiency virus. Because mycoplasma lacks a cell wall, its outer membrane lipoproteins are one of the main factors that induce inflammation in the organism and contribute to disease development. Macrophage-activating lipopeptide-2 (MALP-2) modulates the inflammatory response of monocytes/macrophages in a bidirectional fashion, indirectly enhances the cytotoxicity of NK cells, promotes oxidative bursts in neutrophils, upregulates surface markers on lymphocytes, enhances antigen presentation on dendritic cells and induces immune inflammatory responses in sebocytes and mesenchymal cells. MALP-2 is a promising vaccine adjuvant for this application. It also promotes vascular healing and regeneration, accelerates wound and bone healing, suppresses tumors and metastasis, and reduces lung infections and inflammation. MALP-2 has a simple structure, is easy to synthesize, and has promising prospects for clinical application. Therefore, this paper reviews the mechanisms of MALP-2 activation in immune cells, focusing on the application of MALP-2 in animals/humans to provide a basis for the study of pathogenesis in Mycoplasma fermentans and the translation of MALP-2 into clinical applications.
Collapse
Affiliation(s)
- Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Jun He,
| |
Collapse
|
2
|
Tschernig T, Pabst R. Macrophage activating lipopeptide 2 is effective in mycobacterial lung infection. Ann Anat 2021; 233:151605. [DOI: 10.1016/j.aanat.2020.151605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
|
3
|
Laschke MW, Augustin V, Kleer S, Tschernig T, Menger MD. Locally applied macrophage-activating lipopeptide-2 (MALP-2) promotes early vascularization of implanted porous polyethylene (Medpor®). Acta Biomater 2014; 10:4661-4669. [PMID: 25062995 DOI: 10.1016/j.actbio.2014.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 11/16/2022]
Abstract
Porous polyethylene (Medpor®) is frequently used in craniofacial reconstructive surgery. Rapid vascularization of the biomaterial crucially contributes to its adequate incorporation without complications. Macrophage-activating lipopeptide-2 (MALP-2) is a toll-like receptor (TLR)-2/6 agonist with pro-angiogenic properties. Herein we analyzed whether local single-shot application of MALP-2 improves the angiogenic host tissue response to Medpor®. Medpor® (3 mm×3 mm×0.25 mm) was implanted into dorsal skinfold chambers of BALB/c mice topically exposed to different MALP-2 doses (0.1 and 0.5 μg) or vehicle (control). The vascularization of the implants and the inflammatory foreign body reaction was analyzed using intravital fluorescence microscopy, histology and immunohistochemistry over 14 days. MALP-2 treatment dose-dependently improved the vascularization of Medpor®, as indicated by a significantly higher functional microvessel density at the border and center of the implants when compared to controls. This was associated with a temporary increase of adherent leukocytes in host tissue venules during the first 3 days after implantation. At day 14, implants in MALP-2-treated chambers were surrounded by granulation tissue, which exhibited a significantly higher density of CD31-positive microvessels and number of F4/80-positive macrophages when compared to controls. Additional biomaterial-free chambers did not show any signs of angiogenesis when treated with MALP-2. This indicates that locally applied MALP-2 effectively stimulates the early vascularization of Medpor® without inducing any local or systemic side effects. Accordingly, this easy approach may further improve the rapid incorporation of this biomaterial at the implantation site.
Collapse
Affiliation(s)
- M W Laschke
- Institute for Clinical & Experimental Surgery, University of Saarland, 66421 Homburg/Saar, Germany.
| | - V Augustin
- Institute for Clinical & Experimental Surgery, University of Saarland, 66421 Homburg/Saar, Germany
| | - S Kleer
- Institute for Clinical & Experimental Surgery, University of Saarland, 66421 Homburg/Saar, Germany
| | - T Tschernig
- Institute of Anatomy, University of Saarland, 66421 Homburg/Saar, Germany
| | - M D Menger
- Institute for Clinical & Experimental Surgery, University of Saarland, 66421 Homburg/Saar, Germany
| |
Collapse
|
4
|
Akazawa T, Ohashi T, Nakajima H, Nishizawa Y, Kodama K, Sugiura K, Inaba T, Inoue N. Development of a dendritic cell-targeting lipopeptide as an immunoadjuvant that inhibits tumor growth without inducing local inflammation. Int J Cancer 2014; 135:2847-56. [PMID: 24789268 DOI: 10.1002/ijc.28939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/15/2014] [Indexed: 01/30/2023]
Abstract
Materials used for the past 30 years as immunoadjuvants induce suboptimal antitumor immune responses and often cause undesirable local inflammation. Some bacterial lipopeptides that act as Toll-like receptor (TLR) 2 ligands activate immune cells as immunoadjuvants and induce antitumor effects. Here, we developed a new dendritic cell (DC)-targeting lipopeptide, h11c (P2C-ATPEDNGRSFS), which uses the CD11c-binding sequence of intracellular adhesion molecule-1 to selectively and efficiently activate DCs but not other immune cells. Although the h11c lipopeptide activated DCs similarly to an artificial lipopeptide, P2C-SKKKK (P2CSK4), via TLR2 in vitro, h11c induced more effective tumor inhibition than P2CSK4 at low doses in vivo with tumor antigens. Even without tumor antigens, h11c lipopeptide significantly inhibited tumor growth and induced tumor-specific cytotoxic T cells. P2CSK4 was retained subcutaneously at the vaccination site and induced severe local inflammation in in vivo experiments. In contrast, h11c was not retained at the vaccination site and was transported into the tumor within 24 hr. The recruitment of DCs into the tumor was induced by h11c more effectively, while P2CSK4 induced the accumulation of neutrophils leading to severe inflammation at the vaccination site. Because CD11b+ cells, but not CD11c+ cells, produced neutrophil chemotactic factors such as macrophage inflammatory protein (MIP)-2 in response to stimulation with TLR2 ligands, the DC-targeting lipopeptide h11c induced less MIP-2 production by splenocytes than P2CSK4. In this study, we succeeded in developing a novel immunoadjuvant, h11c, which effectively induces antitumor activity without adverse effects such as local inflammation via the selective activation of DCs.
Collapse
Affiliation(s)
- Takashi Akazawa
- Department of Molecular Genetics, Osaka Medical Center for Cancer and Cardiovascular Diseases, Higashinari-ku, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Expression of caveolin-1 and podocalyxin in rat lungs challenged with 2-kDa macrophage-activating lipopeptide and Flt3L. Cell Tissue Res 2014; 356:207-16. [PMID: 24419512 DOI: 10.1007/s00441-013-1771-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/14/2013] [Indexed: 10/25/2022]
Abstract
Caveolin-1 is one of the important regulators of vascular permeability in inflamed lungs. Podocalyxin is a CD34 protein expressed on vascular endothelium and has a role in podocyte development in the kidney. Few data are available on the expression of caveolin-1 and podocalyxin in lungs challenged with Toll-like receptor 2 (TLR2) agonists such as mycoplasma-derived macrophage activating lipopeptide or with immune modulators such as Fms-like tyrosine kinase receptor-3 ligand (Flt3L), which expands dendritic cell populations in the lung. Because of the significance of pathogen-derived molecules that act through TLR2 and of the role of immune modulators in lung physiology, we examine the immunohistochemical expression of caveolin-1 and podocalyxin in lungs from rats challenged with a 2-kDa macrophage-activating lipopeptide (MALP-2) and Flt3L. Normal rat lungs expressed caveolin-1 in alveolar septa, vascular endothelium and airway epithelium, especially along the lateral borders of epithelial cells but not in alveolar macrophages. MALP-2 and Flt3L decreased and increased, respectively, the expression of caveolin-1. Caveolin-1 expression seemed to increase in microvessels in bronchiole-associated lymphoid tissue (BALT) in Flt3L-challenged lungs but not in normal or MALP-2-treated lungs. Podocalyxin was absent in the epithelium and alveolar macrophages but was present in the vasculature of control, Flt3L- and MALP-2-treated rats. Compared with control and MALP-2-treated rats, Flt3L-treated lungs showed greater expression of podocalyxin in BALT vasculature and at the interface of monocytes and the endothelium. These immunohistochemical data describing the altered expression of caveolin-1 and podocalyxin in lungs treated with MALP-2 or Flt3L encourage further mechanistic studies on the role of podocalyxin and caveolin-1 in lung inflammation.
Collapse
|
6
|
Nawijn MC, Motta AC, Gras R, Shirinbak S, Maazi H, van Oosterhout AJM. TLR-2 activation induces regulatory T cells and long-term suppression of asthma manifestations in mice. PLoS One 2013; 8:e55307. [PMID: 23393567 PMCID: PMC3564817 DOI: 10.1371/journal.pone.0055307] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways characterized by variable airway obstruction and airway hyperresponsiveness (AHR). The T regulatory (Treg) cell subset is critically important for the regulation of immune responses. Adoptive transfer of Treg cells has been shown to be sufficient for the suppression of airway inflammation in experimental allergic asthma. Intervention strategies aimed at expanding the Treg cell population locally in the airways of sensitized individuals are therefore of high interest as a potential therapeutic treatment for allergic airway disease. Here, we aim to test whether long-term suppression of asthma manifestations can be achieved by locally expanding the Treg cell subset via intranasal administration of a TLR-2 agonist. To model therapeutic intervention aimed at expanding the endogenous Treg population in a sensitized host, we challenged OVA-sensitized mice by OVA inhalation with concomitant intranasal instillation of the TLR-2 agonist Pam3Cys, followed by an additional series of OVA challenges. Pam3Cys treatment induced an acute but transient aggravation of asthma manifestations, followed by a reduction or loss of AHR to methacholine, depending on the time between Pam3Cys treatment and OVA challenges. In addition, Pam3Cys-treatment induced significant reductions of eosinophils and increased numbers of Treg cells in the lung infiltrates. Our data show that, despite having adverse acute effects, TLR2 agonist treatment as a therapeutic intervention induces an expansion of the Treg cell population in the lungs and results in long-term protection against manifestation of allergic asthma upon subsequent allergen provocation. Our data indicate that local expansion of Tregs in allergic airway disease is an interesting therapeutic approach that warrants further investigation.
Collapse
Affiliation(s)
- Martijn C Nawijn
- Laboratory of Allergology and Pulmonary Diseases, Department of Pathology and Medical Biology, University of Groningen, GRIAC Research Institute, University Medical Centre Groningen-UMCG, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Schill T, Schön MP, Pletz N, Emmert S, Schön M. Stimulation of pulmonary immune responses by the TLR2/6 agonist MALP-2 and effect on melanoma metastasis to the lung. Exp Dermatol 2011; 21:91-8. [PMID: 22044500 DOI: 10.1111/j.1600-0625.2011.01386.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Given that metastasized melanoma is a fatal disease in most cases, it is tempting to develop strategies to a priori prevent metastasis. We have stimulated the pulmonary innate immune system by macrophage-activating lipopeptide-2 (MALP-2), a specific agonist at Toll-like receptor (TLR) 2/6, and investigated its impact on experimental melanoma metastasis. In C57BL/6 mice, intratracheal application of MALP-2 induced a profound influx of neutrophils and macrophages into the lung, which peaked after 24 h (sixfold increase) and returned to baseline within 72 h. Further analysis revealed that MALP-2 also markedly induced VCAM-1 expression on pulmonary blood vessels. In vitro experiments demonstrated that this adhesion molecule mediates binding of B16F10 melanoma cells. Furthermore, in vivo or in vitro treatment with MALP-2 did not significantly affect the ability of immune cells to lyse melanoma cells. As a consequence, notwithstanding the profound pulmonary immune response induction and in contrast to conclusions drawn from some previous publications, the net extent of experimental metastasis did not change significantly, regardless of the application regimen of MALP-2 prior to, concomitant with or after tumor cell inoculation. Melanoma cells stably transfected with green fluorescent protein allowed tracking of early events after tumor cell dissemination and showed that MALP-2-mediated TLR2/6 activation did not interfere with pulmonary melanoma cell arrest. Likewise, boosting the immune induction after establishment of metastases did not change the clinical outcome. These unexpected results vividly counsel caution regarding predictions of immunomodulating therapies, as multiple intertwined effects may influence the net outcome.
Collapse
Affiliation(s)
- Tillmann Schill
- Department of Dermatology, Venereology and Allergology, Georg August University, Göttingen, Germany
| | | | | | | | | |
Collapse
|
9
|
Fuchs B, Braun A. Modulation of asthma and allergy by addressing toll-like receptor 2. J Occup Med Toxicol 2011; 3 Suppl 1:S5. [PMID: 18315836 PMCID: PMC2259399 DOI: 10.1186/1745-6673-3-s1-s5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors play an important role in innate and adaptive immunity and in balancing immune responses with tolerance. TLR2 is related to protection against allergies and allergic asthma by sensing pathogen associated patterns as lipoproteins and lipopeptides. A constant Th1 triggering is thought to prevent Th2 related disorders. TLR2 is expressed on a variety of cells, both structural as well as immune cells. Importantly, TLR2 is also expressed on dendritic cells, which are thought to be one of the key players of initiating and maintaining immune responses. Therefore, TLR2 on dendritic cells is a good target for modulating immunity either to Th1 or Th2 responses, or induction of tolerance. TLR2 agonists show high immunomodulatory and adjuvantic capacity. This makes TLR2 agonisation a promising approach for pharmaceutical intervention of allergic disorders.
Collapse
Affiliation(s)
- Barbara Fuchs
- Department of Immunology, Allergology and Immunotoxicology, Fraunhofer Institute of Toxicology and Experimental Medicine, Nikolai-Fuchs-Str, 1, 30625 Hannover, Germany.
| | | |
Collapse
|
10
|
Barrenschee M, Lex D, Uhlig S. Effects of the TLR2 agonists MALP-2 and Pam3Cys in isolated mouse lungs. PLoS One 2010; 5:e13889. [PMID: 21124967 PMCID: PMC2987752 DOI: 10.1371/journal.pone.0013889] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/15/2010] [Indexed: 11/22/2022] Open
Abstract
Background Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/mL), Pam3Cys (160 ng/mL) or LPS (1 µg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1β, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2α) and Ptgs2. MALP-2 was more potent than Pam3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs. Conclusions/Significance TLR2 and TLR4 activation leads to similar reactions in the lungs regarding MAPK activation, gene induction and mediator release. Several genes studied here have not yet been appreciated as targets of TLR2-activation in the lungs before, i.e., Slpi, tenascin C, Parg and Traf1. In addition, the MALP-2 dependent induction of Tnc may indicate the existence of TLR2/6-specific pathways.
Collapse
Affiliation(s)
- Martina Barrenschee
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Dennis Lex
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
11
|
Kerber-Momot T, Leemhuis D, Lührmann A, Munder A, Tümmler B, Pabst R, Tschernig T. Beneficial effects of TLR-2/6 ligation in pulmonary bacterial infection and immunization with Pseudomonas aeruginosa. Inflammation 2010; 33:58-64. [PMID: 19844782 DOI: 10.1007/s10753-009-9158-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is the major pathogen in nosocomial and life-threatening infections of immunocompromised or critically ill patients. The macrophage-activating lipopeptide-2 (MALP-2) activates the immune system via Toll-like receptors (TLR) 2 and 6 and leads to an accumulation of immune cells in lungs of young adult (8-10 week old) rats after intratracheal application. This is characterized by a high increase of granulocyte numbers in the BAL 24 h after MALP-2 treatment. It was hypothesized that MALP-2 may have a positive effect on the clinical course of an experimental infection. Therefore, rats were treated with MALP-2 at different time points following an infection with P. aeruginosa. The effect of MALP-2 in combination with immunization with inactivated P. aeruginosa was also investigated. Rats (n = 10) were infected intratracheally (i.t.) with 1 x 10(8) CFU P. aeruginosa on day 0. They were treated on day -3, -1, 0 and +1 with 2.5 microg MALP-2 or the vehicle i.t. In additional experiments, rats were immunized on day -21 and -14 with 1 x 10(8) CFU of inactivated P. aeruginosa bacteria and 2.5 microg MALP-2 or vehicle with 1 x 10(8) CFU of inactivated bacteria and isopropanol. The clinical score, rectal temperature and weight of the rats were checked in both treatment and immunization experiments twice a day. On day 2 they were sacrificed, CFU were determined in the left lung, the right lung being used for histology. In the group treated with MALP-2 1 day prior to infection significant effects were seen: The rectal temperature was about 2 degrees C higher in comparison to the controls at 6 h and also 1 day after infection. Both the symptoms of the infection and the weight loss were significantly reduced. In addition, the CFU and the inflammation in the lung tissue were significantly lower. These effects were not observed after treatment on day -3, 0 or +1. The MALP-2 enhanced immunization only resulted in a tendency to clinical improvement. In conclusion, local immunostimulation at the appropriate time can enhance the host defense against bacteria in the lung.
Collapse
Affiliation(s)
- Tanja Kerber-Momot
- Institute of Functional and Applied Anatomy, Medical School Hannover, Carl-Neuberg Str 1, 30625, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ahlers JD, Belyakov IM. Strategies for optimizing targeting and delivery of mucosal HIV vaccines. Eur J Immunol 2009; 39:2657-69. [DOI: 10.1002/eji.200939269] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Jörgens G, Bange FC, Mühlradt PF, Pabst R, Maus UA, Tschernig T. Synthetic Lipopeptide MALP-2 Inhibits Intracellular Growth of Mycobacterium bovis BCG in Alveolar Macrophages—Preliminary Data. Inflammation 2009; 32:247-51. [DOI: 10.1007/s10753-009-9127-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Abstract
The cotton rat (Sigmodon hispidus) model has proven to be a suitable small animal model for measles virus pathogenesis to fill the niche between tissue culture and studies in macaques. Similar to mice, inbred cotton rats are available in a microbiologically defined quality with an ever-increasing arsenal of reagents and methods available for the study of infectious diseases. Cotton rats replicate measles virus in the respiratory tract and (depending on virus strain) in lymphoid organs. They can be infected with vaccine, wild-type, and recombinant measles viruses and have been used to study viruses with genetic modifications. Other areas of study include efficacy testing of antivirals and vaccines. The cotton rat also has been an informative animal model to investigate measles virus-induced immune suppression and suppression of vaccination by maternal antibodies. In addition, the cotton rat promises to be a useful model for the study of polymicrobial disease (interaction between measles virus and secondary pathogens).
Collapse
Affiliation(s)
- S Niewiesk
- College of Veterinary Medicine, Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Pabst R, Durak D, Roos A, Lührmann A, Tschernig T. TLR2/6 stimulation of the rat lung: effects on lymphocyte subsets, natural killer cells and dendritic cells in different parts of the air-conducting compartments and at different ages. Immunology 2008; 126:132-9. [PMID: 18565128 DOI: 10.1111/j.1365-2567.2008.02886.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The composition of lymphocyte subsets in the lung has been found to be compartment-specific. To characterize the effect of age, weanling, young adult and adult rats were studied in control conditions and after a single intratracheal dose of the Toll-like receptor 2/6 (TLR2/6) agonist macrophage activating lipopeptide-2 (MALP-2). In all age groups, T, B and natural killer (NK) cells increased dramatically in the epithelium and lamina propria of the bronchi. Male adult rats were found to have responded to MALP-2 to a much greater extent than females when lymphocyte subsets were counted in the epithelium and the lamina propria. In a second series of experiments the time kinetics of regulatory T-cell (Treg) subsets and dendritic cells (DCs) in the lung was studied after local stimulation with MALP-2. Different time-dependent patterns were found in the Treg subsets CD4(+) CD25(+), CD4(+) CD25(+) neuropilin 1(+) and CD4(+) CD25(+) Foxp3(+) cells. Neutrophils and DCs also showed different patterns. Thus, the local application of a TLR agonist increased the number of lymphocyte subsets in a compartment-specific pattern. However, data should not be generalized or extrapolated from one age group, sex or lymphocyte subpopulation to another.
Collapse
Affiliation(s)
- Reinhard Pabst
- Institute of Functional and Applied Anatomy, Medical School Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Burke JM, Ganley-Leal LM, Khatri A, Wetzler LM. Neisseria meningitidis PorB, a TLR2 ligand, induces an antigen-specific eosinophil recall response: potential adjuvant for helminth vaccines? THE JOURNAL OF IMMUNOLOGY 2007; 179:3222-30. [PMID: 17709538 DOI: 10.4049/jimmunol.179.5.3222] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Efficacious adjuvants are important components of new vaccines. The neisserial outer membrane protein, PorB, is a TLR2 ligand with unique adjuvant activity. We demonstrate that PorB promotes Th2-skewed cellular immune response to the model Ag, OVA, in mice, including Ag-specific recall eosinophil recruitment to the peritoneum. PorB induces chemokine secretion by myeloid cells using both TLR2-dependent and -independent mechanisms, suggesting that anatomical distribution of TLR2(+) cells may not be a limiting factor for potential vaccine strategies. The results from this study suggest that PorB, and other TLR2 ligands, may be ideal for use against pathogens where eosinophilia may be protective, such as parasitic helminths.
Collapse
Affiliation(s)
- Jennifer M Burke
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
18
|
Lührmann A, Grote K, Stephan M, Tschernig T, Pabst R. Local pulmonary immune stimulation by the Toll-like receptor 2 and 6 ligand MALP-2 in rats is age dependent. Immunol Lett 2007; 108:167-73. [PMID: 17275100 DOI: 10.1016/j.imlet.2006.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 12/08/2006] [Accepted: 12/23/2006] [Indexed: 10/23/2022]
Abstract
Recent studies indicate that the pulmonary immune response in humans and experimental animals is different in newborn, adult and elderly age groups. The aim of this study was to investigate the influence of age on the leukocyte composition in different lung compartments and peripheral blood of weaned and adult rats. A mycoplasma-like inflammatory response was mimicked by intratracheal application of the synthetic macrophage-activating lipopeptide-2 (MALP-2) which activates macrophages and other cells via the Toll-like receptor (TLR) 2 and 6. TLR 2 and 6 mRNA expressions were investigated by semiquantitative RT-PCR in cells of the bronchoalveolar lavage (BAL) and lung interstitium. Weaned Lewis rats (3-4 weeks old) and adults (12-14 months old) were treated with vehicle control or MALP-2. Cytokines and cell infiltration were measured in the BAL and lung interstitium. In control rats, no differences in TLR 2 and 6 mRNA expression level were found between the age groups. After MALP-2 treatment, the maximum of MCP-1 concentration in the BAL fluid was reached in weaned rats after 4h and in adults after 2h. The TNF-alpha maximum was measured after 2h in both age groups. Three days after MALP-2 the numbers of different leukocyte subsets were significantly increased in the BAL of both groups. In contrast, in the lung interstitium MALP-2 induced a leukocyte increase in adult rats but not in weaned rats. In conclusion, data on pulmonary immune responses from one age group and one lung compartment should not be generalized or extrapolated to other groups.
Collapse
Affiliation(s)
- Anke Lührmann
- Functional and Applied Anatomy, Medical School of Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|
19
|
Debertin AS, Tschernig T, Schürmann A, Bajanowski T, Brinkmann B, Pabst R. Coincidence of different structures of mucosa-associated lymphoid tissue (MALT) in the respiratory tract of children: no indications for enhanced mucosal immunostimulation in sudden infant death syndrome (SIDS). Clin Exp Immunol 2006; 146:54-9. [PMID: 16968398 PMCID: PMC1809740 DOI: 10.1111/j.1365-2249.2006.03190.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mucosa-associated lymphoid tissue (MALT) is the principal inductive site for mucosal immune responses that are capable of T and B cell responses and antigen-specific responses. In previous independent studies different structures of MALT, e.g. bronchus-, larynx- and nose-associated lymphoid tissue (BALT, LALT, NALT) have been described separately in various frequencies in the human respiratory tract over life spans. Because upper respiratory tract infections are common in infants, dysregulations of mucosal immune responses might be seriously involved in the aetiology of sudden infant death syndrome (SIDS). In the present study the coincidental occurrence of the three different MALT structures in the respiratory tract within the same patients were studied, and cases of SIDS and children who had died from different traumatic and natural causes of death (non-SIDS) were compared. First, the frequency of BALT and LALT in 46 children (35 SIDS, 11 non-SIDS) with or without NALT were examined. A tendency was found of a coincidence of respiratory MALT structures. In 50 additional cases of infant death (30 SIDS, 20 non-SIDS) from the multi-centric German Study on Sudden Infant Death Syndrome (GeSID) where death had occurred in the first year of life, the coincidence was evaluated. A coincidental occurrence of BALT, LALT and NALT or BALT and LALT (each about 30%) was found in both groups, whereby the coincidence in SIDS and the control patients did not differ. Interestingly, the children with coincidental MALT were strikingly older, supporting the hypothesis of respiratory MALT formation via environmental stimulation over time.
Collapse
Affiliation(s)
- A S Debertin
- Institute of Legal Medicine, Medical School of Hannover, Germany.
| | | | | | | | | | | |
Collapse
|