1
|
Radaelli A, Zanotto C, Brambilla C, Adami T, Paolini F, Venuti A, Manuka A, Mehmeti I, De Giuli Morghen C. Different immunogens and prime-boost vaccination strategies affect the efficacy of recombinant candidate vaccines against pathogenic orthopoxviruses. Virol J 2024; 21:282. [PMID: 39511612 PMCID: PMC11542223 DOI: 10.1186/s12985-024-02534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Although not as lethal as variola virus (VARV), the cause of smallpox, monkeypox virus (MPXV) represents a threat to public health, with important infection rates and mortality in several African countries and signs of spreading worldwide. MPXV may establish new reservoirs in non-endemic countries and can be considered a possible biological weapon. Human-to-human MPXV transmission is increasing with a growing susceptibility, coincident with the declining herd immunity against smallpox. The emerging threat of MPXV highlights the urgent need for protection from new zoonotic infections, as mankind is completely unprepared for encounters with new viruses. Preventive vaccination remains the most effective control against orthopoxviruses (OPXVs) such as MPXV and prime-boost vaccination strategies can significantly influence vaccine efficacy and enhance immune responses. Our study aimed at characterizing potential vaccine candidates against OPXV infections in a murine model using DNA, viral and protein recombinant vaccines using different prime-boost regimens. The experiments employed Vaccinia virus (VACV) A33, B5, L1, and A27 envelope proteins as immunogens for both priming and boosting. Priming was carried out using a mixture of four plasmids (4pVAXmix), and boosts employed fowlpox (FWPV) recombinants (4FPmix) and/or the purified recombinant proteins (4protmix), all of them expressing the same antigens. One or two doses of the same immunogens were tested and identical protocols were also compared for intranasal (i.n.) or intramuscular (i.m.) viral administration, before challenge with the highly pathogenic VACV VVIHD-J strain. Our results show that a single dose of any combined immunogen elicited a very low antibody response. Protein mixtures administered twice boosted the humoral response of DNA immunizations by electroporation (e. p.), but did not protect from viral challenge. The antibody neutralizing titer was inversely correlated with animals' weight loss, which was initially similar in all of the groups after the challenge, but was then reversed in mice that had been primed twice with the DNA recombinants and boosted twice with the FWPV recombinants.
Collapse
MESH Headings
- Animals
- Mice
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Immunization, Secondary/methods
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Vaccine Efficacy
- Female
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Vaccination/methods
- Mice, Inbred BALB C
- Vaccines, DNA/immunology
- Vaccines, DNA/administration & dosage
- Poxviridae Infections/prevention & control
- Poxviridae Infections/immunology
- Disease Models, Animal
- Orthopoxvirus/immunology
- Orthopoxvirus/genetics
- Monkeypox virus/immunology
- Monkeypox virus/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/genetics
- Mpox (monkeypox)
Collapse
Affiliation(s)
- Antonia Radaelli
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, 20129, Italy
- Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, 123, Tirana, Albania
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, 20129, Italy.
- Laboratory of Molecular Virology and Recombinant Vaccine Development, Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli, 32, Milan, 20129, Italy.
| | - Chiara Brambilla
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, 20129, Italy
| | - Tommaso Adami
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, 20129, Italy
| | - Francesca Paolini
- UOSD Tumor Immunology and Immunotherapy, HPV UNIT, IRCCS Regina Elena National Cancer Institute, via Chianesi, 53, Rome, 00144, Italy
| | - Aldo Venuti
- UOSD Tumor Immunology and Immunotherapy, HPV UNIT, IRCCS Regina Elena National Cancer Institute, via Chianesi, 53, Rome, 00144, Italy
| | - Adriana Manuka
- Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, 123, Tirana, Albania
| | - Irsida Mehmeti
- Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, 123, Tirana, Albania
| | - Carlo De Giuli Morghen
- Faculty of Pharmacy, Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, 123, Tirana, Albania
| |
Collapse
|
2
|
Li Z, Roy S, Ranasinghe C. Evaluation of Innate Lymphoid Cells and Dendritic Cells Following Viral Vector Vaccination. Methods Mol Biol 2022; 2465:137-153. [PMID: 35118620 DOI: 10.1007/978-1-0716-2168-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, we have shown that fate of a vaccine is determined by the cytokine milieu in the innate immune compartment at the early stage of vaccination. Specifically, 24 h post-delivery, level of innate lymphoid cell type 2 (ILC2)-derived IL-13/IL-13Rα2 are the master regulators of DC and also different ILC subsets responsible for modulating the downstream immune outcomes. Here, we provide step-by-step details how to assess different ILC and DC subsets in lung and muscle following intranasal and intramuscular viral vector vaccination, respectively, using multi-color flow cytometry and confocal microscopy.
Collapse
Affiliation(s)
- Zheyi Li
- Molecular Mucosal Vaccine Immunology Group, Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sreeja Roy
- Molecular Mucosal Vaccine Immunology Group, Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Aging, Cancer and Immuno-Oncology , Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Division of Immunity, Inflammation and Infection, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
3
|
Abstract
IL-4 production is associated with low-avidity, poorly cytotoxic T cell induction that contributes to viral immune evasion and the failure of T cell-based vaccines. Yet, the precise mechanisms that regulate IL-4 signalling in T cells remain elusive. Mounting evidence indicates that cells can dynamically alter their IL-4/IL-13 receptor signature to modulate downstream immune outcomes upon pathogen encounter. Here, we describe how naïve (CD62L+CD44lo-mid) CD4 and CD8 T cells distinctly engage both STAT6 and STAT3 in response to IL-4. We further show that IL-4R⍺ expression is both time- and IL-4 concentration-dependent. Remarkably, our findings reveal that STAT3 inhibition can ablate IL-4R⍺ and affect transcriptional expression of other Stat and Jak family members. By extension, the loss of STAT3 lead to aberrant STAT6 phosphorylation, revealing an inter-regulatory relationship between the two transcription factors. Moreover, IL-4 stimulation down-regulated TGF-β1 and IFN-γR1 expression on naïve T cells, possibly signifying the broad regulatory implications of IL-4 in conditioning lineage commitment decisions during early infection. Surprisingly, naïve T cells were unresponsive to IL-13 stimulation, unlike dendritic cells. Collectively, these findings could be exploited to inform more efficacious vaccines, as well as design treatments against IL-4/IL-13-associated disease conditions.
Collapse
|
4
|
Li Z, Roy S, Ranasinghe C. IL-13Rα2 Regulates the IL-13/IFN-γ Balance during Innate Lymphoid Cell and Dendritic Cell Responses to Pox Viral Vector-Based Vaccination. Vaccines (Basel) 2021; 9:440. [PMID: 34062727 PMCID: PMC8147251 DOI: 10.3390/vaccines9050440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/08/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
We have shown that manipulation of IL-13 and STAT6 signaling at the vaccination site can lead to different innate lymphoid cell (ILC)/dendritic cell (DC) recruitment, resulting in high avidity/poly-functional T cells and effective antibody differentiation. Here we show that permanent versus transient blockage of IL-13 and STAT6 at the vaccination site can lead to unique ILC-derived IL-13 and IFN-γ profiles, and differential IL-13Rα2, type I and II IL-4 receptor regulation on ILC. Specifically, STAT6-/- BALB/c mice given fowl pox virus (FPV) expressing HIV antigens induced elevated ST2/IL-33R+ ILC2-derived IL-13 and reduced NKp46+/- ILC1/ILC3-derived IFN-γ expression, whilst the opposite (reduced IL-13 and elevated IFN-γ expression) was observed during transient inhibition of STAT6 signaling in wild type BALB/c mice given FPV-HIV-IL-4R antagonist vaccination. Interestingly, disruption/inhibition of STAT6 signaling considerably impacted IL-13Rα2 expression by ST2/IL-33R+ ILC2 and NKp46- ILC1/ILC3, unlike direct IL-13 inhibition. Consistently with our previous findings, this further indicated that inhibition of STAT6 most likely promoted IL-13 regulation via IL-13Rα2. Moreover, the elevated ST2/IL-33R+ IL-13Rα2+ lung ILC2, 24 h post FPV-HIV-IL-4R antagonist vaccination was also suggestive of an autocrine regulation of ILC2-derived IL-13 and IL-13Rα2, under certain conditions. Knowing that IL-13 can modulate IFN-γ expression, the elevated expression of IFN-γR on lung ST2/IL-33R+ ILC2 provoked the notion that there could also be inter-regulation of lung ILC2-derived IL-13 and NKp46- ILC1/ILC3-derived IFN-γ via their respective receptors (IFN-γR and IL-13Rα2) at the lung mucosae early stages of vaccination. Intriguingly, under different IL-13 conditions differential regulation of IL-13/IL-13Rα2 on lung DC was also observed. Collectively these findings further substantiated that IL-13 is the master regulator of, not only DC, but also different ILC subsets at early stages of viral vector vaccination, and responsible for shaping the downstream adaptive immune outcomes. Thus, thoughtful selection of vaccine strategies/adjuvants that can manipulate IL-13Rα2, and STAT6 signaling at the ILC/DC level may prove useful in designing more efficacious vaccines against different/chronic pathogens.
Collapse
Affiliation(s)
- Zheyi Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; (Z.L.); (S.R.)
| | - Sreeja Roy
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; (Z.L.); (S.R.)
- Department of Immunology & Microbial Disease, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208-3479, USA
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; (Z.L.); (S.R.)
| |
Collapse
|
5
|
Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, Amarasena TH, Kelleher AD, Purcell DFJ, Kent SJ, Ranasinghe C. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4 +/CD8 + T cells and humoral responses in macaques. Sci Rep 2020; 10:22077. [PMID: 33328567 PMCID: PMC7744512 DOI: 10.1038/s41598-020-79172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Inducing humoral, cellular and mucosal immunity is likely to improve the effectiveness of HIV-1 vaccine strategies. Here, we tested a vaccine regimen in pigtail macaques using an intranasal (i.n.) recombinant Fowl Pox Virus (FPV)-gag pol env-IL-4R antagonist prime, intramuscular (i.m.) recombinant Modified Vaccinia Ankara Virus (MVA)-gag pol-IL-4R antagonist boost followed by an i.m SOSIP-gp140 boost. The viral vector-expressed IL-4R antagonist transiently inhibited IL-4/IL-13 signalling at the vaccination site. The SOSIP booster not only induced gp140-specific IgG, ADCC (antibody-dependent cellular cytotoxicity) and some neutralisation activity, but also bolstered the HIV-specific cellular and humoral responses. Specifically, superior sustained systemic and mucosal HIV Gag-specific poly-functional/cytotoxic CD4+ and CD8+ T cells were detected with the IL-4R antagonist adjuvanted strategy compared to the unadjuvanted control. In the systemic compartment elevated Granzyme K expression was linked to CD4+ T cells, whilst Granzyme B/TIA-1 to CD8+ T cells. In contrast, the cytotoxic marker expression by mucosal CD4+ and CD8+ T cells differed according to the mucosal compartment. This vector-based mucosal IL-4R antagonist/SOSIP booster strategy, which promotes cytotoxic mucosal CD4+ T cells at the first line of defence, and cytotoxic CD4+ and CD8+ T cells plus functional antibodies in the blood, may prove valuable in combating mucosal infection with HIV-1 and warrants further investigation.
Collapse
Affiliation(s)
- Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - S L Grimley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - P Ellenberg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - T H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - A D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - D F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
6
|
Wen Z, Xu Z, Zhou Q, Li W, Wu Y, Du Y, Chen L, Xue C, Cao Y. A heterologous 'prime-boost' anti-PEDV immunization for pregnant sows protects neonatal piglets through lactogenic immunity against PEDV. Lett Appl Microbiol 2019; 69:258-263. [PMID: 31278766 PMCID: PMC7165963 DOI: 10.1111/lam.13197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/04/2023]
Abstract
Abstract Porcine epidemic diarrhoea virus (PEDV) causes severe diarrhoea in neonatal suckling piglets with a high mortality. Maternal vaccines that can induce lactogenic immunity to protect suckling piglets via colostrums and milk are pivotal for the prevention and control of PEDV infection in neonatal suckling piglets. In this study, a group of pregnant sows were first orally immunized with coated PEDV‐loaded microspheres and boosted with killed PEDV vaccines (heterologous prime‐boost). It has been detected that the levels of PEDV‐specific antibodies (IgG and IgA) in their sera and milks were higher than other negative groups (P < 0·001 or P < 0·05). Furthermore, it has been proved by the neutralization assay that the induced antibodies could significantly inhibit virus infection as compared to other negative groups (P < 0·01 or P < 0·05). Importantly, after PEDV challenge, more than 90% of the suckling piglets delivered by the sows in the heterologous prime‐boost group were completely protected. Overall, the results show that ‘heterologous prime‐boost’ form is an efficient and effective way to provide protection for suckling piglets against PEDV through lactogenic immunity. Significance and Impact of the Study As a widespread swine pathogen, PEDV affects the swine industry enormously. It causes enteritis in swine of all ages and is often fatal in neonatal piglets. Our data show that pregnant sows were immunized with ‘coated PEDV‐loaded microspheres + killed PEDV vaccines’ (heterologous prime‐boost immunization) could protect more than 90% suckling piglets delivered by the sows against the virus. These findings provide a new model of developing safe and effective immunizations for newborn animals against established and emerging enteric infections.
Collapse
Affiliation(s)
- Z Wen
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Z Xu
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Q Zhou
- Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, China
| | - W Li
- Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, China
| | - Y Wu
- Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, Guangdong, China
| | - Y Du
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - L Chen
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - C Xue
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Y Cao
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Khanna M, Jackson RJ, Alcantara S, Amarasena TH, Li Z, Kelleher AD, Kent SJ, Ranasinghe C. Mucosal and systemic SIV-specific cytotoxic CD4 + T cell hierarchy in protection following intranasal/intramuscular recombinant pox-viral vaccination of pigtail macaques. Sci Rep 2019; 9:5661. [PMID: 30952887 PMCID: PMC6450945 DOI: 10.1038/s41598-019-41506-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
A HIV vaccine that provides mucosal immunity is urgently needed. We evaluated an intranasal recombinant Fowlpox virus (rFPV) priming vaccine followed by intramuscular Modified Vaccinia Ankara (rMVA) booster vaccine, both expressing SIV antigens. The vaccination generated mucosal and systemic SIV-specific CD4+ T cell mediated immunity and was associated with partial protection against high-dose intrarectal SIVmac251 challenge in outbred pigtail macaques. Three of 12 vaccinees were completely protected and these animals elicited sustained Gag-specific poly-functional, cytotoxic mucosal CD4+ T cells, complemented by systemic poly-functional CD4+ and CD8+ T cell immunity. Humoral immune responses, albeit absent in completely protected macaques, were associated with partial control of viremia in animals with relatively weaker mucosal/systemic T cell responses. Co-expression of an IL-4R antagonist by the rFPV vaccine further enhanced the breadth and cytotoxicity/poly-functionality of mucosal vaccine-specific CD4+ T cells. Moreover, a single FPV-gag/pol/env prime was able to induce rapid anamnestic gp140 antibody response upon SIV encounter. Collectively, our data indicated that nasal vaccination was effective at inducing robust cervico-vaginal and rectal immunity, although cytotoxic CD4+ T cell mediated mucosal and systemic immunity correlated strongly with 'complete protection', the different degrees of protection observed was multi-factorial.
Collapse
Affiliation(s)
- Mayank Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Thakshila H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Zheyi Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia.
| |
Collapse
|
8
|
Roy S, Jaeson MI, Li Z, Mahboob S, Jackson RJ, Grubor-Bauk B, Wijesundara DK, Gowans EJ, Ranasinghe C. Viral vector and route of administration determine the ILC and DC profiles responsible for downstream vaccine-specific immune outcomes. Vaccine 2019; 37:1266-1276. [PMID: 30733092 DOI: 10.1016/j.vaccine.2019.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
This study demonstrates that route and viral vector can significantly influence the innate lymphoid cells (ILC) and dendritic cells (DC) recruited to the vaccination site, 24 h post delivery. Intranasal (i.n.) vaccination induced ST2/IL-33R+ ILC2, whilst intramuscular (i.m.) induced IL-25R+ and TSLPR+ (Thymic stromal lymphopoietin protein receptor) ILC2 subsets. However, in muscle a novel ILC subset devoid of the known ILC2 markers (IL-25R- IL-33R- TSLPR-) were found to express IL-13, unlike in lung. Different viral vectors also influenced the ILC-derived cytokines and the DC profiles at the respective vaccination sites. Both i.n. and i.m. recombinant fowlpox virus (rFPV) priming, which has been associated with induction of high avidity T cells and effective antibody differentiation exhibited low ILC2-derived IL-13, high NKp46+ ILC1/ILC3 derived IFN-γ and low IL-17A, together with enhanced CD11b+ CD103- conventional DCs (cDC). In contrast, recombinant Modified Vaccinia Ankara (rMVA) and Influenza A vector priming, which has been linked to low avidity T cells, induced opposing ILC derived-cytokine profiles and enhanced cross-presenting DCs. These observations suggested that the former ILC/DC profiles could be a predictor of a balanced cellular and humoral immune outcome. In addition, following i.n. delivery Rhinovirus (RV) and Adenovius type 5 (Ad5) vectors that induced elevated ILC2-derived IL-13, NKp46+ ILC1/ILC3-derived-IFN-γ and no IL-17A, predominantly recruited CD11b- B220+ plasmacytoid DCs (pDC). Knowing that pDC are involved in antibody differentiation, we postulate that i.n. priming with these vectors may favour induction of effective humoral immunity. Our data also revealed that vector-specific replication status and/or presence or absence of immune evasive genes can significantly alter the ILC and DC activity. Collectively, our findings suggest that understanding the route- and vector-specific ILC and DC profiles at the vaccination site may help tailor/design more efficacious viral vector-based vaccines, according to the pathogen of interest.
Collapse
Affiliation(s)
- S Roy
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - M I Jaeson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - S Mahboob
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - R J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - B Grubor-Bauk
- Virology Group, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Australia
| | - D K Wijesundara
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia; Virology Group, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Australia
| | - E J Gowans
- Virology Group, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Australia
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia.
| |
Collapse
|
9
|
Sauermann U, Radaelli A, Stolte-Leeb N, Raue K, Bissa M, Zanotto C, Krawczak M, Tenbusch M, Überla K, Keele BF, De Giuli Morghen C, Sopper S, Stahl-Hennig C. Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 + and CD8 + T-Cell Responses. J Virol 2017; 91:e01120-17. [PMID: 28904195 PMCID: PMC5686736 DOI: 10.1128/jvi.01120-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen.IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.
Collapse
Affiliation(s)
- Ulrike Sauermann
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nicole Stolte-Leeb
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Katharina Raue
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Sieghart Sopper
- Clinic for Hematology and Oncology, Medical University Innsbruck, Tyrolean Cancer Research Center, Innsbruck, Austria
| | | |
Collapse
|
10
|
Townsend DG, Trivedi S, Jackson RJ, Ranasinghe C. Recombinant fowlpox virus vector-based vaccines: expression kinetics, dissemination and safety profile following intranasal delivery. J Gen Virol 2017; 98:496-505. [PMID: 28056224 PMCID: PMC5797952 DOI: 10.1099/jgv.0.000702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
We have previously established that mucosal uptake of recombinant fowlpox virus (rFPV) vaccines is far superior to other vector-based vaccines. Specifically, intranasal priming with rFPV vaccines can recruit unique antigen-presenting cells, which induce excellent mucosal and systemic HIV-specific CD8+ T-cell immunity. In this study, we have for the first time investigated the in vivo dissemination, safety and expression kinetics of rFPV post intranasal delivery using recombinant viruses expressing green fluorescent protein or mCherry. Both confocal microscopy of tissue sections using green fluorescent protein and in vivo Imaging System (IVIS) spectrum live animal and whole organ imaging studies using mCherry revealed that (i) the peak antigen expression occurs 12 to 24 h post vaccination and no active viral gene expression is detected 96 h post vaccination. (ii) The virus only infects the initial vaccination site (lung and nasal cavity) and does not disseminate to distal sites such as the spleen or gut. (iii) More importantly, rFPV does not cross the olfactory receptor neuron pathway. Collectively, our findings indicate that rFPV vector-based vaccines have all the hallmarks of a safe and effective mucosal delivery vector, suitable for clinical evaluation.
Collapse
Affiliation(s)
- David G Townsend
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
- Present address: Division of Infectious Diseases, Department of Internal Medicine, The University of Utah, Salt Lake City, UT, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
11
|
Bissa M, Quaglino E, Zanotto C, Illiano E, Rolih V, Pacchioni S, Cavallo F, De Giuli Morghen C, Radaelli A. Protection of mice against the highly pathogenic VV IHD-J by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity. Antiviral Res 2016; 134:182-191. [PMID: 27637905 PMCID: PMC9533953 DOI: 10.1016/j.antiviral.2016.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 11/06/2022]
Abstract
The control of smallpox was achieved using live vaccinia virus (VV) vaccine, which successfully eradicated the disease worldwide. As the variola virus no longer exists as a natural infection agent, mass vaccination was discontinued after 1980. However, emergence of smallpox outbreaks caused by accidental or deliberate release of variola virus has stimulated new research for second-generation vaccine development based on attenuated VV strains. Considering the closely related animal poxviruses that also arise as zoonoses, and the increasing number of unvaccinated or immunocompromised people, a safer and more effective vaccine is still required. With this aim, new vectors based on avian poxviruses that cannot replicate in mammals should improve the safety of conventional vaccines, and protect from zoonotic orthopoxvirus diseases, such as cowpox and monkeypox. In this study, DNA and fowlpox (FP) recombinants that expressed the VV L1R, A27L, A33R, and B5R genes were generated (4DNAmix, 4FPmix, respectively) and tested in mice using novel administration routes. Mice were primed with 4DNAmix by electroporation, and boosted with 4FPmix applied intranasally. The lethal VVIHD-J strain was then administered by intranasal challenge. All of the mice receiving 4DNAmix followed by 4FPmix, and 20% of the mice immunized only with 4FPmix, were protected. The induction of specific humoral and cellular immune responses directly correlated with this protection. In particular, higher anti-A27 antibodies and IFNγ-producing T lymphocytes were measured in the blood and spleen of the protected mice, as compared to controls. VVIHD-J neutralizing antibodies in sera from the protected mice suggest that the prime/boost vaccination regimen with 4DNAmix plus 4FPmix may be an effective and safe mode to induce protection against smallpox and poxvirus zoonotic infections. The electroporation/intranasal administration routes contributed to effective immune responses and mouse survival.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129 Milano, Italy.
| | - Elena Illiano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy.
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | - Sole Pacchioni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Torino, Italy.
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129 Milano, Italy; Catholic University "Our Lady of Good Counsel", Rr. Dritan Hoxha, Tirana, Albania.
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy; Cellular and Molecular Pharmacology Section, National Research Council (CNR), Institute of Neurosciences, University of Milan, Via Vanvitelli, 32, 20129 Milano, Italy.
| |
Collapse
|
12
|
Tan HX, Gilbertson BP, Jegaskanda S, Alcantara S, Amarasena T, Stambas J, McAuley JL, Kent SJ, De Rose R. Recombinant influenza virus expressing HIV-1 p24 capsid protein induces mucosal HIV-specific CD8 T-cell responses. Vaccine 2016; 34:1172-9. [PMID: 26826545 DOI: 10.1016/j.vaccine.2016.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/24/2015] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Abstract
Influenza viruses are promising mucosal vaccine vectors for HIV but their use has been limited by difficulties in engineering the expression of large amounts of foreign protein. We developed recombinant influenza viruses incorporating the HIV-1 p24 gag capsid into the NS-segment of PR8 (H1N1) and X31 (H3N2) influenza viruses with the use of multiple 2A ribosomal skip sequences. Despite the insertion of a sizable HIV-1 gene into the influenza genome, recombinant viruses were readily rescued to high titers. Intracellular expression of p24 capsid was confirmed by in vitro infection assays. The recombinant influenza viruses were subsequently tested as mucosal vaccines in BALB/c mice. Recombinant viruses were attenuated and safe in immunized mice. Systemic and mucosal HIV-specific CD8 T-cell responses were elicited in mice that were immunized via intranasal route with a prime-boost regimen. Isolated HIV-specific CD8 T-cells displayed polyfunctional cytokine and degranulation profiles. Mice boosted via intravaginal route induced recall responses from the distal lung mucosa and developed heightened HIV-specific CD8 T-cell responses in the vaginal mucosa. These findings demonstrate the potential utility of recombinant influenza viruses as vaccines for mucosal immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Hyon-Xhi Tan
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Brad P Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, United States
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Thakshila Amarasena
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria, Australia; CSIRO Animal Health Laboratories, Geelong, Victoria, Australia
| | - Julie L McAuley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia; Melbourne Sexual Health Centre, Alfred Hospital, Monash University Central Clinical School, Victoria, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Victoria, Australia.
| | - Robert De Rose
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3010, Australia
| |
Collapse
|
13
|
Trivedi S, Neeman T, Jackson RJ, Ranasinghe R, Jack C, Ranasinghe C. Identification of biomarkers to measure HIV-specific mucosal and systemic CD8(+) T-cell immunity using single cell Fluidigm 48.48 Dynamic arrays. Vaccine 2015; 33:7315-7327. [PMID: 26519547 DOI: 10.1016/j.vaccine.2015.10.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/06/2015] [Accepted: 10/17/2015] [Indexed: 11/16/2022]
Abstract
Thirty genes composed of cytokines, chemokines, granzymes, perforin and integrins were evaluated in gut and splenic K(d)Gag197-205-specific single CD8(+) T cells using Fluidigm 48.48 Dynamic arrays, with the aim of identifying biomarkers to predict effective mucosal and systemic vaccine efficacy. The mRNA expression profiles were analyzed in three ways: (i) the "number" of K(d)Gag197-205-specific CD8(+) T cells expressing the biomarker, (ii) "level" of mRNA expression using principal component analysis (PCA) and (iii) poly-functionality in relation to RANTES expression. In total, 21 genes were found to be differentially expressed between the vaccine groups and the immune compartments tested. Overall, the PCA indicated that IL-13Rα2 or IL-4R antagonist adjuvanted vaccines that previously induced high-avidity mucosal/systemic CD8(+) T cells with better protective efficacy, the "level" of mRNA expression, specifically RANTES, MIP-1β, and integrin α4 in gut K(d)Gag197-205-specific single CD8(+) T cells, were significantly elevated compared to unadjuvanted vaccine. Furthermore, significantly elevated granzymes/perforin levels were detected in IL-13(-/-) mice given the unadjuvanted vaccine, indicating that the degree of IL-13 inhibition (total, transient or no inhibition) can considerably alter the level of T-cell activity/poly-functionality. When splenic- and gut-K(d)Gag197-205-specific CD8(+) T cells were compared, PC1 vs. PC2 scores revealed that not only RANTES, MIP-1β, and integrin α4 mRNA, but also perforin, granzymes A/B, and integrins β1 and β2 mRNA were elevated in spleen. Collectively, data suggest that RANTES, MIP-1β, perforin, and integrins α4, β1 and β7 mRNA in single HIV-specific CD8(+) T cells could be used as a measure of effective mucosal and systemic vaccine efficacy.
Collapse
Affiliation(s)
- Shubhanshi Trivedi
- The John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, ACT 2601, Australia; Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The Australian National University, Canberra, ACT 2601, Australia
| | - Teresa Neeman
- Statistical Consultant Unit, The Australian National University, Canberra, ACT 2601, Australia
| | - Ronald J Jackson
- The John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, ACT 2601, Australia; Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The Australian National University, Canberra, ACT 2601, Australia
| | - Roshanka Ranasinghe
- Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia; UNESCO-IHE, Institute for Water Education, 2601 DA Delft, The Netherlands
| | - Cameron Jack
- The John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, ACT 2601, Australia; Genome Discovery Unit, The Australian National University, Canberra, ACT 2601, Australia
| | - Charani Ranasinghe
- The John Curtin School of Medical Research (JCSMR), The Australian National University, Canberra, ACT 2601, Australia; Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Trivedi S, Ranasinghe C. The Influence of Immunization Route, Tissue Microenvironment, and Cytokine Cell Milieu on HIV-Specific CD8+ T Cells Measured Using Fluidigm Dynamic Arrays. PLoS One 2015; 10:e0126487. [PMID: 25946028 PMCID: PMC4422706 DOI: 10.1371/journal.pone.0126487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/03/2015] [Indexed: 01/01/2023] Open
Abstract
Thirty different genes including cytokines, chemokines, granzymes, perforin and specifically integrins were evaluated in Peyer's patch-KdGag197–205-specific CD8+ T cells (pools of 100 cells) using Fluidigm 48.48 Dynamic arrays following three different prime-boost immunization strategies. Data revealed that the route of prime or the booster immunization differentially influenced the integrin expression profile on gut KdGag197–205-specific CD8+ T cells. Specifically, elevated numbers of integrin αE and αD expressing gut KdGag197–205-specific CD8+ T cells were detected following mucosal but not systemic priming. Also, αE/β7 and αD/β2 heterodimerization were more noticeable in an intranasal (i.n.)/i.n. vaccination setting compared to i.n./intramuscular (i.m) or i.m./i.m. vaccinations. Moreover, in all vaccine groups tested α4 appeared to heterodimerize more closely with β7 then β1. Also MIP-1β, RANTES, CCR5, perforin and integrin α4 bio-markers were significantly elevated in i.n./i.m. and i.m./i.m. immunization groups compared to purely mucosal i.n./i.n. delivery. Furthermore, when wild type (WT) BALB/c and IL-13 knockout (KO) mice were immunized using i.n./i.m. strategy, MIP-1α, MIP-1β, RANTES, integrins α4, β1 and β7 mRNA expression levels were found to be significantly different, in mucosal verses systemic KdGag197–205-specific CD8+ T cells. Interestingly, the numbers of gut KdGag197–205-specific CD8+ T cells expressing gut-homing markers α4β7 and CCR9 protein were also significantly elevated in IL-13 KO compared to WT control. Collectively, our findings further corroborate that the route of vaccine delivery, tissue microenvironment and IL-13 depleted cytokine milieu can significantly alter the antigen-specific CD8+ T cell gene expression profiles and in turn modulate their functional avidities as well as homing capabilities.
Collapse
Affiliation(s)
- Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
- * E-mail:
| |
Collapse
|
15
|
Ravichandran J, Jackson RJ, Trivedi S, Ranasinghe C. IL-17A expression in HIV-specific CD8 T cells is regulated by IL-4/IL-13 following HIV-1 prime-boost immunization. J Interferon Cytokine Res 2015; 35:176-85. [PMID: 25493691 PMCID: PMC4350450 DOI: 10.1089/jir.2014.0078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/22/2014] [Indexed: 01/25/2023] Open
Abstract
Although Th1 and Th2 cytokines can inhibit interleukin (IL)-17-secreting T cells, how these cells are regulated under different infectious conditions is still debated. Our previous studies have shown that vaccination of IL-4 and IL-13 gene knockout (KO) mice can induce high-avidity HIV K(d)Gag197-205-specific CD8 T cells with better protective efficacy. In this study, when IL-13, IL-4, STAT6 KO, and wild-type BALB/c mice were prime-boost immunized with an HIV poxviral modality, elevated numbers of IL-17A(+) splenic K(d)Gag197-205-specific CD8 T cells were observed in all the KO mice compared with the wt BALB/c control. Similarly, when wt BALB/c mice were immunized with IL-13Rα2-adjuvanted HIV vaccines (that transiently inhibited IL-13 activity and induced high-avidity CD8 T cells with enhanced protective efficacy), elevated IL-17A(+) K(d)Gag197-205-specific CD8 T cells were detected both in the lung and the spleen. However, at the transcriptional level, elevated TGF-β, IL-6, ROR-γt, and IL-17A mRNA copy numbers were mainly detected in IL-4 KO, but not the IL-13 KO mice. These data suggested that TGF-β, IL-6, ROR-γt, but not IL-23a, played a role in IL-17A regulation in K(d)Gag197-205-specific CD8 T cells. Collectively, our findings suggest that IL-4 and IL-13 differentially regulate the expression of IL-17A in K(d)Gag197-205-specific CD8 T cells at the transcriptional and translational level, respectively, implicating IL-17A as an indirect modulator of CD8 T cell avidity and protective immunity.
Collapse
Affiliation(s)
- Jayashree Ravichandran
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University , Canberra, Australia
| | | | | | | |
Collapse
|
16
|
Poles J, Alvarez Y, Hioe CE. Induction of intestinal immunity by mucosal vaccines as a means of controlling HIV infection. AIDS Res Hum Retroviruses 2014; 30:1027-40. [PMID: 25354023 DOI: 10.1089/aid.2014.0233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD4(+) T cells in the mucosa of the gastrointestinal (GI) tract are preferentially targeted and depleted by HIV. As such, the induction of an effective anti-HIV immune response in the mucosa of the GI tract-through vaccination-could protect this vulnerable population of cells. Mucosal vaccination provides a promising means of inducing robust humoral and cellular responses in the GI tract. Here we review data from the literature about the effectiveness of various mucosal vaccination routes--oral (intraintestinal/tonsilar/sublingual), intranasal, and intrarectal--with regard to the induction of immune responses mediated by cytotoxic T cells and antibodies in the GI mucosa, as well as protective efficacy in challenge models. We present data from the literature indicating that mucosal routes have the potential to effectively elicit GI mucosal immunity and protect against challenge. Given their capacity for the induction of anti-HIV immune responses in the GI mucosa, we propose that mucosal routes, including the nonconventional sublingual, tonsilar, and intrarectal routes, be considered for the delivery of the next generation HIV vaccines. However, further studies are necessary to determine the ideal vectors and vaccination regimens for these routes of immunization and to validate their efficacy in controlling HIV infection.
Collapse
Affiliation(s)
- Jordan Poles
- Department of Microbiology, New York University School of Medicine, New York, New York
| | - Yelina Alvarez
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| | - Catarina E. Hioe
- VA New York Harbor Healthcare System–Manhattan Campus and Department of Pathology, New York University School of Medicine, New York, New York
| |
Collapse
|
17
|
Trivedi S, Jackson RJ, Ranasinghe C. Different HIV pox viral vector-based vaccines and adjuvants can induce unique antigen presenting cells that modulate CD8 T cell avidity. Virology 2014; 468-470:479-489. [PMID: 25261870 DOI: 10.1016/j.virol.2014.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/04/2014] [Accepted: 09/06/2014] [Indexed: 11/25/2022]
Abstract
The lung-derived dendritic cell (LDC) recruitment following intranasal (i.n.) vaccination of different poxviral vector-based vaccines/adjuvants were evaluated to decipher how these factors influenced CD8(+) T cell avidity. Compared to the standard i.n. recombinant fowlpox virus (FPV)-HIV vaccination, the FPV-HIV IL-13Rα2 or IL-4Rα antagonist adjuvanted vaccines that induced higher avidity CD8(+) T cells, also recruited significantly elevated MHCII(+) CD11c(+) CD11b(+) CD103(-) CD64(-) MAR-1(-) conventional DC (cDCs) to the lung mucosae (hierarchy: IL-4R antagonist>IL-13Rα2>unadjuvanted). In contrast, elevated CD11b(-) CD103(+) LDCs were detected in animals that received recombinant HIV vaccinia virus (rVV) or Modified Vaccinia Ankara virus (MVA) vector-based vaccines. Adoptive transfer studies indicated that CD11b(-) CD103(+) LDCs significantly dampened HIV-specific CD8(+) T cell avidity compared to CD11b(+) CD103(-) LDCs. Collectively; our observations revealed that rFPV vector prime and transient inhibition of IL-4/IL-13 at the vaccination site favoured the recruitment of unique LDCs, associated with the induction of high quality immunity.
Collapse
Affiliation(s)
- Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia.
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
18
|
Wijesundara DK, Ranasinghe C, Jackson RJ, Lidbury BA, Parish CR, Quah BJC. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination. PLoS One 2014; 9:e105366. [PMID: 25170620 PMCID: PMC4149432 DOI: 10.1371/journal.pone.0105366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/18/2014] [Indexed: 01/05/2023] Open
Abstract
Qualitative characteristics of cytotoxic CD8+ T cells (CTLs) are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA) assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV)-HIV prime followed by a recombinant vaccinia virus (VV)-HIV booster) were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold), to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.
Collapse
Affiliation(s)
- Danushka K. Wijesundara
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ronald J. Jackson
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Brett A. Lidbury
- Alternatives to Animals through Bioinformatics Group, Dept Genome Biology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Christopher R. Parish
- Cancer and Vascular Biology Group, Dept Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Benjamin J. C. Quah
- Cancer and Vascular Biology Group, Dept Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
19
|
Jackson RJ, Worley M, Trivedi S, Ranasinghe C. Novel HIV IL-4R antagonist vaccine strategy can induce both high avidity CD8 T and B cell immunity with greater protective efficacy. Vaccine 2014; 32:5703-14. [PMID: 25151041 DOI: 10.1016/j.vaccine.2014.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/07/2014] [Accepted: 08/11/2014] [Indexed: 12/18/2022]
Abstract
We have established that the efficacy of a heterologous poxvirus vectored HIV vaccine, fowlpox virus (FPV)-HIV gag/pol prime followed by attenuated vaccinia virus (VV)-HIV gag/pol booster immunisation, is strongly influenced by the cytokine milieu at the priming vaccination site, with endogenous IL-13 detrimental to the quality of the HIV specific CD8+ T cell response induced. We have now developed a novel HIV vaccine that co-expresses a C-terminal deletion mutant of the mouse IL-4, deleted for the essential tyrosine (Y119) required for signalling. In our vaccine system, the mutant IL-4C118 can bind to IL-4 type I and II receptors with high affinity, and transiently prevent the signalling of both IL-4 and IL-13 at the vaccination site. When this IL-4C118 adjuvanted vaccine was used in an intranasal rFPV/intramuscular rVV prime-boost immunisation strategy, greatly enhanced mucosal/systemic HIV specific CD8+ T cells with higher functional avidity, expressing IFN-γ, TNF-α and IL-2 and greater protective efficacy were detected. Surprisingly, the IL-4C118 adjuvanted vaccines also induced robust long-lived HIV gag-specific serum antibody responses, specifically IgG1 and IgG2a. The p55-gag IgG2a responses induced were of a higher magnitude relative to the IL-13Rα2 adjuvant vaccine. More interestingly, our recently tested IL-13Rα2 adjuvanted vaccine which only inhibited IL-13 activity, even though induced excellent high avidity HIV-specific CD8+ T cells, had a detrimental impact on the induction of gag-specific IgG2a antibody immunity. Our observations suggest that (i) IL-4 cell-signalling in the absence of IL-13 retarded gag-specific antibody isotype class switching, or (ii) IL-13Rα2 signalling was involved in inducing good gag-specific B cell immunity. Thus, we believe our novel IL-4R antagonist adjuvant strategy offers great promise not only for HIV-1 vaccines, but also against a range of chronic infections where sustained high quality mucosal and systemic T and B cell immunity are required for protection.
Collapse
Affiliation(s)
- Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Matthew Worley
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
20
|
Ranasinghe C, Ramshaw IA. Genetic heterologous prime–boost vaccination strategies for improved systemic and mucosal immunity. Expert Rev Vaccines 2014; 8:1171-81. [DOI: 10.1586/erv.09.86] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Jackson RJ, Boyle DB, Ranasinghe C. Progresses in DNA-based heterologous prime-boost immunization strategies. Methods Mol Biol 2014; 1143:61-90. [PMID: 24715282 DOI: 10.1007/978-1-4939-0410-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although recombinant DNA and recombinant viral vectors expressing HIV antigens have yielded positive outcomes in animal models, these vaccines have not been effectively translated to humans. Despite this, there is still a high level of optimism that poxviral-based vaccine strategies could offer the best hope for developing an effective vaccine against not only HIV-1 but also other chronic diseases where good-quality T and B cell immunity is needed for protection. In this chapter we discuss step by step (1) how recombinant poxviral vectors co-expressing HIV antigens and promising mucosal/systemic adjuvants (e.g., IL-13Rα2) are constructed, (2) how these vectors can be used in alternative heterologous prime-boost immunization strategies, (3) how systemic and mucosal samples are prepared for analysis, followed by (4) two immunological assays: multicolor intracellular cytokine staining and tetramer/homing maker analysis that are used to evaluate effective systemic and mucosal T cell immunity.
Collapse
Affiliation(s)
- Ronald J Jackson
- Molecular Mucosal Vaccine Immunology group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | | | | |
Collapse
|
22
|
Unique IL-13Rα2-based HIV-1 vaccine strategy to enhance mucosal immunity, CD8(+) T-cell avidity and protective immunity. Mucosal Immunol 2013; 6:1068-80. [PMID: 23403475 DOI: 10.1038/mi.2013.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/18/2012] [Indexed: 02/04/2023]
Abstract
We have established that mucosal immunization can generate high-avidity human immunodeficiency virus (HIV)-specific CD8(+) T cells compared with systemic immunization, and interleukin (IL)-13 is detrimental to the functional avidity of these T cells. We have now constructed two unique recombinant HIV-1 vaccines that co-express soluble or membrane-bound forms of the IL-13 receptor α2 (IL-13Rα2), which can "transiently" block IL-13 activity at the vaccination site causing wild-type animals to behave similar to an IL-13 KO animal. Following intranasal/intramuscular prime-boost immunization, these IL-13Rα2-adjuvanted vaccines have shown to induce (i) enhanced HIV-specific CD8(+) T cells with higher functional avidity, with broader cytokine/chemokine profiles and greater protective immunity using a surrogate mucosal HIV-1 challenge, and also (ii) excellent multifunctional mucosal CD8(+) T-cell responses, in the lung, genito-rectal nodes (GN), and Peyer's patch (PP). Data revealed that intranasal delivery of these IL-13Rα2-adjuvanted HIV vaccines recruited large numbers of unique antigen-presenting cell subsets to the lung mucosae, ultimately promoting the induction of high-avidity CD8(+) T cells. We believe our novel IL-13R cytokine trap vaccine strategy offers great promise for not only HIV-1, but also as a platform technology against range of chronic infections that require strong sustained high-avidity mucosal/systemic immunity for protection.
Collapse
|
23
|
Wijesundara DK, Jackson RJ, Tscharke DC, Ranasinghe C. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8+ T cell avidity following HIV-1 recombinant pox viral vaccination. Vaccine 2013; 31:4548-55. [DOI: 10.1016/j.vaccine.2013.07.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/25/2013] [Indexed: 01/23/2023]
|
24
|
Wijesundara DK, Tscharke DC, Jackson RJ, Ranasinghe C. Reduced interleukin-4 receptor α expression on CD8+ T cells correlates with higher quality anti-viral immunity. PLoS One 2013; 8:e55788. [PMID: 23383283 PMCID: PMC3561338 DOI: 10.1371/journal.pone.0055788] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022] Open
Abstract
With the hope of understanding how interleukin (IL)-4 and IL-13 modulated quality of anti-viral CD8+ T cells, we evaluated the expression of receptors for these cytokines following a range of viral infections (e.g. pox viruses and influenza virus). Results clearly indicated that unlike other IL-4/IL-13 receptor subunits, IL-4 receptor α (IL-4Rα) was significantly down-regulated on anti-viral CD8+ T cells in a cognate antigen dependent manner. The infection of gene knockout mice and wild-type (WT) mice with vaccinia virus (VV) or VV expressing IL-4 confirmed that IL-4, IL-13 and signal transducer and activator of transcription 6 (STAT6) were required to increase IL-4Rα expression on CD8+ T cells, but not interferon (IFN)-γ. STAT6 dependent elevation of IL-4Rα expression on CD8+ T cells was a feature of poor quality anti-viral CD8+ T cell immunity as measured by the production of IFN-γ and tumor necrosis factor α (TNF-α) in response to VV antigen stimulation in vitro. We propose that down-regulation of IL-4Rα, but not the other IL-4/IL-13 receptor subunits, is a mechanism by which CD8+ T cells reduce responsiveness to IL-4 and IL-13. This can improve the quality of anti-viral CD8+ T cell immunity. Our findings have important implications in understanding anti-viral CD8+ T cell immunity and designing effective vaccines against chronic viral infections.
Collapse
Affiliation(s)
- Danushka K Wijesundara
- The Molecular Mucosal Vaccine Immunology Group, The Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, Australia.
| | | | | | | |
Collapse
|
25
|
Xi Y, Day SL, Jackson RJ, Ranasinghe C. Role of novel type I interferon epsilon in viral infection and mucosal immunity. Mucosal Immunol 2012; 5:610-22. [PMID: 22617838 PMCID: PMC3481022 DOI: 10.1038/mi.2012.35] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/03/2012] [Indexed: 02/04/2023]
Abstract
Intranasal infection with vaccinia virus co-expressing interferon epsilon (VV-HIV-IFN-ε) was used to evaluate the role of IFN-ε in mucosal immunity. VV-HIV- IFN-ε infection induced a rapid VV clearance in lung that correlated with (i) an elevated lung VV-specific CD8(+)CD107a(+)IFN-γ(+) population expressing activation markers CD69/CD103, (ii) enhanced lymphocyte recruitment to lung alveoli with reduced inflammation, and (iii) an heightened functional/cytotoxic CD8(+)CD4(+) T-cell subset (CD3(hi)CCR7(hi)CD62L(lo)) in lung lymph nodes. These responses were different to that observed with intranasal VV-HA-IFN-α(4) or VV-HA-IFN-β infections. When IFN-ε was used in an intranasal/intramuscular heterologous HIV prime-boost immunization, elevated HIV-specific effector, but not memory CD8(+)T cells responses, were observed in spleen, genito-rectal nodes, and Peyer's patch. Homing marker α4β7 and CCR9 analysis indicated that unlike other type I IFNs, IFN-ε could promote migration of antigen-specific CD8(+)T cells to the gut. Our results indicate that IFN-ε has a unique role in the mucosae and most likely can be used to control local lung and/or gut infections (i.e., microbicide) such as tuberculosis, HIV-1, or sexually transmitted diseases.
Collapse
Affiliation(s)
- Yang Xi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
26
|
Quah BJC, Wijesundara DK, Ranasinghe C, Parish CR. Fluorescent target array T helper assay: a multiplex flow cytometry assay to measure antigen-specific CD4+ T cell-mediated B cell help in vivo. J Immunol Methods 2012; 387:181-90. [PMID: 23123200 DOI: 10.1016/j.jim.2012.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 12/24/2022]
Abstract
CD4(+) T cells play a central role in regulating the immune response. Their effector function is commonly assessed by their capacity to secrete cytokines detected by ELISPOT and intracellular cytokine staining. However, one aspect of their effector function that is often overlooked is their ability to help activation of cognate B cells directly, a process that is initiated through the engagement of their T cell-receptor (TCR) with cognate peptide presented on major histocompatibility complex class II (MHC-II) molecules by B cells. Here we report a method to monitor CD4(+) T cell-mediated B cell help in vivo using a multiplex high throughput assay. This assay utilizes a fluorescent target array (FTA), which is composed of lymphocytes labeled with numerous (>200) unique fluorescence signatures that can be delineated in a single recipient animal based on combination labeling with the three vital dyes carboxyfluorescein diacetate succinimidyl ester (CFSE), CellTrace Violet (CTV) and Cell Proliferation Dye eFluor 670 (CPD). By pulsing different B cell populations in a FTA with titrated amounts of cognate MHC-II binding peptides, CD4(+) T cell help could be assessed by measuring induction of the B cell activation markers CD69 and CD44 by antibody labeling and flow cytometry. We call this the "FTA T helper assay", and have found it to be a robust and sensitive assay to measure CD4(+) T cell helper activity across a multitude of peptide-pulsed B "target" cells in real time in vivo. Furthermore, the technique can be used simultaneously with the FTA killing assay that measures cytotoxic T cell function, to provide a comprehensive tool for measuring both CD4(+) and CD8(+) T cell activity during an immune response in vivo.
Collapse
Affiliation(s)
- Benjamin J C Quah
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The major target groups for an HIV vaccine include breastfeeding infants and adolescents. Differential immune maturity in these age groups may significantly impact vaccine efficacy, and should be taken into account when developing vaccines. Here we review these differences, with an emphasis on the immune response to vaccines for HIV and other pathogens. Recommendations for potential adaptation of current HIV vaccines are also made. RECENT FINDINGS An effective neonatal vaccine needs to be immunogenic in the presence of maternal antibody, and must induce cytotoxic T-lymphocyte responses, neutralizing antibody responses, both systemic and mucosal. There is renewed hope in the possibility of stimulating neutralizing antibodies with HIV vaccination. DNA vaccines are promising for neonates, but will need appropriate boosting. Certain adjuvants and vector delivery systems are more suitable for neonates. Adolescents may have stronger immune responses to HIV vaccines than adults, and will also require induction of mucosal neutralizing humoral and cellular immunity. SUMMARY Some current HIV vaccine strategies may need adaptation for neonates and suitable product development should be accelerated. Vaccines could induce better responses in adolescents and therefore should not be discarded prematurely. Development of vaccines that have potential for these age groups is an urgent global priority.
Collapse
|
28
|
Quah BJC, Wijesundara DK, Ranasinghe C, Parish CR. Fluorescent target array killing assay: A multiplex cytotoxic T-cell assay to measure detailed T-cell antigen specificity and avidity in vivo. Cytometry A 2012; 81:679-90. [DOI: 10.1002/cyto.a.22084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/20/2012] [Accepted: 05/23/2012] [Indexed: 11/10/2022]
|
29
|
Goulding J, Tahiliani V, Salek-Ardakani S. OX40:OX40L axis: emerging targets for improving poxvirus-based CD8(+) T-cell vaccines against respiratory viruses. Immunol Rev 2012; 244:149-68. [PMID: 22017437 PMCID: PMC3422077 DOI: 10.1111/j.1600-065x.2011.01062.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human respiratory tract is an entry point for over 200 known viruses that collectively contribute to millions of annual deaths worldwide. Consequently, the World Health Organization has designated respiratory viral infections as a priority for vaccine development. Despite enormous advances in understanding the attributes of a protective mucosal antiviral immune response, current vaccines continue to fail in effectively generating long-lived protective CD8(+) T-cell immunity. To date, the majority of licensed human vaccines afford protection against infectious pathogens through the generation of specific immunoglobulin responses. In recent years, the selective manipulation of specific costimulatory pathways, which are critical in regulating T cell-mediated immune responses, has generated increasing interest. Impressive results in animal models have shown that the tumor necrosis factor receptor (TNFR) family member OX40 (CD134) and its binding partner OX40L (CD252) are key costimulatory molecules involved in the generation of protective CD8(+) T-cell responses at mucosal surfaces, such as the lung. In this review, we highlight these new findings with a particular emphasis on their potential as immunological adjuvants to enhance poxvirus-based CD8(+) T-cell vaccines.
Collapse
Affiliation(s)
- John Goulding
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|
30
|
Lu B, Yu W, Huang X, Wang H, Liu L, Chen Z. Mucosal immunization induces a higher level of lasting neutralizing antibody response in mice by a replication-competent smallpox vaccine: vaccinia Tiantan strain. J Biomed Biotechnol 2011; 2011:970424. [PMID: 21765641 PMCID: PMC3134386 DOI: 10.1155/2011/970424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022] Open
Abstract
The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity.
Collapse
MESH Headings
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Immunity, Mucosal/immunology
- Immunization
- Injections, Intramuscular
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Smallpox/immunology
- Smallpox/prevention & control
- Smallpox Vaccine/administration & dosage
- Smallpox Vaccine/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccinia/immunology
- Vaccinia/prevention & control
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Variola virus/immunology
Collapse
Affiliation(s)
- Bin Lu
- AIDS Center and Modern Virology Research Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Wenbo Yu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxing Huang
- AIDS Center and Modern Virology Research Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, China
| | - Haibo Wang
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Microbiology and Research Center for Infection and Immunity, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
31
|
Ranasinghe C, Eyers F, Stambas J, Boyle DB, Ramshaw IA, Ramsay AJ. A comparative analysis of HIV-specific mucosal/systemic T cell immunity and avidity following rDNA/rFPV and poxvirus-poxvirus prime boost immunisations. Vaccine 2011; 29:3008-20. [PMID: 21352941 PMCID: PMC3244379 DOI: 10.1016/j.vaccine.2011.01.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/19/2011] [Accepted: 01/30/2011] [Indexed: 11/25/2022]
Abstract
In this study we have firstly compared a range of recombinant DNA poxvirus prime-boost immunisation strategies and shown that combined intramuscular (i.m.) 2× DNA-HIV/intranasal (i.n.) 2× FPV-HIV prime-boost immunisation can generate high-level of HIV-specific systemic (spleen) and mucosal (genito-rectal nodes, vaginal tissues and lung tissues) T cell responses and HIV-1 p24 Gag-specific serum IgG1, IgG2a and mucosal IgG, SIgA responses in vaginal secretions in BALB/c mice. Data indicate that following rDNA priming, two rFPV booster immunisations were necessary to generate good antibody and mucosal T cell immunity. This data also revealed that mucosal uptake of recombinant fowl pox (rFPV) was far superior to plasmid DNA. To further evaluate CD8+ T cell immunity, i.m. 2× DNA-HIV/i.n. 1× FPV-HIV immunisation strategy was directly compared with single shot poxvirus/poxvirus, i.n. FPV-HIV/i.m. VV-HIV immunisation. Results indicate that the latter strategy was able to generate strong sustained HIV-specific CD8+ T cells with higher avidity, broader cytokine/chemokine profiles and better protection following influenza-K(d)Gag(197-205) challenge compared to rDNA poxvirus prime-boost strategy. Our findings further substantiate the importance of vector selection/combination, order and route of delivery when designing effective vaccines for HIV-1.
Collapse
Affiliation(s)
- Charani Ranasinghe
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Challacombe SJ, Fidel PL, Tugizov S, Tao L, Wahl SM. HIV infection and specific mucosal immunity: workshop 4B. Adv Dent Res 2011; 23:142-51. [PMID: 21441496 PMCID: PMC11506872 DOI: 10.1177/0022034511400222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most HIV infections are transmitted across mucosal epithelium. An area of fundamental importance is understanding the role of innate and specific mucosal immunity in susceptibility or protection against HIV infection, as well as the effect of HIV infection on mucosal immunity, which leads to increased susceptibility to bacterial, fungal, and viral infections of oral and other mucosae. This workshop attempted to address 5 basic issues-namely, HIV acquisition across mucosal surfaces, innate and adaptive immunity in HIV resistance, antiviral activity of breast milk as a model mucosal fluid, neutralizing immunoglobulin A antibodies against HIV, and progress toward a mucosal vaccine against HIV. The workshop attendants agreed that progress had been made in each area covered, with much recent information. However, these advances revealed how little work had been performed on stratified squamous epithelium compared with columnar epithelium, and the attendants identified several important biological questions that had not been addressed. It is increasingly clear that innate immunity has an important biological role, although basic understanding of the mechanisms of normal homeostasis is still being investigated. Application of the emerging knowledge was lacking with regard to homeostatic mucosal immunity to HIV and its role in changing this homeostasis. With regard to breast milk, a series of studies have demonstrated the differences between transmitters and nontransmitters, although whether these findings could be generalized to other secretions such as saliva was less clear. Important progress toward an oral mucosal HIV vaccine has been made, demonstrating proof of principle for administering vaccine candidates into oral lymphoid tissues to trigger anti-HIV local and systemic immune responses. Similarly, experimental data emphasized the central role of neutralizing antibodies to prevent HIV infection via mucosal routes.
Collapse
Affiliation(s)
- S J Challacombe
- Department of Oral Medicine, Kings College London Dental Institute, London, UK.
| | | | | | | | | |
Collapse
|
33
|
Mucosal immunity and HIV-1 infection: applications for mucosal AIDS vaccine development. Curr Top Microbiol Immunol 2011; 354:157-79. [PMID: 21203884 DOI: 10.1007/82_2010_119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural transmission of human immunodeficiency virus type 1 (HIV-1) occurs through gastrointestinal and vaginal mucosa. These mucosal tissues are major reservoirs for initial HIV replication and amplification, and the sites of rapid CD4(+) T cell depletion. In both HIV-infected humans and SIV-infected macaques, massive loss of CD4(+) CCR5(+) memory T cells occurs in the gut and vaginal mucosa within the first 10-14 days of infection. Induction of local HIV-specific immune responses by vaccines may facilitate effective control of HIV or SIV replication at these sites. Vaccines that induce mucosal responses, in particular CD8(+) cytotoxic T lymphocytes (CTL), have controlled viral replication at mucosal sites and curtailed systemic dissemination. Thus, there is strong justification for development of next generation vaccines that induce mucosal immune effectors against HIV-1 including CD8(+) CTL, CD4(+) T helper cells and secretory IgA. In addition, further understanding of local innate mechanisms that impact early viral replication will greatly inform future vaccine development. In this review, we examine the current knowledge concerning mucosal AIDS vaccine development. Moreover, we propose immunization strategies that may be able to elicit an effective immune response that can protect against AIDS as well as other mucosal infections.
Collapse
|
34
|
Sutherland DB, Ranasinghe C, Regner M, Phipps S, Matthaei KI, Day SL, Ramshaw IA. Evaluating vaccinia virus cytokine co-expression in TLR GKO mice. Immunol Cell Biol 2010; 89:706-15. [PMID: 21173782 DOI: 10.1038/icb.2010.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Using Toll-like receptor (TLR) and MyD88 gene knock-out (GKO) mice the effect of TLRs and MyD88 on virus replication, interferon (IFN)-β production, natural killer (NK) cell and CD8T cell responses were assessed following ectromelia virus (ECTV) and recombinant vaccinia virus (rVV) infection. The capacity for rVVs encoding cytokines to restore immune function in MyD88(-/-) mice was clearly demonstrated. Results showed that TLR2(-/-), TLR4(-/-)and TLR7(-/-) mice survived ECTV infection whereas MyD88(-/-) and TLR9(-/-)mice, in contrast, were highly susceptible. Next, following infection with rVV, MyD88(-/-) mice elicited reduced serum IFN-β, NK cell and CD8T cell responses compared with wild-type mice, whereas TLR9(-/-) mice showed elevated CD8T cell responses. When MyD88(-/-)mice were infected with rVV co-expressing IFN-β these mice were able to restore IFN-β levels and CD8T cell responses but not NK cell activation. Interestingly, even though rVV co-expressing interleukin (IL)-2 enhanced NK cell activation in MyD88(-/-) mice, this was not associated with an antiviral effect, as observed in normal mice. Surprisingly, co-infection with rVV IL-2/rVV IL-12, but not rVV IL-2/rVV IFN-β, restored the attenuated phenotype of rVV IL-2 in MyD88(-/-) mice indicating that the IL-2/IL-12 combination promotes antiviral responses. Our results clearly show that the CD8T cell defect observed in MyD88(-/-) mice to vaccinia virus infection can be restored by rVV-encoding IFN-β demonstrating the critical role of this cytokine in T cell mediated immunity and illustrates that the model can provide an effective platform for the elucidation of cytokine immunobiology.
Collapse
Affiliation(s)
- Duncan B Sutherland
- Emerging Pathogens and Vaccines Program, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Numerous human immunodeficiency virus (HIV)-1 vaccines have been developed over the last three decades, but to date an effective HIV-1 vaccine that can be used for prophylactic or therapeutic purposes in humans has not been identified. The failures and limited successes of HIV-1 vaccines have highlighted the gaps in our knowledge with regard to fundamental immunity against HIV-1 and have provided insights for vaccine strategies that may be implemented for designing more effective HIV-1 vaccines in the future. Recent studies have shown that robust mucosal immunity, high avidity and polyfunctional T cells, and broadly neutralizing antibodies are important factors governing the induction of protective immunity against HIV-1. Furthermore, optimization of vaccine delivery methods for DNA or live viral vector-based vaccines, elucidating the immune responses of individuals who remain resistant to HIV-1 infections and also understanding the core immune responses mediating protection against simian immunodeficiency viruses (SIV) and HIV-1 in animal models following vaccination, are key aspects to be regarded for designing more effective HIV-1 vaccines in the future.
Collapse
|
36
|
Ranasinghe C, Ramshaw IA. Immunisation route-dependent expression of IL-4/IL-13 can modulate HIV-specific CD8(+) CTL avidity. Eur J Immunol 2009; 39:1819-30. [PMID: 19582753 DOI: 10.1002/eji.200838995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
All HIV-1 'systemic vaccine trials' in humans have yielded poor outcomes. Thus, it is important to understand whether the route of delivery influences the quality of protective CTL immunity. Using heterologous poxvirus immunisation we have shown that systemically (i.m./i.m.) immunised CD8(+) T cells generated higher levels of IL-4/IL-13 compared to mucosal delivery and expression also correlated with i.m./i.m. immunised mice eliciting CTL of lower avidity. Studies using IL-4(-/-) and IL-13(-/-) KO mice have shown that the capacity to express IFN-gamma, IL-4 and/or IL-13 by K(d)Gag(197-205)-specific CTL differed between these groups and was inversely correlated with CTL avidity (IL-13(-/-)>IL-4(-/-)>BALB/c), although no significant differences in the magnitude of CTL responses were observed between IL-13(-/-) and wild type mice. When IL-13 was reconstituted in IL-13(-/-) splenocytes in vitro, their ability to bind tetramers also decreased significantly. Our data reveal that total absence of IL-13 can greatly enhance CTL avidity. In contrast, extracellular IL-4 appears to be important in maintaining long-term Th1/Th2 balance in CTL, even though expression of IL-4 by CTL markedly reduced avidity. STAT6(-/-) mice also showed memory CTL of higher avidity. Furthermore, CCL5 expression in K(d)Gag(197-205)-specific CTL was also regulated by IL-4/IL-13.
Collapse
|
37
|
Day SL, Ramshaw IA, Ramsay AJ, Ranasinghe C. Differential effects of the type I interferons alpha4, beta, and epsilon on antiviral activity and vaccine efficacy. THE JOURNAL OF IMMUNOLOGY 2008; 180:7158-66. [PMID: 18490714 DOI: 10.4049/jimmunol.180.11.7158] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The type I IFNs exert a range of activities that include antiviral, antiproliferative, and immunomodulatory effects. To study this further, we have constructed recombinant vaccinia viruses expressing HIV or hemagglutinin (HA) Ags along with murine type I IFNs, IFN-alpha(4) (HA-VV-IFN-alpha(4)), IFN-beta (HA-VV-IFN-beta), or IFN-epsilon (HIV-VV-IFN-epsilon), a recently discovered member of this family. Our aims were to characterize IFN-epsilon functionality as a type I IFN and also to study the biological properties of these factors toward the development of safer and more effective vector-based vaccines. HIV-VV-IFN-epsilon and HA-VV-IFN-beta grew to lower titers than did their parental controls in murine cell lines. In vivo, however, HIV-VV-IFN-epsilon growth was not attenuated, while IFN-beta demonstrated potent local antiviral activity with no replication of HA-VV-IFN-beta detected. Flow cytofluorometric analysis of B lymphocytes incubated with virally encoded IFN-epsilon showed up-regulation of activation markers CD69 and CD86, while RT-PCR of IFN-epsilon-treated cells revealed that gene expression levels of antiviral proteins were elevated, indicating the induction of an antiviral state. The use of these constructs in a poxvirus prime-boost immunization regime led to robust humoral and cellular immune responses against the encoded Ags, despite the lack of replication in the case of HA-VV-IFN-beta. Thus, coexpression of these factors may be beneficial in the design of safer vector-based vaccines. Our data also indicate that while IFN-epsilon exhibits certain biological traits similar to other type I IFNs, it may also have a specific role in mucosal immune regulation that is quite distinct.
Collapse
Affiliation(s)
- Stephanie L Day
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | |
Collapse
|
38
|
Anton PA, Ibarrondo FJ, Boscardin WJ, Zhou Y, Schwartz EJ, Ng HL, Hausner MA, Shih R, Elliott J, Hultin PM, Hultin LE, Price C, Fuerst M, Adler A, Wong JT, Yang OO, Jamieson BD. Differential immunogenicity of vaccinia and HIV-1 components of a human recombinant vaccine in mucosal and blood compartments. Vaccine 2008; 26:4617-23. [PMID: 18621451 DOI: 10.1016/j.vaccine.2008.05.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 05/07/2008] [Accepted: 05/14/2008] [Indexed: 12/16/2022]
Abstract
Mucosal immune responses induced by HIV-1 vaccines are likely critical for prevention. We report a Phase 1 safety and immunogenicity trial in eight participants using the vaccinia-based TBC-3B vaccine given subcutaneously to determine the relationship between HIV-1 specific systemic and gastrointestinal mucosal responses. Across all subjects, detectable levels of blood vaccinia- and HIV-1-specific antibodies were elicited but none were seen mucosally. While the vaccinia component was immunogenic for CD8(+) T lymphocyte (CTL) responses in both blood and mucosa, it was greater in blood. The HIV-1 component of the vaccine was poorly immunogenic in both blood and mucosa. Although only eight volunteers were studied intensively, the discordance between mucosal and blood responses may highlight mechanisms contributing to recent vaccine failures.
Collapse
Affiliation(s)
- Peter A Anton
- Center for Prevention Research and the UCLA AIDS Institute, David Geffen School of Medicine at UCLA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rollman E, Smith MZ, Brooks AG, Purcell DFJ, Zuber B, Ramshaw IA, Kent SJ. Killing kinetics of simian immunodeficiency virus-specific CD8+ T cells: implications for HIV vaccine strategies. THE JOURNAL OF IMMUNOLOGY 2007; 179:4571-9. [PMID: 17878354 DOI: 10.4049/jimmunol.179.7.4571] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both the magnitude and function of vaccine-induced HIV-specific CD8+ CTLs are likely to be important in the outcome of infection. We hypothesized that rapid cytolysis by CTLs may facilitate control of viral challenge. Release kinetics of the cytolytic effector molecules granzyme B and perforin, as well as the expression of the degranulation marker CD107a and IFN-gamma were simultaneously studied in SIV Gag(164-172) KP9-specific CD8+ T cells from Mane-A*10+ pigtail macaques. Macaques were vaccinated with either prime-boost poxvirus vector vaccines or live-attenuated SIV vaccines. Prime-boost vaccination induced Gag-specific CTLs capable of only slow (after 3 h) production of IFN-gamma and with limited (<5%) degranulation and granzyme B release. Vaccination with live-attenuated SIV resulted in a rapid cytolytic profile of SIV-specific CTLs with rapid (<0.5 h) and robust (>50% of tetramer-positive CD8+ T cells) degranulation and granzyme B release. The cytolytic phenotype following live-attenuated SIV vaccinations were similar to that associated with the partial resolution of viremia following SIV(mac251) challenge of prime-boost-vaccinated macaques, albeit with less IFN-gamma expression. High proportions of KP9-specific T cells expressed the costimulatory molecule CD28 when they exhibited a rapid cytolytic phenotype. The delayed cytolytic phenotype exhibited by standard vector-based vaccine-induced CTLs may limit the ability of T cell-based HIV vaccines to rapidly control acute infection following a pathogenic lentiviral exposure.
Collapse
Affiliation(s)
- Erik Rollman
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang X, Cassis-Ghavami F, Eller M, Currier J, Slike BM, Chen X, Tartaglia J, Marovich M, Spearman P. Direct comparison of antigen production and induction of apoptosis by canarypox virus- and modified vaccinia virus ankara-human immunodeficiency virus vaccine vectors. J Virol 2007; 81:7022-33. [PMID: 17409140 PMCID: PMC1933324 DOI: 10.1128/jvi.02654-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recombinant poxvirus vectors are undergoing intensive evaluation as vaccine candidates for a variety of infectious pathogens. Avipoxviruses, such as canarypox virus, are replication deficient in mammalian cells by virtue of a poorly understood species-specific restriction. Highly attenuated vaccinia virus strains such as modified vaccinia virus Ankara (MVA) are similarly unable to complete replication in most mammalian cells but have an abortive-late phenotype, in that the block to replication occurs post-virus-specific DNA replication. In this study, an identical expression cassette for human immunodeficiency virus gag, pro, and env coding sequences was placed in canarypox virus and MVA vector backbones in order to directly compare vector-borne expression and to analyze differences in vector-host cell interactions. Antigen production by recombinant MVA was shown to be greater than that from recombinant canarypox virus in the mammalian cell lines and in the primary human cells tested. This observation was primarily due to a longer duration of antigen production in recombinant MVA-infected cells. Apoptosis induction was found to be more profound with the empty canarypox virus vector than with MVA. Remarkably, however, the inclusion of a gag/pro/env expression cassette altered the kinetics of apoptosis induction in recombinant MVA-infected cells to levels equal to those found in canarypox virus-infected cells. Antigen production by MVA was noted to be greater in human dendritic cells and resulted in enhanced T-cell stimulation in an in vitro antigen presentation assay. These results reveal differences in poxvirus vector-host cell interactions that should be relevant to their use as immunization vehicles.
Collapse
Affiliation(s)
- Xiugen Zhang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ranasinghe C, Turner SJ, McArthur C, Sutherland DB, Kim JH, Doherty PC, Ramshaw IA. Mucosal HIV-1 Pox Virus Prime-Boost Immunization Induces High-Avidity CD8+ T Cells with Regime-Dependent Cytokine/Granzyme B Profiles. THE JOURNAL OF IMMUNOLOGY 2007; 178:2370-9. [PMID: 17277143 DOI: 10.4049/jimmunol.178.4.2370] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The quality of virus-specific CD8(+) CTL immune responses generated by mucosal and systemic poxvirus prime-boost vaccines were evaluated in terms of T cell avidity and single-cell analysis of effector gene expression. Intranasal (I.N.) immunization regimes generated higher avidity CTL responses specific for HIV K(d)Gag(197-205) (amino acid sequence AMQMLKETI; H-2K(d) binding) compared with i.m. immunization regime. Single-cell RT-PCR of K(d)Gag(197-205)-specific mucosal and systemic CTL revealed that the cytokine and granzyme B expression profiles were dependent on both the route and time after immunization. The I.N./i.m.-immunized group elicited elevated number of CTL-expressing granzyme B mRNA from the genitomucosal sites compared with the i.m./i.m. regime. Interestingly, CTL generated after both I.N. or i.m. immunization demonstrated expression of Th2 cytokine IL-4 mRNA that was constitutively expressed over time, although lower numbers were observed after I.N./I.N. immunization. Results suggest that after immunization, Ag-specific CTL expression of IL-4 may be an inherent property of the highly evolved poxvirus vectors. Current observations indicate that the quality of CTL immunity generated after immunization can be influenced by the inherent property of vaccine vectors and route of vaccine delivery. A greater understanding of these factors will be crucial for the development of effective vaccines in the future.
Collapse
Affiliation(s)
- Charani Ranasinghe
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhang Y, Li S, Shan M, Pan X, Zhuang K, He L, Gould K, Tien P. Hepatitis B virus core antigen epitopes presented by HLA-A2 single-chain trimers induce functional epitope-specific CD8+ T-cell responses in HLA-A2.1/Kb transgenic mice. Immunology 2007; 121:105-12. [PMID: 17244158 PMCID: PMC2265916 DOI: 10.1111/j.1365-2567.2007.02543.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The potency of CD8+ cytotoxic T lymphocyte (CTL) responses toward core antigen has been shown to affect the outcomes of hepatitis B virus (HBV) infection. Since single-chain trimers (SCT) composed of peptide epitope beta2-microglobulin (beta2m) and major histocompatibility complex (MHC) class I heavy chain covalently linked together in a single molecule have been shown to stimulate efficient CTL responses, we investigated the properties of human leucocyte antigen (HLA)-A2 SCTs encoding the HBV core antigen (HBcAg) epitopes C(18-27) and C(107-115). Transfection of NIH-3T3 cells with pcDNA3.0-SCT-C(18-27) and SCT-C(107-115) leads to stable presentation of HBcAg epitopes at the cell surface. HLA-A2.1/Kb transgenic mice vaccinated with the SCT constructs, either as a DNA vaccine alone or followed by a boost with recombinant vaccinia virus, were shown to generate HBcAg-specific CTL responses by enzyme-linked immunospot assay (ELISPOT) and in vitro interferon-gamma release experiments. HBcAg-specific CTLs from vaccinated HLA-A2.1/Kb transgenic mice were able to inhibit HBV surface and e antigen expression as indicated by HepG2.2.15 cells. Our data indicate that a DNA vaccine encoding a human HLA-A2 SCT with HBV epitopes can lead to stable, enhanced HBV core antigen presentation, and may be useful for the control of HBV infection in HLA-A2-positive HBV carriers.
Collapse
Affiliation(s)
- Yuxia Zhang
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lin SW, Cun AS, Harris-McCoy K, Ertl HC. Intramuscular rather than oral administration of replication-defective adenoviral vaccine vector induces specific CD8+ T cell responses in the gut. Vaccine 2006; 25:2187-93. [PMID: 17229501 PMCID: PMC1839821 DOI: 10.1016/j.vaccine.2006.11.044] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/16/2006] [Accepted: 11/21/2006] [Indexed: 11/17/2022]
Abstract
Gut-associated lymphoid tissue (GALT) is the primary replication site for HIV-1, resulting in a pronounced CD4(+) T cell loss in this tissue during primary infection. A mucosal vaccine that generates HIV-specific CD8(+) T cells in the gut could prevent the establishment of founder populations and broadcasting of virus. Here, we immunized mice orally and systemically with a chimpanzee derived adenoviral vector expressing HIV gag (AdC68gag) and measured frequencies of gag-specific interferon-gamma (IFN-gamma) producing CD8(+) T cells in the GALT. A single oral administration was inefficient at eliciting responses in the mesenteric lymph nodes and Peyer's Patches, while a single intramuscular administration elicited strong systemic and detectable mucosal responses. The gag-specific CD8(+) T cell responses were present in both acute and memory phases following intramuscular administration.
Collapse
Affiliation(s)
- S W Lin
- School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
44
|
Harrison JM, Bertram EM, Ramshaw IA. Exploiting 4-1BB Costimulation for Enhancing Antiviral Vaccination. Viral Immunol 2006; 19:593-601. [PMID: 17201654 DOI: 10.1089/vim.2006.19.593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
4-1BB, a member of the tumor necrosis factor receptor (TNFR) superfamily, is emerging as an important costimulatory molecule, particularly in the regulation of CD8(+) T cell responses. Costimulation through 4-1BB, such as by utilizing agonistic anti-4-1BB monoclonal antibodies, has been well studied in various tumor models. However, 4-1BB is also an important regulator of antiviral CD8(+) T cell responses. This review summarizes these findings and describes how 4-1BB is beginning to be exploited in terms of boosting antiviral vaccine responses.
Collapse
Affiliation(s)
- Jodie M Harrison
- Department of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
45
|
Harrison JM, Bertram EM, Boyle DB, Coupar BEH, Ranasinghe C, Ramshaw IA. 4-1BBL coexpression enhances HIV-specific CD8 T cell memory in a poxvirus prime-boost vaccine. Vaccine 2006; 24:6867-74. [PMID: 17050052 DOI: 10.1016/j.vaccine.2006.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 02/02/2023]
Abstract
We have constructed a recombinant fowlpox virus expressing HIV antigens and the costimulatory molecule 4-1BBL. When included in the boost, but not the prime of a poxvirus prime-boost strategy, 4-1BBL significantly enhanced the anti-HIV T cell response generated to this vaccination in BALB/c mice, as detected by ex vivo IFNgamma ELISPOT responses, intracellular cytokine staining to HIV Gag antigens, and enumeration of Gag-reactive CD8 T cells. 4-1BBL however, is not capable of modulating the CD4 T cell response, nor the antibody response to this vaccination strategy. Enhancement of the T cell response by 4-1BBL continues into the memory phase, as detected 2 months post vaccination. This data is the first to show modulation of the immune response to a viral vaccine by coexpression of 4-1BBL and supports this strategy as an exciting approach for enhancement of T cell memory in prime-boost vaccines.
Collapse
Affiliation(s)
- Jodie M Harrison
- Department of Immunology and Genetics, The John Curtin School of Medical Research, Canberra City, Australia
| | | | | | | | | | | |
Collapse
|
46
|
De Rose R, Batten CJ, Smith MZ, Fernandez CS, Peut V, Thomson S, Ramshaw IA, Coupar BEH, Boyle DB, Venturi V, Davenport MP, Kent SJ. Comparative efficacy of subtype AE simian-human immunodeficiency virus priming and boosting vaccines in pigtail macaques. J Virol 2006; 81:292-300. [PMID: 17050602 PMCID: PMC1797265 DOI: 10.1128/jvi.01727-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination against AIDS is hampered by great diversity between human immunodeficiency virus (HIV) strains. Heterologous B-subtype-based simian-human immunodeficiency virus (SHIV) DNA prime and poxvirus boost vaccine regimens can induce partial, T-cell-mediated, protective immunity in macaques. We analyzed a set of DNA, recombinant fowlpox viruses (FPV), and vaccinia viruses (VV) expressing subtype AE HIV type 1 (HIV-1) Tat, Rev, and Env proteins and SIV Gag/Pol in 30 pigtail macaques. SIV Gag-specific CD4 and CD8 T-cell responses were induced by sequential DNA/FPV vaccination, although lower FPV doses, VV/FPV vaccination, and DNA vaccines alone were not as consistently immunogenic. The SHIV AE DNA prime, FPV boost regimens were significantly less immunogenic than comparable B-subtype SHIV vaccination. Peak viral load was modestly (0.4 log10 copies/ml) lower among the AE subtype SHIV-immunized animals compared to controls following the virulent B subtype SHIV challenge. Protection from persistent high levels of viremia and CD4 T-cell depletion was less in AE subtype compared to B subtype SHIV-vaccinated macaques. Gag was highly immunodominant over the other AE subtype SHIV vaccine proteins after vaccination, and this immunodominance was exacerbated after challenge. Interestingly, the lower level of priming of immune responses did not blunt postchallenge Gag-specific recall responses, despite more modest protection. These studies suggest priming of T-cell immunity to prevent AIDS in humans is possible, but differences in the immunogenicity of various subtype vaccines and broad cross-subtype protection are substantial hurdles.
Collapse
Affiliation(s)
- Robert De Rose
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|