1
|
Mandefro M, Ibrahim SM, Sibhatu D, Kassa N, Emiyu K, Debebe K, Dessalegn B, Birhan M, Bitew M. Vaccine sero-monitoring and sero-surveillance of Peste des petits ruminants in small ruminants in West Gojjam zone, Amhara region, Ethiopia. Front Vet Sci 2024; 11:1392893. [PMID: 39735582 PMCID: PMC11671518 DOI: 10.3389/fvets.2024.1392893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024] Open
Abstract
Background Peste des petits ruminants (PPR) is an acute or subacute, highly contagious, and economically important, transboundary disease of small ruminants caused by Peste des petits ruminants virus (PPRV). Objectives The objective of this study was to determine the seroconversion rate in PPR vaccinated flock of sheep (Sekela district) and the seroprevalence of PPRV in unvaccinated flocks of sheep and goats (Yilmanadensa district). Methods A cross-sectional study was conducted from January to March 2022 in two selected districts of West Gojjam zone, Ethiopia. Multistage cluster sampling was used to select sampling units by successively selecting districts, kebeles, and villages purposively based on their accessibility and vaccination status. Individual animals were selected haphazardly mimicking simple random sampling. Accordingly, a total of 660 blood samples were collected. Out of this, 300 sheep were vaccinated 4 months prior to sampling using the Nigerian 75/1 strain-based freeze-dried live attenuated PPR vaccine and 360 small ruminants (288 sheep and 72 goats) were unvaccinated and assayed for anti-PPRV antibodies using commercial c-ELISA. Results The post-vaccination herd immunity was 76.66% (95% CI: 71.46-81.34), which is slightly lower than the threshold herd immunity recommended by the PPR global control and eradication strategy, which is set to be 80%, to efficiently break the epidemiological cycle of the virus. Seroprevalence of PPRV in unvaccinated sheep and goats was 3.61% (95% CI: 1.94-6.1), indicating the possible circulation of PPRV in the area. Although small ruminants develop solid immunity following natural infection in endemic countries, the infection of naïve animals allows continuous circulation of the virus. Conclusions In light of the accumulating evidence of low post-vaccination herd immunity in small ruminants in Ethiopia, the undergoing PPR vaccination strategy needs to be reevaluated to achieve the desired herd immunity at any time ultimately aiding the eradication goal by 2030.
Collapse
Affiliation(s)
- Mesafint Mandefro
- Metema District Livestock and Fishery Resource Development Office, Metema, Ethiopia
| | | | - Demeke Sibhatu
- Serology Laboratory, Animal Health Institute, Sebeta, Ethiopia
| | - Nebiyou Kassa
- Serology Laboratory, Animal Health Institute, Sebeta, Ethiopia
| | - Kemal Emiyu
- Serology Laboratory, Animal Health Institute, Sebeta, Ethiopia
| | - Kebede Debebe
- Serology Laboratory, Animal Health Institute, Sebeta, Ethiopia
| | - Bereket Dessalegn
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mastewal Birhan
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Molalegne Bitew
- Department of Health Biotechnology, Bio and Emerging Institute Technology, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Xu H, Chen Y, Li J, Li M, Sun M, Chen J, Li L, Xue Q, Ma H. Altering the competitive environment of B cell epitopes significantly extends the duration of antibody production. Int Immunol 2024; 36:517-528. [PMID: 38708774 DOI: 10.1093/intimm/dxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/04/2024] [Indexed: 05/07/2024] Open
Abstract
Persistent immunoglobulin G (IgG) production (PIP) provides long-term vaccine protection. While variations in the duration of protection have been observed with vaccines prepared from different pathogens, little is known about the factors that determine PIP. Here, we investigated the impact of three parameters on the duration of anti-peptide IgG production, namely amino acid sequences, protein carriers, and immunization programs. We show that anti-peptide IgG production can be transformed from transient IgG production (TIP) to PIP, by placing short peptides (Pi) containing linear B cell epitopes in different competitive environments using bovine serum albumin (BSA) conjugates instead of the original viral particles. When goats were immunized with the peste des petits ruminants (PPR) live-attenuated vaccine (containing Pi as the constitutive component) and BSA-Pi conjugate, anti-Pi IgG production exhibited TIP (duration < 60 days) and PIP (duration > 368 days), respectively. Further, this PIP was unaffected by subsequent immunization with the PPR live-attenuated vaccine in the same goat. When goats were coimmunized with PPR live-attenuated vaccine and BSA-Pi, the induced anti-Pi IgG production showed a slightly extended TIP (from ~60 days to ~100 days). This discovery provides new perspectives for studying the fate of plasma cells in humoral immune responses and developing peptide vaccines related to linear neutralizing epitopes from various viruses.
Collapse
Affiliation(s)
- Hongke Xu
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yanfei Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jingzhi Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mengyu Li
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Miao Sun
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jian Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Ling Li
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Hongwei Ma
- Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
3
|
Agrawal A, Varshney R, Gattani A, Kirthika P, Gupta R, Kumar D, Singh RP, Singh P. SLAM (CD150) receptor homologous peptides block the peste des petits ruminants virus entry into B95a cells. Proteins 2024; 92:356-369. [PMID: 37881117 DOI: 10.1002/prot.26595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 10/27/2023]
Abstract
The fusion of haemagglutinin-neuraminidase (HN) protein of peste des petits ruminant (PPR) virus with signaling lymphocyte activation molecules (SLAM) host cell receptor consequences the virus entry and multiplication inside the host cell. The use of synthetic SLAM homologous peptides (i.e., molecular decoy for HN protein of PPR virus) may check PPR infection at the preliminary stage. Hence, the predicted SLAM homologous peptides using bioinformatics tools were synthesized by solid phase chemistry with standard Merrifield's 9-fluorenylmethoxycarbonyl (Fmoc) chemistry and were purified by reverse phase high performance liquid chromatography. The secondary structures of synthesized peptides were elucidated by circular dichroism spectroscopy. The in vitro interactions of these peptides were studied through indirect Enzyme Linked Immuno Sorbent Assay (ELISA) and visual surface plasmon UV-visible spectroscopy. The SLAM homologous peptides were able to interact with the peste des petits ruminant virus (PPRV) with varying binding efficiency. The interaction of SLAM homologous peptide with the PPR virus was ascertained by the change in the plasmon color from red wine to purple during visual detection and also by bathochromic shift in absorbance spectra under UV-visible spectrophotometry. The cytotoxic and anti-PPRV effect of these peptides were also evaluated in B95a cell line using PPR virus (Sungri/96). The cytotoxic concentration 50 (CC50 ) value of each peptide was greater than 1000 μg mL-1 . The anti-PPRV efficiency of SLAM-22 was relatively high among SLAM homologous peptides, SLAM-22 at 25 μg mL-1 concentration showed a reduction of more than log10 3 virus titer by priming of B95a cell line while the use of SLAM-15 and Muco-17 at the same concentration dropped virus titer from log10 4.8 to log10 2.5 and log10 3.1 respectively. The concentration of SLAM homologous peptide (25 μg mL-1 ) to exert its anti-PPRV effect was much less than its CC50 level (>1000 μg mL-1 ). Therefore, the synthetic SLAM homologous peptides may prove to be better agents to target PPRV.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, Madhya Pradesh, India
| | - Rajat Varshney
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
- Division of Bacteriology and Mycology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | - Anil Gattani
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Veterinary Biochemistry, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Perumalraja Kirthika
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohini Gupta
- Department of Veterinary Medicine, NDVSU, Jabalpur, Madhya Pradesh, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| | | | - Praveen Singh
- Division of Biochemistry, ICAR-IVRI, Bareilly, Uttar Pradesh, India
- Biophysics Section, ICAR-IVRI, Bareilly, Uttar Pradesh, India
| |
Collapse
|
4
|
Agrawal A, Varshney R, Gattani A, Hira Khan M, Gupta R, Solanki KS, Patel SK, Singh RP, Singh P. Development of Hemagglutinin-Neuraminidase Homologous Peptides as Novel Promising Therapeutic Agents Against Peste des Petits Ruminants Virus. Protein J 2023; 42:685-697. [PMID: 37421558 DOI: 10.1007/s10930-023-10134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
The lack of specific antiviral therapy and complications associated with the existing peste des petits ruminants (PPR) vaccines accentuates the search of novel antiviral blocking agents in order to curtail the PPR infection at initial level. The synthetic hemagglutinin-neuraminidase (HN) homologous peptides may compete with the natural HN protein of PPR virus for binding to signaling lymphocytic activation molecule (SLAM) receptor, consequently, may disrupt peste des petits ruminants virus (PPRV) at entry level. Therefore, insilico analysis, synthesis, purification and subsequent characterization of HN homologous peptides were conducted in this study. The HN homologous peptides were synthesized by means of solid phase chemistry and were purified by reversed-phase-high performance liquid chromatography. The mass as well as sequence of HN homologous peptides were assessed by mass spectroscopy while its secondary structure was elucidated by circular dichroism spectroscopy. The binding (interaction) efficacy of HN homologous peptides with PPRV antibodies was assessed via indirect enzyme linked immunosorbent assay, visual detection test (red wine to purple), bathochromic shift under UV-Vis spectrophotometry and lateral flow immunochromatographic strip test. The antiviral properties and cytotoxicity of these peptides were also assessed in B95a cell line with changes in cytopathic effect and titer of PPRV (Sungri/96). The presence of green fluorescein isothiocyanate over the B95a cell surface pointed towards the binding of HN homologous peptides with surface SLAM receptor. Moreover, the intact beta sheet configuration in water and lower cytotoxicity [cytotoxic concentration 50 (CC50) > 1000 µg/ml] of these peptides signifies its in vivo use. Among HN homologous peptides, the binding efficacy and antiviral properties of pep A was relatively high in comparison to pep B and Pep ppr peptides. The prerequisite concentration of HN homologous peptides (pep A = 12.5 µg/ml; pep B = 25 µg/ml; pep ppr = 25 µg/ml) to exemplify its antiviral effect was much lower than its CC50 level. Hence, this study signifies the therapeutic potential of synthetic HN homologous peptides.
Collapse
Affiliation(s)
- Aditya Agrawal
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India.
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Rewa, Jabalpur, 486001, India.
| | - Rajat Varshney
- Department of Veterinary Microbiology, BHU, Mirzapur, U.P., 231001, India
- Division of Bacteriology and Mycology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Anil Gattani
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Mahvash Hira Khan
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Rohini Gupta
- Department of Veterinary Medicine, College of Veterinary Science and Animal husbandry, NDVSU, Jabalpur, 486001, India
| | - Khushal Singh Solanki
- Division of Veterinary Biotechnology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Shailesh Kumar Patel
- Department of Veterinary Pathology, College of Veterinary Science and Animal husbandry, NDVSU, Rewa, Jabalpur, 486001, India
| | - R P Singh
- Division of Bacteriology and Mycology, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| | - Praveen Singh
- Division of Animal Biochemistry, IVRI, Izatnagar, Bareilly, U.P., 243122, India
| |
Collapse
|
5
|
Libbey JE, Fujinami RS. Morbillivirus: A highly adaptable viral genus. Heliyon 2023; 9:e18095. [PMID: 37483821 PMCID: PMC10362132 DOI: 10.1016/j.heliyon.2023.e18095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of human history, numerous diseases have been caused by the transmission of viruses from an animal reservoir into the human population. The viruses of the genus Morbillivirus are human and animal pathogens that emerged from a primordial ancestor a millennia ago and have been transmitting to new hosts, adapting, and evolving ever since. Through interaction with susceptible individuals, as yet undiscovered morbilliviruses or existing morbilliviruses in animal hosts could cause future zoonotic diseases in humans.
Collapse
|
6
|
Milovanović M, Dietze K, Wernery U, Hoffmann B. Investigation of Potency and Safety of Live-Attenuated Peste des Petits Ruminant Virus Vaccine in Goats by Detection of Cellular and Humoral Immune Response. Viruses 2023; 15:1325. [PMID: 37376624 DOI: 10.3390/v15061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The peste des petits ruminant (PPR) virus is a transboundary virus found in small domestic ruminants that causes high morbidity and mortality in naive herds. PPR can be effectively controlled and eradicated by vaccinating small domestic ruminants with a live-attenuated peste des petits ruminant virus (PPRV) vaccine, which provides long-lasting immunity. We studied the potency and safety of a live-attenuated vaccine in goats by detecting their cellular and humoral immune responses. Six goats were subcutaneously vaccinated with a live-attenuated PPRV vaccine according to the manufacturer's instructions, and two goats were kept in contact. Following vaccination, the goats were monitored daily, and we recorded their body temperature and clinical score. Heparinized blood and serum were collected for a serological analysis, and swab samples and EDTA blood were collected to detect the PPRV genome. The safety of the used PPRV vaccine was confirmed by the absence of PPR-related clinical signs, a negative pen-side test, a low virus genome load as detected with RT-qPCR on the vaccinated goats, and the lack horizontal transmission between the in-contact goats. The strong humoral and cellular immune responses detected in the vaccinated goats showed that the live-attenuated PPRV vaccine has a strong potency in goats. Therefore, live-attenuated vaccines against PPR can be used to control and eradicate PRR.
Collapse
Affiliation(s)
- Milovan Milovanović
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Klaas Dietze
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Schmitz KS, Eblé PL, van Gennip RGP, Maris-Veldhuis MA, de Vries RD, van Keulen LJM, de Swart RL, van Rijn PA. Pathogenesis of wild-type- and vaccine-based recombinant peste des petits ruminants virus (PPRV) expressing EGFP in experimentally infected domestic goats. J Gen Virol 2023; 104. [PMID: 36757863 DOI: 10.1099/jgv.0.001828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is a highly contagious morbillivirus related to measles and canine distemper virus, mostly affecting small ruminants. The corresponding PPR disease has a high clinical impact in goats and is characterized by fever, oral and nasal erosions, diarrhoea and pneumonia. In addition, massive infection of lymphoid tissues causes lymphopaenia and immune suppression. This results in increased susceptibility to secondary bacterial infections, explaining the observed high mortality in some outbreaks. We studied the pathogenesis of PPR by experimental inoculation of Dutch domestic goats with a recombinant virulent PPRV strain modified to express EGFP and compared it to an EGFP-expressing vaccine strain of PPRV. After intratracheal inoculation with virulent PPRV, animals developed fever, viraemia and leucopaenia, and shed virus from the respiratory and gastro-intestinal tracts. Macroscopic evaluation of fluorescence at the peak of infection 7 days post-inoculation (dpi) showed prominent PPRV infection of the respiratory tract, lymphoid tissues, gastro-intestinal tract, mucosae and skin. Flow cytometry of PBMCs collected over time demonstrated a cell-associated viraemia mediated by infected lymphocytes. At 14 dpi, pathognomonic zebra stripes were detected in the mucosa of the large intestine. In contrast, vaccine strain-inoculated goats remained largely macroscopically fluorescence negative and did not present clinical signs. A low-level viraemia was detected by flow cytometry, but at necropsy no histological lesions were observed. Animals from both groups seroconverted as early as 7 dpi and sera efficiently neutralized virulent PPRV in vitro. Combined, this work presents a study of the pathogenesis of wild type- and vaccine-based PPRV in its natural host. This study shows the strength of recombinant EGFP-expressing viruses in fluorescence-guided pathogenesis studies.
Collapse
Affiliation(s)
| | - Phaedra L Eblé
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Lucien J M van Keulen
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre of Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Oyedele HA, Bodjo CS, Diallo H, Gelaw HB, Baziki JDD, Chitsungo E, Boukary CRM, Fikru H, Oladosu GA, Nwankpa N. Evaluation of monoclonal antibodies in immunofluorescence assay for rapid quality control of Peste des petits ruminants (PPR) vaccine. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2022.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Wen B, Qi X, Lv D, Yang L, Tang P, Chang W, Han S, Yu S, Wei S, Xue Q, Wang J. Long noncoding RNA IRF1-AS is associated with peste des petits ruminants infection. Vet Res 2022; 53:89. [PMID: 36307867 PMCID: PMC9617334 DOI: 10.1186/s13567-022-01105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Peste des petits ruminants (PPR) is an acute and highly contagious disease and has long been a significant threat to small ruminant productivity worldwide. However, the molecular mechanism underlying host-PPRV interactions remains unclear and the long noncoding RNAs (lncRNAs) regulation of PPR virus (PPRV) infection has rarely been reported so far. Here, we first demonstrated that PPRV infection can induce an obvious innate immune response in caprine endometrial epithelial cells (EECs) at 48 h post-infection (hpi) with an MOI of 3. Subsequently, we determined that PPRV infection is associated with 191 significantly differentially expressed (SDE) lncRNAs, namely, 137 upregulated and 54 downregulated lncRNAs, in caprine EECs compared with mock control cells at 48 hpi by using deep sequencing technology. Importantly, bioinformatics preliminarily analyses revealed that these DE lncRNAs were closely related to the immune response. Furthermore, we identified a system of lncRNAs related to the immune response and focused on the role of lncRNA 10636385 (IRF1-AS) in regulating the innate immune response. Interestingly, we found that IRF1-AS was a potent positive regulator of IFN-β and ISG production, which can significantly inhibit PPRV replication in host cells. In addition, our data revealed that IRF1-AS was positively correlated with its potential target gene, IRF1, which enhanced the activation of IRF3 and the expression of ISGs and interacted with IRF3. This study suggests that IRF1-AS could be a new host factor target for developing antiviral therapies against PPRV infection.
Collapse
Affiliation(s)
- Bo Wen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,China Institute of Veterinary Drug Control, Beijing, 100000, China
| | - Lulu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pan Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuizhong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengmeng Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaopeng Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100000, China.
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Expression and Evaluation of a Novel PPRV Nanoparticle Antigen Based on Ferritin Self-Assembling Technology. Pharmaceutics 2022; 14:pharmaceutics14091902. [PMID: 36145650 PMCID: PMC9500948 DOI: 10.3390/pharmaceutics14091902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Peste des Petits Ruminants (PPR) is a highly pathogenic disease that is classified as a World Organization for Animal Health (OIE)-listed disease. PPRV mainly infects small ruminants such as goats and sheep. In view of the global and high pathogenicity of PPRV, in this study, we proposed a novel nanoparticle vaccine strategy based on ferritin (Fe) self-assembly technology. Using Helicobacter pylori (H. pylori) ferritin as an antigen delivery vector, a PPRV hemagglutinin (H) protein was fused with ferritin and then expressed and purified in both Escherichia coli (E. coli) and silkworm baculovirus expression systems. Subsequently, the nanoparticle antigens’ expression level, immunogenicity and protective immune response were evaluated. Our results showed that the PPRV hemagglutinin–ferritin (H-Fe) protein was self-assembled in silkworms, while it was difficult to observe the correctly folded nanoparticle in E. coli. Meanwhile, the expression level of the H-Fe protein was higher than that of the H protein alone. Furthermore, the immunogenicity and protective immune response of H-Fe nanoparticle antigens expressed by silkworms were improved compared with the H antigen alone. Particularly, the protective immune response of H-Fe antigens expressed in E. coli did not change, as opposed to the H antigen, which was probably due to the incomplete nanoparticle structure in E. coli. This study indicated that the use of ferritin nanoparticles as antigen delivery carriers could increase the expression of antigen proteins and improve the immunogenicity and immune effect of antigens.
Collapse
|
11
|
Esonu D, Armson B, Babashani M, Alafiatayo R, Ekiri AB, Cook AJC. Epidemiology of Peste des Petits Ruminants in Nigeria: A Review. Front Vet Sci 2022; 9:898485. [PMID: 35873688 PMCID: PMC9298765 DOI: 10.3389/fvets.2022.898485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peste des petits ruminants (PPR) is a major constraint to the productivity of small ruminants in Nigeria. Understanding of the current epidemiological status of PPR is crucial to its effective control. A review of the epidemiology of PPR in Nigeria was performed and research gaps were identified. Thirty-seven eligible articles were reviewed: these presented information from 30 of the 36 states of Nigeria. Most studies focused on goats and/or sheep (n = 33) but camels (n = 4), cattle (n = 1) and wild ruminants (n = 2) were also considered. Fourteen (37.8%) of the articles reported seroprevalence in small ruminants, which varied from 0.0% to 77.5% where more than 10 animals were sampled. Molecular characterization and phylogenetic analysis were performed in 6 studies, with lineages II and IV, detected in sheep and goats. In one study in small ruminants, sequences clustering into lineage I showed a similarity to the vaccine strain, Nigeria 75/1, based on phylogenetic analysis of F gene sequences. However, if the preferred method of sequencing the N gene had been performed, this isolate would have been grouped into lineage II. According to N gene phylogenetic analysis in the other studies, sequences were identified that clustered with clade II-NigA, II-NigB (closely related to the Nigeria 75/1 vaccine strain), and others which were well separated, suggesting a high diversity of PPRV in Nigeria. Five articles reported the detection of lineage IV in 22/36 states, with IV-NigA and IV-NigB detected, highlighting its widespread distribution in Nigeria. Risk factors for PPRV seropositivity were reported in 10/37 (27.0%) articles, with a higher seroprevalence observed in female animals, although differing results were observed when considering species and age separately. There were inconsistencies in study design and data reporting between studies which precluded conduct of a meta-analysis. Nevertheless, several research gaps were identified including the need to investigate the low uptake of PPRV vaccine, and the economic benefits of PPR control measures to small ruminant farmers. Such data will inform PPR control strategies in Nigeria and subsequently contribute to the global 2030 PPR eradication strategy.
Collapse
Affiliation(s)
- Daniel Esonu
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Bryony Armson
- vHive, Department of Veterinary Epidemiology and Public Health, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Mohammed Babashani
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Ruth Alafiatayo
- vHive, Department of Veterinary Epidemiology and Public Health, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Abel B. Ekiri
- vHive, Department of Veterinary Epidemiology and Public Health, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Alasdair J. C. Cook
- vHive, Department of Veterinary Epidemiology and Public Health, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
12
|
Nkamwesiga J, Korennoy F, Lumu P, Nsamba P, Mwiine FN, Roesel K, Wieland B, Perez A, Kiara H, Muhanguzi D. Spatio-temporal cluster analysis and transmission drivers for Peste des Petits Ruminants in Uganda. Transbound Emerg Dis 2022; 69:e1642-e1658. [PMID: 35231154 DOI: 10.1111/tbed.14499] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
Peste des Petits Ruminants (PPR) is a transboundary, highly contagious, and fatal disease of small ruminants. PPR causes global annual economic losses of between USD 1.5-2.0 billion across more than 70 affected countries. Despite the commercial availability of effective PPR vaccines, lack of financial and technical commitment to PPR control coupled with a dearth of refined PPR risk profiling data in different endemic countries has perpetuated PPR virus transmission. In Uganda, over the past five years, PPR has extended from north-eastern Uganda (Karamoja) with sporadic incursions in other districts /regions. To identify disease cluster hotspot trends that would facilitate the design and implementation of PPR risk-based control methods (including vaccination), we employed the space-time cube approach to identify trends in the clustering of outbreaks in neighbouring space-time cells using confirmed PPR outbreak report data (2007-2020). We also used negative binomial and logistic regression models and identified high small ruminant density, extended road length, low annual precipitation and high soil water index as the most important drivers of PPR in Uganda. The study identified (with 90 - 99% confidence) five PPR disease hotspot trend categories across subregions of Uganda. Diminishing hotspots were identified in the Karamoja region whereas consecutive, sporadic, new, and emerging hotspots were identified in central and southwestern districts of Uganda. Inter-district and cross-border small ruminant movement facilitated by longer road stretches and animal comingling precipitate PPR outbreaks as well as PPR virus spread from its initial Karamoja focus to the central and south-western Uganda. There is therefore urgent need to prioritize considerable vaccination coverage to obtain the required herd immunity among small ruminants in the new hotspot areas to block transmission to further emerging hotspots. Findings of this study provide a basis for more robust timing and prioritization of control measures including vaccination. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joseph Nkamwesiga
- Dahlem Research School of Biomedical Sciences, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19 b, Berlin, 14163, Germany.,International Livestock Research Institute, Animal and human health program, P.O. Box 24384, Kampala, Uganda
| | - Fedor Korennoy
- Federal Center for Animal Health (FGBI ARRIAH), Yur'evets, Vladimir, 600901, Russia
| | - Paul Lumu
- Ministry of Agriculture Animal Industry and Fisheries, P.O Box 102, Plot, Lugard Avenue, Entebbe, 16-18, Entebbe Uganda
| | - Peninah Nsamba
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Frank Nobert Mwiine
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Kristina Roesel
- International Livestock Research Institute, Animal and human health program, P.O. Box 24384, Kampala, Uganda
| | - Barbara Wieland
- Institute of Virology and Immunology (IVI), Sensemattstrasse, Mittelhäusern, 2933147, Switzerland.,Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Switzerland
| | - Andres Perez
- Department of Veterinary Population Medicine, Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Henry Kiara
- International Livestock Research Institute, Animal and human health program, P.O. Box 24384, Kampala, Uganda
| | - Dennis Muhanguzi
- School of Biosecurity, Biotechnology and Laboratory Sciences (SBLS), College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| |
Collapse
|
13
|
Oz ME, Torlak E. A high-resolution melting assay to differentiate a peste des petits ruminants virus vaccine strain from field isolates in Turkey. Arch Virol 2022; 167:941-946. [PMID: 35147805 DOI: 10.1007/s00705-022-05386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
Peste des petits ruminants (PPR) mostly affects small ruminants. Vaccination with attenuated vaccines derived from PPR virus (PPRV) provides successful protection against the disease. However, current molecular methods are unable to distinguish vaccine strains from field strains. In this study, we used an EvaGreen-based high-resolution melting (HRM) assay to differentiate a PPRV vaccine strain (Nigeria 75/1) from Turkish field isolates of lineage IV based on melting peaks and melting profiles.
Collapse
Affiliation(s)
- Mustafa Emin Oz
- Molecular Microbiology Laboratory, Veterinary Control Institute, 42090, Konya, Turkey.
| | - Emrah Torlak
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Konya, Turkey
| |
Collapse
|
14
|
Antivirals targeting paramyxovirus membrane fusion. Curr Opin Virol 2021; 51:34-47. [PMID: 34592709 DOI: 10.1016/j.coviro.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/29/2023]
Abstract
The Paramyxoviridae family includes enveloped single-stranded negative-sense RNA viruses such as measles, mumps, human parainfluenza, canine distemper, Hendra, and Nipah viruses, which cause a tremendous global health burden. The ability of paramyxoviral glycoproteins to merge viral and host membranes allows entry of the viral genome into host cells, as well as cell-cell fusion, an important contributor to disease progression. Recent molecular and structural advances in our understanding of the paramyxovirus membrane fusion machinery gave rise to various therapeutic approaches aiming at inhibiting viral infection, spread, and cytopathic effects. These therapeutic approaches include peptide mimics, antibodies, and small molecule inhibitors with various levels of success at inhibiting viral entry, increasing the potential of effective antiviral therapeutic development.
Collapse
|
15
|
Rojas JM, Sevilla N, Martín V. A New Look at Vaccine Strategies Against PPRV Focused on Adenoviral Candidates. Front Vet Sci 2021; 8:729879. [PMID: 34568477 PMCID: PMC8455998 DOI: 10.3389/fvets.2021.729879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a virus that mainly infects goats and sheep causing significant economic loss in Africa and Asia, but also posing a serious threat to Europe, as recent outbreaks in Georgia (2016) and Bulgaria (2018) have been reported. In order to carry out the eradication of PPRV, an objective set for 2030 by the Office International des Epizooties (OIE) and the Food and Agriculture Organization of the United Nations (FAO), close collaboration between governments, pharmaceutical companies, farmers and researchers, among others, is needed. Today, more than ever, as seen in the response to the SARS-CoV2 pandemic that we are currently experiencing, these goals are feasible. We summarize in this review the current vaccination approaches against PPRV in the field, discussing their advantages and shortfalls, as well as the development and generation of new vaccination strategies, focusing on the potential use of adenovirus as vaccine platform against PPRV and more broadly against other ruminant pathogens.
Collapse
Affiliation(s)
| | | | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
16
|
Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol 2021; 261:109201. [PMID: 34399299 DOI: 10.1016/j.vetmic.2021.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.
Collapse
Affiliation(s)
- F Z Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - S Elmejdoub
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - W Chen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Z Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
17
|
Sharma Y, Sarkar R, Jain A, Singh S, Shekhar C, Shanmugam C, Dhanavelu M, Tembhurne P, Kaul R, Sehrawat S. A Mouse Model of PPRV Infection for Elucidating Protective and Pathological Roles of Immune Cells. Front Immunol 2021; 12:630307. [PMID: 33912160 PMCID: PMC8072281 DOI: 10.3389/fimmu.2021.630307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
The study was aimed at developing an accessible laboratory animal model to elucidate protective and pathological roles of immune mediators during Peste des petits ruminants virus (PPRV) infection. It is because of the critical roles of type I IFNs in anti-viral defense, we assessed the susceptibility of IFN receptor knock out (IFNR KO) mice to PPRV infection. IFNR KO mice were exceedingly susceptible to the infection but WT animals efficiently controlled PPRV. Accordingly, the PPRV infected IFNR KO mice gradually reduced their body weights and succumbed to the infection within 10 days irrespective of the dose and route of infection. The lower infecting doses predominantly induced immunopathological lesions. The viral antigens as well as the replicating PPRV were abundantly present in most of the critical organs such as brain, lungs, heart and kidneys of IFNR KO mice infected with high dose of the virus. Neutrophils and macrophages transported the replicating virus to central nervous system (CNS) and contributed to pathology while the elevated NK and T cell responses directly correlated with the resolution of PPRV infection in WT animals. Using an array of fluorescently labeled H-2Kb tetramers, we discovered four immunogenic epitopes of PPRV. The PPRV-peptides interacted well with H-2Kb in acellular and cellular assay as well as expanded the virus-specific CD8+ T cells in immunized or infected mice. Adoptively transferred CD8+ T cells helped control PPRV in infected mice. Our study therefore established and employed a mouse model for investigating the pathogenesis of PPRV. The model could be useful for elucidating the contribution of immune cells in disease progression as well as to test anti-viral agents.
Collapse
Affiliation(s)
- Yashu Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Roman Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Ayush Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Sudhakar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Chander Shekhar
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | | | | | - Prabhakar Tembhurne
- Department of Veterinary Microbiology, Nagpur Veterinary College, Nagpur, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi, New Delhi, India
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
18
|
Zhao H, Njeumi F, Parida S, Benfield CTO. Progress towards Eradication of Peste des Petits Ruminants through Vaccination. Viruses 2021; 13:v13010059. [PMID: 33466238 PMCID: PMC7824732 DOI: 10.3390/v13010059] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 01/05/2023] Open
Abstract
Peste des petits ruminants (PPR) is a transboundary viral disease that threatens more than 1.74 billion goats and sheep in approximately 70 countries globally. In 2015, the international community set the goal of eradicating PPR by 2030, and, since then, Food and Agriculture Organization of the United Nations (FAO) and World Organization for Animal Health (OIE) have jointly developed and implemented the Global Control and Eradication Strategy for PPR. Here, data from the United Nations Food and Agriculture Organization Statistical Database (FAOSTAT), the OIE World Animal Health Information System (WAHIS), Regional Roadmap Meetings, and countries' responses to PPR Monitoring and Assessment Tool (PMAT) questionnaires were analyzed to inform on current progress towards PPR eradication. OIE recorded the use of over 333 million doses of vaccine in 12 countries from 2015 to 2018, 41.8% of which were used in Asia and 58.2% in Africa. Between 2015 and 2019, a total of 12,757 PPR outbreaks were reported to OIE: 75.1% in Asia, 24.8% in Africa, and 0.1% in Europe. The number of global outbreaks in 2019 fell to 1218, compared with 3688 in 2015. Analysis of vaccine use and PPR outbreaks in countries indicates that disease control strategies, particularly vaccination campaigns and vaccine distribution strategies, still require scientific evaluation. It is imperative that vaccination is undertaken based on the epidemiology of the disease in a region and is coordinated between neighboring countries to restrict transboundary movements. Strengthening surveillance and post-vaccination sero-monitoring at the national level is also essential. The PPR vaccine stock/bank established by FAO, OIE, and other partners have improved the quality assurance and supply of vaccines. However, to achieve PPR eradication, filling the funding gap for vaccination campaigns and other program activities will be critical.
Collapse
Affiliation(s)
- Hang Zhao
- Jiangsu Key Laboratory for Food Quality and Safety–State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Felix Njeumi
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy;
| | - Satya Parida
- The Pirbright Institute, Woking GU24 0NF, UK
- Correspondence: (S.P.); (C.T.O.B.)
| | - Camilla T. O. Benfield
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy;
- Royal Veterinary College, University of London, London NW1 0TU, UK
- Correspondence: (S.P.); (C.T.O.B.)
| |
Collapse
|
19
|
Roy R, Mishra A, Poddar S, Nayak D, Kar P. Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from Peste des petits ruminants virus via Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:2302-2315. [DOI: 10.1080/07391102.2020.1838327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajarshi Roy
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Anurag Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sayan Poddar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Debasis Nayak
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
20
|
Update on Peste des petits ruminants status in South East Nigeria: serological and farmers' awareness investigation, and potential risk factors. Trop Anim Health Prod 2020; 52:3285-3291. [PMID: 32712808 DOI: 10.1007/s11250-020-02359-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Peste des petits ruminants (PPR) is a highly contagious, trans-boundary viral disease of sheep and goats that have hindered successful small ruminant farming. Its current status in South East Nigeria with respect to its prevalence and farmers' awareness was studied. Three states, Anambra, Ebonyi, and Enugu, were randomly selected for the study. Sera samples from 113 goats and 172 sheep (collected from December 2017 to June 2018) were randomly collected and analysed for the presence of PPRV antibodies, while structured interview schedules were conducted to elicit information on farmers' awareness of the disease and PPR vaccination and use of veterinary services. An overall seroprevalence of 42.5% (121/285) was recorded. The seroprevalence in decreasing order was 62.2% (Enugu), 34.8% (Anambra) and 20.3% (Ebonyi). There was a significant association (X2 = 36.08, df = 2, p = 0.0001) between seroprevalence and the state sampled. Lack of awareness of PPR vaccination among small ruminant farmers, their limited use of veterinary services (38% consult veterinarians) and non-availability of the vaccine at veterinary establishments in the sampled states are potential risk factors of PPR prevalence in South East Nigeria. Consequently, an effective control measure like mass vaccination is recommended for the study area. Also, there is a need for an extension program for stakeholders and farmers in the study area and country on the grave importance and economic benefits of PPR vaccination and the use of veterinary services.
Collapse
|
21
|
Ahaduzzaman M. Peste des petits ruminants (PPR) in Africa and Asia: A systematic review and meta-analysis of the prevalence in sheep and goats between 1969 and 2018. Vet Med Sci 2020; 6:813-833. [PMID: 32529792 PMCID: PMC7738735 DOI: 10.1002/vms3.300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is a prevalent viral disease of sheep and goats that impacts productivity and international animal trade. Despite the substantial economic consequences related to PPR, little is known about the prevalence of this disease at the broad geographical levels. OBJECTIVE The present study aimed to use a systematic approach to assess the regional prevalence of PPR in sheep and goats, and the associated factors that contribute to prevalence estimates. METHODS Published articles on PPR in sheep and goats were searched in PubMed, Web of Science, Scopus, Google Scholar and the reference lists of articles reporting the prevalence from 1 January 1969 to 31 December 2018. Articles were selected using inclusion and exclusion criteria. Since the heterogeneity among the studies was significant, pooled prevalences were estimated by a random effect meta-analysis model. RESULTS Data on the prevalence of PPR were obtained from Africa and Asia, where the pooled prevalence estimates were 40.99% (95% CI: 37.20%-44.79%) and 38.43% (95% CI: 35.64%-41.22%) respectively. Overall, the estimated pooled prevalence at Africa-Asia level in sheep was 39.31% (95% CI: 35.75%-42.88%) and in goats was 39.57% (95% CI: 36.66%-42.48%). Significant heterogeneity (I2 > 80%) was noted in most pooled estimates. CONCLUSION The results on the regional prevalence estimates of PPR presented here will be useful in raising awareness and advocating for Governments to engage in initiatives to eradicate PPR and prevent it from spreading to other continents.
Collapse
Affiliation(s)
- Md Ahaduzzaman
- Department of Medicine & Surgery, Chattogram Veterinary & Animal Sciences University (CVASU), Chattogram, Bangladesh
| |
Collapse
|
22
|
Yan F, Li E, Li L, Schiffman Z, Huang P, Zhang S, Li G, Jin H, Wang H, Zhang X, Gao Y, Feng N, Zhao Y, Wang C, Xia X. Virus-Like Particles Derived From a Virulent Strain of Pest des Petits Ruminants Virus Elicit a More Vigorous Immune Response in Mice and Small Ruminants Than Those From a Vaccine Strain. Front Microbiol 2020; 11:609. [PMID: 32390966 PMCID: PMC7190788 DOI: 10.3389/fmicb.2020.00609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminants (PPRs) is highly contagious, acute or subacute disease of small ruminants caused by peste des petits ruminants virus (PPRV). To date, several studies have designed and evaluated PPRV-like particles (VLPs) as a vaccine candidate for the prevention and control of PPR, with the majority of these VLPs constructed using sequences derived from a PPRV vaccine strain due to its high immunogenicity. However, because of the lack of available genetic material and certain structural proteins and/or the alteration of posttranslational glycosylation modifications, the immunogenicity of VLPs derived from a vaccine strain is not always optimal. In this study, two PPRV VLP candidates, derived from either the lineage IV Tibet/30 virulent strain or the lineage II Nigeria 75/1 vaccine strain, were generated using a baculovirus system through the coexpression of the PPRV matrix (M), hemagglutinin (H), and fusion (F) proteins in the high expression level cell line High Five. These VLPs were then used to immunize mice, goats, and sheep followed by two boosts after primary immunization. Both VLPs were found to induce a potent humoral immune response as demonstrated by the high ratio of immunoglobulin G1 (IgG1) to IgG2a. In all animals, both VLPs induced high titers of virus-neutralizing antibodies (VNAs), as well as H- and F-specific antibodies, with the Tibet/30 VLPs yielding higher antibody titers by comparison to the Nigeria 75/1 VLPs. Studies in mice also demonstrated that the Tibet/30 VLPs induced a more robust interleukin 4 and interferon γ response than the Nigeria 75/1 VLPs. Goats and sheep immunized with both VLPs exhibited a robust humoral and cell-mediated immune response. Furthermore, our results demonstrated that the VLPs derived from the virulent lineage IV Tibet/30 strain were more immunogenic, inducing a more potent and robust humoral and cell-mediated immune response in vaccinated animals by comparison to the lineage II Nigeria 75/1 vaccine strain VLPs. In addition, VNA titers were significantly higher among animals vaccinated with the Tibet/30 VLPs by comparison to the Nigeria 75/1 VLPs. Taken together, these findings suggest that VLPs derived from the virulent lineage IV Tibet/30 strain are more immunogenic by comparison to those derived from the lineage II Nigeria 75/1 vaccine strain and thus represent a promising vaccine candidate for the control and eradication of PPR.
Collapse
Affiliation(s)
- Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ling Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Zachary Schiffman
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Special Pathogens Program, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Pei Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Shengnan Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Guohua Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hualei Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chengyu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|
23
|
Mahapatra M, Selvaraj M, Parida S. Comparison of Immunogenicity and Protective Efficacy of PPR Live Attenuated Vaccines (Nigeria 75/1 and Sungri 96) Administered by Intranasal and Subcutaneous Routes. Vaccines (Basel) 2020; 8:vaccines8020168. [PMID: 32268574 PMCID: PMC7349158 DOI: 10.3390/vaccines8020168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Following the successful eradication of rinderpest, the World Organization of Animal Health (OIE) and the Food and Agriculture Organization (FAO) have set a goal to eradicate peste des petits ruminants (PPR) globally by 2030. Vaccination is being taken forward as the key strategy along with epidemiological surveillance to target vaccination efforts and eradicate the disease. PPR is highly contagious and is generally spread by aerosolized droplets and close contact. Currently, two live attenuated vaccines (Nigeria 75/1 and Sungri 96) are in use, and administered subcutaneously to prevent transmission of PPR and protect vaccinated animals. Though the target cells that support primary replication of PPR vaccine strains are largely unknown, it is hypothesized that the immune response could be intensified following intranasal vaccine delivery as this route mimics the natural route of infection. This study aims to compare the immunogenicity and protective efficacy of the two currently available live attenuated PPR vaccines following subcutaneous and intranasal routes of vaccination in target species. Groups of five goats were vaccinated with live attenuated PPR vaccines (Nigeria 75/1 and Sungri 96) by either the subcutaneous or intranasal route, and 28 days later challenged intranasally with virulent PPR virus. All vaccinated animals regardless of vaccination route produced PPRV-specific antibodies post-vaccination. Following challenge, all goats were protected from clinical disease, and vaccination was considered to have induced sterilizing immunity. This study demonstrates that the intranasal route of vaccination is as effective as the subcutaneous route of vaccination when using available live attenuated PPR vaccines.
Collapse
|
24
|
Influence of mutation in nucleoprotein of Peste-des-petits-ruminants virus (PPRV) isolated from 2016 Indian outbreak. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Epitope-Containing Short Peptides Capture Distinct IgG Serodynamics That Enable Differentiating Infected from Vaccinated Animals for Live-Attenuated Vaccines. J Virol 2020; 94:JVI.01573-19. [PMID: 31896600 PMCID: PMC7158722 DOI: 10.1128/jvi.01573-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022] Open
Abstract
Differentiating infected from vaccinated animals (DIVA) strategies have been central enabling techniques in several successful viral disease elimination programs. However, owing to their long and uncertain development process, no DIVA-compatible vaccines are available for many important diseases. We report herein a new DIVA strategy based on hybrid protein-peptide microarrays which can theoretically work with any vaccine. Leading from our findings from peste des petits ruminants (PPR) virus, we found 4 epitope-containing short peptides (ECSPs) which have distinct IgG serodynamics: anti-ECSP IgGs only exist for 10 to 60 days postvaccination (dpv), while anti-protein IgGs remained at high levels for >1,000 dpv. These data enabled the design of a DIVA diagnostic microarray containing 4 ECSPs and 3 proteins, which, unlike competitive enzyme-linked immunosorbent assay (cELISA) and virus neutralization tests (VNTs), enables ongoing monitoring of serological differences between vaccinated individuals and individuals exposed to the pathogen. For 25 goats after 60 dpv, 13 were detected with positive anti-ECSP IgGs, indicating recent infections in vaccinated goat herds. These DIVA diagnostic microarrays will almost certainly facilitate eradication programs for (re)emerging pathogens and zoonoses.IMPORTANCE Outbreaks of infectious diseases caused by viruses, such as pseudorabies (PR), foot-and-mouth disease (FMD), and PPR viruses, led to economic losses reaching billions of dollars. Both PR and FMD were eliminated in several countries via large-scale vaccination programs using DIVA-compatible vaccines, which lack the gE protein and nonstructural proteins, respectively. However, there are still extensive challenges facing the development and deployment of DIVA-compatible vaccines because they are time-consuming and full of uncertainty. Further, the negative marker strategy used for DIVA-compatible vaccines is no longer functional for live-attenuated vaccines. To avoid these disadvantageous scenarios, a new strategy is desired. Here, we made the exciting discovery that different IgG serodynamics can be monitored when using protein-based assays versus arrays comprising ECSPs. This DIVA microarray strategy should, in theory, work for any vaccine.
Collapse
|
26
|
Jia XX, Wang H, Liu Y, Meng DM, Fan ZC. Development of vaccines for prevention of peste-des-petits-ruminants virus infection. Microb Pathog 2020; 142:104045. [PMID: 32035105 DOI: 10.1016/j.micpath.2020.104045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 01/22/2023]
Abstract
Peste des petits ruminants (PPR) is a highly contagious and fatal disease of small ruminants, particularly sheep and goats. This disease leads to high morbidity and mortality of small ruminants, thus resulting in devastating economic loss to the livestock industry globally. The severe disease impact has prompted the Food and Agriculture Organization of the United Nations (FAO) and the World Organization for Animal Health (OIE) to develop a global strategy for the control and eradication of PPR by 2030. Over the past decades, the control of PPR is mainly achieved through vaccinating the animals with live-attenuated vaccines, e.g., rinderpest vaccines. As a closely related disease to PPR of large ruminants, rinderpest was eradicated in 2011 and its vaccines subsequently got banned in order to keep rinderpest-free zones. Consequently, it is desirable to develop homologous PPR vaccines to control the disease. The present review summarizes the objectives of PPR control and eradication by focusing on the homologous PPR vaccines.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - De-Mei Meng
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Institute of Health Biotechnology, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
27
|
Kinimi E, Odongo S, Muyldermans S, Kock R, Misinzo G. Paradigm shift in the diagnosis of peste des petits ruminants: scoping review. Acta Vet Scand 2020; 62:7. [PMID: 31996243 PMCID: PMC6988203 DOI: 10.1186/s13028-020-0505-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/18/2020] [Indexed: 11/10/2022] Open
Abstract
Peste des petits ruminants virus causes a highly contagious disease, which poses enormous economic losses in domestic animals and threatens the conservation of wild herbivores. Diagnosis remains a cornerstone to the Peste des petits ruminants Global Control and Eradication Strategy, an initiative of the World Organisation for Animal Health and the Food and Agriculture Organisation. The present review presents the peste des petits ruminants diagnostic landscape, including the practicality of commercially available diagnostic tools, prototype tests and opportunities for new technologies. The most common peste des petits ruminants diagnostic tools include; agar gel immunodiffusion, counter-immunoelectrophoresis, enzyme-linked immunosorbent assays, reverse transcription polymerase chain reaction either gel-based or real-time, reverse transcription loop-mediated isothermal amplification, reverse transcription recombinase polymerase amplification assays, immunochromatographic lateral flow devices, luciferase immunoprecipitation system and pseudotype-based assays. These tests vary in their technical demands, but all require a laboratory with exception of immunochromatographic lateral flow and possibly reverse transcription loop-mediated isothermal amplification and reverse transcription recombinase polymerase amplification assays. Thus, we are proposing an efficient integration of diagnostic tests for rapid and correct identification of peste des petits ruminants in endemic zones and to rapidly confirm outbreaks. Deployment of pen-side tests will improve diagnostic capacity in extremely remote settings and susceptible wildlife ecosystems, where transportation of clinical samples in the optimum cold chain is unreliable.
Collapse
Affiliation(s)
- Edson Kinimi
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa (SACIDS-ACE), SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania.
| | - Steven Odongo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P.O. Box 7962, Kampala, Uganda
| | - Serge Muyldermans
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Richard Kock
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa (SACIDS-ACE), SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
28
|
Wane A, Dione M, Wieland B, Rich KM, Yena AS, Fall A. Willingness to Vaccinate (WTV) and Willingness to Pay (WTP) for Vaccination Against Peste des Petits Ruminants (PPR) in Mali. Front Vet Sci 2020; 6:488. [PMID: 32010711 PMCID: PMC6974520 DOI: 10.3389/fvets.2019.00488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
PPR remains a major challenge to smallholder farmers in Mali. To understand the drivers of low adoption of vaccination by farmers, we analyzed the socio-economic factors influencing farmer WTV during and in the absence of vaccination campaigns. Given that the costs associated with vaccination are largely borne by farmers, we assessed factors that associated with farmer willingness to pay (WTP) more than the current price (150 XOF per dose) by considering two attributes of improvement of the vaccines empirically highlighted as potential leverage points for intervention: access of farmers to vaccines (reducing the distance to the vaccine) and availability of information about the quality of the vaccine (introducing a vaccine viability detector). Data were collected in Mopti and Sikasso regions from 304 producers. Overall (n = 304), 89 percent of respondents vaccinated their herds during official vaccination campaigns. They are associated with receiving information on the campaign calendar more quickly if information is relayed at places of worship and if they have an awareness of the benefits of vaccination, including the protection of third parties. Only 39 percent of respondents vaccinate outside vaccination campaigns. They are positively linked to the credibility of private veterinarians and a recognition of the vital importance of vaccines but are negatively associated with ignorance of vaccination needs and concern about vaccine side-effects. Both distance-effects and quality-tracker effects are associated with farmer willingness to pay more than the current vaccine prices. Farmers practicing semi-intensive production systems are willing to pay 20 percent more than the current vaccine prices, as are users who believe in the beneficial effects of vaccination, users who consider the prices of vaccines as fair, and those who believe that some vaccines are more important than others. Factors that discourage producers from vaccinating or from paying more for vaccination would be more effectively managed with better communication on vaccine benefits through targeted information dissemination campaigns by Malian authorities. Greater price transparency throughout the vaccine production and deployment chain is critical, while timely availability of vaccine tested for viability would increase the willingness to vaccinate while improving access.
Collapse
Affiliation(s)
- Abdrahmane Wane
- International Livestock Research Institute, Nairobi, Kenya.,Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Michel Dione
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Karl M Rich
- International Livestock Research Institute, Nairobi, Kenya
| | - Awa Sadio Yena
- International Livestock Research Institute, Nairobi, Kenya
| | - Abdou Fall
- International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
29
|
Nimmanapalli R, Gupta V. Vaccines the tugboat for prevention-based animal production. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149732 DOI: 10.1016/b978-0-12-816352-8.00020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The world population is growing at a faster rate day-by-day and the demands for animal products are also increasing to meet the food security worldwide. For sustained production of animals products, healthy livestock and poultry farming are the major concerns as animals are susceptible to various infectious agents viz. bacteria, virus, and parasites leading to huge economical losses in the form of livestock’s morbidity and mortality. Besides, zoonotic nature of some infectious pathogens of animals is also raising concern for human safety. Vaccination of animals against various diseases present in different geographical regions is a best known strategy for prevention of different disease outbreaks both in organized and unorganized livestock and poultry sectors. Vaccines had played a major role in eradication of different dreaded diseases of livestock sectors globally. In this article we have discussed different vaccine types, various vaccine strategies used for the development of more efficacious and safe vaccines and commercially available vaccines for livestock and poultry.
Collapse
|
30
|
Teffera M, Babiuk S. Potential of Using Capripoxvirus Vectored Vaccines Against Arboviruses in Sheep, Goats, and Cattle. Front Vet Sci 2019; 6:450. [PMID: 31921911 PMCID: PMC6932975 DOI: 10.3389/fvets.2019.00450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 11/26/2022] Open
Abstract
The genus capripoxvirus consists of sheeppox virus, goatpox virus, and lumpy skin disease virus, which affect sheep, goats, and cattle, respectively. Together capripoxviruses cause significant economic losses to the sheep, goat, and cattle industry where these diseases are present. These diseases have spread into previously free bordering regions most recently demonstrated with the spread of lumpy skin disease virus into the Middle East, some Eastern European countries, and Russia. This recent spread has highlighted the transboundary nature of these diseases. To control lumpy skin disease virus, live attenuated viral vaccines are used in endemic countries as well as in response to an outbreak. For sheeppox and goatpox, live attenuated viral vaccines are used in endemic countries; these diseases can also be contained through slaughter of infected animals to stamp out the disease. The thermostability, narrow host range, and ability of capripoxviruses to express a wide variety of antigens make capripoxviruses ideal vectors. The ability to immunize animals against multiple diseases simultaneously increases vaccination efficiency by decreasing the number of vaccinations required. Additionally, the use of capripoxvirus vectored vaccines allows the possibility of differentiating infected from vaccinated animals. Arboviruses such as bluetongue virus and Rift Valley fever viruses are also responsible for significant economic losses in endemic countries. In the case of Rift Valley fever virus, vaccination is not routinely practiced unless there is an outbreak making vaccination not as effective, therefore, incorporating Rift Valley fever vaccination into routine capripoxvirus vaccination would be highly beneficial. This review will discuss the potential of using capripoxvirus as a vector expressing protective arboviral antigens.
Collapse
Affiliation(s)
- Mahder Teffera
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
31
|
Dione MM, Traoré I, Kassambara H, Sow AN, Touré CO, Sidibé CAK, Séry A, Yena AS, Wieland B, Dakouo M, Diall O, Niang M, Fomba CO, Traoré M, Fall A. Integrated Approach to Facilitate Stakeholder Participation in the Control of Endemic Diseases of Livestock: The Case of Peste Des Petits Ruminants in Mali. Front Vet Sci 2019; 6:392. [PMID: 31803763 PMCID: PMC6877542 DOI: 10.3389/fvets.2019.00392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
In Mali, small ruminants (SRs) are an important means for enhanced livelihood through income generation, especially for women and youth. Unfortunately, opportunities for livestock farmers to tap into these resources for economic growth are hindered by high burden of endemic diseases such as peste des petits ruminants (PPR). A key component for the control of PPR is vaccination of SRs. However, low participation of farmers to vaccination was identified by stakeholders of the livestock value chains as a key constraint to successful vaccination programs. This study was implemented in the framework of a project which aimed at improving the domestic ruminant livestock value chains in Mali by upscaling proven interventions in animal health, feeds and feeding and livestock marketing. The objectives of the study were to review the context of livestock vaccination in Mali and evaluate the impact of innovation platforms (IP) as a means for engaging stakeholders in the vaccination process. Desk review, key informant interviews (KII) and net-mapping were used to understand the context of livestock vaccination, while vaccination coverage and sero-monitoring together with group interviews were used to measure the impact of the intervention. IPs were created in 24 communes in three regions: 15 IPs in Sikasso, 4 IPs in Mopti and 5 IPs in Timbuktu. They developed work plans and implemented activities focusing on improving interaction among key vaccine chain delivery stakeholders such as farmers, private veterinarians, vaccine manufacturers, local leaders and public veterinary services; involving them in the planning, implementation and evaluation of vaccination programs and fostering knowledge sharing, communication and capacity building. After 2 years of implementation of IPs, vaccination coverage for SRs increased significantly in target communes. During the first year, seroprevalence rate for PPR increased from 57% (CI95: 54-60%) at baseline to 70% (CI95: 67-73%) post-vaccination in Sikasso region, while in Mopti region, seroprevalence increased from 51% (CI95: 47-55%) at baseline to 57% (CI85: 53-61%) post-vaccination. Stakeholder engagement in the vaccination process through facilitated IPs was successful in fostering participation of farmers to vaccination. However, a sustainable vaccination strategy for Mali would benefit from consolidating the IP model, supported by Government investment to strengthen and adjust the underlying public-private-partnership.
Collapse
Affiliation(s)
- Michel Mainack Dione
- International Livestock Research Institute, Animal and Human Heath Program, Herd Health Team, Ouagadougou, Burkina Faso
| | - Ibrahima Traoré
- Impact at Scale Program, International Livestock Research Institute, Bamako, Mali
| | - Hamidou Kassambara
- Impact at Scale Program, International Livestock Research Institute, Bamako, Mali
| | - Ahmadou Nouh Sow
- Impact at Scale Program, International Livestock Research Institute, Bamako, Mali
| | - Cheick Oumar Touré
- Impact at Scale Program, International Livestock Research Institute, Bamako, Mali
| | | | - Amadou Séry
- Laboratoire Central Vétérinaire, Bamako, Mali
| | - Awa Sadio Yena
- Impact at Scale Program, International Livestock Research Institute, Bamako, Mali
| | - Barbara Wieland
- International Livestock Research Institute, Animal and Human Heath Program, Herd Health Team, Addis Ababa, Ethiopia
| | | | | | | | | | | | - Abdou Fall
- Impact at Scale Program, International Livestock Research Institute, Bamako, Mali
| |
Collapse
|
32
|
Yang Y, Qin X, Meng X, Zhu X, Zhang X, Li Y, Zhang Z. MicroRNA Expression Profile in Peripheral Blood Lymphocytes of Sheep Vaccinated with Nigeria 75/1 Peste Des Petits Ruminants Virus. Viruses 2019; 11:v11111025. [PMID: 31694166 PMCID: PMC6893480 DOI: 10.3390/v11111025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Peste des petits ruminants (PPR) is one of the highly contagious transboundary viral diseases of small ruminants. Host microRNA (miRNA) expression patterns may change in response to virus infection, and it mainly works as a post-transcriptional moderator in gene expression and affects viral pathogenesis and replication. In this study, the change of miRNA expression profile in peripheral blood lymphocyte (PBMC) from sheep inoculated with PPR vaccine virus in vivo as well as primary sheep testicular (ST) cells inoculated with PPR vaccine virus in vitro were determined via deep sequencing technology. In PBMC cells, 373 and 115 differentially expressed miRNAs (DEmiRNAs) were identified 3 days and 5 days post inoculated (dpi), respectively. While, 575 DEmiRNAs were identified when comparing miRNA profiles on 5 dpi with 3 dpi. Some of the DEmiRNAs were found to change significantly via time-course during PPR vaccine virus inoculated. Similarly, in ST cells, 136 DEmiRNAs were identified at 3 dpi in comparison with mock-inoculation. A total of 12 DEmiRNAs were validated by real-time quantitative PCR (RT-qPCR). The oar-miR-150, oar-miR-370-3p and oar-miR-411b-3p were found common differentially expressed in both PPR vaccine virus-inoculated PBMC cells and ST cells. Targets prediction and functional analysis of the DEmiRNAs uncovered mainly gathering in antigen processing and presentation pathways, protein processing in endoplasmic reticulum pathways and cell adhesion molecules pathways. Our study supplies information about the DEmiRNAs in PPR vaccine virus-inoculated PBMC cells and ST cells, and provides clues for further understanding the function of miRNAs in PPR vaccine virus replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanmin Li
- Correspondence: ; Tel.: +86-0931-8374622
| | | |
Collapse
|
33
|
Immunoinformatics Approach for Multiepitope Vaccine Prediction from H, M, F, and N Proteins of Peste des Petits Ruminants Virus. J Immunol Res 2019; 2019:6124030. [PMID: 31781679 PMCID: PMC6875335 DOI: 10.1155/2019/6124030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
Background Small ruminant morbillivirus or peste des petits ruminants virus (PPRV) is an acute and highly contagious viral disease of goats, sheep, and other livestock. This study aimed at predicting an effective multiepitope vaccine against PPRV from the immunogenic proteins haemagglutinin (H), matrix (M), fusion (F), and nucleoprotein (N) using immunoinformatics tools. Materials and Methods The sequences of the immunogenic proteins were retrieved from GenBank of the National Center for Biotechnology Information (NCBI). BioEdit software was used to align each protein from the retrieved sequences for conservancy. Immune Epitope Database (IEDB) analysis resources were used to predict B and T cell epitopes. For B cells, the criteria for electing epitopes depend on the epitope linearity, surface accessibility, and antigenicity. Results Nine epitopes from the H protein, eight epitopes from the M protein, and ten epitopes from each of the F and N proteins were predicted as linear epitopes. The surface accessibility method proposed seven surface epitopes from each of the H and F proteins in addition to six and four epitopes from the M and N proteins, respectively. For antigenicity, only two epitopes 142PPERV146 and 63DPLSP67 were predicted as antigenic from H and M, respectively. For T cells, MHC-I binding prediction tools showed multiple epitopes that interacted strongly with BoLA alleles. For instance, the epitope 45MFLSLIGLL53 from the H protein interacted with four BoLA alleles, while 276FKKILCYPL284 predicted from the M protein interacted with two alleles. Although F and N proteins demonstrated no favorable interaction with B cells, they strongly interacted with T cells. For instance, 358STKSCARTL366 from the F protein interacted with five alleles, followed by 340SQNALYPMS348 and 442IDLGPAISL450 that interacted with three alleles each. The epitopes from the N protein displayed strong interaction with BoLA alleles such as 490RSAEALFRL498 that interacted with five alleles, followed by two epitopes 2ATLLKSLAL10 and 304QQLGEVAPY312 that interacted with four alleles each. In addition to that, four epitopes 3TLLKSLALF11, 356YFDPAYFRL364, 360AYFRLGQEM368, and 412PRQAQVSFL420 interacted with three alleles each. Conclusion Fourteen epitopes were predicted as promising vaccine candidates against PPRV from four immunogenic proteins. These epitopes should be validated experimentally through in vitro and in vivo studies.
Collapse
|
34
|
Kamel M, El-Sayed A. Toward peste des petits virus (PPRV) eradication: Diagnostic approaches, novel vaccines, and control strategies. Virus Res 2019; 274:197774. [PMID: 31606355 DOI: 10.1016/j.virusres.2019.197774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease affecting domestic and wild small ruminants' species besides camels reared in Africa, Asia and the Middle East. The virus is a serious paramount challenge to the sustainable agriculture advancement in the developing world. The disease outbreak was also detected for the first time in the European Union namely in Bulgaria at 2018. Therefore, the disease has lately been aimed for eradication with the purpose of worldwide clearance by 2030. Radically, the vaccines needed for effectively accomplishing this aim are presently convenient; however, the availableness of innovative modern vaccines to fulfill the desideratum for Differentiating between Infected and Vaccinated Animals (DIVA) may mitigate time spent and financial disbursement of serological monitoring and surveillance in the advanced levels for any disease obliteration campaign. We here highlight what is at the present time well-known about the virus and the different available diagnostic tools. Further, we interject on current updates and insights on several novel vaccines and on the possible current and prospective strategies to be applied for disease control.
Collapse
Affiliation(s)
- Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| | - Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
35
|
Yan F, Banadyga L, Zhao Y, Zhao Z, Schiffman Z, Huang P, Li E, Wang C, Gao Y, Feng N, Wang T, Wang H, Xia X, Wang C, Yang S, Qiu X. Peste des Petits Ruminants Virus-Like Particles Induce a Potent Humoral and Cellular Immune Response in Goats. Viruses 2019; 11:v11100918. [PMID: 31590353 PMCID: PMC6833106 DOI: 10.3390/v11100918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Peste des petits ruminants is a highly contagious acute or subacute disease of small ruminants caused by the peste des petits ruminants virus (PPRV), and it is responsible for significant economic losses in animal husbandry. Vaccination represents the most effective means of controlling this disease, with virus-like particle (VLP) vaccines offering promising vaccine candidates. In this study, a PPRV VLP-based vaccine was developed using a baculovirus expression system, allowing for the simultaneous expression of the PPRV matrix (M), hemagglutinin (H), fusion (F) and nucleocapsid (N) proteins in insect cells. Immunization of mice and goats with PPRV VLPs elicited a robust neutralization response and a potent cellular immune response. Mouse studies demonstrated that VLPs induced a more robust IFN-γ response in CD4+ and CD8+ T cells than PPRV Nigeria 75/1 and recruited and/or activated more B cells and dendritic cells in inguinal lymph nodes. In addition, PPRV VLPs induced a strong Th1 class response in mice, as indicated by a high IgG2a to IgG1 ratio. Goat studies demonstrated that PPRV VLPs can induce the production of antibodies specific for F and H proteins and can also stimulate the production of virus neutralizing antibodies to the same magnitude as the PPRV Nigeria 75/1 vaccine. Higher amounts of IFN-γ in VLP-immunized animal serum suggested that VLPs also elicited a cellular immune response in goats. These results demonstrated that VLPs elicit a potent immune response against PPRV infection in small ruminants, making PPRV VLPs a potential candidate for PPRV vaccine development.
Collapse
Affiliation(s)
- Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Ziqi Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Pei Huang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Huanan Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Cuiling Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- Xinxiang medical university, Xinxiang 453003, Henan, China.
| | - Yuwei Gao
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Huanan Agricultural University, Guangzhou 510642, Guangdong, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Chengyu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130122, Jilin, China.
- College of Veterinary Medicine, Jilin University, Changchun 130122, Jilin, China.
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg R3E 3R2, Manitoba, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
36
|
Process intensification for Peste des Petites Ruminants Virus vaccine production. Vaccine 2019; 37:7041-7051. [PMID: 31402239 DOI: 10.1016/j.vaccine.2019.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/17/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Process intensification for Peste des Petites Ruminants Virus (PPRV) vaccine production in anchorage dependent Vero cells is challenging, involving substantial amount of bioprocess development. In this study, we describe the implementation of a new, scalable bioprocess for PPRV vaccine production in Vero cells using serum-free medium (SFM), microcarrier technology in stirred-tank bioreactors (STB), in-situ cell detachment from microcarriers and perfusion. Vero cells were successfully adapted to ProVero™-1 SFM, reaching growth rates similar to serum-containing cultures (0.030 1/h vs 0.026 1/h, respectively). An in-situ cell detachment method was successfully implemented, with efficiencies above 85%. Up to 2.5-fold increase in maximum cell concentration was obtained using perfusion when compared to batch culture. Combining perfusion with the in-situ cell detachment method enabled the scale-up to 20 L STB directly from a 2 L STB, surpassing the need for a mid-scale platform (i.e. 5 L STB) and thus reducing seed train duration. Head-to-head comparison of cell growth and PPRV production in the 2 L and 20 L STB was performed, and no significant differences could be observed. Estimated infectious PPRV titers in Tissue Culture Infection Dose (TCID50) (TCID50/mL = 5 × 106 and TCID50/cell = 5) are within the log-range reported in literature for PPRV production in STB and SFM by Silva et al. (2008), thus confirming the feasibility and scalability of the seed train designed [1]. The novel and scalable vaccine production process herein proposed has the potential to assist the upcoming Peste des Petites Ruminants (PPR) Global Eradication Program (targeted by FAAO for 2030) by providing African local and/or regional manufacturers with a platform capable of generating over 25,000 doses of Nigeria 75/1 strain in just 19 days using a 20 L STB.
Collapse
|
37
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
38
|
ElArbi AS, Kane Y, Metras R, Hammami P, Ciss M, Beye A, Lancelot R, Diallo A, Apolloni A. PPR Control in a Sahelian Setting: What Vaccination Strategy for Mauritania? Front Vet Sci 2019; 6:242. [PMID: 31396525 PMCID: PMC6664874 DOI: 10.3389/fvets.2019.00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Peste des Petits Ruminants (PPR) is a viral disease affecting domestic and small wild ruminants. Endemic in large parts of the world, PPR causes severe damages to animal production and household economies. In 2015, FAO and OIE launched a global eradication program (GCSE) based on vaccination campaigns. The success of GCSE shall depend on the implementation of vaccination campaigns, accounting for husbandry practices, mobility and the periodicity of small ruminants' population renewal. In Mauritania, PPR outbreaks occur annually despite ongoing annual vaccination campaigns since 2008. Here, we developed a mathematical model to assess the impact of four vaccination strategies (including the GSCE one), the importance of their timing of implementation and the usefulness of individual animal identification on the reduction of PPR burden. The model was calibrated on data collected through ad-hoc surveys about demographic dynamics, disease impact, and national seroprevalence using Monte Carlo Markov Chain procedure. Numerical simulations were used to estimate the number of averted deaths over the next 12 years. The model results showed that the GSCE strategy prevented the largest number of deaths (9.2 million vs. 6.2 for random strategy) and provided one of the highest economic returns among all strategies (Benefit-Cost Ratio around 16 vs. 7 for random strategy). According to its current cost, identification would be a viable investment that could reduce the number of vaccine doses to distribute by 20–60%. Whilst the implementation of the identification system is crucial for PPR control, its success depends also on a coordinated approach at the regional level.
Collapse
Affiliation(s)
| | | | - Raphaelle Metras
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Pachka Hammami
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Mamadou Ciss
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
| | - Assane Beye
- FASEG, Université Cheikh Anta Diop, Dakar, Senegal
| | - Renaud Lancelot
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Adama Diallo
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France.,Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
| | - Andrea Apolloni
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France.,Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles, Dakar, Senegal
| |
Collapse
|
39
|
Osman NA, Portugal R, Giesow K, Keil GM. Productive replication of peste des petits ruminants virus Nigeria 75/1 vaccine strain in vero cells correlates with inefficiency of maturation of the viral fusion protein. Virus Res 2019; 269:197634. [PMID: 31129173 DOI: 10.1016/j.virusres.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Peste des petits ruminants virus (PPRV), a member of the genus Morbillivirus, in the family Paramyxoviridae expresses two membrane glycoproteins, the fusion (F) and haemagglutinin (H) glycoproteins which mediate virus-to-cell fusion and cell-to-cell fusion leading to the induction of syncytia in PPRV infected cells. In the context of the characterization of the virulent lineage IV strain PPRV Kurdistan 2011, isolated from wild goats from the Kurdistan region in Iraq, we observed that both PPRV Kurdistan 2011 and the PPRV Nigeria 75/1 vaccine strain led to induction of large syncytia in Vero-dogSLAM cells within 48 h whereas both failed to induce detectable cell-cell fusion events in two Vero cell lines of differing passage histories. We were unable to detect syncytium formation in transiently transfected cells expressing PPRV F or H alone whereas co-expression of F and H induced large syncytia - in Vero-dogSLAM cells only. In VeroMontpellier cells expressing PPRV F and H, fused cells were rarely detectable indicating that PPRV mediated cell fusion activity is impaired in this cell line. Surprisingly, on Vero-dogSLAM cells the vaccine strain grew to titers of 105.25 TCID50/ml, whereas infectious virus yield was about 200-fold higher on VeroMontpellier and Vero-76 cells. In contrast, the virulent Kurdistan 2011 strain grew to a maximum titer of 107.0 TCID50/ml on Vero-dogSLAM cells and only 104.5 TCID50/ml on normal Vero cells. This was as expected since Vero cells lacking the SLAM receptor for PPRV are regarded as not so permissive for infection. To elucidate the divergent productive replication behaviour of PPRV Nigeria 75/1 vaccine strain on Vero vs Vero-dogSLAM cells, we examined whether intracellular transport and/or maturation of the viral envelope glycoproteins F and H might be implicated with this phenomenon. The results indicate that F in contrast to the H glycoprotein matures inefficiently during intracellular transport in VeroMontpellier cells, thus leading to an absence of detectable syncytia formation. However, in the case of the PPRV Nigeria 75/1 vaccine strain this did not impair efficient virus assembly and release.
Collapse
Affiliation(s)
- Nussieba A Osman
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany; Department of Pathology, Parasitology and Microbiology, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204 Kuku, Khartoum-North, Sudan.
| | - Raquel Portugal
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany; The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, United Kingdom
| | - Katrin Giesow
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Günther M Keil
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
40
|
Batley KC, Sandoval‐Castillo J, Kemper CM, Attard CRM, Zanardo N, Tomo I, Beheregaray LB, Möller LM. Genome-wide association study of an unusual dolphin mortality event reveals candidate genes for susceptibility and resistance to cetacean morbillivirus. Evol Appl 2019; 12:718-732. [PMID: 30976305 PMCID: PMC6439501 DOI: 10.1111/eva.12747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases are significant demographic and evolutionary drivers of populations, but studies about the genetic basis of disease resistance and susceptibility are scarce in wildlife populations. Cetacean morbillivirus (CeMV) is a highly contagious disease that is increasing in both geographic distribution and incidence, causing unusual mortality events (UME) and killing tens of thousands of individuals across multiple cetacean species worldwide since the late 1980s. The largest CeMV outbreak in the Southern Hemisphere reported to date occurred in Australia in 2013, where it was a major factor in a UME, killing mainly young Indo-Pacific bottlenose dolphins (Tursiops aduncus). Using cases (nonsurvivors) and controls (putative survivors) from the most affected population, we carried out a genome-wide association study to identify candidate genes for resistance and susceptibility to CeMV. The genomic data set consisted of 278,147,988 sequence reads and 35,493 high-quality SNPs genotyped across 38 individuals. Association analyses found highly significant differences in allele and genotype frequencies among cases and controls at 65 SNPs, and Random Forests conservatively identified eight as candidates. Annotation of these SNPs identified five candidate genes (MAPK8, FBXW11, INADL, ANK3 and ACOX3) with functions associated with stress, pain and immune responses. Our findings provide the first insights into the genetic basis of host defence to this highly contagious disease, enabling the development of an applied evolutionary framework to monitor CeMV resistance across cetacean species. Biomarkers could now be established to assess potential risk factors associated with these genes in other CeMV-affected cetacean populations and species. These results could also possibly aid in the advancement of vaccines against morbilliviruses.
Collapse
Affiliation(s)
- Kimberley C. Batley
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Jonathan Sandoval‐Castillo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | | | - Catherine R. M. Attard
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nikki Zanardo
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ikuko Tomo
- South Australian MuseumAdelaideSouth AustraliaAustralia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Luciana M. Möller
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Cetacean Ecology, Behaviour, and Evolution Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
41
|
Mantip SE, Shamaki D, Farougou S. Peste des petits ruminants in Africa: Meta-analysis of the virus isolation in molecular epidemiology studies. Onderstepoort J Vet Res 2019; 86:e1-e15. [PMID: 31038322 PMCID: PMC6556936 DOI: 10.4102/ojvr.v86i1.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
Peste des petits ruminant (PPR) is a highly contagious, infectious viral disease of small ruminant species which is caused by the peste des petits ruminants virus (PPRV), the prototype member of the Morbillivirus genus in the Paramyxoviridae family. Peste des petits ruminant was first described in West Africa, where it has probably been endemic in sheep and goats since the emergence of the rinderpest pandemic and was always misdiagnosed with rinderpest in sheep and goats. Since its discovery PPR has had a major impact on sheep and goat breeders in Africa and has therefore been a key focus of research at the veterinary research institutes and university faculties of veterinary medicine in Africa. Several key discoveries were made at these institutions, including the isolation and propagation of African PPR virus isolates, notable amongst which was the Nigerian PPRV 75/1 that was used in the scientific study to understand the taxonomy, molecular dynamics, lineage differentiation of PPRV and the development of vaccine seeds for immunisation against PPR. African sheep and goat breeds including camels and wild ruminants are frequently infected, manifesting clinical signs of the disease, whereas cattle and pigs are asymptomatic but can seroconvert for PPR. The immunisation of susceptible sheep and goats remains the most effective and practical control measure against PPR. To carry out PPR vaccination in tropical African countries with a very high temperature, a thermostable vaccine using the rinderpest lyophilisation method to the attenuated Nigeria 75/1 PPR vaccine strain has been developed, which will greatly facilitate the delivery of vaccination in the control, prevention and global eradication of PPR. Apart from vaccination, other important questions that will contribute towards the control and prevention of PPR need to be answered, for example, to identify the period when a susceptible naïve animal becomes infectious when in contact with an infected animal and when an infectious animal becomes contagious.
Collapse
Affiliation(s)
- Samuel E Mantip
- Department of Animal Health and Production, University of Abomey-Calavi, Abomey Calavi, Benin; and, Viral Research Division, National Veterinary Research Institute, Vom, Nigeria.
| | | | | |
Collapse
|
42
|
Lyons NA, Jemberu WT, Chaka H, Salt JS, Rushton J. Field-derived estimates of costs for Peste des Petits Ruminants vaccination in Ethiopia. Prev Vet Med 2018; 163:37-43. [PMID: 30670184 PMCID: PMC6351750 DOI: 10.1016/j.prevetmed.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022]
Abstract
In 2015, the OIE and FAO launched a global eradication programme for Peste des Petits Ruminants (PPR). Vaccination is a major component of this strategy yet the costs of implementing a campaign are unknown or based on assumptions without field-based verification necessary for effective economic planning. This study used experiences of attending four PPR vaccination campaigns in Ethiopia to estimate various cost components in pastoral and mixed-crop livestock systems. These components included: cost of vaccine; vaccine transport from the producer to the local storage facility; storage of vaccine at the local facility; delivery and administration of vaccine in the field; opportunity cost of farmer’s time to attend the vaccination; co-ordination of vaccination campaign; publicity and mobilisation costs; vaccine wastage from missed shots and vaccine discard. The overall cost of vaccination was approximately 6 Ethiopian birr (ETB) or US$0.2 per animal in the mixed-crop livestock system compared to approximately 3ETB or US$0.1 in pastoral areas. The relative importance of cost components varied in the two systems with farmer time being the largest contributor in the mixed-crop livestock system while field delivery was the main cost in pastoral areas. Notable vaccine wastage was observed particularly through missed shots that were typically between 0 and 10% but as high as 33%. At the national level, the output of the stochastic model showed the cost of vaccination to be highly variable particularly in the mixed-crop livestock system. These results highlight the importance of doing economic assessments of vaccination campaigns and issues that may be compromising efficiency of delivery and vaccine coverage. It is recommended that the framework be used for further economic evaluations of vaccination for PPR and other livestock diseases particularly when limited public or donor funds are being used, and that the approach be expanded to other countries and regions.
Collapse
Affiliation(s)
- Nicholas A Lyons
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK; European Commission for the Control of Foot-and-Mouth Disease (EuFMD), Food and Agriculture Organisation of the United Nations, Rome, Italy.
| | | | - Hassen Chaka
- Food and Agriculture Organisation of the United Nations, Addis-Ababa, Ethiopia
| | - Jeremy S Salt
- Global Alliance for Livestock Vaccines and Medicine, Edinburgh, UK
| | - Jonathan Rushton
- Institute of Infection and Global Health, University of Liverpool, IC2 Building, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| |
Collapse
|
43
|
Mahamat O, Doungous T, Kebkiba B, Oumar HA, Oussiguéré A, Yacoub AH, Goudja A, Guindé M, Moussa AH. Seroprevalence, geographical distribution, and risk factors of peste des petits ruminants in the Republic of Chad. J Adv Vet Anim Res 2018; 5:420-425. [PMID: 31453152 PMCID: PMC6702906 DOI: 10.5455/javar.2018.e293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 11/30/2022] Open
Abstract
Objective: The objective of this study was to determine the prevalence, geographical distribution, and main risk factors for peste des petits ruminants (PPR) in the Republic of Chad. Materials and methods: A total of 3,546 sera collected from unvaccinated small ruminants including 1,699 goats and 1,847 sheep in 19 of the 23 regions in Chad were randomly sampled. The competitive enzyme-linked immunosorbent assay technics were used for serological analysis. Results: The overall seroprevalence at the individual level was 52.9%±1.6% (48.9% for goats and 56.2% for sheep). Seroprevalence observed in the Chari Baguirmi, Ouaddaï, and N’Djamena regions was significantly higher than those in the other regions. Transhumant herds are the most exposed than the sedentary ones. Older animals were more affected than the young ones. Kababich sheep are the most affected than other breeds. Conclusion: This study has shown that the PPR virus is circulating in the Republic of Chad. In view of the results obtained, the disease is enzootic in the country. Epidemiological information obtained including seroprevalence rate, risk factors (sex, breed, age, and mode of rearing), and geographical distribution will help to define an appropriate strategy for PPR control in the Republic of Chad.
Collapse
Affiliation(s)
- Ouagal Mahamat
- Ministry of Livestock and Animal Productions, Livestock Research Institute for Development, Epidemiology Department, N'Djamena, Chad
| | - Tchari Doungous
- Ministry of Livestock and Animal Productions, Livestock Research Institute for Development, Virology Department, N'Djamena, Chad
| | - Bidjeh Kebkiba
- Ministry of Livestock and Animal Productions, Livestock Research Institute for Development, Virology Department, N'Djamena, Chad
| | - Hadjé Arabié Oumar
- Ministry of Livestock and Animal Productions, Livestock Research Institute for Development, Epidemiology Department, N'Djamena, Chad
| | - Assandi Oussiguéré
- Ministry of Livestock and Animal Productions, Livestock Research Institute for Development, Virology Department, N'Djamena, Chad
| | - Adam Hassan Yacoub
- Ministry of Livestock and Animal Productions, General Inspectorate, N'Djamena, Chad
| | - Adoum Goudja
- Ministry of Livestock and Animal Productions, Livestock Research Institute for Development, General Direction, N'Djamena, Chad
| | - Mahamat Guindé
- Ministry of Livestock and Animal Productions, Directorate of Veterinary Services, N'Djamena, Chad
| | - Ahmat Hassan Moussa
- Ministry of Livestock and Animal Productions, Coordination of the Pastoralism Support Project, N'Djamena, Chad
| |
Collapse
|
44
|
Osman NA, Veits J, Keil GM. Molecular and genetic characterization of peste des petits ruminants virus Kurdistan 2011 strain based on the haemagglutinin and fusion protein genes sequences. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Genetic fusion of peste des petits ruminants virus haemagglutinin and fusion protein domains to the amino terminal subunit of glycoprotein B of bovine herpesvirus 1 interferes with transport and function of gB for BHV-1 infectious replication. Virus Res 2018; 258:9-18. [DOI: 10.1016/j.virusres.2018.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/31/2023]
|
46
|
Qi X, Wang T, Xue Q, Li Z, Yang B, Wang J. MicroRNA expression profiling of goat peripheral blood mononuclear cells in response to peste des petits ruminants virus infection. Vet Res 2018; 49:62. [PMID: 30012212 PMCID: PMC6048839 DOI: 10.1186/s13567-018-0565-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) belongs to the genus Morbillivirus that causes an acute and highly contagious disease in goats and sheep. Virus infection can trigger the change in the cellular microRNA (miRNA) expression profile, which play important post-transcriptional regulatory roles in gene expression and can greatly influence viral replication and pathogenesis. Here, we employed deep sequencing technology to determine cellular miRNA expression profile in goat peripheral blood mononuclear cells (PBMC) infected with Nigeria 75/1 vaccine virus, a widely used vaccine strain for mass vaccination programs against Peste des petits ruminants. Expression analysis demonstrated that PPRV infection can elicit 316 significantly differentially expressed (DE) miRNA including 103 known and 213 novel miRNA candidates in infected PBMC at 24 hours post-infection (hpi) as compared with a mock control. Target prediction and functional analysis of these DEmiRNA revealed significant enrichment for several signaling pathways including TLR signaling pathways, PI3K-Akt, endocytosis, viral carcinogenesis, and JAK-STAT signaling pathways. This study provides a valuable basis for further investigation of the roles of miRNA in PPRV replication and pathogenesis.
Collapse
Affiliation(s)
- Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ting Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100000, China
| | - Zhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Macchi F, Rojas JM, Verna AE, Sevilla N, Franceschi V, Tebaldi G, Cavirani S, Martín V, Donofrio G. Bovine Herpesvirus-4-Based Vector Delivering Peste des Petits Ruminants Virus Hemagglutinin ORF Induces both Neutralizing Antibodies and Cytotoxic T Cell Responses. Front Immunol 2018; 9:421. [PMID: 29556236 PMCID: PMC5845008 DOI: 10.3389/fimmu.2018.00421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Peste des Petits Ruminants Virus (PPRV) is an extremely infective morbillivirus that primarily affects goats and sheep. In underdeveloped countries where livestock are the main economical resource, PPRV causes considerable economic losses. Protective live attenuated vaccines are currently available but they induce antibody responses similar to those produced in PPRV naturally infected animals. Effective vaccines able to distinguish between vaccinated and naturally infected animals are required to PPRV control and eradication programs. Hemagglutinin (H) is a highly immunogenic PPRV envelope glycoprotein displaying both hemagglutinin and neuraminidase activities, playing a crucial role in virus attachment and penetration. In this study, a recombinant Bovine Herpesvirus-4 (BoHV-4)-based vector delivering an optimized PPRV-Hemagglutinin expression cassette, BoHV-4-A-PPRV-H-ΔTK, was assessed in immunocompetent C57BL/6 mice. BoHV-4-A-PPRV-H-ΔTK-immunization elicited both cellular and humoral immune responses with specific T cell, cytotoxic T lymphocyte, and sero-neutralizing antibody against PPRV. These data suggest recombinant BoHV-4-A-PPRV-H-ΔTK as an effective vaccine candidate to protect against PPRV herd infection and potentially applicable for eradication programs.
Collapse
Affiliation(s)
- Francesca Macchi
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Giulia Tebaldi
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Sandro Cavirani
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
48
|
Hammami P, Lancelot R, Domenech J, Lesnoff M. Ex-ante assessment of different vaccination-based control schedules against the peste des petits ruminants virus in sub-Saharan Africa. PLoS One 2018; 13:e0190296. [PMID: 29351277 PMCID: PMC5774693 DOI: 10.1371/journal.pone.0190296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is a highly contagious and widespread viral infection of small ruminants (goats and sheep), causing heavy economic losses in many developing countries. Therefore, its progressive control and global eradication by 2030 was defined as a priority by international organizations addressing animal health. The control phase of the global strategy is based on mass vaccination of small ruminant populations in endemic regions or countries. It is estimated that a 70% post-vaccination immunity rate (PVIR) is needed in a given epidemiological unit to prevent PPR virus spread. However, implementing mass vaccination is difficult and costly in smallholder farming systems with scattered livestock and limited facilities. Regarding this, controlling PPR is a special challenge in sub-Saharan Africa. In this study, we focused on this region to assess the effect of several variables of PVIR in two contrasted smallholder farming systems. METHODS Using a seasonal matrix population model of PVIR, we estimated its decay in goats reared in sub-humid areas, and sheep reared in semi-arid areas, over a 4-year vaccination program. Assuming immunologically naive and PPR-free epidemiological unit, we assessed the ability of different vaccination scenarios to reach the 70% PVIR throughout the program. The tested scenarios differed in i) their overall schedule, ii) their delivery month and iii) their vaccination coverage. RESULTS In sheep reared in semi-arid areas, the vaccination month did affect the PVIR decay though it did not in goats in humid regions. In both cases, our study highlighted i) the importance of targeting the whole eligible population at least during the two first years of the vaccination program and ii) the importance of reaching a vaccination coverage as high as 80% of this population. This study confirmed the relevance of the vaccination schedules recommended by international organizations.
Collapse
Affiliation(s)
- Pachka Hammami
- UMR 117 Animals, Health, Territories, Risks and Ecosystems (ASTRE), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Campus international de Baillarguet, 34398 Montpellier, France
- UMR 117 ASTRE, Institut national de la recherche agronomique (INRA), Campus international de Baillarguet, 34398 Montpellier, France
| | - Renaud Lancelot
- UMR 117 Animals, Health, Territories, Risks and Ecosystems (ASTRE), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Campus international de Baillarguet, 34398 Montpellier, France
- UMR 117 ASTRE, Institut national de la recherche agronomique (INRA), Campus international de Baillarguet, 34398 Montpellier, France
| | | | - Matthieu Lesnoff
- UMR Systèmes d’élevage méditerranéens et tropicaux (SELMET), CIRAD, Campus international de Baillarguet, 34398 Montpellier, France
- UMR SELMET, INRA, Campus international de Baillarguet, 34398 Montpellier, France
- UMR SELMET, Montpellier SUPAGRO, Campus international de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
49
|
Epidemiological situation of transboundary animal diseases in North African countries-proposition of a regional control strategy. Trop Anim Health Prod 2018; 50:459-467. [PMID: 29302776 DOI: 10.1007/s11250-017-1453-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
The Food and Agricultural Organization (FAO) defined transboundary animal diseases (TADs) as those that are of significant economic, trade, and food security importance for a considerable number of countries. TADs can easily spread to other countries, reach epidemic proportions, and where control, management, or exclusion is required cooperation between several countries. The North African countries are vulnerable to several TADs by virtue of its geographical location, its borders with the Sahel region, and peculiar control constraints on the budgets of the national veterinary services of each country and on the livelihoods of livestock owners across the region. In a narrative approach, we comprehensively described the epidemiology of TADs in North African countries, eradication constraints and control measures adopted to conclude with a proposition of a regional control strategy. Our review uncovered foot-and-mouth disease, peste des petites ruminants, bluetongue, sheep/goats pox, brucellosis, West Nile and Rift Valley fever, as the major TADs in this region, while the major constraints identified were illegal animal movement, communal clashes, unreported outbreaks, poor vaccination coverage, and other factors peculiar to each etiology. Therefore, the establishment of early warning systems and proper implementation of control measures at regional level are highly recommended to the relevant stakeholders involved in TADs control in the region.
Collapse
|
50
|
Fakri F, Bamouh Z, Ghzal F, Baha W, Tadlaoui K, Fihri OF, Chen W, Bu Z, Elharrak M. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines. Virology 2018; 514:211-215. [DOI: 10.1016/j.virol.2017.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 10/18/2022]
|