1
|
Suen TK, Moorlag SJCFM, Li W, de Bree LCJ, Koeken VACM, Mourits VP, Dijkstra H, Lemmers H, Bhat J, Xu CJ, Joosten LAB, Schultze JL, Li Y, Placek K, Netea MG. BCG vaccination induces innate immune memory in γδ T cells in humans. J Leukoc Biol 2024; 115:149-163. [PMID: 37672677 DOI: 10.1093/jleuko/qiad103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
Bacillus Calmette-Guérin vaccine is well known for inducing trained immunity in myeloid and natural killer cells, which can explain its cross-protective effect against heterologous infections. Although displaying functional characteristics of both adaptive and innate immunity, γδ T-cell memory has been only addressed in a pathogen-specific context. In this study, we aimed to determine whether human γδ T cells can mount trained immunity and therefore contribute to the cross-protective effect of the Bacillus Calmette-Guérin vaccine. We investigated in vivo induction of innate memory in γδ T cells by Bacillus Calmette-Guérin vaccination in healthy human volunteers by combining single-cell RNA sequencing technology with immune functional assays. The total number of γδ T cells and membrane markers of activation was not influenced by Bacillus Calmette-Guérin vaccination. In contrast, Bacillus Calmette-Guérin changed γδ T cells' transcriptional programs and increased their responsiveness to heterologous bacterial and fungal stimuli, including lipopolysaccharide and Candida albicans, as simultaneously characterized by higher tumor necrosis factor and interferon γ production, weeks after vaccination. Human γδ T cells in adults display the potential to develop a trained immunity phenotype after Bacillus Calmette-Guérin vaccination.
Collapse
Affiliation(s)
- Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Wenchao Li
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| | - Jaydeep Bhat
- Institute of Immunology, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Strada Victor Babeș 8, Cluj-Napoca 400347, Romania
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases, University of Bonn, Venusberg-Campus 1/9953127, Bonn, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
- Department of Computational Biology of Individualized Medicine, Centre for Individualized Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7, 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, Netherlands
| |
Collapse
|
2
|
Morrison AL, Sarfas C, Sibley L, Williams J, Mabbutt A, Dennis MJ, Lawrence S, White AD, Bodman-Smith M, Sharpe SA. IV BCG Vaccination and Aerosol BCG Revaccination Induce Mycobacteria-Responsive γδ T Cells Associated with Protective Efficacy against M. tb Challenge. Vaccines (Basel) 2023; 11:1604. [PMID: 37897006 PMCID: PMC10611416 DOI: 10.3390/vaccines11101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intravenously (IV) delivered BCG provides superior tuberculosis (TB) protection compared with the intradermal (ID) route in non-human primates (NHPs). We examined how γδ T cell responses changed in vivo after IV BCG vaccination of NHPs, and whether these correlated with protection against aerosol M. tuberculosis challenge. In the circulation, Vδ2 T cell populations expanded after IV BCG vaccination, from a median of 1.5% (range: 0.8-2.3) of the CD3+ population at baseline, to 5.3% (range: 1.4-29.5) 4 weeks after M. tb, and were associated with TB protection. This protection was related to effector and central memory profiles; homing markers; and production of IFN-γ, TNF-α and granulysin. In comparison, Vδ2 cells did not expand after ID BCG, but underwent phenotypic and functional changes. When Vδ2 responses in bronchoalveolar lavage (BAL) samples were compared between routes, IV BCG vaccination resulted in highly functional mucosal Vδ2 cells, whereas ID BCG did not. We sought to explore whether an aerosol BCG boost following ID BCG vaccination could induce a γδ profile comparable to that induced with IV BCG. We found evidence that the aerosol BCG boost induced significant changes in the Vδ2 phenotype and function in cells isolated from the BAL. These results indicate that Vδ2 population frequency, activation and function are characteristic features of responses induced with IV BCG, and the translation of responses from the circulation to the site of infection could be a limiting factor in the response induced following ID BCG. An aerosol boost was able to localise activated Vδ2 populations at the mucosal surfaces of the lung. This vaccine strategy warrants further investigation to boost the waning human ID BCG response.
Collapse
Affiliation(s)
- Alexandra L. Morrison
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Charlotte Sarfas
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Laura Sibley
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Jessica Williams
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Adam Mabbutt
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Mike J. Dennis
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Steve Lawrence
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Andrew D. White
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George’s University of London, London SW17 0BD, UK
| | - Sally A. Sharpe
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|
3
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
4
|
Dimova T, Dimitrova V, Grozdanov P, Markova N. Placentа of BCG-Vaccinated Women in early Pregnancy is Colonized with Non-Immunogenic Mycobacterial L-forms. Am J Reprod Immunol 2023; 89:e13650. [PMID: 36331422 DOI: 10.1111/aji.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
PROBLEM Long-lived mycobacterial L-forms (mL-forms) could be detected in the blood of BCG-vaccinated people. We have previously found mL-forms in term placentas and blood of neonates, delivered by healthy BCG-vaccinated mothers as first formal demonstration that BCG vaccination in the childhood of the woman could affect her placentobiome during pregnancy. Of note, the isolated mL-forms reverted to the cell-walled state of the parental BCG bacilli in vitro. METHOD OF STUDY Here, we analyzed triple samples of blood, decidua and chorion taken from BCG-vaccinated pregnant women, directed to elective abortions (6-12 gestation weeks). The colonization of the primary samples with mycobacterial L-forms (mL-forms) was evaluated using microbiological isolation and subsequent identification by real time PCR and morphological characterization by light microscopy and SEM. The potential of early placenta-derived mL-forms to expand mycobacteria-reactive γδ T cells in vitro was assessed using FACS, whereas their immunogenicity in vivo was followed up after i.p. inoculation in rats. RESULTS Our results showed two important findings: 1) viable filterable mL-forms varying in size, shape and proliferation modes are capable of colonizing the gestational tissues of BCG-vaccinated women early in pregnancy and 2) early placenta-derived mL-forms are not as immunogenic as walled M. bovis BCG bacilli, shown by lack of stimulation of mycobacteria-reactive γδ T cells co-cultured with early placenta-derived mL-forms and inefficient internalization of mL-forms by rat's peritoneal phagocytes in vivo. CONCLUSION Although generally thought to be reduced in virulence, mL-forms could provide a reservoir, hidden from the immune system especially in an immune privileged niche like placenta.
Collapse
Affiliation(s)
- Tanya Dimova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia, Bulgaria
| | - Petar Grozdanov
- Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadya Markova
- Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
5
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
6
|
Mauch RM, Jensen PØ, Qvist T, Kolpen M, Moser C, Pressler T, Nolasco da Silva MT, Høiby N. Adaptive Immune Response to Mycobacterium abscessus Complex (MABSC) in Cystic Fibrosis and the Implications of Cross-Reactivity. Front Cell Infect Microbiol 2022; 12:858398. [PMID: 35548464 PMCID: PMC9084186 DOI: 10.3389/fcimb.2022.858398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background We aimed to characterise the adaptive immune response to Mycobacterium abscessus complex (MABSC) and its cross-reactivity with Mycobacterium avium complex (MAC) and Mycobacterium bovis (Bacille Calmette-Guérin, BCG) in cystic fibrosis (CF) patients and non-CF controls in terms of lymphocyte proliferation and immunophenotyping, cytokine production and anti-MABSC IgG plasma levels. Methods In this cross-sectional analysis, peripheral blood mononuclear cells (PBMC) from CF patients with MABSC (CF/MABSC, n=12), MAC infection history (CF/MAC, n=5), no NTM history (CF/NTM-, n=15), BCG-vaccinated (C/BCG+, n=9) and non-vaccinated controls (C/BCG-, n=8) were cultured for four days under stimulation with an in-house MABSC lysate and we used flow cytometry to assess lymphocyte proliferation (given by lymphoblast formation) and immunophenotypes. Cytokine production was assessed after overnight whole blood stimulation with the same lysate, and anti-MABSC IgG levels were measured in plasma from non-stimulated blood. Results All CF/MABSC patients had increased CD3+ and CD19+ lymphoblast formation upon PBMC stimulation with MABSC lysate. There was a higher rate of CD3+ than CD19+ lymphoblasts, predominance of CD4+ over CD8+ lymphoblasts, IFN-γ, TNF-α and IL-2 production, low production of the Th17-associated IL-17, and discrete or no production of Th2/B cell-associated cytokines soluble CD40 ligand (CD40L), IL-4 and IL-5, indicating a Th1-dominated phenotype and infection restricted to the lungs. A similar pattern was seen in C/BCG+ controls, and CF/MAC patients, pointing to cross-reactivity. MABSC-IgG levels were higher in CF/MABSC patients than in both control groups, but not CF/NTM- patients, most of whom also had CD3+ and/or CD19+ lymphoblast formation upon PBMC stimulation, indicating previous exposure, subclinical or latent infection with MABSC or other NTM. Conclusion The anti-MABSC immune response is Th1-skewed and underlines the cross-reactivity in the anti-mycobacterial immune response. The results, together with published clinical observations, indicate that BCG vaccination may cross-react against NTM in CF patients, and this should be investigated. Due to cross-reactivity, it would also be interesting to investigate whether a combination of MABSC-induced cytokine production by blood cells and anti-MABSC IgG measurement can be useful for identifying latent or subclinical infection both with MABSC and other NTM in CF patients.
Collapse
Affiliation(s)
- Renan Marrichi Mauch
- Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark.,Institute of Inflammation Research, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | - Tavs Qvist
- Cystic Fibrosis Adult Clinic , Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | - Mette Kolpen
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Tacjana Pressler
- Cystic Fibrosis Adult Clinic , Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | | | - Niels Høiby
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
7
|
Castelhano MV, Martins Alves PC, Macedo VS, Arrym MP, Guimarães F, Panunto PC, Mazzola TN, Mauch RM, Vilela MMDS, Nolasco da Silva MT. Effective combined antiretroviral therapy provides partial immune recovery to mycobacterial antigens in vertically infected, BCG-vaccinated youth living with HIV. Tuberculosis (Edinb) 2022; 133:102170. [DOI: 10.1016/j.tube.2022.102170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 11/24/2022]
|
8
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
9
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Papadopoulou M, Dimova T, Shey M, Briel L, Veldtsman H, Khomba N, Africa H, Steyn M, Hanekom WA, Scriba TJ, Nemes E, Vermijlen D. Fetal public Vγ9Vδ2 T cells expand and gain potent cytotoxic functions early after birth. Proc Natl Acad Sci U S A 2020; 117:18638-18648. [PMID: 32665435 PMCID: PMC7414170 DOI: 10.1073/pnas.1922595117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vγ9Vδ2 T cells are a major human blood γδ T cell population that respond in a T cell receptor (TCR)-dependent manner to phosphoantigens which are generated by a variety of microorganisms. It is not clear how Vγ9Vδ2 T cells react toward the sudden microbial exposure early after birth. We found that human Vγ9Vδ2 T cells with a public/shared fetal-derived TCR repertoire expanded within 10 wk postpartum. Such an expansion was not observed in non-Vγ9Vδ2 γδ T cells, which possessed a private TCR repertoire. Furthermore, only the Vγ9Vδ2 T cells differentiated into potent cytotoxic effector cells by 10 wk of age, despite their fetal origin. Both the expansion of public fetal Vγ9Vδ2 T cells and their functional differentiation were not affected by newborn vaccination with the phosphoantigen-containing bacillus Calmette-Guérin (BCG) vaccine. These findings suggest a strong and early priming of the public fetal-derived Vγ9Vδ2 T cells promptly after birth, likely upon environmental phosphoantigen exposure.
Collapse
Affiliation(s)
- Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), 1050 Brussels, Belgium
- U-CRI, 6041 Gosselies, Belgium
| | - Tanya Dimova
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Muki Shey
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Libby Briel
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Helen Veldtsman
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Nondumiso Khomba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Marcia Steyn
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of Immunology, University of Cape Town, 7925 Observatory, South Africa
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- ULB Center for Research in Immunology (U-CRI), 1050 Brussels, Belgium
- U-CRI, 6041 Gosselies, Belgium
| |
Collapse
|
11
|
Jensen KJ, Biering-Sørensen S, Ursing J, Kofoed PEL, Aaby P, Benn CS. Seasonal variation in the non-specific effects of BCG vaccination on neonatal mortality: three randomised controlled trials in Guinea-Bissau. BMJ Glob Health 2020; 5:e001873. [PMID: 32201619 PMCID: PMC7059430 DOI: 10.1136/bmjgh-2019-001873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 11/23/2022] Open
Abstract
The BCG vaccine protects non-specifically against other diseases than tuberculosis. Three randomised controlled trials of early BCG in Guinea-Bissau found a 38% reduction in all-cause neonatal mortality. Little is known about the underlying mechanisms. In Guinea-Bissau, prevalent infectious diseases display distinct seasonality. Revisiting the three trials (>6500 infants) comparing early BCG versus no early BCG in low weight infants on all-cause neonatal mortality over 12 consecutive years, we explored the seasonal variation in BCG’s effect on mortality. In a subgroup of participants, adaptive and innate cytokine responses were measured 4 weeks after randomisation. Consistently over the course of the three trials and 12 years, the effect of BCG on all-cause neonatal mortality was particularly beneficial when administered in November to January, coincident with peaking malaria infections. During these months, BCG was also associated with stronger proinflammatory responses to heterologous challenge. Recent studies have suggested a protective effect of BCG against malaria. BCG may also ameliorate immune-compromising fatal effects of placental malaria in the newborn.
Collapse
Affiliation(s)
- Kristoffer Jarlov Jensen
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Johan Ursing
- Department of Infectious Diseases, Danderyd University Hospital, Stockholm, Sweden.,Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Poul-Erik Lund Kofoed
- Department of Pediatrics, Kolding Hospital, Kolding, Denmark.,Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Peter Aaby
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- Bandim Health Project, University of Southern Denmark, Copenhagen, Denmark.,OPEN, Institute of Clinical Research, University of Southern Denmark, Odense, Syddanmark, Denmark
| |
Collapse
|
12
|
Dantzler KW, de la Parte L, Jagannathan P. Emerging role of γδ T cells in vaccine-mediated protection from infectious diseases. Clin Transl Immunology 2019; 8:e1072. [PMID: 31485329 PMCID: PMC6712516 DOI: 10.1002/cti2.1072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023] Open
Abstract
γδ T cells are fascinating cells that bridge the innate and adaptive immune systems. They have long been known to proliferate rapidly following infection; however, the identity of the specific γδ T cell subsets proliferating and the role of this expansion in protection from disease have only been explored more recently. Several recent studies have investigated γδ T‐cell responses to vaccines targeting infections such as Mycobacterium, Plasmodium and influenza, and studies in animal models have provided further insight into the association of these responses with improved clinical outcomes. In this review, we examine the evidence for a role for γδ T cells in vaccine‐induced protection against various bacterial, protozoan and viral infections. We further discuss results suggesting potential mechanisms for protection, including cytokine‐mediated direct and indirect killing of infected cells, and highlight remaining open questions in the field. Finally, building on current efforts to integrate strategies targeting γδ T cells into immunotherapies for cancer, we discuss potential approaches to improve vaccines for infectious diseases by inducing γδ T‐cell activation and cytotoxicity.
Collapse
|
13
|
Satti I, McShane H. Current approaches toward identifying a correlate of immune protection from tuberculosis. Expert Rev Vaccines 2018; 18:43-59. [PMID: 30466332 DOI: 10.1080/14760584.2019.1552140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Mycobacterium tuberculosis kills more people than any other pathogen. Vaccination is the most cost-effective control measure for any infectious disease. Development of an effective vaccine against tuberculosis is hindered by the uncertain predictive value of preclinical animal models, incomplete understanding of protective immunity and lack of validated immune correlates of protection (COP). AREAS COVERED Here we review what is known about protective immunity against M.tb, the preclinical and clinical cohorts that can be utilized to identify COP, and COP that have been identified to date. EXPERT COMMENTARY The identification of COP would allow the rational design and development of vaccine candidates which can then be optimized and prioritized based on the induction of these immune responses. Once validated in field efficacy trials, such COP could potentially facilitate the development and licensure of vaccines, in combination with human efficacy data. The identification and validation of COP would represent a very significant advance in TB vaccine development. Every opportunity to collect samples and cohorts on which to cross-validate pre-existing COP and identify novel COP should be exploited. Furthermore, global cooperation and collaboration on such samples will ensure that the utility of such precious samples is fully exploited.
Collapse
Affiliation(s)
- Iman Satti
- a Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - Helen McShane
- a Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
14
|
Dantzler KW, Jagannathan P. γδ T Cells in Antimalarial Immunity: New Insights Into Their Diverse Functions in Protection and Tolerance. Front Immunol 2018; 9:2445. [PMID: 30405634 PMCID: PMC6206268 DOI: 10.3389/fimmu.2018.02445] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
Uniquely expressing diverse innate-like and adaptive-like functions, γδ T cells exist as specialized subsets, but are also able to adapt in response to environmental cues. These cells have long been known to rapidly proliferate following primary malaria infection in humans and mice, but exciting new work is shedding light into their diverse functions in protection and following repeated malaria infection. In this review, we examine the current knowledge of functional specialization of γδ T cells in malaria, and the mechanisms dictating recognition of malaria parasites and resulting proliferation. We discuss γδ T cell plasticity, including changing interactions with other immune cells during recurrent infection and potential for immunological memory in response to repeated stimulation. Building on recent insights from human and murine experimental studies and vaccine trials, we propose areas for future research, as well as applications for therapeutic development.
Collapse
|
15
|
Mother-to-newborn transmission of mycobacterial L-forms and Vδ2 T-cell response in placentobiome of BCG-vaccinated pregnant women. Sci Rep 2017; 7:17366. [PMID: 29234108 PMCID: PMC5727158 DOI: 10.1038/s41598-017-17644-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 12/26/2022] Open
Abstract
The ability of bacteria to exist as a population of self-replicating forms with defective or entirely missing cell wall (L-forms) is an adaptive mechanism for their survival and reproduction under unfavorable conditions. Bacterial mother-to-fetus transfer is a universal phenomenon in the animal kingdom. However, data about vertical transfer of L bacterial forms are extremely scarce. Bacille Calmette-Guérin is an attenuated strain of M. bovis and the only licensed vaccine used for tuberculosis prevention. We already have shown that filterable L-forms of BCG exist freely in the vaccine and are able to reproduce and to form colonies. The present study was focused on the placental microbiome in the context of mother's BCG vaccination. Here we report an isolation of filterable mycobacterial L-form cultures from gestational tissues and blood of healthy newborns delivered by healthy BCG-vaccinated mothers after normal pregnancy. Of note, vertically transmitted mycobacterial L-forms as a part of placentobiome of the pregnant women didn't influence the number of resident pathogen-reactive Vδ2 cells. Placenta colonization with mycobacterial L-forms occurs by maternal blood-to-decidua transfer very early in gestation. Together, these data showed that BCG L-forms have the capacity to pass trans-placental barrier and that maternal BCG vaccination affects the placentobiome.
Collapse
|
16
|
Salguero FJ, Gibson S, Garcia-Jimenez W, Gough J, Strickland TS, Vordermeier HM, Villarreal-Ramos B. Differential Cell Composition and Cytokine Expression Within Lymph Node Granulomas from BCG-Vaccinated and Non-vaccinated Cattle Experimentally Infected with Mycobacterium bovis. Transbound Emerg Dis 2016; 64:1734-1749. [PMID: 27615603 DOI: 10.1111/tbed.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 01/12/2023]
Abstract
Cattle vaccination against bovine tuberculosis (bTB) has been proposed as a supplementary method to help control the incidences of this disease. Bacillus Calmette-Guérin (BCG) is currently the only viable candidate vaccine for immunization of cattle against bTB, caused by Mycobacterium bovis (M. bovis). In an attempt to characterize the differences in the immune response following M. bovis infection between BCG-vaccinated and non-vaccinated animals, a combination of gross pathology, histopathology and immunohistochemical (IHC) analyses was used. BCG vaccination was found to significantly reduce the number of gross and microscopic lesions present within the lungs and lymph nodes. Additionally, the microscopically visible bacterial load of stages III and IV granulomas was reduced. IHC using cell surface markers revealed the number of CD68+ (macrophages), CD3+ (T lymphocytes) and WC1+ cells (γδ T cells) to be significantly reduced in lymph node granulomas of BCG-vaccinated animals, when compared to non-vaccinated animals. B lymphocytes (CD79a+) were significantly increased in BCG-vaccinated cattle for granulomas at stages II, III and IV. IHC staining for iNOS showed a higher expression in granulomas from BCG-vaccinated animals compared to non-vaccinated animals for all stages, being statistically significant in stages I and IV. TGFβ expression decreased alongside the granuloma development in non-vaccinated animals, whereas BCG-vaccinated animals showed a slight increase alongside lesion progression. IHC analysis of the cytokines IFN-γ and TNF-α demonstrated significantly increased expression within the lymph node granulomas of BCG-vaccinated cattle. This is suggestive of a protective role for IFN-γ and TNF-α in response to M. bovis infection. Findings shown in this study suggest that the use of BCG vaccine can reduce the number and severity of lesions, induce a different phenotypic response and increase the local expression of key cytokines related to protection.
Collapse
Affiliation(s)
- F J Salguero
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK.,Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - S Gibson
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK.,Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - W Garcia-Jimenez
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - J Gough
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK
| | - T S Strickland
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK
| | - H M Vordermeier
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK
| | - B Villarreal-Ramos
- TB Research Group, Departments of Bacteriology and Pathology, Animal and Plant Health Agency, APHA-Weybridge, New Haw, Addlestone, Surrey, UK
| |
Collapse
|
17
|
Hsu H, Boudova S, Mvula G, Divala TH, Mungwira RG, Harman C, Laufer MK, Pauza CD, Cairo C. Prolonged PD1 Expression on Neonatal Vδ2 Lymphocytes Dampens Proinflammatory Responses: Role of Epigenetic Regulation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1884-92. [PMID: 27474072 DOI: 10.4049/jimmunol.1600284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/01/2016] [Indexed: 12/11/2022]
Abstract
A successful pregnancy depends on the maintenance of tolerance at the fetal-maternal interface; strong inflammation in the placental bed is generally associated with adverse fetal outcomes. Among the mechanisms that foster tolerance and limit inflammation, the fetal immune system favors Th2 or regulatory responses over Th1 responses. The unintended consequence of this functional program is high susceptibility to infections. Human Vδ2 T cells mount innate-like responses to a broad range of microorganisms and are poised for Th1 responses before birth. In infants they likely play a key role in protection against pathogens by exerting early Th1 effector functions, improving function of other innate cells, and promoting Th1 polarization of adaptive responses. However, their propensity to release Th1 mediators may require careful regulation during fetal life to avoid exaggerated proinflammatory responses. We investigated molecules with the potential to act as a rheostat for fetal Vδ2 cells. Programmed death 1 (PD1) is a negative regulator of T cell responses and a determinant of tolerance, particularly at the fetal-maternal interface. Neonatal Vδ2 cells upregulate PD1 shortly after activation and, unlike their adult counterparts, express this molecule for at least 28 d. Engagement of PD1 by one of its ligands, PDL1, effectively dampens TCR-mediated responses (TNF-α production and degranulation) by neonatal Vδ2 cells and may thus help maintain their activity within safe limits. PD1 expression by neonatal Vδ2 cells is inversely associated with promoter DNA methylation. Prolonged PD1 expression may be part of a functional program to control Vδ2 cell inflammatory responses during fetal life.
Collapse
Affiliation(s)
- Haoting Hsu
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201
| | - Sarah Boudova
- Division of Malaria Research at the Institute for Global Health, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - Godfrey Mvula
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi; and
| | - Titus H Divala
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi; and
| | - Randy G Mungwira
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi; and
| | - Christopher Harman
- Obstetrics, Gynecology and Reproductive Health, University of Maryland, Baltimore, MD 21201
| | - Miriam K Laufer
- Division of Malaria Research at the Institute for Global Health, School of Medicine, University of Maryland, Baltimore, MD 21201
| | - C David Pauza
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201
| | - Cristiana Cairo
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201;
| |
Collapse
|
18
|
Ritz N, Casalaz D, Donath S, Tebruegge M, Dutta B, Connell TG, Robins-Browne R, Britton WJ, Hanekom WA, Curtis N. Comparable CD4 and CD8 T cell responses and cytokine release after at-birth and delayed BCG immunisation in infants born in Australia. Vaccine 2016; 34:4132-4139. [PMID: 27396518 DOI: 10.1016/j.vaccine.2016.06.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 04/20/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND More than 120 million doses of BCG vaccine are administered worldwide each year. Most infants are given BCG at birth in accordance with WHO recommendations. However, the effect of the maturing neonatal immune system on the immune response and protection conferred by BCG remains uncertain. Previous studies investigating the influence of age at immunisation on the immune response induced by BCG have reported conflicting results. This study compared BCG given at birth and at two months of age in infants in Australia. METHODS Infants born in Melbourne were randomly allocated to immunisation with BCG-Denmark at birth or two months of age. Ten weeks after immunisation, anti-mycobacterial immune responses were measured in a whole blood assay using intracellular cytokine assays and xMAP multiplex cytokine analysis. RESULTS Result from 98 BCG-immunised infants were included in the final analysis. BCG immunisation at birth (n=54) and at 2months of age (n=44) induced comparable proportions of mycobacteria-specific cytokine-producing CD4 and CD8 T cells, as well as comparable proportions of polyfunctional (TNF(+) IL-2(+) IFN-γ(+)) CD4 T cells. Concentrations of cytokines in supernatants were also similar in both groups. CONCLUSIONS Cellular immunity measured 10weeks after BCG immunisation was similar in infants given BCG at birth and in those given BCG at 2months of age. Although definitive correlates of protection against TB remain uncertain, these results suggest that delaying BCG immunisation does not confer any immunological advantage in cellular immunity.
Collapse
Affiliation(s)
- Nicole Ritz
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; University of Basel Children's Hospital Basel, Infectious Diseases Unit and Paediatric Pharmacology, Basel, Switzerland.
| | - Dan Casalaz
- Department of Paediatrics, The Mercy Hospital for Women, Heidelberg, Australia
| | - Susan Donath
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, Parkville, Australia
| | - Marc Tebruegge
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Binita Dutta
- Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Tom G Connell
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| | - Roy Robins-Browne
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Australia
| | - Warwick J Britton
- Centenary Institute of Cancer Medicine and Cell Biology and Department of Medicine, University of Sydney, Camperdown, Australia
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine & Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Parkville, Australia; Infectious Diseases and Microbiology Group, Murdoch Children's Research Institute, Royal Children's Hospital, Australia
| |
Collapse
|
19
|
Workalemahu G, Wang H, Puan KJ, Nada MH, Kuzuyama T, Jones BD, Jin C, Morita CT. Metabolic engineering of Salmonella vaccine bacteria to boost human Vγ2Vδ2 T cell immunity. THE JOURNAL OF IMMUNOLOGY 2014; 193:708-21. [PMID: 24943221 DOI: 10.4049/jimmunol.1302746] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing foreign (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), a metabolite in the 2-C-methyl-D-erythritol-4-phosphate pathway used by most eubacteria and apicomplexan parasites, and self isopentenyl pyrophosphate, a metabolite in the mevalonate pathway used by humans. Whereas microbial infections elicit prolonged expansion of memory Vγ2Vδ2 T cells, immunization with prenyl pyrophosphates or aminobisphosphonates elicit short-term Vγ2Vδ2 expansion with rapid anergy and deletion upon subsequent immunizations. We hypothesized that a live, attenuated bacterial vaccine that overproduces HMBPP would elicit long-lasting Vγ2Vδ2 T cell immunity by mimicking a natural infection. Therefore, we metabolically engineered the avirulent aroA(-) Salmonella enterica serovar Typhimurium SL7207 strain by deleting the gene for LytB (the downstream enzyme from HMBPP) and functionally complementing for this loss with genes encoding mevalonate pathway enzymes. LytB(-) Salmonella SL7207 had high HMBPP levels, infected human cells as efficiently as did the wild-type bacteria, and stimulated large ex vivo expansions of Vγ2Vδ2 T cells from human donors. Importantly, vaccination of a rhesus monkey with live lytB(-) Salmonella SL7207 stimulated a prolonged expansion of Vγ2Vδ2 T cells without significant side effects or anergy induction. These studies provide proof-of-principle that metabolic engineering can be used to derive live bacterial vaccines that boost Vγ2Vδ2 T cell immunity. Similar engineering of metabolic pathways to produce lipid Ags or B vitamin metabolite Ags could be used to derive live bacterial vaccine for other unconventional T cells that recognize nonpeptide Ags.
Collapse
Affiliation(s)
- Grefachew Workalemahu
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Kia-Joo Puan
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648
| | - Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246; Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Bradley D Jones
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Interdisciplinary Graduate Program in Genetics, University of Iowa Carver College of Medicine, Iowa City, IA 52242; and Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Chenggang Jin
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242; Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246; Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242;
| |
Collapse
|
20
|
Cairo C, Longinaker N, Cappelli G, Leke RGF, Ondo MM, Djokam R, Fogako J, Leke RJ, Sagnia B, Sosso S, Colizzi V, Pauza CD. Cord blood Vγ2Vδ2 T cells provide a molecular marker for the influence of pregnancy-associated malaria on neonatal immunity. J Infect Dis 2013; 209:1653-62. [PMID: 24325967 DOI: 10.1093/infdis/jit802] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Plasmodium falciparum placental infection primes the fetal immune system and alters infant immunity. Mechanisms leading to these outcomes are not completely understood. We focused on Vγ2Vδ2 cells, which are part of the immune response against many pathogens, including P. falciparum. These unconventional lymphocytes respond directly to small, nonpeptidic antigens, independent of major histocompatibility complex presentation. We wondered whether placental malaria, which may increase fetal exposure to P. falciparum metabolites, triggers a response by neonatal Vγ2Vδ2 lymphocytes that can be a marker for the extent of fetal exposure to malarial antigens. METHODS Cord blood mononuclear cells were collected from 15 neonates born to mothers with P. falciparum infection during pregnancy (8 with placental malaria) and 25 unexposed neonates. Vγ2Vδ2 cell phenotype, repertoire, and proliferative responses were compared between newborns exposed and those unexposed to P. falciparum. RESULTS Placental malaria-exposed neonates had increased proportions of central memory Vγ2Vδ2 cells in cord blood, with an altered Vγ2 chain repertoire ex vivo and after stimulation. CONCLUSION Our results suggest that placental malaria affects the phenotype and repertoire of neonatal Vγ2Vδ2 lymphocytes. Placental malaria may lower the capacity for subsequent Vγ2Vδ2 cell responses and impair the natural resistance to infectious diseases or the response to pediatric vaccination.
Collapse
|
21
|
The contribution of non-conventional T cells and NK cells in the mycobacterial-specific IFNγ response in Bacille Calmette-Guérin (BCG)-immunized infants. PLoS One 2013; 8:e77334. [PMID: 24098583 PMCID: PMC3789697 DOI: 10.1371/journal.pone.0077334] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/30/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine is given to >120 million infants each year worldwide. Most studies investigating the immune response to BCG have focused on adaptive immunity. However the importance of TCR-gamma/delta (γδ) T cells and NK cells in the mycobacterial-specific immune response is of increasing interest. METHODS Participants in four age-groups were BCG-immunized. Ten weeks later, in vitro BCG-stimulated blood was analyzed for NK and T cell markers, and intracellular IFNgamma (IFNγ) by flow cytometry. Total functional IFNγ response was calculated using integrated median fluorescence intensity (iMFI). RESULTS In infants and children, CD4 and CD4-CD8- (double-negative (DN)) T cells were the main IFNγ-expressing cells representing 43-56% and 27-37% of total CD3+ IFNγ+ T cells respectively. The iMFI was higher in DN T cells compared to CD4 T cells in all age groups, with the greatest differences seen in infants immunized at birth (p=0.002) or 2 months of age (p<0.0001). When NK cells were included in the analysis, they accounted for the majority of total IFNγ-expressing cells and, together with DN Vδ2 γδ T cells, had the highest iMFI in infants immunized at birth or 2 months of age. CONCLUSION In addition to CD4 T cells, NK cells and DN T cells, including Vδ2 γδ T cells, are the key populations producing IFNγ in response to BCG immunization in infants and children. This suggests that innate immunity and unconventional T cells play a greater role in the mycobacterial immune response than previously recognized and should be considered in the design and assessment of novel tuberculosis vaccines.
Collapse
|
22
|
Cairo C, Sagnia B, Cappelli G, Colizzi V, Leke RGF, Leke RJ, Pauza CD. Human cord blood γδ T cells expressing public Vγ2 chains dominate the response to bisphosphonate plus interleukin-15. Immunology 2013. [PMID: 23181340 DOI: 10.1111/imm.12039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Compared with adults, the circulating Vγ2Vδ2 T-cell population in cord blood is present at low levels and does not show the strong bias for Vγ2-Jγ1.2 rearrangements. These features may be a result of limited exposure to stimulatory phosphoantigens, lack of T-cell-derived interleukin-2 (IL-2) or both. In cord blood mononuclear cell cultures, a single round of stimulation, using aminobisphosphonates to elevate phosphoantigen levels, resulted in expansion of adult-like Vγ2 chains and accumulation of memory cells with cytotoxic potential. Selection was similar using IL-2 or myeloid-derived IL-15. The Vγ2Vδ2 T cells present in neonates are capable of generating potent immune responses even when relying on IL-15.
Collapse
Affiliation(s)
- Cristiana Cairo
- Institute of Human Virology, University of Maryland Baltimore, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ritz N, Strach M, Yau C, Dutta B, Tebruegge M, Connell TG, Hanekom WA, Britton WJ, Robins-Browne R, Curtis N. A comparative analysis of polyfunctional T cells and secreted cytokines induced by Bacille Calmette-Guérin immunisation in children and adults. PLoS One 2012; 7:e37535. [PMID: 22829867 PMCID: PMC3400612 DOI: 10.1371/journal.pone.0037535] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/20/2012] [Indexed: 11/30/2022] Open
Abstract
BCG vaccine is one of the most commonly-administered vaccines worldwide. Studies suggest the protective efficacy of BCG against TB is better for children than for adults. One potential explanation is that BCG induces a better protective immune response in children. Twenty six children and adults were immunised with BCG. The proportion of Th1-cytokine-producing mycobacterial-specific T cells, and the concentrations of secreted cytokines, were measured before and 10 weeks after BCG immunisation. A significant increase in the proportion of mycobacterial-specific cytokine-producing T cells was observed in both age groups. After BCG immunisation, children and adults had comparable proportions of mycobacterial-specific polyfunctional CD4 T cells when measured relative to the total number of CD4 T cells. However, relative to the subset of Th-1-cytokine-producing CD4 T cells, the proportion of polyfunctional cells was greater in children. Concentrations of secreted cytokines were comparable in children and adults. These findings suggest that the mycobacterial-specific cell-mediated immune response induced by BCG immunisation in children and adults is similar. The implication of a shift to a more polyfunctional immune response within the Th1-cytokine-producing CD4 T cells in children is uncertain as this aspect of the immune response has not been assessed as a potential correlate of protection against TB.
Collapse
Affiliation(s)
- Nicole Ritz
- Department of Paediatrics, The University of Melbourne, Parkville, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carniel EDF, Antônio MÂRGM, Zanolli MDL, Vilela MMS. Estratégias de campo em ensaios clínicos com novas vacinas produzidas no Brasil. REVISTA PAULISTA DE PEDIATRIA 2012. [DOI: 10.1590/s0103-05822012000200008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJETIVO: Relatar as estratégias de campo utilizadas em dois ensaios clínicos com vacinas desenvolvidas pelo Instituto Butantan, em 2004 e 2006. MÉTODOS: Estudo do tipo relato de experiência, em que se descreve o planejamento e a operacionalização dos ensaios clínicos, que avaliaram a imunogenicidade e a segurança da vacina BCG combinada com a vacina da hepatite B (VrHB-IB) e da tetravalente bacteriana modificada pela extração do lipopolissacarídeo (LPS) do componente pertussis (DTPm/Hib). RESULTADOS: As principais estratégias de campo utilizadas foram: a) Parceria entre os pesquisadores e os gestores da Secretaria Municipal de Saúde e b) Realização dos procedimentos da pesquisa nos domicílios ou nos Centros de Saúde frequentados pelos participantes. No primeiro estudo, foram vacinados 552 recém-nascidos na maternidade com a BCG/VrHB-IB (combinadas ou separadas) e nos domicílios, com as duas doses subsequentes de VrHB-IB. O segundo estudo incluiu 241 lactentes em Centros de Saúde da rede municipal, vacinados com tetravalente bacteriana (com componente pertussis total ou modificado). Em ambos os estudos, amostras de sangue foram colhidas nas residências. Não houve relatos de eventos adversos. A adesão foi de 90,2% para o primeiro estudo e 93,8%, para o segundo. As vacinas foram administradas nas datas preconizadas pelo Programa Nacional de Imunizações e as coletas de sangue, de acordo com o cronograma dos estudos. CONCLUSÕES: As estratégias utilizadas facilitaram o recrutamento das crianças e garantiram cumprir o protocolo da pesquisa com alta adesão, sem interferir no vínculo da família com o Serviço de Saúde, no calendário vacinal ou no seguimento pediátrico dos participantes.
Collapse
|
25
|
BCG vaccination of neonatal calves: potential roles for innate immune cells in the induction of protective immunity. Comp Immunol Microbiol Infect Dis 2011; 35:219-26. [PMID: 22169020 DOI: 10.1016/j.cimid.2011.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 12/13/2022]
Abstract
Bovine tuberculosis is a disease of increasing incidence in the UK causing major economic losses and with significant impact on bovine and, potentially human health: the causative agent Mycobacterium bovis is a zoonotic pathogen. Neonatal vaccination with the attenuated M. bovis Bacille Calmette Guerin (BCG) vaccine confers a significant degree of protection in cattle, and is a widely used control strategy for human TB. The adaptive immune system is relatively immature in neonates and increased numbers of innate effector cells present in young animals and human infants may compensate for this, enabling effective immune responses to vaccination. Natural killer cells and subsets of γδ TCR+ T lymphocytes secrete high levels of interferon gamma and can interact with antigen presenting cells to promote both innate and adaptive immune responses. These cell populations may be pivotal in determining immune bias following neonatal vaccination with BCG.
Collapse
|
26
|
Abstract
OBJECTIVE To evaluate cell-mediated immune response to Bacillus Calmette-Guérin (BCG) vaccination in uninfected, HIV-1-exposed infants, comparing it with unexposed children. DESIGN It is designed as a cross-sectional study. METHODS BCG-specific lymphoproliferation and T-cell subsets (CD4(+), CD8(+) and TCR γδ(+)) by flow cytometry and interleukin-10, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) concentration by ELISA were analyzed in HIV-exposed and unexposed infants. Whole blood lymphocyte immunophenotyping and blood counts were performed in exposed children. Nonparametric tests were used (P < 0.05). RESULTS Given the ontogeny of the immune system, exposed infants were separated into three groups according to age: exposed 1 (E1, aged 6.1-8.8 months), E2 (aged 9.1-17.1 months) and E3 (aged 18.1-26.3 months). Unexposed infants (UE group) and E1 were matched for age. Cell proliferation was not different among the three exposed groups, neither for BCG nor for phytohemagglutinin (PHA)-stimulated cultures. Furthermore, BCG-stimulated lymphoproliferation was reduced in the E1 group in comparison with the UE group. T-lymphocyte subpopulations also showed differences, with the youngest HIV-exposed groups (E1 and E2) showing a predominant proliferation of CD4(+) T cells in cultures with BCG, whereas E3 and UE groups had a robust γδ(+) T-cell expansion. There was lower IFN-γ concentration in the samples from E1 group in comparison with all of the other groups. The unexposed infants showed higher TNF-α concentration in cultures with BCG and PHA in comparison with E1 group. CONCLUSION BCG-specific T-cell proliferation was reduced in HIV-exposed uninfected infants and IFN-γ concentration was lower in younger exposed infants, showing a delay in immune system maturation of HIV-exposed infants.
Collapse
|
27
|
γδ T cells cross-link innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev Immunol 2011; 2011:587315. [PMID: 21253470 PMCID: PMC3022180 DOI: 10.1155/2011/587315] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/27/2010] [Accepted: 12/09/2010] [Indexed: 11/17/2022]
Abstract
Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated antigen presenting cells. To date, many aspects of mycobacterial immunity have shown that innate cells could be the key elements that substantially may influence the subsequent adaptive host response. During the early phases of infection, innate lymphocyte subsets play a pivotal role in this context. Here we summarize the findings of recent investigations on γδ T lymphocytes and their role in tuberculosis immunity.
Collapse
|
28
|
Kagina BMN, Abel B, Scriba TJ, Hughes EJ, Keyser A, Soares A, Gamieldien H, Sidibana M, Hatherill M, Gelderbloem S, Mahomed H, Hawkridge A, Hussey G, Kaplan G, Hanekom WA. Specific T cell frequency and cytokine expression profile do not correlate with protection against tuberculosis after bacillus Calmette-Guérin vaccination of newborns. Am J Respir Crit Care Med 2010; 182:1073-9. [PMID: 20558627 PMCID: PMC2970848 DOI: 10.1164/rccm.201003-0334oc] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/16/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Immunogenicity of new tuberculosis (TB) vaccines is commonly assessed by measuring the frequency and cytokine expression profile of T cells. OBJECTIVES We tested whether this outcome correlates with protection against childhood TB disease after newborn vaccination with bacillus Calmette-Guérin (BCG). METHODS Whole blood from 10-week-old infants, routinely vaccinated with BCG at birth, was incubated with BCG for 12 hours, followed by cryopreservation for intracellular cytokine analysis. Infants were followed for 2 years to identify those who developed culture-positive TB-these infants were regarded as not protected against TB. Infants who did not develop TB disease despite exposure to TB in the household, and another group of randomly selected infants who were never evaluated for TB, were also identified-these groups were regarded as protected against TB. Cells from these groups were thawed, and CD4, CD8, and γδ T cell-specific expression of IFN-γ, TNF-α, IL-2, and IL-17 measured by flow cytometry. MEASUREMENTS AND MAIN RESULTS A total of 5,662 infants were enrolled; 29 unprotected and two groups of 55 protected infants were identified. There was no difference in frequencies of BCG-specific CD4, CD8, and γδ T cells between the three groups of infants. Although BCG induced complex patterns of intracellular cytokine expression, there were no differences between protected and unprotected infants. CONCLUSIONS The frequency and cytokine profile of mycobacteria-specific T cells did not correlate with protection against TB. Critical components of immunity against Mycobacterium tuberculosis, such as CD4 T cell IFN-γ production, may not necessarily translate into immune correlates of protection against TB disease.
Collapse
Affiliation(s)
- Benjamin M. N. Kagina
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Brian Abel
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Elizabeth J. Hughes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Alana Keyser
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Andreia Soares
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Hoyam Gamieldien
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Mzwandile Sidibana
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Sebastian Gelderbloem
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Hassan Mahomed
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Anthony Hawkridge
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Gregory Hussey
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Gilla Kaplan
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Aeras Global Tuberculosis Vaccine Foundation, Rockville, Maryland; and Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey
| | | |
Collapse
|
29
|
Born WK, Yin Z, Hahn YS, Sun D, O'Brien RL. Analysis of gamma delta T cell functions in the mouse. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:4055-61. [PMID: 20368285 PMCID: PMC4476288 DOI: 10.4049/jimmunol.0903679] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse models of disease and injury have been invaluable in investigations of the functional role of gammadelta T cells. They show that gammadelta T cells engage in immune responses both early and late, that they can function both polyclonally and as peripherally selected clones, and that they can be effector cells and immune regulators. They also suggest that functional development of gammadelta T cells occurs stepwise in thymus and periphery, and that it is governed by gammadelta TCR-signaling and other signals. Finally, they indicate that gammadelta T cell functions often segregate with TCR-defined subsets, in contrast to conventional T cells. From the functional studies in mice and other animal models, gammadelta T cells emerge as a distinct lymphocyte population with a unique and broad functional repertoire, and with important roles in Ab responses, inflammation and tissue repair. They also are revealed as a potentially useful target for immune intervention.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Disease Models, Animal
- Humans
- Inflammation Mediators/physiology
- Mice
- Models, Animal
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Signal Transduction/immunology
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Thymus Gland/embryology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Willi K Born
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA.
| | | | | | | | | |
Collapse
|
30
|
Xiong C, Li Q, Lin M, Li X, Meng W, Wu Y, Zeng X, Zhou H, Zhou G. The efficacy of topical intralesional BCG-PSN injection in the treatment of erosive oral lichen planus: a randomized controlled trial. J Oral Pathol Med 2009; 38:551-8. [PMID: 19486267 DOI: 10.1111/j.1600-0714.2009.00796.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nowadays, it has been widely accepted that the local cell-mediated immunologic disorders may play an important role in the pathogenesis of oral lichen planus (OLP). Therefore, we sieved out polysaccharide nucleic acid fraction of bacillus Calmette-Guerin (BCG-PSN) from various immunomodulators to evaluate the short-term therapeutic efficacy and clinical safety of intralesional BCG-PSN injection for erosive OLP. METHODS A total of 56 OLP patients were randomly assigned to receive either intralesional injection of 0.5 ml BCG-PSN every other day (31 of 56) or 10 mg triamcinolone acetonide (TA, a positive-controlled group, 25 of 56) every week for 2 weeks. After the cessation of treatment, those cured from erosion were followed up for 3 months. Another two researchers measured erosive areas and recorded visual analog scale (VAS) scores both at the start and the end of the treatment. We also registered adverse reactions and the recurrence intervals. RESULTS After 2-week treatment, 27 of 31 BCG-PSN-treated patients (87.1%) and 22 of 25 TA-treated patients (88.0%) healed. There were no statistical differences between the two groups in erosive areas (27.86 +/- 27.97 vs. 25.68 +/- 34.65, P = 0.801) and VAS scores (2.45 +/- 1.64 vs. 2.40 +/- 1.38, P = 0.946). Three of 31 BCG-PSN-treated patients (9.7%) vs. 2 of 25 TA-treated patients (8.0%) experienced the swelling or burning sensation (P = 0.827). A total of 49 of 56 patients were followed up. There were no statistical differences in the recurrence rates (33.3% vs. 45.5%, P = 0.386) and intervals (80.89 +/- 26.83 vs. 73.48 +/- 28.11, P = 0.419). CONCLUSIONS Topical intralesional BCG-PSN injection is as effective as TA for erosive OLP, which suggests that topical intralesional BCG-PSN injection can be a promising therapeutic alternative for erosive OLP, especially for those insensitive, or even resistant, to glucocorticoids.
Collapse
Affiliation(s)
- C Xiong
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Immunogenicity of a whole-cell pertussis vaccine with low lipopolysaccharide content in infants. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:544-50. [PMID: 19261771 DOI: 10.1128/cvi.00339-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lack of a clear correlation between the levels of antibody to pertussis antigens and protection against disease lends credence to the possibility that cell-mediated immunity provides primary protection against disease. This phase I comparative trial had the aim of comparing the in vitro cellular immune response and anti-pertussis toxin (anti-PT) immunoglobulin G (IgG) titers induced by a cellular pertussis vaccine with low lipopolysaccharide (LPS) content (wP(low) vaccine) with those induced by the conventional whole-cell pertussis (wP) vaccine. A total of 234 infants were vaccinated at 2, 4, and 6 months with the conventional wP vaccine or the wP(low) vaccine. Proliferation of CD3(+) T cells was evaluated by flow cytometry after 6 days of peripheral blood mononuclear cell culture with stimulation with heat-killed Bordetella pertussis or phytohemagglutinin (PHA). CD3(+), CD4(+), CD8(+), and T-cell receptor gammadelta-positive (gammadelta(+)) cells were identified in the gate of blast lymphocytes. Gamma interferon, tumor necrosis factor alpha, interleukin-4 (IL-4), and IL-10 levels in supernatants and serum anti-PT IgG levels were determined using enzyme-linked immunosorbent assay (ELISA). The net percentage of CD3(+) blasts in cultures with B. pertussis in the group vaccinated with wP was higher than that in the group vaccinated with the wP(low) vaccine (medians of 6.2% for the wP vaccine and 3.9% for the wP(low) vaccine; P = 0.029). The frequencies of proliferating CD4(+), CD8(+), and gammadelta(+) cells, cytokine concentrations in supernatants, and the geometric mean titers of anti-PT IgG were similar for the two vaccination groups. There was a significant difference between the T-cell subpopulations for B. pertussis and PHA cultures, with a higher percentage of gammadelta(+) cells in the B. pertussis cultures (P < 0.001). The overall data did suggest that wP vaccination resulted in modestly better specific CD3(+) cell proliferation, and gammadelta(+) cell expansions were similar with the two vaccines.
Collapse
|
32
|
Immunogenicity and safety of combined intradermal recombinant Hepatitis B with BCG vaccines at birth. Vaccine 2007; 26:647-52. [PMID: 18155811 DOI: 10.1016/j.vaccine.2007.11.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 12/12/2022]
Abstract
This randomized, prospective, non-inferiority study aimed to quantify anti-HBs titers induced by recombinant Hepatitis B vaccine from healthy infants vaccinated with combined Hepatitis B and Bacillus Calmette-Guérin (BCG) vaccines (HbsAg 10 microg plus BCG suspension 0.1mg) and compare them to titers obtained with separated vaccines. Infants were immunized at birth either with combined intradermal (ID) BCG and Hepatitis B or ID BCG alone and intramuscular (IM) Hepatitis B. Both groups received IM Hepatitis B at 1 and 6 months of age. After the third dose anti-HBs titers > or =10 IU/mL were observed in 99% of vaccinees and > or =1000 IU/mL in 71%. There were no adverse events in both groups. Combination of HbsAg with BCG as first dose did not modify the profile of the humoral immune response for Hepatitis B indicating safety and immunogenicity of this vaccine in newborn.
Collapse
|