1
|
Li Q, Chen Y, Zhang W, Li C, Tang D, Hua W, Hou F, Chen Z, Liu Y, Tian Y, Sun K, Xu X, Zeng Y, Xia F, Lu J, Wang Z. Mpox virus Clade IIb infected Cynomolgus macaques via mimic natural infection routes closely resembled human mpox infection. Emerg Microbes Infect 2024; 13:2332669. [PMID: 38494777 PMCID: PMC10984234 DOI: 10.1080/22221751.2024.2332669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Generating an infectious non-human primate (NHP) model using a prevalent monkeypox virus (MPXV) strain has emerged as a crucial strategy for assessing the efficacy of vaccines and antiviral drugs against human MPXV infection. Here, we established an animal model by infecting cynomolgus macaques with the prevalent MPXV strain, WIBP-MPXV-001, and simulating its natural routes of infection. A comprehensive analysis and evaluation were conducted on three animals, including monitoring clinical symptoms, collecting hematology data, measuring viral loads, evaluating cellular and humoral immune responses, and examining histopathology. Our findings revealed that initial skin lesions appeared at the inoculation sites and subsequently spread to the limbs and back, and all infected animals exhibited bilateral inguinal lymphadenopathy, eventually leading to a self-limiting disease course. Viral DNA was detected in post-infection blood, nasal, throat, rectal and blister fluid swabs. These observations indicate that the NHP model accurately reflects critical clinical features observed in human MPXV infection. Notably, the animals displayed clinical symptoms and disease progression similar to those of humans, rather than a lethal outcome as observed in previous studies. Historically, MPXV was utilized as a surrogate model for smallpox. However, our study contributes to a better understanding of the dynamics of current MPXV infections while providing a potential infectious NHP model for further evaluation of vaccines and antiviral drugs against mpox infection. Furthermore, the challenge model closely mimics the primary natural routes of transmission for human MPXV infections. This approach enhances our understanding of the precise mechanisms underlying the interhuman transmission of MPXV.
Collapse
Affiliation(s)
- Qingni Li
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Yunfeng Chen
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Wenjing Zhang
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Chunyang Li
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Ding Tang
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Wanlu Hua
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Fan Hou
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Zhuo Chen
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Yuanlang Liu
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Yi Tian
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Kaili Sun
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Xiuli Xu
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Yan Zeng
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Fei Xia
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Jia Lu
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
| | - Zejun Wang
- Biosafety Level 3 Laboratory, Wuhan Institute of Biological Products Co., Ltd., Wuhan, People’s Republic of China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, People’s Republic of China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, Wuhan, People’s Republic of China
- Hubei Provincial Vaccine Technology Innovation Center, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Eslami A, Alimoghadam S, Khoshravesh S, Shirani M, Alimoghadam R, Alavi Darazam I. Mpox vaccination and treatment: a systematic review. J Chemother 2024; 36:85-109. [PMID: 38069596 DOI: 10.1080/1120009x.2023.2289270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
The Human monkeypox virus (mpox) belongs to the Poxviridae family, characterized by double-stranded DNA. A 2022 outbreak, notably prevalent among men who have sex with men, was confirmed by the World Health Organization. To understand shifting prevalence patterns and clinical manifestations, we conducted a systematic review of recent animal and human studies. We comprehensively searched PubMed, Scopus, Web of Science, Cochrane Library, and Clinicaltrials.gov, reviewing 69 relevant articles from 4,342 screened records. Our analysis highlights Modified Vaccinia Ankara - Bavarian Nordic (MVA-BN)'s potential, though efficacy concerns exist. Tecovirimat emerged as a prominent antiviral in the recent outbreak. However, limited evidence underscores the imperative for further clinical trials in understanding and managing monkeypox.
Collapse
Affiliation(s)
- Arvin Eslami
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mahsa Shirani
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ilad Alavi Darazam
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Nucera F, Bonina L, Cipolla A, Pirina P, Hansbro PM, Adcock IM, Caramori G. Poxviridae Pneumonia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:183-204. [PMID: 38801579 DOI: 10.1007/978-3-031-57165-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviridae family includes several viruses that infecting humans usually causes skin lesions only, but in some cases their clinical course is complicated by viral pneumonia (with or without bacterial superinfections). Historically variola virus has been the poxviridae most frequently associated with the development of pneumonia with many large outbreaks worldwide before its eradication in 1980. It is still considered a biological threat for its potential in biological warfare and bioterrorism. Smallpox pneumonia can be severe with the onset of acute respiratory distress syndrome (ARDS) and death. Vaccinia virus, used for vaccination against smallpox exceptionally, in immunocompromised patients, can induce generalized (with also lung involvement) severe disease after vaccination. MPXV virus occasionally can cause pneumonia particularly in immunocompromised patients. The pathophysiology of poxviridae pneumonia is still an area of active research; however, in animal models these viruses can cause both direct damage to the lower airways epithelium and a hyperinflammatory syndrome, like a cytokine storm. Multiple mechanisms of immune evasion have also been described. The treatment of poxviridae pneumonia is mainly based on careful supportive care. Despite the absence of randomized clinical trials in patients with poxviridae pneumonia there are antiviral drugs, such as tecovirimat, cidofovir and brincidofovir, FDA-approved for use in smallpox and also available under an expanded access protocol for treatment of MPXV. There are 2 (replication-deficient modified vaccinia Ankara and replication-competent vaccinia virus) smallpox vaccines FDA-approved with the first one also approved for prevention of MPXV in adults that are at high risk of infection.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Letterio Bonina
- Virologia, Dipartimento di Patologia delle Malattie Umane "G. Barresi", Università degli Studi di Messina, Messina, Italy
| | - Antonino Cipolla
- Pneumologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Catania, Catania, Italy
| | - Pietro Pirina
- Pneumologia, Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Rastogi A, Kumar M. Current Status of Vaccine Development for Monkeypox Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:289-300. [PMID: 38801585 DOI: 10.1007/978-3-031-57165-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Monkeypox virus (MPXV) of poxviridae family causes a zoonotic disease called monkeypox (Mpox). MPXV cases have a fatality ratio ranging from 0 to 11% globally and have been more prevalent in children. There are three generations of smallpox vaccines that protect against MPXV. First and second generation of the vaccinia virus (VACV) vaccine protects MPXV. However, various adverse side effects were associated with the first and second generations of vaccines. In contrast, the Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) replication-incompetent vaccine shows fewer adverse effects and a significant amount of neutralizing antibodies in mammalian cells. A third-generation Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) was approved to prevent Mpox in 2019. Recently, MVA-BN-based Imvanex, Imvamune, and JYNNEOS vaccines have also been administered against MPXV. Globally, the World Health Organization (WHO) declared a global health emergency in May 2022 due to increased MPXV cases. Various computational studies have also designed a multi-epitope-based vaccine against the MPXV. In the multi-epitope-based vaccine, different epitopes like B-cell, Cytotoxic T Lymphocyte (CTL), CD8+, and CD4+ epitopes were derived from MPXV proteins. Further, these epitopes were linked with the help of various linkers to design a multi-epitope vaccine against MPXV. In summary, we have provided an overview of the current status of the vaccine against MPXV.
Collapse
Affiliation(s)
- Amber Rastogi
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Freyn AW, Atyeo C, Earl PL, Americo JL, Chuang GY, Natarajan H, Frey TR, Gall JG, Moliva JI, Hunegnaw R, Asthagiri Arunkumar G, Ogega CO, Nasir A, Santos G, Levin RH, Meni A, Jorquera PA, Bennett H, Johnson JA, Durney MA, Stewart-Jones G, Hooper JW, Colpitts TM, Alter G, Sullivan NJ, Carfi A, Moss B. An mpox virus mRNA-lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci Transl Med 2023; 15:eadg3540. [PMID: 37792954 DOI: 10.1126/scitranslmed.adg3540] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/18/2023] [Indexed: 10/06/2023]
Abstract
Mpox virus (MPXV) caused a global outbreak in 2022. Although smallpox vaccines were rapidly deployed to curb spread and disease among those at highest risk, breakthrough disease was noted after complete immunization. Given the threat of additional zoonotic events and the virus's evolving ability to drive human-to-human transmission, there is an urgent need for an MPXV-specific vaccine that confers protection against evolving MPXV strains and related orthopoxviruses. Here, we demonstrate that an mRNA-lipid nanoparticle vaccine encoding a set of four highly conserved MPXV surface proteins involved in virus attachment, entry, and transmission can induce MPXV-specific immunity and heterologous protection against a lethal vaccinia virus (VACV) challenge. Compared with modified vaccinia virus Ankara (MVA), which forms the basis for the current MPXV vaccine, immunization with an mRNA-based MPXV vaccine generated superior neutralizing activity against MPXV and VACV and more efficiently inhibited spread between cells. We also observed greater Fc effector TH1-biased humoral immunity to the four MPXV antigens encoded by the vaccine, as well as to the four VACV homologs. Single MPXV antigen-encoding mRNA vaccines provided partial protection against VACV challenge, whereas multivalent vaccines combining mRNAs encoding two, three, or four MPXV antigens protected against disease-related weight loss and death equal or superior to MVA vaccination. These data demonstrate that an mRNA-based MPXV vaccine confers robust protection against VACV.
Collapse
Affiliation(s)
| | | | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | | | | | - Jason G Gall
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Juan I Moliva
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | - Ruth Hunegnaw
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, 21702 MD, USA
| | | | | | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| | | | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892 MD, USA
| |
Collapse
|
6
|
Qudus MS, Cui X, Tian M, Afaq U, Sajid M, Qureshi S, Liu S, Ma J, Wang G, Faraz M, Sadia H, Wu K, Zhu C. The prospective outcome of the monkeypox outbreak in 2022 and characterization of monkeypox disease immunobiology. Front Cell Infect Microbiol 2023; 13:1196699. [PMID: 37533932 PMCID: PMC10391643 DOI: 10.3389/fcimb.2023.1196699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
A new threat to global health re-emerged with monkeypox's advent in early 2022. As of November 10, 2022, nearly 80,000 confirmed cases had been reported worldwide, with most of them coming from places where the disease is not common. There were 53 fatalities, with 40 occurring in areas that had never before recorded monkeypox and the remaining 13 appearing in the regions that had previously reported the disease. Preliminary genetic data suggest that the 2022 monkeypox virus is part of the West African clade; the virus can be transmitted from person to person through direct interaction with lesions during sexual activity. It is still unknown if monkeypox can be transmitted via sexual contact or, more particularly, through infected body fluids. This most recent epidemic's reservoir host, or principal carrier, is still a mystery. Rodents found in Africa can be the possible intermediate host. Instead, the CDC has confirmed that there are currently no particular treatments for monkeypox virus infection in 2022; however, antivirals already in the market that are successful against smallpox may mitigate the spread of monkeypox. To protect against the disease, the JYNNEOS (Imvamune or Imvanex) smallpox vaccine can be given. The spread of monkeypox can be slowed through measures such as post-exposure immunization, contact tracing, and improved case diagnosis and isolation. Final Thoughts: The latest monkeypox epidemic is a new hazard during the COVID-19 epidemic. The prevailing condition of the monkeypox epidemic along with coinfection with COVID-19 could pose a serious condition for clinicians that could lead to the global epidemic community in the form of coinfection.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muhammad Sajid
- RNA Therapeutics Institute, Chan Medical School, University of Massachusetts Worcester, Worcester, MA, United States
| | - Sonia Qureshi
- Krembil Research Institute, University of Health Network, Toronto, ON, Canada
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Muhammad Faraz
- Department of Microbiology, Quaid-I- Azam University, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Sun W. Monkeypox, smallpox, FDA, and accelerated approval of vaccines - A regulatory perspective. Vaccine 2023:S0264-410X(23)00526-1. [PMID: 37198023 DOI: 10.1016/j.vaccine.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
|
8
|
Kandeel M, Morsy MA, Abd El-Lateef HM, Marzok M, El-Beltagi HS, Al Khodair KM, Albokhadaim I, Venugopala KN. Efficacy of the modified vaccinia Ankara virus vaccine and the replication-competent vaccine ACAM2000 in monkeypox prevention. Int Immunopharmacol 2023; 119:110206. [PMID: 37087871 PMCID: PMC10120163 DOI: 10.1016/j.intimp.2023.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Recently, there has been an uptick in reported cases of monkeypox (Mpox) in Africa and across the globe. This prompted us to investigate the efficacy of the two vaccines that can prevent Mpox, the modified vaccinia Ankara virus (MVA) vaccine and ACAM2000 vaccine. We analyzed them to determine their rates of humoral cell responses, adverse events, and rash reactions and used these factors as the primary indicators. METHODS This study adapted primary data obtained from the Medline, Google Scholar, and Cochrane Library databases. We included a total of eight studies, three of which explored the ACAM2000 vaccine and five of which explored the JYNNEOS MVA vaccine. RESULTS There were significant differences in the rates of humoral responses after inoculation by the two vaccines. JYNNEOS MVA vaccine immunization resulted in a statistically significant increased humoral immune response with an effect size of 81.00 (42.80, 119.21) at a 95% CI and a rash reaction with an effect size of 96.50 (42.09, 235.09.21) at a 95% CI. ACAM2000 resulted in a lesser increase in neutralizing antibodies than JYNNEOS MVA vaccine. Similar findings were identified for the rates of adverse reactions, but the difference was not statistically significant. The differences in rash reaction rates in the two vaccination groups were also not statistically significant. CONCLUSION ACAM2000 and JYNNEOS vaccines have proven to be efficient in preventing Mpox even though variations exist in their modes of action and associated significant effects. The nonreplicating nature of JYNNEOS prevents the occurrence of the adverse effects seen with other vaccines.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Surgery, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hossam S El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Khalid M Al Khodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ibrahim Albokhadaim
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
9
|
Zhang Y, Zhou Y, Pei R, Chen X, Wang Y. Potential threat of human pathogenic orthopoxviruses to public health and control strategies. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:1-7. [PMID: 36624850 PMCID: PMC9811937 DOI: 10.1016/j.jobb.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Orthopoxviruses (OPXVs) belong to a group of nucleo-cytoplasmic large DNA viruses. Human pathogenic OPXVs (hpOPXVs) include at least five viruses, among which smallpox virus and monkeypox virus are the most dangerous viral pathogens. Both viruses are classified as category-one human infectious pathogens in China. Although smallpox was globally eradicated in the 1980 s, it is still a top biosecurity threat owing to the possibility of either being leaked to the outside world from a laboratory or being weaponized by terrorists. Beginning in early May 2022, a sudden outbreak of monkeypox was concurrently reported in more than 100 disparate geographical areas, representing a public health emergency of international concern, as declared by the World Health Organization (WHO). In this review, we present the reasons for hpOPXVs such as monkeypox virus presenting a potential threat to public health. We then systematically review the historical and recent development of vaccines and drugs against smallpox and monkeypox. In the final section, we highlight the importance of viromics studies as an integral part of a forward defense strategy to eliminate the potential threat to public health from emerging or re-emerging hpOPXVs and their variants.
Collapse
Affiliation(s)
- Yongli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China,Innovation Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510320, China
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China,Corresponding author
| |
Collapse
|
10
|
Yang L, Chen Y, Li S, Zhou Y, Zhang Y, Pei R, Chen X, Wang Y. Immunization of mice with vaccinia virus Tiantan strain yields antibodies cross-reactive with protective antigens of monkeypox virus. Virol Sin 2023; 38:162-164. [PMID: 36272712 PMCID: PMC9580254 DOI: 10.1016/j.virs.2022.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
The first study describing the cross-reactivity of antibodies elicited by a Chinese smallpox vaccine against MPXV. Mice immunized with vaccinia virus Tiantan strain yield antibodies cross-reactive with MPXV protective antigens. Cross-reactivities of VTT-elicited antibodies against monkeypox protective antigens are ranging from 33% to 94%.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Li
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yongli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Innovation Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510320, China.
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
11
|
Titanji BK, Marconi VC. Vaxxing to elimination: smallpox vaccines as tools to fight mpox. J Clin Invest 2023; 133:167632. [PMID: 36647829 PMCID: PMC9843044 DOI: 10.1172/jci167632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Boghuma K. Titanji
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Vincent C. Marconi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA.,Department of Global Health, Emory University, Atlanta, Georgia, USA.,Emory University Vaccine Center, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Khani E, Afsharirad B, Entezari-Maleki T. Monkeypox treatment: Current evidence and future perspectives. J Med Virol 2023; 95:e28229. [PMID: 36253931 DOI: 10.1002/jmv.28229] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
As of September 11, 2022, 57 669 reports of monkeypox infection raised global concern. Previous vaccinia virus vaccination can protect from monkeypox. However, after smallpox eradication, immunization against that was stopped. Indeed, therapeutic options following the disease onset are of great value. This study aimed to review the available evidence on virology and treatment approaches for monkeypox and provide guidance for patient care and future studies. Since no randomized clinical trials were ever performed, we reviewed monkeypox animal model studies and clinical trials on the safety and pharmacokinetics of available medications. Brincidofovir and tecovirimat were the most studied medications that got approval for smallpox treatment according to the Animal Rule. Due to the conserved virology among Orthopoxviruses, available medications might also be effective against monkeypox. However, tecovirimat has the strongest evidence to be effective and safe for monkeypox treatment, and if there is a choice between the two drugs, tecovirimat has shown more promise so far. The risk of resistance should be considered in patients who failed to respond to tecovirimat. Hence, the target-based design of novel antivirals will enhance the availability and spectrum of effective anti-Orthopoxvirus agents.
Collapse
Affiliation(s)
- Elnaz Khani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bentelhoda Afsharirad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Monkeypox virus vaccine evolution and global preparedness for vaccination. Int Immunopharmacol 2022; 113:109346. [PMID: 36274490 PMCID: PMC9582788 DOI: 10.1016/j.intimp.2022.109346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
The recent emergence of monkeypox (MPX) has created a global threat. The number of infected and suspected cases of MPX is increasing in different parts of the world, especially in non-African countries. However, vaccines are available to fight against this disease. It has been observed that smallpox vaccines can be used to protect against MPX. The present article highlights the significant points and various issues for vaccines and vaccinations that should be considered related to MPX. This paper illustrates current vaccines for smallpox that can be utilized to protect against MPX infection. The article also describes the different significant research on MPXV, especially smallpox vaccines, and its outcome in MPX infection. We have also tried to depict the smallpox vaccination eradication model through the statistical interface using smallpox eradication data from Central and West Africa between 1967 and 1972. We suggest that these models might be helpful for the eradication of MPX in the middle to low-economic countries. Simultaneously, we have also discussed vaccination preparedness in different countries like the USA, UK, Canada, Denmark, Germany, etc. Our report might be helpful to scientists and policymakers in understanding the vaccines and vaccination against MPX and formulating effective strategies to fight against the disease.
Collapse
|
15
|
Poland GA, Kennedy RB, Tosh PK. Prevention of monkeypox with vaccines: a rapid review. THE LANCET. INFECTIOUS DISEASES 2022; 22:e349-e358. [PMID: 36116460 PMCID: PMC9628950 DOI: 10.1016/s1473-3099(22)00574-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/09/2023]
Abstract
The largest outbreak of monkeypox in history began in May, 2022, and has rapidly spread across the globe ever since. The purpose of this Review is to briefly describe human immune responses to orthopoxviruses; provide an overview of the vaccines available to combat this outbreak; and discuss the various clinical data and animal studies evaluating protective immunity to monkeypox elicited by vaccinia virus-based smallpox vaccines, address ongoing concerns regarding the outbreak, and provide suggestions for the appropriate use of vaccines as an outbreak control measure. Data showing clinical effectiveness (~85%) of smallpox vaccines against monkeypox come from surveillance studies conducted in central Africa in the 1980s and later during outbreaks in the same area. These data are supported by a large number of animal studies (primarily in non-human primates) with live virus challenge by various inoculation routes. These studies uniformly showed a high degree of protection and immunity against monkeypox virus following vaccination with various smallpox vaccines. Smallpox vaccines represent an effective countermeasure that can be used to control monkeypox outbreaks. However, smallpox vaccines do cause side-effects and the replication-competent, second-generation vaccines have contraindications. Third-generation vaccines, although safer for use in immunocompromised populations, require two doses, which is an impediment to rapid outbreak response. Lessons learned from the COVID-19 pandemic should be used to inform our collective response to this monkeypox outbreak and to future outbreaks.
Collapse
Affiliation(s)
| | | | - Pritish K Tosh
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA,Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Prevention and Treatment of Monkeypox: A Systematic Review of Preclinical Studies. Viruses 2022; 14:v14112496. [PMID: 36423105 PMCID: PMC9699130 DOI: 10.3390/v14112496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The outbreak of monkeypox, coupled with the onslaught of the COVID-19 pandemic is a critical communicable disease. This study aimed to systematically identify and review research done on preclinical studies focusing on the potential monkeypox treatment and immunization. The presented juxtaposition of efficacy of potential treatments and vaccination that had been tested in preclinical trials could serve as a useful primer of monkeypox virus. The literature identified using key terms such as monkeypox virus or management or vaccine stringed using Boolean operators was systematically reviewed. Pubmed, SCOPUS, Cochrane, and preprint databases were used, and screening was performed in accordance with PRISMA guidelines. A total of 467 results from registered databases and 116 from grey literature databases were screened. Of these results, 72 studies from registered databases and three grey literature studies underwent full-text screening for eligibility. In this systematic review, a total of 27 articles were eligible according to the inclusion criteria and were used. Tecovirimat, known as TPOXX or ST-246, is an antiviral drug indicated for smallpox infection whereas brincidofovir inhibits the viral DNA polymerase after incorporation into viral DNA. The ability of tecovirimat in providing protection to poxvirus-challenged animals from death had been demonstrated in a number of animal studies. Non-inferior with regard to immunogenicity was reported for the live smallpox/monkeypox vaccine compared with a single dose of a licensed live smallpox vaccine. The trial involving the live vaccine showed a geometric mean titre of vaccinia-neutralizing antibodies post two weeks of the second dose of the live smallpox/monkeypox vaccine. Of note, up to the third generation of smallpox vaccines-particularly JYNNEOS and Lc16m8-have been developed as preventive measures for MPXV infection and these vaccines had been demonstrated to have improved safety compared to the earlier generations.
Collapse
|
17
|
Al-Musa A, Chou J, LaBere B. The resurgence of a neglected orthopoxvirus: Immunologic and clinical aspects of monkeypox virus infections over the past six decades. Clin Immunol 2022; 243:109108. [PMID: 36067982 PMCID: PMC9628774 DOI: 10.1016/j.clim.2022.109108] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
Monkeypox is a zoonotic Orthopoxvirus which has predominantly affected humans living in western and central Africa since the 1970s. Type I and II interferon signaling, NK cell function, and serologic immunity are critical for host immunity against monkeypox. Monkeypox can evade host viral recognition and block interferon signaling, leading to overall case fatality rates of up to 11%. The incidence of monkeypox has increased since cessation of smallpox vaccination. In 2022, a global outbreak emerged, predominantly affecting males, with exclusive human-to-human transmission and more phenotypic variability than earlier outbreaks. Available vaccines are safe and effective tools for prevention of severe disease, but supply is limited. Now considered a public health emergency, more studies are needed to better characterize at-risk populations and to develop new anti-viral therapies.
Collapse
Affiliation(s)
- Amer Al-Musa
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA..
| | - Brenna LaBere
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA..
| |
Collapse
|
18
|
Turner M, Mandia J, Keltner C, Haynes R, Faestel P, Mease L. Monkeypox in Patient Immunized with ACAM2000 Smallpox Vaccine During 2022 Outbreak. Emerg Infect Dis 2022; 28:2336-2338. [PMID: 36104166 PMCID: PMC9622228 DOI: 10.3201/eid2811.221215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report a case of monkeypox in the United States in a patient who had been vaccinated with ACAM2000 smallpox vaccine 8 years earlier. Despite his vaccination status, he still contracted disease. He showed prodromal symptoms preceding development of painless penile lesions that later coalesced.
Collapse
|
19
|
Islam MR, Hossain MJ, Roy A, Hasan AHMN, Rahman MA, Shahriar M, Bhuiyan MA. Repositioning potentials of smallpox vaccines and antiviral agents in monkeypox outbreak: A rapid review on comparative benefits and risks. Health Sci Rep 2022; 5:e798. [PMID: 36032515 PMCID: PMC9399446 DOI: 10.1002/hsr2.798] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023] Open
Abstract
Background and aims There is a sought for vaccines and antiviral agents as countermeasures for the recent monkeypox outbreak. Here, we aimed to review and discuss the repurposing potentials of smallpox vaccines and drugs in monkeypox outbreaks based on their comparative benefits and risks. Therefore, we conducted this rapid review and discussed the repurposing potentials of smallpox vaccines and drugs in monkeypox infection. Methods Here, we searched Google Scholar and PubMed for relevant information and data. We found many articles that have suggested the use of smallpox vaccines and antiviral drugs in monkeypox outbreaks according to the study findings. We read the relevant articles to extract information. Results According to the available documents, we found two replication-competent and one replication-deficient vaccinia vaccines were effective against Orthopoxvirus. However, the healthcare authorities have authorized second-generation live vaccina virus vaccines against Orthopoxvirus in many countries. Smallpox vaccine is almost 85% effective in preventing monkeypox infection as monkeypox virus, variola virus, and vaccinia virus are similar. The United States and Canada have approved a replication-deficient third-generation smallpox vaccine for the prevention of monkeypox infection. However, the widely used second-generation smallpox vaccines contain a live virus and replicate it into the human cell. Therefore, there is a chance to cause virus-induced complications among the vaccinated subjects. In those circumstances, the available Orthopoxvirus inhibitors might be a good choice for treating monkeypox infections as they showed similar efficacy in monkeypox infection in different animal model clinical trials. Also, the combined use of antiviral drugs and vaccinia immune globulin can enhance significant effectiveness in immunocompromised subjects. Conclusion Repurposing of these smallpox vaccines and antiviral agents might be weapons to fight monkeypox infection. Also, we recommend further investigations of smallpox vaccines and Orthopoxvirus inhibitors in a human model study to explore their exact role in human monkeypox infections.
Collapse
Affiliation(s)
| | | | - Arpira Roy
- Department of BiotechnologySharda UniversityGreater NoidaIndia
| | | | - Md. Ashrafur Rahman
- Department of Pharmaceutical SciencesJerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC)AmarilloTexasUSA
| | | | | |
Collapse
|
20
|
Mucker EM, Shamblin JD, Raymond JL, Twenhafel NA, Garry RF, Hensley LE. Effect of Monkeypox Virus Preparation on the Lethality of the Intravenous Cynomolgus Macaque Model. Viruses 2022; 14:1741. [PMID: 36016363 PMCID: PMC9413320 DOI: 10.3390/v14081741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
For over two decades, researchers have sought to improve smallpox vaccines and also develop therapies to ensure protection against smallpox or smallpox-like disease. The 2022 human monkeypox pandemic is a reminder that these efforts should persist. Advancing such therapies have involved animal models primarily using surrogate viruses such as monkeypox virus. The intravenous monkeypox model in macaques produces a disease that is clinically similar to the lesional phase of fulminant human monkeypox or smallpox. Two criticisms of the model have been the unnatural route of virus administration and the high dose required to induce severe disease. Here, we purified monkeypox virus with the goal of lowering the challenge dose by removing cellular and viral contaminants within the inoculum. We found that there are advantages to using unpurified material for intravenous exposures.
Collapse
Affiliation(s)
- Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Josh D. Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jo Lynne Raymond
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Nancy A. Twenhafel
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Robert F. Garry
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Lisa E. Hensley
- Zoonotic and Emerging Disease Unit, United States Department of Agriculture, Manhattan, KS 66505, USA
| |
Collapse
|
21
|
Uwishema O, Adekunbi O, Peñamante CA, Bekele BK, Khoury C, Mhanna M, Nicholas A, Adanur I, Dost B, Onyeaka H. The burden of monkeypox virus amidst the Covid-19 pandemic in Africa: A double battle for Africa. Ann Med Surg (Lond) 2022; 80:104197. [PMID: 35855873 PMCID: PMC9279180 DOI: 10.1016/j.amsu.2022.104197] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023] Open
Abstract
The Coronavirus Disease - 19 (COVID-19) pandemic has put additional strain on Africa's fragile healthcare systems and has impacted the rise of emerging and re-emerging infectious diseases. Currently, there is a rise in cases of Monkeypox Disease, a zoonotic viral disease caused by the Monkeypox virus, which was first documented in 1970 in the Democratic Republic of the Congo. Most of the clinical symptoms of Monkeypox resemble that of smallpox, whose virus also belongs to the same genus. Initial symptoms include headache, fever, and fatigue, followed by lymphadenopathy and a rash. This study aims to provide more insight into Monkeypox by exposing its current burden and efforts to combat it amidst COVID-19 in Africa. Since Monkeypox disease is re-emerging and is less contagious than COVID-19, prevention and treatment are much more manageable. Still, African countries face several crucial challenges in responding to the Monkeypox in times of the covid-19 pandemic. These include lack of a well-functioning surveillance system for early detection of the disease, lack of awareness and knowledge of the monkeypox disease across the general population, lack of healthcare facilities already burdened by COVID-19 cases, and shortage of trained healthcare professionals. On the other hand, one significant factor contributing to the minimized risk in Africa was the smallpox vaccination done before 1980. However, a declining cross-protective immunity is seen in those inoculated with the smallpox vaccine and the ever-increasing risk to the unvaccinated population. Thus, focusing on vaccination and disease surveillance operations and diligent monitoring, as well as cross-border collaborations with international sectors, including One Health, FOA, OIE, and WHO is critical to achieving the ultimate eradication of monkeypox in Africa.
Collapse
Affiliation(s)
- Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, USA
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Oluyemisi Adekunbi
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Criselle Angeline Peñamante
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Psychology, College of Science, University of Santo Tomas, Manila, Philippines
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | - Bezawit Kassahun Bekele
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Carlo Khoury
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, University of Saint Joseph of Beirut, Beirut, Lebanon
| | - Melissa Mhanna
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, University of Saint Joseph of Beirut, Beirut, Lebanon
| | - Aderinto Nicholas
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Irem Adanur
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Burhan Dost
- Department of Anaesthesiology and Reanimation, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
22
|
Kwon SL, Ban S, Shin J, Bae H, Park H, Kwon GY. Monkeypox Vaccination in the Republic of Korea: Identifying the High-Risk Target Group. J Korean Med Sci 2022; 37:e239. [PMID: 35880509 PMCID: PMC9313979 DOI: 10.3346/jkms.2022.37.e239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022] Open
Abstract
In June 2022, the first monkeypox case was reported as imported into Korea. The general public asked whether they should get vaccinated against monkeypox because of the recent COVID-19 vaccination experience. As of the current monkeypox outbreak situation, a ring vaccination strategy for the high-risk group is more appropriate than the mass population vaccination with smallpox vaccines. Therefore, identifying the proper target group by available vaccines based on the risk and benefit analysis is a key issue of the vaccination program. In addition, the target group should be reviewed by the epidemiological situation of the jurisdiction along with the updated evidence of the monkeypox virus on transmission dynamics, severity, and fatality.
Collapse
Affiliation(s)
- Seunghyun Lewis Kwon
- Division of Immunization, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea
- Central Disease Control Headquarters of Monkeypox, Korea Disease Control and Prevention Agency, Cheongju, Korea.
| | - Seonhwa Ban
- Division of Immunization, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea
- Central Disease Control Headquarters of Monkeypox, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Jeeyeon Shin
- Division of Immunization, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea
- Central Disease Control Headquarters of Monkeypox, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Hyuna Bae
- Division of Immunization, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea
- Central Disease Control Headquarters of Monkeypox, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Heeyoun Park
- Division of Immunization, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea
- Central Disease Control Headquarters of Monkeypox, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Geun-Yong Kwon
- Division of Immunization, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea
- Central Disease Control Headquarters of Monkeypox, Korea Disease Control and Prevention Agency, Cheongju, Korea
| |
Collapse
|
23
|
Affiliation(s)
- Jin-Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
24
|
Choudhary G, Prabha PK, Gupta S, Prakash A, Medhi B. Monkeypox infection: A quick glance. Indian J Pharmacol 2022; 54:161-164. [PMID: 35848685 PMCID: PMC9396685 DOI: 10.4103/ijp.ijp_400_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gajendra Choudhary
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praisy K. Prabha
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Gupta
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India,Address for correspondence: Dr. Bikash Medhi, Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India. E-mail:
| |
Collapse
|
25
|
Bhanuprakash V, Hosamani M, Venkatesan G, Balamurugan V, Yogisharadhya R, Singh RK. Animal poxvirus vaccines: a comprehensive review. Expert Rev Vaccines 2013; 11:1355-74. [PMID: 23249235 DOI: 10.1586/erv.12.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The family Poxviridae includes several viruses of medical and veterinary importance. Global concerted efforts combined with an intensive mass-vaccination campaign with highly efficaceious live vaccine of vaccinia virus have led to eradication of smallpox. However, orthopoxviruses affecting domestic animals continue to cause outbreaks in several endemic countries. Different kinds of vaccines starting from conventional inactivated/attenuated to recombinant protein-based vaccines have been used for control of poxvirus infections. Live virus homologous vaccines are currently in use for diseases including capripox, parapox, camelpox and fowlpox, and these vaccines are highly effective in eliciting (with the exception of parapoxviruses) long-lasting immunity. Attenuated strains of poxviruses have been exploited as vectored vaccines to deliver heterologous immunogens, many of them being licensed for use in animals. Worthy of note are vaccinia virus, fowlpox virus, capripoxvirus, parapoxvirus and canary pox, which have been successfully used for developing new-generation vaccines targeting many important pathogens. Remarkable features of these vaccines are thermostability and their ability to engender both cellular and humoral immune responses to the target pathogens. This article updates the important vaccines available for poxviruses of livestock and identifies some of the research gaps in the present context of poxvirus research.
Collapse
|
26
|
Leeds JM, Fenneteau F, Gosselin NH, Mouksassi MS, Kassir N, Marier JF, Chen Y, Grosenbach D, Frimm AE, Honeychurch KM, Chinsangaram J, Tyavanagimatt SR, Hruby DE, Jordan R. Pharmacokinetic and pharmacodynamic modeling to determine the dose of ST-246 to protect against smallpox in humans. Antimicrob Agents Chemother 2013; 57:1136-43. [PMID: 23254433 PMCID: PMC3591874 DOI: 10.1128/aac.00959-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 12/08/2012] [Indexed: 11/20/2022] Open
Abstract
Although smallpox has been eradicated, the United States government considers it a "material threat" and has funded the discovery and development of potential therapeutic compounds. As reported here, the human efficacious dose for one of these compounds, ST-246, was determined using efficacy studies in nonhuman primates (NHPs), together with pharmacokinetic and pharmacodynamic analysis that predicted the appropriate dose and exposure levels to provide therapeutic benefit in humans. The efficacy analysis combined the data from studies conducted at three separate facilities that evaluated treatment following infection with a closely related virus, monkeypox virus (MPXV), in a total of 96 NHPs. The effect of infection on ST-246 pharmacokinetics in NHPs was applied to humans using population pharmacokinetic models. Exposure at the selected human dose of 600 mg is more than 4-fold higher than the lowest efficacious dose in NHPs and is predicted to provide protection to more than 95% of the population.
Collapse
Affiliation(s)
| | | | | | | | - Nastya Kassir
- Pharsight Consulting Services, Montréal, Québec, Canada
| | - J. F. Marier
- Pharsight Consulting Services, Montréal, Québec, Canada
| | - Yali Chen
- SIGA Technologies, Corvallis, Oregon, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Benhnia MREI, Maybeno M, Blum D, Aguilar-Sino R, Matho M, Meng X, Head S, Felgner PL, Zajonc DM, Koriazova L, Kato S, Burton DR, Xiang Y, Crowe JE, Peters B, Crotty S. Unusual features of vaccinia virus extracellular virion form neutralization resistance revealed in human antibody responses to the smallpox vaccine. J Virol 2013; 87:1569-85. [PMID: 23152530 PMCID: PMC3554146 DOI: 10.1128/jvi.02152-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201-1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33.
Collapse
Affiliation(s)
| | | | - David Blum
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rowena Aguilar-Sino
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
| | - Michael Matho
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, USA
| | - Xiangzhi Meng
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Steven Head
- DNA Array Core Facility and Consortium for Functional Glycomics, The Scripps Research Institute, La Jolla, California, USA
| | - Philip L. Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California, USA
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, USA
| | | | | | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
| | - Yan Xiang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
28
|
Parker S, Buller RM. A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012. Future Virol 2013; 8:129-157. [PMID: 23626656 DOI: 10.2217/fvl.12.130] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monkeypox virus (MPXV) was discovered in 1958 during an outbreak in an animal facility in Copenhagen, Denmark. Since its discovery, MPXV has revealed a propensity to infect and induce disease in a large number of animals within the mammalia class from pan-geographical locations. This finding has impeded the elucidation of the natural host, although the strongest candidates are African squirrels and/or other rodents. Experimentally, MPXV can infect animals via a variety of multiple different inoculation routes; however, the natural route of transmission is unknown and is likely to be somewhat species specific. In this review we have attempted to compile and discuss all published articles that describe experimental or natural infections with MPXV, dating from the initial discovery of the virus through to the year 2012. We further discuss the comparative disease courses and pathologies of the host species.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO 63104, USA
| | | |
Collapse
|
29
|
Cann JA, Jahrling PB, Hensley LE, Wahl-Jensen V. Comparative pathology of smallpox and monkeypox in man and macaques. J Comp Pathol 2013; 148:6-21. [PMID: 22884034 PMCID: PMC3498598 DOI: 10.1016/j.jcpa.2012.06.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/01/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022]
Abstract
In the three decades since the eradication of smallpox and cessation of routine vaccination, the collective memory of the devastating epidemics caused by this orthopoxvirus has waned, and the human population has become increasingly susceptible to a disease that remains high on the list of possible bioterrorism agents. Research using surrogate orthopoxviruses in their natural hosts, as well as limited variola virus research in animal models, continues worldwide; however, interpretation of findings is often limited by our relative lack of knowledge about the naturally occurring disease. For modern comparative pathologists, many of whom have no first-hand knowledge of naturally occurring smallpox, this work provides a contemporary review of this historical disease, as well as discussion of how it compares with human monkeypox and the corresponding diseases in macaques.
Collapse
Affiliation(s)
- J A Cann
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
| | | | | | | |
Collapse
|
30
|
Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies. PLoS One 2012; 7:e48706. [PMID: 23133652 PMCID: PMC3487784 DOI: 10.1371/journal.pone.0048706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/04/2012] [Indexed: 02/06/2023] Open
Abstract
Smallpox (variola virus) is a bioweapon concern. Monkeypox is a growing zoonotic poxvirus threat. These problems have resulted in extensive efforts to develop potential therapeutics that can prevent or treat potentially lethal poxvirus infections in humans. Monoclonal antibodies (mAbs) against smallpox are a conservative approach to this problem, as the licensed human smallpox vaccine (vaccinia virus, VACV) primarily works on the basis of protective antibody responses against smallpox. Fully human mAbs (hmAbs) against vaccinia H3 (H3L) and B5 (B5R), targeting both the mature virion (MV) and extracellular enveloped virion (EV) forms, have been developed as potential therapeutics for use in humans. Post-exposure prophylaxis was assessed in both murine and rabbit animal models. Therapeutic efficacy of the mAbs was assessed in three good laboratory practices (GLP) studies examining severe combined immunodeficiency mice (SCID) given a lethal VACV infection. Pre-exposure combination hmAb therapy provided significantly better protection against disease and death than either single hmAb or vaccinia immune globulin (VIG). Post-exposure combination mAb therapy provided significant protection against disease and death, and appeared to fully cure the VACV infection in ≥50% of SCID mice. Therapeutic efficacy was then assessed in two rabbit studies examining post-exposure hmAb prophylaxis against rabbitpox (RPXV). In the first study, rabbits were infected with RPVX and then provided hmAbs at 48 hrs post-infection, or 1 hr and 72 hrs post-infection. Rabbits in both groups receiving hmAbs were 100% protected from death. In the second rabbitpox study, 100% of animal treated with combination hmAb therapy and 100% of animals treated with anti-B5 hmAb were protected. These findings suggest that combination hmAb treatment may be effective at controlling smallpox disease in immunocompetent or immunodeficient humans.
Collapse
|
31
|
Walsh SR, Dolin R. Vaccinia viruses: vaccines against smallpox and vectors against infectious diseases and tumors. Expert Rev Vaccines 2012; 10:1221-40. [PMID: 21854314 DOI: 10.1586/erv.11.79] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Less than 200 years after its introduction, widespread use of vaccinia virus (VACV) as a smallpox vaccine has eradicated variola virus. Along with the remarkable success of the vaccination program, frequent and sometimes severe adverse reactions to VACV were encountered. After eradication, VACV has been reserved for select populations who might be at significant risk for orthopoxvirus infections. Events over the past decade have renewed concerns over the potential use of variola virus as a biological weapon. Accordingly, interest in VACV and attenuated derivatives has increased, both as vaccines against smallpox and as vectors for other vaccines. This article will focus on new developments in the field of orthopoxvirus immunization and will highlight recent advances in the use of vaccinia viruses as vectors for infectious diseases and malignancies.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Three Blackfan Circle, E/CLS-1006, Boston, MA 02215, USA.
| | | |
Collapse
|
32
|
|
33
|
Establishment of the black-tailed prairie dog (Cynomys ludovicianus) as a novel animal model for comparing smallpox vaccines administered preexposure in both high- and low-dose monkeypox virus challenges. J Virol 2011; 85:7683-98. [PMID: 21632764 DOI: 10.1128/jvi.02174-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2003 monkeypox virus (MPXV) outbreak and subsequent laboratory studies demonstrated that the black-tailed prairie dog is susceptible to MPXV infection and that the ensuing rash illness is similar to human systemic orthopoxvirus (OPXV) infection, including a 7- to 9-day incubation period and, likely, in some cases a respiratory route of infection; these features distinguish this model from others. The need for safe and efficacious vaccines for OPVX in areas where it is endemic or epidemic is important to protect an increasingly OPXV-naïve population. In this study, we tested current and investigational smallpox vaccines for safety, induction of anti-OPXV antibodies, and protection against mortality and morbidity in two MPXV challenges. None of the smallpox vaccines caused illness in this model, and all vaccinated animals showed anti-OPXV antibody responses and neutralizing antibody. We tested vaccine efficacy by challenging the animals with 10(5) or 10(6) PFU Congo Basin MPXV 30 days postvaccination and evaluating morbidity and mortality. Our results demonstrated that vaccination with either Dryvax or Acambis2000 protected the animals from death with no rash illness. Vaccination with IMVAMUNE also protected the animals from death, albeit with (modified) rash illness. Based on the results of this study, we believe prairie dogs offer a novel and potentially useful small animal model for the safety and efficacy testing of smallpox vaccines in pre- and postexposure vaccine testing, which is important for public health planning.
Collapse
|
34
|
Grosenbach DW, Jordan R, Hruby DE. Development of the small-molecule antiviral ST-246 as a smallpox therapeutic. Future Virol 2011; 6:653-671. [PMID: 21837250 DOI: 10.2217/fvl.11.27] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring smallpox has been eradicated, yet it remains as one of the highest priority pathogens due to its potential as a biological weapon. The majority of the US population would be vulnerable in a smallpox outbreak. SIGA Technologies, Inc. has responded to the call of the US government to develop and supply to the Strategic National Stockpile a smallpox antiviral to be deployed in the event of a smallpox outbreak. ST-246(®) (tecovirimat) was initially identified via a high-throughput screen in 2002, and in the ensuing years, our drug-development activities have spanned in vitro analysis, preclinical safety, pharmacokinetics and efficacy testing (all according to the 'animal rule'). Additionally, SIGA has conducted Phase I and II clinical trials to evaluate the safety, tolerability and pharmacokinetics of ST-246, bringing us to our current late stage of clinical development. This article reviews the need for a smallpox therapeutic and our experience in developing ST-246, and provides perspective on the role of a smallpox antiviral during a smallpox public health emergency.
Collapse
Affiliation(s)
- Douglas W Grosenbach
- SIGA Technologies, Inc., 4575 SW Research Way, Suite 230, Corvallis, OR 97333, USA
| | | | | |
Collapse
|
35
|
Gordon SN, Cecchinato V, Andresen V, Heraud JM, Hryniewicz A, Parks RW, Venzon D, Chung HK, Karpova T, McNally J, Silvera P, Reimann KA, Matsui H, Kanehara T, Shinmura Y, Yokote H, Franchini G. Smallpox vaccine safety is dependent on T cells and not B cells. J Infect Dis 2011; 203:1043-53. [PMID: 21450994 PMCID: PMC3068024 DOI: 10.1093/infdis/jiq162] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/03/2010] [Indexed: 11/13/2022] Open
Abstract
The licensed smallpox vaccine, ACAM2000, is a cell culture derivative of Dryvax. Both ACAM2000 and Dryvax are administered by skin scarification and can cause progressive vaccinia, with skin lesions that disseminate to distal sites. We have investigated the immunologic basis of the containment of vaccinia in the skin with the goal to identify safer vaccines for smallpox. Macaques were depleted systemically of T or B cells and vaccinated with either Dryvax or an attenuated vaccinia vaccine, LC16m8. B cell depletion did not affect the size of skin lesions induced by either vaccine. However, while depletion of both CD4(+) and CD8(+) T cells had no adverse effects on LC16m8-vaccinated animals, it caused progressive vaccinia in macaques immunized with Dryvax. As both Dryvax and LC16m8 vaccines protect healthy macaques from a lethal monkeypox intravenous challenge, our data identify LC16m8 as a safer and effective alternative to ACAM2000 and Dryvax vaccines for immunocompromised individuals.
Collapse
Affiliation(s)
| | | | | | - Jean-Michel Heraud
- World Health Organization-National Influenza Laboratory, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | | | | | | | - Tatiana Karpova
- Fluorescence Imaging Facility, Laboratory of Receptor Biology, Gene Expression and Metabolism
| | - James McNally
- National Cancer Institute, Bethesda, and Southern Research Institute, Frederick
| | - Peter Silvera
- National Cancer Institute, Bethesda, and Southern Research Institute, Frederick
| | - Keith A. Reimann
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Hajime Matsui
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Tomomi Kanehara
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Yasuhiko Shinmura
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Hiroyuki Yokote
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | | |
Collapse
|
36
|
Ramasamy S, Liu CQ, Tran H, Gubala A, Gauci P, McAllister J, Vo T. Principles of antidote pharmacology: an update on prophylaxis, post-exposure treatment recommendations and research initiatives for biological agents. Br J Pharmacol 2010; 161:721-48. [PMID: 20860656 DOI: 10.1111/j.1476-5381.2010.00939.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The use of biological agents has generally been confined to military-led conflicts. However, there has been an increase in non-state-based terrorism, including the use of asymmetric warfare, such as biological agents in the past few decades. Thus, it is becoming increasingly important to consider strategies for preventing and preparing for attacks by insurgents, such as the development of pre- and post-exposure medical countermeasures. There are a wide range of prophylactics and treatments being investigated to combat the effects of biological agents. These include antibiotics (for both conventional and unconventional use), antibodies, anti-virals, immunomodulators, nucleic acids (analogues, antisense, ribozymes and DNAzymes), bacteriophage therapy and micro-encapsulation. While vaccines are commercially available for the prevention of anthrax, cholera, plague, Q fever and smallpox, there are no licensed vaccines available for use in the case of botulinum toxins, viral encephalitis, melioidosis or ricin. Antibiotics are still recommended as the mainstay treatment following exposure to anthrax, plague, Q fever and melioidosis. Anti-toxin therapy and anti-virals may be used in the case of botulinum toxins or smallpox respectively. However, supportive care is the only, or mainstay, post-exposure treatment for cholera, viral encephalitis and ricin - a recommendation that has not changed in decades. Indeed, with the difficulty that antibiotic resistance poses, the development and further evaluation of techniques and atypical pharmaceuticals are fundamental to the development of prophylaxis and post-exposure treatment options. The aim of this review is to present an update on prophylaxis and post-exposure treatment recommendations and research initiatives for biological agents in the open literature from 2007 to 2009.
Collapse
Affiliation(s)
- S Ramasamy
- Defence Science & Technology Organisation, Human Protection and Performance Division, Fishermans Bend, Vic., Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Lanier R, Trost L, Tippin T, Lampert B, Robertson A, Foster S, Rose M, Painter W, O’Mahony R, Almond M, Painter G. Development of CMX001 for the Treatment of Poxvirus Infections. Viruses 2010; 2:2740-2762. [PMID: 21499452 PMCID: PMC3077800 DOI: 10.3390/v2122740] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 12/29/2022] Open
Abstract
CMX001 (phosphonic acid, [[(S)-2-(4-amino-2-oxo-1(2H)-pyrimidinyl)-1-(hydroxymethyl)ethoxy]methyl]mono[3-(hexadecyloxy)propyl] ester) is a lipid conjugate of the acyclic nucleotide phosphonate, cidofovir (CDV). CMX001 is currently in Phase II clinical trials for the prophylaxis of human cytomegalovirus infection and under development using the Animal Rule for smallpox infection. It has proven effective in reduction of morbidity and mortality in animal models of human smallpox, even after the onset of lesions and other clinical signs of disease. CMX001 and CDV are active against all five families of double-stranded DNA (dsDNA) viruses that cause human morbidity and mortality, including orthopoxviruses such as variola virus, the cause of human smallpox. However, the clinical utility of CDV is limited by the requirement for intravenous dosing and a high incidence of acute kidney toxicity. The risk of nephrotoxicity necessitates pre-hydration and probenecid administration in a health care facility, further complicating high volume CDV use in an emergency situation. Compared with CDV, CMX001 has a number of advantages for treatment of smallpox in an emergency including greater potency in vitro against all dsDNA viruses that cause human disease, a high genetic barrier to resistance, convenient oral administration as a tablet or liquid, and no evidence to date of nephrotoxicity in either animals or humans. The apparent lack of nephrotoxicity observed with CMX001 in vivo is because it is not a substrate for the human organic anion transporters that actively secrete CDV into kidney cells. The ability to test the safety and efficacy of CMX001 in patients with life-threatening dsDNA virus infections which share many basic traits with variola is a major advantage in the development of this antiviral for a smallpox indication.
Collapse
Affiliation(s)
- Randall Lanier
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Lawrence Trost
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Tim Tippin
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Bernhard Lampert
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Alice Robertson
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Scott Foster
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Michelle Rose
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Wendy Painter
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Rose O’Mahony
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Merrick Almond
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - George Painter
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| |
Collapse
|
38
|
McCausland MM, Benhnia MREI, Crickard L, Laudenslager J, Granger SW, Tahara T, Kubo R, Koriazova L, Kato S, Crotty S. Combination therapy of vaccinia virus infection with human anti-H3 and anti-B5 monoclonal antibodies in a small animal model. Antivir Ther 2010; 15:661-75. [PMID: 20587859 DOI: 10.3851/imp1573] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Treatment of rare severe side effects of vaccinia virus (VACV) immunization in humans is currently very challenging. VACV possesses two immunologically distinct virion forms in vivo - intracellular mature virion (MV, IMV) and extracellular virion (EV, EEV). METHODS Antibody-mediated therapeutic efficacy was determined against VACV infection in a small animal model of progressive vaccinia. The model consisted of severe combined immunodeficiency mice infected with VACV New York City Board of Health vaccine strain and treated with monoclonal antibodies (mAbs). RESULTS Here, we show that combination therapy with two fully human mAbs against an immunodominant MV antigen, H3 (H3L), and an EV antigen, B5 (B5R), provides significantly better protection against disease and death than either single human monoclonal or human vaccinia immune globulin, the currently licensed therapeutic for side effects of smallpox vaccination. CONCLUSIONS The preclinical studies validate that this combination of mAbs against H3 and B5 is a promising approach as a poxvirus infection treatment for use in humans.
Collapse
Affiliation(s)
- Megan M McCausland
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zielinski RJ, Smedley JV, Perera PY, Silvera PM, Waldmann TA, Capala J, Perera LP. Smallpox vaccine with integrated IL-15 demonstrates enhanced in vivo viral clearance in immunodeficient mice and confers long term protection against a lethal monkeypox challenge in cynomolgus monkeys. Vaccine 2010; 28:7081-91. [PMID: 20728526 PMCID: PMC2952667 DOI: 10.1016/j.vaccine.2010.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/09/2010] [Accepted: 08/02/2010] [Indexed: 11/30/2022]
Abstract
Despite the eradication of smallpox, there is heightened concern that it could be reintroduced as a result of intentional release of Variola major virus through an act of bioterrorism. The live vaccine that was pivotal in the eradication of smallpox though considered a gold standard for its efficacy still retains sufficient residual virulence that can cause life-threatening sequelae especially in immune deficient individuals. Therefore, a safer smallpox vaccine that can match the efficacy of first generation vaccines is urgently needed. We previously reported that the integration of human IL-15 cytokine into the genome of Wyeth strain of vaccinia (Wyeth/IL-15), the same strain as the licensed vaccine, generates a vaccine with superior immunogenicity and efficacy in a mouse model. We now demonstrate that Wyeth/IL-15 is non-lethal to athymic nude mice when administered intravenously at a dose of 10(7) plaque forming units and it undergoes enhanced in vivo clearance in these immune deficient mice. Furthermore, a majority of cynomolgus monkeys vaccinated with vaccinia viruses with integrated IL-15, when challenged 3 years later with a lethal dose of monkeypox virus displayed milder clinical manifestations with complete recovery supporting the utility of Wyeth/IL-15 for contemporary populations as a safer and efficacious smallpox vaccine.
Collapse
Affiliation(s)
- Rafal J Zielinski
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD 20892-1374, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Nalca A, Livingston VA, Garza NL, Zumbrun EE, Frick OM, Chapman JL, Hartings JM. Experimental infection of cynomolgus macaques (Macaca fascicularis) with aerosolized monkeypox virus. PLoS One 2010; 5:e12880. [PMID: 20862223 PMCID: PMC2942837 DOI: 10.1371/journal.pone.0012880] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/11/2010] [Indexed: 11/18/2022] Open
Abstract
Monkeypox virus (MPXV) infection in humans results in clinical symptoms very similar to ordinary smallpox. Aerosol is a route of secondary transmission for monkeypox, and a primary route of smallpox transmission in humans. Therefore, an animal model for aerosol exposure to MPXV is needed to test medical countermeasures. To characterize the pathogenesis in cynomolgus macaques (Macaca fascicularis), groups of macaques were exposed to four different doses of aerosolized MPXV. Blood was collected the day before, and every other day after exposure and assessed for complete blood count (CBC), clinical chemistry analysis, and quantitative PCR. Macaques showed mild anorexia, depression, and fever on day 6 post-exposure. Lymphadenopathy, which differentiates monkeypox from smallpox, was observed in exposed macaques around day 6 post-exposure. CBC and clinical chemistries showed abnormalities similar to human monkeypox cases. Whole blood and throat swab viral loads peaked around day 10, and in survivors, gradually decreased until day 28 post-exposure. Survival was not dose dependent. As such, doses of 4 × 10(4) PFU, 1 × 10(5) PFU, or 1 × 10(6) PFU resulted in lethality for 70% of the animals, whereas a dose of 4 × 10(5) PFU resulted in 85% lethality. Overall, cynomolgus macaques exposed to aerosolized MPXV develop a clinical disease that resembles that of human monkeypox. These findings provide a strong foundation for the use of aerosolized MPXV exposure of cynomolgus macaques as an animal model to test medical countermeasures against orthopoxviruses.
Collapse
Affiliation(s)
- Aysegul Nalca
- Center for Aerobiological Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Buchman GW, Cohen ME, Xiao Y, Richardson-Harman N, Silvera P, DeTolla LJ, Davis HL, Eisenberg RJ, Cohen GH, Isaacs SN. A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine 2010; 28:6627-36. [PMID: 20659519 PMCID: PMC2939220 DOI: 10.1016/j.vaccine.2010.07.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/02/2010] [Accepted: 07/11/2010] [Indexed: 11/18/2022]
Abstract
Concerns about infections caused by orthopoxviruses, such as variola and monkeypox viruses, drive ongoing efforts to develop novel smallpox vaccines that are both effective and safe to use in diverse populations. A subunit smallpox vaccine comprising vaccinia virus membrane proteins A33, B5, L1, A27 and aluminum hydroxide (alum) ± CpG was administered to non-human primates, which were subsequently challenged with a lethal intravenous dose of monkeypox virus. Alum adjuvanted vaccines provided only partial protection but the addition of CpG provided full protection that was associated with a more homogeneous antibody response and stronger IgG1 responses. These results indicate that it is feasible to develop a highly effective subunit vaccine against orthopoxvirus infections as a safer alternative to live vaccinia virus vaccination.
Collapse
|
42
|
Nalca A, Zumbrun EE. ACAM2000: the new smallpox vaccine for United States Strategic National Stockpile. DRUG DESIGN DEVELOPMENT AND THERAPY 2010; 4:71-9. [PMID: 20531961 PMCID: PMC2880337 DOI: 10.2147/dddt.s3687] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Smallpox was eradicated more than 30 years ago, but heightened concerns over bioterrorism have brought smallpox and smallpox vaccination back to the forefront. The previously licensed smallpox vaccine in the United States, Dryvax® (Wyeth Laboratories, Inc.), was highly effective, but the supply was insufficient to vaccinate the entire current US population. Additionally, Dryvax® had a questionable safety profile since it consisted of a pool of vaccinia virus strains with varying degrees of virulence, and was grown on the skin of calves, an outdated technique that poses an unnecessary risk of contamination. The US government has therefore recently supported development of an improved live vaccinia virus smallpox vaccine. This initiative has resulted in the development of ACAM2000™ (Acambis, Inc.™), a single plaque-purified vaccinia virus derivative of Dryvax®, aseptically propagated in cell culture. Preclinical and clinical trials reported in 2008 demonstrated that ACAM2000™ has comparable immunogenicity to that of Dryvax®, and causes a similar frequency of adverse events. Furthermore, like Dryvax®, ACAM2000™ vaccination has been shown by careful cardiac screening to result in an unexpectedly high rate of myocarditis and pericarditis. ACAM2000™ received US Food and Drug Administration (FDA) approval in August 2007, and replaced Dryvax® for all smallpox vaccinations in February 2008. Currently, over 200 million doses of ACAM2000™ have been produced for the US Strategic National Stockpile. This review of ACAM2000™ addresses the production, characterization, clinical trials, and adverse events associated with this new smallpox vaccine.
Collapse
Affiliation(s)
- Aysegul Nalca
- Center for Aerobiological Sciences, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | | |
Collapse
|
43
|
Benhnia MREI, McCausland MM, Laudenslager J, Granger SW, Rickert S, Koriazova L, Tahara T, Kubo RT, Kato S, Crotty S. Heavily isotype-dependent protective activities of human antibodies against vaccinia virus extracellular virion antigen B5. J Virol 2009; 83:12355-67. [PMID: 19793826 PMCID: PMC2786738 DOI: 10.1128/jvi.01593-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/17/2009] [Indexed: 11/20/2022] Open
Abstract
Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro--and protection in vivo in a mouse model--by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.
Collapse
Affiliation(s)
- Mohammed Rafii-El-Idrissi Benhnia
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Megan M. McCausland
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - John Laudenslager
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Steven W. Granger
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Sandra Rickert
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Lilia Koriazova
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Tomoyuki Tahara
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Ralph T. Kubo
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Shinichiro Kato
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California 92037, Kyowa Hakko Kirin California, La Jolla, California 92037
| |
Collapse
|
44
|
Kennedy RB, Ovsyannikova I, Poland GA. Smallpox vaccines for biodefense. Vaccine 2009; 27 Suppl 4:D73-9. [PMID: 19837292 PMCID: PMC2764553 DOI: 10.1016/j.vaccine.2009.07.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022]
Abstract
Few diseases can match the enormous impact that smallpox has had on mankind. Its influence can be seen in the earliest recorded histories of ancient civilizations in Egypt and Mesopotamia. With fatality rates up to 30%, smallpox left its survivors with extensive scarring and other serious sequelae. It is estimated that smallpox killed 500 million people in the 19th and 20th centuries. Given the ongoing concerns regarding the use of variola as a biological weapon, this review will focus on the licensed vaccines as well as current research into next-generation vaccines to protect against smallpox and other poxviruses.
Collapse
|
45
|
Jacobs BL, Langland JO, Kibler KV, Denzler KL, White SD, Holechek SA, Wong S, Huynh T, Baskin CR. Vaccinia virus vaccines: past, present and future. Antiviral Res 2009; 84:1-13. [PMID: 19563829 PMCID: PMC2742674 DOI: 10.1016/j.antiviral.2009.06.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/30/2009] [Accepted: 06/04/2009] [Indexed: 12/23/2022]
Abstract
Vaccinia virus (VACV) has been used more extensively for human immunization than any other vaccine. For almost two centuries, VACV was employed to provide cross-protection against variola virus, the causative agent of smallpox, until the disease was eradicated in the late 1970s. Since that time, continued research on VACV has produced a number of modified vaccines with improved safety profiles. Attenuation has been achieved through several strategies, including sequential passage in an alternative host, deletion of specific genes or genetic engineering of viral genes encoding immunomodulatory proteins. Some highly attenuated third- and fourth-generation VACV vaccines are now being considered for stockpiling against a possible re-introduction of smallpox through bioterrorism. Researchers have also taken advantage of the ability of the VACV genome to accommodate additional genetic material to produce novel vaccines against a wide variety of infectious agents, including a recombinant VACV encoding the rabies virus glycoprotein that is administered orally to wild animals. This review provides an in-depth examination of these successive generations of VACV vaccines, focusing on how the understanding of poxviral replication and viral gene function permits the deliberate modification of VACV immunogenicity and virulence.
Collapse
Affiliation(s)
- Bertram L Jacobs
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Handley L, Buller RM, Frey SE, Bellone C, Parker S. The new ACAM2000 vaccine and other therapies to control orthopoxvirus outbreaks and bioterror attacks. Expert Rev Vaccines 2009; 8:841-50. [PMID: 19538111 DOI: 10.1586/erv.09.55] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Quarantine, case tracing and population vaccination facilitated the global eradication, in 1980, of variola virus, the causative agent of smallpox. The vaccines used during the eradication period, including Dryvax, the smallpox vaccine used in the USA, were live vaccinia and cowpoxvirus-based vaccines, which induced long-lasting and cross-protective immunity against variola and other related poxviruses. These vaccine viruses were produced by serial propagation in domesticated animals. The drawbacks to such serially propagated live viral vaccines include the level of postvaccination local and systemic reactions and contraindications to their use in immunocompromised individuals, individuals with certain skin and cardiac diseases, and pregnant women. In the latter stages of the population-based smallpox vaccination campaign, research began with ways to improve safety and modernizing the manufacture of vaccinia vaccines; however, with the eradication of variola this work stopped. Outbreaks of monkeypoxvirus in humans and the bioterrorist threat of monkeypox and variola virus renewed the need for improved vaccinia vaccines. ACAM2000 is one of the new generation of smallpox vaccines. It is produced in cell culture from a clonally purified master seed stock of vaccinia derived from the New York City Board of Health strain of vaccinia. The clonally purified master seed assures a more homogeneous vaccine without the inherent mutations associated with serial propagation and the cell culture limits adventitious and bacterial contamination in vaccine production. In preclinical and clinical trials, ACAM2000 demonstrated an immunogenicity and safety profile similar to that of Dryvax.
Collapse
Affiliation(s)
- Lauren Handley
- Department of Molecular Microbiology & Immunology, Saint Louis University, Doisy Research Center, St Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
47
|
Surviving mousepox infection requires the complement system. PLoS Pathog 2008; 4:e1000249. [PMID: 19112490 PMCID: PMC2597719 DOI: 10.1371/journal.ppat.1000249] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 11/26/2008] [Indexed: 11/19/2022] Open
Abstract
Poxviruses subvert the host immune response by producing immunomodulatory proteins, including a complement regulatory protein. Ectromelia virus provides a mouse model for smallpox where the virus and the host's immune response have co-evolved. Using this model, our study investigated the role of the complement system during a poxvirus infection. By multiple inoculation routes, ectromelia virus caused increased mortality by 7 to 10 days post-infection in C57BL/6 mice that lack C3, the central component of the complement cascade. In C3−/− mice, ectromelia virus disseminated earlier to target organs and generated higher peak titers compared to the congenic controls. Also, increased hepatic inflammation and necrosis correlated with these higher tissue titers and likely contributed to the morbidity in the C3−/− mice. In vitro, the complement system in naïve C57BL/6 mouse sera neutralized ectromelia virus, primarily through the recognition of the virion by natural antibody and activation of the classical and alternative pathways. Sera deficient in classical or alternative pathway components or antibody had reduced ability to neutralize viral particles, which likely contributed to increased viral dissemination and disease severity in vivo. The increased mortality of C4−/− or Factor B−/− mice also indicates that these two pathways of complement activation are required for survival. In summary, the complement system acts in the first few minutes, hours, and days to control this poxviral infection until the adaptive immune response can react, and loss of this system results in lethal infection. As one of the most successful pathogens ever, smallpox caused death and disfigurement worldwide until its eradication in the 1970s. The complement system, an essential part of the innate immune response, protects against many pathogens; however, its role during smallpox infection is unclear. In this study, we investigated the importance of the complement system in mousepox infection as a model for human smallpox disease. We compared mice with and without genetic deficiencies in complement following infection by multiple routes with ectromelia virus, the causative agent of mousepox. Deficiencies in several complement proteins reduced survival of ectromelia infection. Sera from these same complement-deficient mice also have reduced ability to neutralize ectromelia virus in vitro. In complement-deficient mice, ectromelia virus disseminated from the inoculation site earlier and produced higher levels of virus in the bloodstream, spleen, and liver. The increased infection in the liver resulted in greater tissue damage. We hypothesize that the complement-deficient mice's reduced ability to neutralize ectromelia virus at the inoculation site resulted in earlier dissemination and more severe disease. We have demonstrated that surviving ectromelia virus infection requires the complement system, which suggests that this system may also protect against smallpox infection.
Collapse
|
48
|
Frey SE, Newman FK, Kennedy JS, Ennis F, Abate G, Hoft DF, Monath TP. Comparison of the safety and immunogenicity of ACAM1000, ACAM2000 and Dryvax in healthy vaccinia-naive adults. Vaccine 2008; 27:1637-44. [PMID: 19071184 DOI: 10.1016/j.vaccine.2008.11.079] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 11/12/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
Abstract
Currently, more than half of the world's population has no immunity against smallpox variola major virus. This phase I double-blind, randomized trial was conducted to compare the safety and immunogenicity of two clonally derived, cell-culture manufactured vaccinia strains, ACAM1000 and ACAM2000, to the parent vaccine, Dryvax. Thirty vaccinia-naïve subjects were enrolled into each of three groups and vaccines were administered percutaneously using a bifurcated needle at a dose of 1.0x10(8)PFU/mL. All subjects had a primary skin reaction indicating a successful vaccination. The adverse events, 4-fold neutralizing antibody rise and T cell immune responses were similar between the groups.
Collapse
Affiliation(s)
- Sharon E Frey
- Division of Infectious Diseases and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, 1100 S. Grand Blvd - DRC-8th Floor, St. Louis, MO 63104, United States.
| | | | | | | | | | | | | |
Collapse
|
49
|
Parker S, Handley L, Buller RM. Therapeutic and prophylactic drugs to treat orthopoxvirus infections. Future Virol 2008; 3:595-612. [PMID: 19727418 DOI: 10.2217/17460794.3.6.595] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the global eradication of smallpox in 1979, the causative agent, variola, no longer circulates in human populations. Other human poxvirus infections, such as those caused by vaccinia, cowpox virus and molluscum, are usually relatively benign in immunocompetent individuals. Conversely, monkeypox virus infections cause high levels of mortality and morbidity in Africa and the virus appears to be increasing its host range, virulence and demographic environs. Furthermore, there are concerns that clandestine stocks of variola virus exist. The re-introduction of aerosolized variola (or perhaps monkeypox virus) into human populations would result in high levels of morbidity and mortality. The attractiveness of variola as a bioweapon and, to a certain extent, monkeypox virus is its inherent ability to spread from person-to-person. The threat posed by the intentional release of variola or monkeypox virus, or a monkeypox virus epizoonosis, will require the capacity to rapidly diagnose the disease and to intervene with antivirals, as intervention is likely to take place during the initial diagnosis, approximately 10-15 days postinfection. Preimmunization of 'at-risk populations' with vaccines will likely not be practical, and the therapeutic use of vaccines has been shown to be ineffective after 4 days of infection with variola. However, a combination of vaccine and antivirals for those infected may be an option. Here we describe historical, current and future therapies to treat orthopoxvirus diseases.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology & Immunology, Saint Louis University Health Sciences Center, St Louis, MO 63104, USA
| | | | | |
Collapse
|
50
|
Greenberg RN, Kennedy JS. ACAM2000: a newly licensed cell culture-based live vaccinia smallpox vaccine. Expert Opin Investig Drugs 2008; 17:555-64. [PMID: 18363519 PMCID: PMC9491136 DOI: 10.1517/13543784.17.4.555] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Due to concern over i) expiration of currently available calf-lymph vaccine (Dryvax); ii) calf lymph as a vaccine (bovine spongiform encephalopathy [BSE], other possible contaminations and animal welfare); and iii) use of variola as a weapon for bioterrorism, a new and safer vaccinia-based smallpox vaccine derived from new cell culture-based technology was proposed. Federally funded work by Acambis, Inc. resulted in FDA approval for ACAM2000 in August 2007. OBJECTIVES This paper describes the development from conception to FDA approval of the new vaccinia cell cultured-based smallpox vaccine ACAM2000. METHODS Data were compiled from available public reports. RESULTS/CONCLUSIONS The studies with ACAM2000 indicate that it closely matches the safety of Dryvax in both non-clinical and clinical trials. ACAM2000 met two of the four primary surrogate efficacy end point criteria established for the Phase III clinical trials. Concern over the incidence of myopericarditis with ACAM2000 and Dryvax exists. So far the cardiac events seem to be self-limited. There are no pediatric safety data for ACAM2000. Overall, clinical trial results were sufficient to convince the FDA that ACAM2000 is a suitable replacement for Dryvax in the event of bioterrorism involving variola (smallpox).
Collapse
Affiliation(s)
- Richard N Greenberg
- University of Kentucky School of Medicine, Department of Medicine, Room MN-672, 800 Rose Street, Lexington, KY 40536-0084, USA.
| | | |
Collapse
|