1
|
Deming ME, Toapanta FR, Pasetti M, Golding H, Khurana S, Hamouda T, Fattom A, Liang Y, Tennant SM, McGilvray MF, Bernal PJ, Oshinsky JJ, Datta S, Booth JP, Coughlan L, Neuzil KM, Costley CD, Kotloff KL, Sztein MB, Ortiz JR. An intranasal adjuvanted, recombinant influenza A/H5 vaccine candidate induces broad priming against diverse influenza A/H5N1 virus clades in a phase I randomized trial in healthy adults. RESEARCH SQUARE 2025:rs.3.rs-6059149. [PMID: 40092447 PMCID: PMC11908355 DOI: 10.21203/rs.3.rs-6059149/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
We conducted a randomized, controlled phase I trial (NCT05397119) of a novel adjuvanted recombinant influenza A/H5 (A/Indonesia/05/2005, clade 2.1) hemagglutinin vaccine, administered intranasally in two doses 28 days apart at three antigen levels. Control groups received unadjuvanted recombinant H5 or formulation buffer placebo. Six months later, participants received a heterologous unadjuvanted inactivated influenza A/H5N1 (A/Vietnam/1203/2004, clade 1) vaccine intramuscularly. All vaccines were safe and well tolerated. After the primary intranasal series, serum hemagglutination inhibition and microneutralization responses were minimal. Increases in mucosal and serum IgG/IgA, serum surface plasmon resonance antibody binding, memory B cell and CD4 T cell activity, and antibody-dependent cell-mediated cytotoxicity were observed only in recipients primed intranasally with adjuvanted H5 vaccine. Following the inactivated H5N1 boost, robust responses across all immune assays, as well as microneutralization responses against diverse H5N1 clades (including currently circulating clade 2.3.4.4b), occurred in adjuvanted vaccine recipients, demonstrating successful priming and broad responses.
Collapse
Affiliation(s)
- Meagan E Deming
- Center for Vaccine Development, University of Maryland School of Medicine
| | | | - Marcela Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine
| | - Hana Golding
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration
| | - Surender Khurana
- Center for Biologics Evaluation and Research (CBER), Food and Drug Administration
| | | | | | - Yuanyuan Liang
- Center for Vaccine Development, University of Maryland School of Medicine
| | - Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine
| | - Megan F McGilvray
- Center for Vaccine Development, University of Maryland School of Medicine
| | - Paula J Bernal
- Center for Vaccine Development, University of Maryland School of Medicine
| | | | - Shrimati Datta
- Center for Vaccine Development, University of Maryland School of Medicine
| | | | - Lynda Coughlan
- Center for Vaccine Development, University of Maryland School of Medicine
| | - Kathleen M Neuzil
- Center for Vaccine Development, University of Maryland School of Medicine
| | | | - Karen L Kotloff
- Center for Vaccine Development, University of Maryland School of Medicine
| | - Marcelo B Sztein
- Center for Vaccine Development, University of Maryland School of Medicine
| | - Justin R Ortiz
- Center for Vaccine Development, University of Maryland School of Medicine
| |
Collapse
|
2
|
Tottey S, Shoji Y, Mark Jones R, Musiychuk K, Chichester JA, Miura K, Zhou L, Lee SM, Plieskatt J, Wu Y, Long CA, Streatfield SJ, Yusibov V. Engineering of a plant-produced virus-like particle to improve the display of the Plasmodium falciparum Pfs25 antigen and transmission-blocking activity of the vaccine candidate. Vaccine 2023; 41:938-944. [PMID: 36585278 PMCID: PMC9888754 DOI: 10.1016/j.vaccine.2022.12.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Malaria kills around 409,000 people a year, mostly children under the age of five. Malaria transmission-blocking vaccines work to reduce malaria prevalence in a community and have the potential to be part of a multifaceted approach required to eliminate the parasites causing the disease. Pfs25 is a leading malaria transmission-blocking antigen and has been successfully produced in a plant expression system as both a subunit vaccine and as a virus-like particle. This study demonstrates an improved version of the virus-like particle antigen display molecule by eliminating known protease sites from the prior A85 variant. This re-engineered molecule, termed B29, displays three times the number of Pfs25 antigens per virus-like particle compared to the original Pfs25 virus-like particle. An improved purification scheme was also developed, resulting in a substantially higher yield and improved purity. The molecule was evaluated in a mouse model and found to induce improved transmission-blocking activity at lower doses and longer durations than the original molecule.
Collapse
Affiliation(s)
- Stephen Tottey
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - Yoko Shoji
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - R Mark Jones
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - Konstantin Musiychuk
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - Jessica A Chichester
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Luwen Zhou
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Yimin Wu
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Stephen J Streatfield
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA.
| | - Vidadi Yusibov
- Fraunhofer USA Center Mid-Atlantic, Biotechnology Division, 9 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
3
|
Mathew M, Thomas J. Tobacco-Based Vaccines, Hopes, and Concerns: A Systematic Review. Mol Biotechnol 2022:10.1007/s12033-022-00627-5. [PMID: 36528727 PMCID: PMC9759281 DOI: 10.1007/s12033-022-00627-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Emerging infectious diseases have vigorously devastated the global economy and health sector; cost-effective plant-based vaccines (PBV) can be the potential solution to withstand the current health economic crisis. The prominent role of tobacco as an efficient expression system for PBV has been well-established for decades, through this review we highlight the importance of tobacco-based vaccines (TBV) against evolving infectious diseases in humans. Studies focusing on the use of TBV for human infectious diseases were searched in PubMed, Google Scholar, and science direct from 1995 to 2021 using the keywords Tobacco-based vaccines OR transgenic tobacco OR Nicotiana benthamiana vaccines AND Infectious diseases or communicable diseases. We carried out a critical review of the articles and studies that fulfilled the eligibility criteria and were included in this review. Of 976 studies identified, only 63 studies fulfilling the eligibility criteria were included, which focused on either the in vitro, in vivo, or clinical studies on TBV for human infectious diseases. Around 43 in vitro studies of 23 different infectious pathogens expressed in tobacco-based systems were identified and 23 in vivo analysis studies were recognized to check the immunogenicity of vaccine candidates while only 10 of these were subjected to clinical trials. Viral infectious pathogens were studied more than bacterial pathogens. From our review, it was evident that TBV can be an effective health strategy to combat the emerging viral infectious diseases which are very difficult to manage with the current health facilities. The timely administration of cost-effective TBV can prevent the outburst of viral infections, thereby can protect the global healthcare system to a greater extent.
Collapse
Affiliation(s)
- Mintu Mathew
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| |
Collapse
|
4
|
Paolino KM, Regules JA, Moon JE, Ruck RC, Bennett JW, Remich SA, Mills KT, Lin L, Washington CN, Fornillos GA, Lindsey CY, O'Brien KA, Shi M, Mark Jones R, Green BJ, Tottey S, Chichester JA, Streatfield SJ, Yusibov V. Safety and immunogenicity of a plant-derived recombinant protective antigen (rPA)-based vaccine against Bacillus anthracis: A Phase 1 dose-escalation study in healthy adults. Vaccine 2022; 40:1864-1871. [DOI: 10.1016/j.vaccine.2022.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
5
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
6
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
7
|
Hundakova A, Leva L, Toman M, Knotek Z. A ferret model of immunosuppression induced with dexamethasone. Vet Immunol Immunopathol 2021; 243:110362. [PMID: 34826685 DOI: 10.1016/j.vetimm.2021.110362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022]
Abstract
Ferrets are nowadays frequently used as animal models for biomedical purposes; in many cases, immunosuppression of experimental animals is necessary. The aim of this study was to evaluate the effect of intramuscular dexamethasone administration (2 mg/kg as the initiation dose continued with 1 mg/kg q 12 h applied 5 times) on ferret's immune system. In comparison with ferrets which received the saline (n = 5), significantly lower total counts of leukocytes (P < 0.01), lymphocytes (P < 0.01) and monocyte (P < 0.05), as well as absolute numbers of CD4+CD8- (P < 0.01) and CD4-CD8+ (P < 0.01) subsets were noted in dexamethasone treated ferrets (n = 5) the first day after the treatment (D1). Absolute number of CD79+ lymphocytes remained unchanged throughout the experiment. The proliferation activity of lymphocytes in dexamethasone treated ferrets was lower only in D1 using concanavalin A (conA), phytohemagglutinin (PHA) and pokeweed mitogen (PWM); statistical significance was noted using PHA 40 (P < 0.05) and PWM 10 (P < 0.01). Lower neutrophil activity (P < 0.01) was detected in D1 after the dexamethasone treatment in both production of reactive oxygen species (chemiluminescence test) and ingestion of particles (phagocytosis assay). The dexamethasone treatment proved to be useful for short-term immunosuppression in ferrets. The results closely resembled data previously reported in human studies and indicate classification of ferrets as steroid-resistant species.
Collapse
Affiliation(s)
- Anna Hundakova
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic.
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic
| | - Zdenek Knotek
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackeho trida 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
8
|
Lobato Gómez M, Huang X, Alvarez D, He W, Baysal C, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennasser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Abreu IA, Balamurugan S, Bock R, Buyel J, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Ramalingam SK, Lacorte C, Lomonossoff GP, Luís IM, Ma JK, McDonald KA, Murad A, Nandi S, O’Keefe B, Oksman‐Caldentey K, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JCM, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Capell T, Christou P. Contributions of the international plant science community to the fight against human infectious diseases - part 1: epidemic and pandemic diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1901-1920. [PMID: 34182608 PMCID: PMC8486245 DOI: 10.1111/pbi.13657] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.
Collapse
Affiliation(s)
- Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Amaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennasser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andera Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes.F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Sathish Kumar Ramalingam
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen. A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keefe
- Molecular Targets ProgramCenter for Cancer Research, National Cancer Institute, and Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer Institute, NIHFrederickMDUSA
| | | | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Julio C. M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
9
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
10
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
11
|
Wang SH, Chen J, Smith D, Cao Z, Acosta H, Fan Y, Ciotti S, Fattom A, Baker J. A novel combination of intramuscular vaccine adjuvants, nanoemulsion and CpG produces an effective immune response against influenza A virus. Vaccine 2020; 38:3537-3544. [PMID: 32245642 DOI: 10.1016/j.vaccine.2020.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vaccination is the most effective approach to prevent infection with highly pathogenic avian influenza (HPAI). Adjuvants are often used to induce effective immune responses and overcome the immunological weakness of recombinant HPAI antigens. Given the logistical challenges of immunization to HPAI during pandemic situations, vaccines administered via the intramuscular (I.M.) route would be of value. METHODS A new formulation of nanoemulsion adjuvant (NE02) suitable for I.M. vaccination was developed. This NE02 was evaluated alone and in combination with CpG to develop H5 immune responses in mouse and ferret models. Measures of recombinant H5 (rH5) specific immunity evaluated included serum IgG and IgG subclasses, bronchoalveolar lavage fluid IgA, and cytokines. The activation of NF-kB was also analyzed. The efficacy of the vaccine was assessed by performing hemagglutination inhibition (HAI), virus neutralization (VN) assays, and viral challenges in ferrets. RESULTS I.M. vaccination with rH5-NE02 significantly increased rH5-specific IgG and protected ferrets in the viral challenge model providing complete protection and sterile immunity in all animals tested. Combining NE02 and CpG produced accelerated antibody responses and this was accompanied by an elevation of IFN-γ and IL-17 responses and the downregulation of IL-5. The combination also caused a synergistic effect on NF-kB activation. In immunized ferrets after viral challenge, the rH5-NE02 + CpG vaccine via I.M. achieved at least 75% and 88% seroconversion of HAI and VN antibody responses, respectively, and improved body temperature stabilization and weight loss over NE02 alone. CONCLUSIONS The I.M. injection of NE02 adjuvanted rH5 elicits strong and broad immune responses against H5 antigens and effectively protects animals from lethal H5 challenge. Combining this adjuvant with CpG enhanced immune responses and provided improvements in outcomes to viral challenge in ferrets. The results suggest that combinations of adjuvants may be useful to enhance H5 immune responses and improve protection against influenza infection.
Collapse
Affiliation(s)
- Su He Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jesse Chen
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | - Zhengyi Cao
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Hugo Acosta
- BlueWillow Biologic, Ann Arbor, MI, United States
| | - Yongyi Fan
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Susan Ciotti
- BlueWillow Biologic, Ann Arbor, MI, United States
| | - Ali Fattom
- BlueWillow Biologic, Ann Arbor, MI, United States
| | - James Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Smith D, Streatfield SJ, Acosta H, Ganesan S, Fattom A. A nanoemulsion-adjuvanted intranasal H5N1 influenza vaccine protects ferrets against homologous and heterologous H5N1 lethal challenge. Vaccine 2019; 37:6162-6170. [PMID: 31495593 DOI: 10.1016/j.vaccine.2019.08.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Flu vaccines administered intramuscularly (IM) have shown seasonally fluctuating efficacy, 20-60%, throughout the last 15 years. We formulated a recombinant H5 (rH5) in our Nanovax® (NE01) (rH5/NE01) adjuvant for intranasal vaccination in ferrets. We evaluated the regimen, one vs two immunization, and cross clade protection a ferret challenge model. METHODS Plant derived recombinant H5 (rH5) antigen was formulated with NE01 and administered intranasally to ferrets. Immunogenicity (IgG), hemagglutination inhibition (HI), and protection against lethal challenge, were measured following one or two immunizations. Protection against homologous (strain A/Indo) and heterologous (strain A/Vn) was evaluated in ferrets following two immunizations. RESULTS IN immunization with rH5/NE01 induced significant IgG levels after one and two immunizations. One vaccination did not induce any HI while low HI was measured after two immunizations. Homologous challenge with H5N1 A/ Indonesia showed 100% survival, with minimal weight loss in animals vaccinated twice compared to the unvaccinated controls. Analysis of nasal wash from these challenged ferrets vaccinated twice showed decreased viral shedding compared to unvaccinated controls. Interestingly, animals that received one vaccination showed 88% survival with moderate weight loss. Cross clade protection was evaluated using an increased antigen dose (45 µg rH5). Vaccinated animals demonstrated increased IgG and HAI antibody responses. Both homologous (A/Indo) and heterologous challenge (A/Vietnam) following two immunizations showed 100% survival with no loss of body weight. However viral clearance was more rapid against the homologous (day 3) compared to the heterologous (day 5) post challenge. CONCLUSION Intranasal administration of NE01 adjuvant-formulated rH5 vaccine elicited systemic and probably mucosal immunity that conferred protection against lethal challenge with homologous or heterologous viral strains. It also enhanced viral clearance with decreased shedding. These outcomes strongly suggest that intranasal immunization using NE01 against flu infections warrants clinical testing.
Collapse
Affiliation(s)
| | - Stephen J Streatfield
- Fraunhofer USA Center for Molecular Biotechnology (FhCMB), Newark, DE, United States
| | - Hugo Acosta
- BlueWillow Biologics, Ann Arbor, MI, United States
| | | | - Ali Fattom
- BlueWillow Biologics, Ann Arbor, MI, United States.
| |
Collapse
|
13
|
Yamada S, Yasuhara A, Kawaoka Y. Soluble Recombinant Hemagglutinin Protein of H1N1pdm09 Influenza Virus Elicits Cross-Protection Against a Lethal H5N1 Challenge in Mice. Front Microbiol 2019; 10:2031. [PMID: 31551968 PMCID: PMC6737379 DOI: 10.3389/fmicb.2019.02031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, influenza vaccines are produced using embryonated chicken eggs. Recently, recombinant influenza vaccines have been developed as a potential alternative to egg-grown vaccines. In this study, we evaluated the efficacy of soluble recombinant hemagglutinin (HA) protein produced in human cell culture (Expi293F cells) as an influenza vaccine against homosubtypic and heterosubtypic influenza virus challenges in mice. Mice were immunized intramuscularly with purified soluble HA protein of H1N1pdm09 virus and then challenged with a lethal dose of H1N1pdm09, seasonal H3N2, or highly pathogenic avian influenza (HPAI) H5N1 virus. Vaccinated mice showed better morbidity than mock-vaccinated mice following H1N1pdm09 challenge. By contrast, all mice died following H3N2 challenge. Interestingly, all vaccinated mice survived challenge with H5N1 virus, whereas all mock-vaccinated mice died. These results suggest that intramuscular immunization with recombinant HA proteins produced in Expi 293F cells could be of value in influenza vaccine strategies.
Collapse
Affiliation(s)
- Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsuhiro Yasuhara
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Trombetta CM, Marchi S, Manini I, Lazzeri G, Montomoli E. Challenges in the development of egg-independent vaccines for influenza. Expert Rev Vaccines 2019; 18:737-750. [DOI: 10.1080/14760584.2019.1639503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ilaria Manini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giacomo Lazzeri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
15
|
Recombinant H5 hemagglutinin adjuvanted with nanoemulsion protects ferrets against pathogenic avian influenza virus challenge. Vaccine 2019; 37:1591-1600. [DOI: 10.1016/j.vaccine.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/29/2022]
|
16
|
Margolin E, Chapman R, Meyers AE, van Diepen MT, Ximba P, Hermanus T, Crowther C, Weber B, Morris L, Williamson AL, Rybicki EP. Production and Immunogenicity of Soluble Plant-Produced HIV-1 Subtype C Envelope gp140 Immunogens. FRONTIERS IN PLANT SCIENCE 2019; 10:1378. [PMID: 31737007 PMCID: PMC6831737 DOI: 10.3389/fpls.2019.01378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/07/2019] [Indexed: 05/11/2023]
Abstract
The development of effective vaccines is urgently needed to curb the spread of human immunodeficiency virus type 1 (HIV-1). A major focal point of current HIV vaccine research is the production of soluble envelope (Env) glycoproteins which reproduce the structure of the native gp160 trimer. These antigens are produced in mammalian cells, which requires a sophisticated infrastructure for manufacture that is mostly absent in developing countries. The production of recombinant proteins in plants is an attractive alternative for the potentially cheap and scalable production of vaccine antigens, especially for developing countries. In this study, we developed a transient expression system in Nicotiana benthamiana for the production of soluble HIV Env gp140 antigens based on two rationally selected virus isolates (CAP256 SU and Du151). The scalability of the platform was demonstrated and both affinity and size exclusion chromatography (SEC) were explored for recovery of the recombinant antigens. Rabbits immunized with lectin affinity-purified antigens developed high titres of binding antibodies, including against the V1V2 loop region, and neutralizing antibodies against Tier 1 viruses. The removal of aggregated Env species by gel filtration resulted in the elicitation of superior binding and neutralizing antibodies. Furthermore, a heterologous prime-boost regimen employing a recombinant modified vaccinia Ankara (rMVA) vaccine, followed by boosts with the SEC-purified protein, significantly improved the immunogenicity. To our knowledge, this is the first study to assess the immunogenicity of a near-full length plant-derived Env vaccine immunogen.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann E. Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Ann E. Meyers,
| | - Michiel T. van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Carol Crowther
- National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Brandon Weber
- Structural Biology Research Unit, Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Margolin E, Chapman R, Williamson A, Rybicki EP, Meyers AE. Production of complex viral glycoproteins in plants as vaccine immunogens. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1531-1545. [PMID: 29890031 PMCID: PMC6097131 DOI: 10.1111/pbi.12963] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 05/19/2023]
Abstract
Plant molecular farming offers a cost-effective and scalable approach to the expression of recombinant proteins which has been proposed as an alternative to conventional production platforms for developing countries. In recent years, numerous proofs of concept have established that plants can produce biologically active recombinant proteins and immunologically relevant vaccine antigens that are comparable to those made in conventional expression systems. Driving many of these advances is the remarkable plasticity of the plant proteome which enables extensive engineering of the host cell, as well as the development of improved expression vectors facilitating higher levels of protein production. To date, the only plant-derived viral glycoprotein to be tested in humans is the influenza haemagglutinin which expresses at ~50 mg/kg. However, many other viral glycoproteins that have potential as vaccine immunogens only accumulate at low levels in planta. A critical consideration for the production of many of these proteins in heterologous expression systems is the complexity of post-translational modifications, such as control of folding, glycosylation and disulphide bridging, which is required to reproduce the native glycoprotein structure. In this review, we will address potential shortcomings of plant expression systems and discuss strategies to optimally exploit the technology for the production of immunologically relevant and structurally authentic glycoproteins for use as vaccine immunogens.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Ros Chapman
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Anna‐Lise Williamson
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Edward P. Rybicki
- Division of Medical VirologyDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| | - Ann E. Meyers
- Biopharming Research UnitDepartment of Molecular and Cell BiologyUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
18
|
Ceballo Y, Tiel K, López A, Cabrera G, Pérez M, Ramos O, Rosabal Y, Montero C, Menassa R, Depicker A, Hernández A. High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza. Transgenic Res 2017; 26:775-789. [PMID: 28986672 DOI: 10.1007/s11248-017-0047-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/21/2017] [Indexed: 01/13/2023]
Abstract
Tobacco seeds can be used as a cost effective system for production of recombinant vaccines. Avian influenza is an important respiratory pathogen that causes a high degree of mortality and becomes a serious threat for the poultry industry. A safe vaccine against avian flu produced at low cost could help to prevent future outbreaks. We have genetically engineered tobacco plants to express extracellular domain of hemagglutinin protein from H5N1 avian influenza virus as an inexpensive alternative for production purposes. Two regulatory sequences of seed storage protein genes from Phaseolus vulgaris L. were used to direct the expression, yielding 3.0 mg of the viral antigen per g of seeds. The production and stability of seed-produced recombinant HA protein was characterized by different molecular techniques. The aqueous extract of tobacco seed proteins was used for subcutaneous immunization of chickens, which developed antibodies that inhibited the agglutination of erythrocytes after the second application of the antigen. The feasibility of using tobacco seeds as a vaccine carrier is discussed.
Collapse
Affiliation(s)
- Yanaysi Ceballo
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba.
| | - Kenia Tiel
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Alina López
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Gleysin Cabrera
- Department of Carbohydrate Chemistry, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Marlene Pérez
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Osmany Ramos
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Yamilka Rosabal
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| | - Carlos Montero
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ann Depicker
- Department Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department Plant Systems Biologie, VIB, Ghent, Belgium
| | - Abel Hernández
- Plant Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, 10600, Havana, Havana, Cuba
| |
Collapse
|
19
|
Tottey S, Shoji Y, Jones RM, Chichester JA, Green BJ, Musiychuk K, Si H, Manceva SD, Rhee A, Shamloul M, Norikane J, Guimarães RC, Caride E, Silva ANMR, Simões M, Neves PCC, Marchevsky R, Freire MS, Streatfield SJ, Yusibov V. Plant-Produced Subunit Vaccine Candidates against Yellow Fever Induce Virus Neutralizing Antibodies and Confer Protection against Viral Challenge in Animal Models. Am J Trop Med Hyg 2017; 98:420-431. [PMID: 29231157 DOI: 10.4269/ajtmh.16-0293] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Yellow fever (YF) is a viral disease transmitted by mosquitoes and endemic mostly in South America and Africa with 20-50% fatality. All current licensed YF vaccines, including YF-Vax® (Sanofi-Pasteur, Lyon, France) and 17DD-YFV (Bio-Manguinhos, Rio de Janeiro, Brazil), are based on live attenuated virus produced in hens' eggs and have been widely used. The YF vaccines are considered safe and highly effective. However, a recent increase in demand for YF vaccines and reports of rare cases of YF vaccine-associated fatal adverse events have provoked interest in developing a safer YF vaccine that can be easily scaled up to meet this increased global demand. To this point, we have engineered the YF virus envelope protein (YFE) and transiently expressed it in Nicotiana benthamiana as a stand-alone protein (YFE) or as fusion to the bacterial enzyme lichenase (YFE-LicKM). Immunogenicity and challenge studies in mice demonstrated that both YFE and YFE-LicKM elicited virus neutralizing (VN) antibodies and protected over 70% of mice from lethal challenge infection. Furthermore, these two YFE-based vaccine candidates induced VN antibody responses with high serum avidity in nonhuman primates and these VN antibody responses were further enhanced after challenge infection with the 17DD strain of YF virus. These results demonstrate partial protective efficacy in mice of YFE-based subunit vaccines expressed in N. benthamiana. However, their efficacy is inferior to that of the live attenuated 17DD vaccine, indicating that formulation development, such as incorporating a more suitable adjuvant, may be required for product development.
Collapse
Affiliation(s)
- Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Huaxin Si
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Rosane C Guimarães
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Elena Caride
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Andrea N M R Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marisol Simões
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Patricia C C Neves
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Renato Marchevsky
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos S Freire
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fiocruz, Rio de Janeiro, Brazil
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| |
Collapse
|
20
|
Fujiuchi N, Matsuda R, Matoba N, Fujiwara K. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants. Biotechnol Bioeng 2017; 114:1762-1770. [PMID: 28369753 DOI: 10.1002/bit.26303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/19/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM-1 ) and recombinant protein productivity per unit area-time (g m-2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m-2 than at a low plant density of 100 plants m-2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kazuhiro Fujiwara
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, Hall AC, Coffin MV, Shoji Y, Chichester JA, Bi H, Streatfield SJ. Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana. Hum Vaccin Immunother 2017; 13:306-313. [PMID: 27929750 PMCID: PMC5328219 DOI: 10.1080/21645515.2017.1264783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/18/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Immunoglobulin G/blood
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Nicotiana/genetics
- Nicotiana/metabolism
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Teen-Lee Pua
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Xiao Ying Chan
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
- Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | | | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | |
Collapse
|
22
|
An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge. Antiviral Res 2016; 133:242-9. [PMID: 27498036 DOI: 10.1016/j.antiviral.2016.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022]
Abstract
Highly pathogenic avian influenza is an on-going problem in poultry and a potential human pandemic threat. Pandemics occur suddenly and vaccine production must be fast and effective to be of value in controlling the spread of the virus. In this study we evaluated the potential of a recombinant protein from the extracellular domain of an H5 hemagglutinin protein produced in a yeast expression system to act as an effective vaccine. Protein production was efficient, with up to 200 mg purified from 1 L of culture medium. We showed that the deletion of the multibasic cleavage site from the protein improves oligomerization and, consequentially, its immunogenicity. We also showed that immunization with this deleted protein protected chickens from challenge with a highly pathogenic avian influenza H5N1 virus. Our results suggest that this recombinant protein produced in yeast may be an effective vaccine against H5N1 virus in poultry.
Collapse
|
23
|
Blagborough AM, Musiychuk K, Bi H, Jones RM, Chichester JA, Streatfield S, Sala KA, Zakutansky SE, Upton LM, Sinden RE, Brian I, Biswas S, Sattabonkot J, Yusibov V. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax. Vaccine 2016; 34:3252-9. [PMID: 27177945 PMCID: PMC4915602 DOI: 10.1016/j.vaccine.2016.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 01/18/2023]
Abstract
Malaria transmission blocking (TB) vaccines (TBVs) directed against proteins expressed on the sexual stages of Plasmodium parasites are a potentially effective means to reduce transmission. Antibodies induced by TBVs block parasite development in the mosquito, and thus inhibit transmission to further human hosts. The ookinete surface protein P25 is a primary target for TBV development. Recently, transient expression in plants using hybrid viral vectors has demonstrated potential as a strategy for cost-effective and scalable production of recombinant vaccines. Using a plant virus-based expression system, we produced recombinant P25 protein of Plasmodium vivax (Pvs25) in Nicotiana benthamiana fused to a modified lichenase carrier protein. This candidate vaccine, Pvs25-FhCMB, was purified, characterized and evaluated for immunogenicity and efficacy using multiple adjuvants in a transgenic rodent model. An in vivo TB effect of up to a 65% reduction in intensity and 54% reduction in prevalence was observed using Abisco-100 adjuvant. The ability of this immunogen to induce a TB response was additionally combined with heterologous prime-boost vaccination with viral vectors expressing Pvs25. Significant blockade was observed when combining both platforms, achieving a 74% and 68% reduction in intensity and prevalence, respectively. This observation was confirmed by direct membrane feeding on field P. vivax samples, resulting in reductions in intensity/prevalence of 85.3% and 25.5%. These data demonstrate the potential of this vaccine candidate and support the feasibility of expressing Plasmodium antigens in a plant-based system for the production of TBVs, while demonstrating the potential advantages of combining multiple vaccine delivery systems to maximize efficacy.
Collapse
Affiliation(s)
- A M Blagborough
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK.
| | - K Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - H Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - R M Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - J A Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - S Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - K A Sala
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - S E Zakutansky
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - L M Upton
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - R E Sinden
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - I Brian
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - S Biswas
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - J Sattabonkot
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - V Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
24
|
Mamedov T, Chichester JA, Jones RM, Ghosh A, Coffin MV, Herschbach K, Prokhnevsky AI, Streatfield SJ, Yusibov V. Production of Functionally Active and Immunogenic Non-Glycosylated Protective Antigen from Bacillus anthracis in Nicotiana benthamiana by Co-Expression with Peptide-N-Glycosidase F (PNGase F) of Flavobacterium meningosepticum. PLoS One 2016; 11:e0153956. [PMID: 27101370 PMCID: PMC4839623 DOI: 10.1371/journal.pone.0153956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key component of the anthrax toxin, produced using different expression systems. Plants represent a promising recombinant protein production platform due to their relatively low cost, rapid scalability and favorable safety profile. Previous studies have shown that full-length rPA produced in Nicotiana benthamiana (pp-PA83) is immunogenic and can provide full protection against lethal spore challenge; however, further improvement in the potency and stability of the vaccine candidate is necessary. PA of B. anthracis is not a glycoprotein in its native host; however, this protein contains potential N-linked glycosylation sites, which can be aberrantly glycosylated during expression in eukaryotic systems including plants. This glycosylation could affect the availability of certain key epitopes either due to masking or misfolding of the protein. Therefore, a non-glycosylated form of pp-PA83 was engineered and produced in N. benthamiana using an in vivo deglycosylation approach based on co-expression of peptide-N-glycosidase F (PNGase F) from Flavobacterium meningosepticum. For comparison, versions of pp-PA83 containing point mutations in six potential N-glycosylation sites were also engineered and expressed in N. benthamiana. The in vivo deglycosylated pp-PA83 (pp-dPA83) was shown to have in vitro activity, in contrast to glycosylated pp-PA83, and to induce significantly higher levels of toxin-neutralizing antibody responses in mice compared with glycosylated pp-PA83, in vitro deglycosylated pp-PA83 or the mutated versions of pp-PA83. These results suggest that pp-dPA83 may offer advantages in terms of dose sparing and enhanced immunogenicity as a promising candidate for a safe, effective and low-cost subunit vaccine against anthrax.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jessica A. Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Ananya Ghosh
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Kristina Herschbach
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Alexey I. Prokhnevsky
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen J. Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| |
Collapse
|
25
|
Fujiuchi N, Matoba N, Matsuda R. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression. Front Bioeng Biotechnol 2016; 4:23. [PMID: 27014686 PMCID: PMC4781840 DOI: 10.3389/fbioe.2016.00023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant protein content and productivity, thus enhancing the utility of plant-based transient expression systems as recombinant protein factories.
Collapse
Affiliation(s)
- Naomichi Fujiuchi
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Matoba
- Owensboro Cancer Research Program, James Graham Brown Cancer Center, University of Louisville School of Medicine, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Ryo Matsuda
- Department of Biological and Environmental Engineering, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Major D, Chichester JA, Pathirana RD, Guilfoyle K, Shoji Y, Guzman CA, Yusibov V, Cox RJ. Intranasal vaccination with a plant-derived H5 HA vaccine protects mice and ferrets against highly pathogenic avian influenza virus challenge. Hum Vaccin Immunother 2016; 11:1235-43. [PMID: 25714901 PMCID: PMC4514375 DOI: 10.4161/21645515.2014.988554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Highly pathogenic avian influenza H5N1 infection remains a public health threat and vaccination is the best measure of limiting the impact of a potential pandemic. Mucosal vaccines have the advantage of eliciting immune responses at the site of viral entry, thereby preventing infection as well as further viral transmission. In this study, we assessed the protective efficacy of hemagglutinin (HA) from the A/Indonesia/05/05 (H5N1) strain of influenza virus that was produced by transient expression in plants. The plant-derived vaccine, in combination with the mucosal adjuvant (3′,5′)-cyclic dimeric guanylic acid (c-di-GMP) was used for intranasal immunization of mice and ferrets, before challenge with a lethal dose of the A/Indonesia/05/05 (H5N1) virus. Mice vaccinated with 15 μg or 5 μg of adjuvanted HA survived the viral challenge, while all control mice died within 10 d of challenge. Vaccinated animals elicited serum hemagglutination inhibition, IgG and IgA antibody titers. In the ferret challenge study, all animals vaccinated with the adjuvanted plant vaccine survived the lethal viral challenge, while 50% of the control animals died. In both the mouse and ferret models, the vaccinated animals were better protected from weight loss and body temperature changes associated with H5N1 infection compared with the non-vaccinated controls. Furthermore, the systemic spread of the virus was lower in the vaccinated animals compared with the controls. Results presented here suggest that the plant-produced HA-based influenza vaccine adjuvanted with c-di-GMP is a promising vaccine/adjuvant combination for the development of new mucosal influenza vaccines.
Collapse
Affiliation(s)
- Diane Major
- a National Institute for Biological Standards and Control; Medicines and Healthcare Products Regulatory Agency ; Potters Bar , UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Streatfield SJ, Kushnir N, Yusibov V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1136-59. [PMID: 26387510 PMCID: PMC7167919 DOI: 10.1111/pbi.12475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Despite progress in the prevention and treatment of infectious diseases, they continue to present a major threat to public health. The frequency of emerging and reemerging infections and the risk of bioterrorism warrant significant efforts towards the development of prophylactic and therapeutic countermeasures. Vaccines are the mainstay of infectious disease prophylaxis. Traditional vaccines, however, are failing to satisfy the global demand because of limited scalability of production systems, long production timelines and product safety concerns. Subunit vaccines are a highly promising alternative to traditional vaccines. Subunit vaccines, as well as monoclonal antibodies and other therapeutic proteins, can be produced in heterologous expression systems based on bacteria, yeast, insect cells or mammalian cells, in shorter times and at higher quantities, and are efficacious and safe. However, current recombinant systems have certain limitations associated with production capacity and cost. Plants are emerging as a promising platform for recombinant protein production due to time and cost efficiency, scalability, lack of harboured mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modification. So far, a variety of subunit vaccines, monoclonal antibodies and therapeutic proteins (antivirals) have been produced in plants as candidate countermeasures against emerging, reemerging and bioterrorism-related infections. Many of these have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, we overview ongoing efforts to producing such plant-based countermeasures.
Collapse
Affiliation(s)
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
28
|
Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens. Vaccine 2015; 33:3456-62. [DOI: 10.1016/j.vaccine.2015.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/15/2015] [Accepted: 05/27/2015] [Indexed: 11/21/2022]
|
29
|
Lee G, Na YJ, Yang BG, Choi JP, Seo YB, Hong CP, Yun CH, Kim DH, Sohn EJ, Kim JH, Sung YC, Kim YK, Jang MH, Hwang I. Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:62-72. [PMID: 25065685 DOI: 10.1111/pbi.12235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/26/2014] [Indexed: 06/03/2023]
Abstract
Pandemics in poultry caused by the highly pathogenic avian influenza (HPAI) A virus occur too frequently globally, and there is growing concern about the HPAI A virus due to the possibility of a pandemic among humans. Thus, it is important to develop a vaccine against HPAI suitable for both humans and animals. Various approaches are underway to develop such vaccines. In particular, an edible vaccine would be a convenient way to vaccinate poultry because of the behaviour of the animals. However, an edible vaccine is still not available. In this study, we developed a strategy of effective vaccination of mice by the oral administration of transgenic Arabidopsis plants (HA-TG) expressing haemagglutinin (HA) in the endoplasmic reticulum (ER). Expression of HA in the ER resulted in its high-level accumulation, N-glycosylation, protection from proteolytic degradation and long-term stability. Oral administration of HA-TG with saponin elicited high levels of HA-specific systemic IgG and mucosal IgA responses in mice, which resulted in protection against a lethal influenza virus infection with attenuated inflammatory symptoms. Based on these results, we propose that oral administration of freeze-dried leaf powders from transgenic plants expressing HA in the ER together with saponin is an attractive strategy for vaccination against influenza A virus.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Administration, Oral
- Animals
- Antibody Formation/drug effects
- Antibody Formation/immunology
- Antibody Specificity/drug effects
- Antibody Specificity/immunology
- Antigens, Viral/immunology
- Arabidopsis/genetics
- Dose-Response Relationship, Immunologic
- Endoplasmic Reticulum/metabolism
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Plants, Genetically Modified
- Pneumonia/immunology
- Pneumonia/pathology
- Pneumonia/prevention & control
- Pneumonia/virology
- Recombinant Fusion Proteins/metabolism
- Saponins/immunology
- Vaccination
Collapse
Affiliation(s)
- Goeun Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Korea; Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS), Pohang, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Seid CA, Curti E, Jones RM, Hudspeth E, Rezende W, Pollet J, Center L, Versteeg L, Pritchard S, Musiychuk K, Yusibov V, Hotez PJ, Bottazzi ME. Expression, purification, and characterization of the Necator americanus aspartic protease-1 (Na-APR-1 (M74)) antigen, a component of the bivalent human hookworm vaccine. Hum Vaccin Immunother 2015; 11:1474-88. [PMID: 25905574 PMCID: PMC4514214 DOI: 10.1080/21645515.2015.1036207] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/13/2015] [Accepted: 03/27/2015] [Indexed: 11/08/2022] Open
Abstract
Over 400 million people living in the world's poorest developing nations are infected with hookworms, mostly of the genus Necator americanus. A bivalent human hookworm vaccine composed of the Necator americanus Glutathione S-Transferase-1 (Na-GST-1) and the Necator americanus Aspartic Protease-1 (Na-APR-1 (M74)) is currently under development by the Sabin Vaccine Institute Product Development Partnership (Sabin PDP). Both monovalent vaccines are currently in Phase 1 trials. Both Na-GST-1 and Na-APR-1 antigens are expressed as recombinant proteins. While Na-GST-1 was found to express with high yields in Pichia pastoris, the level of expression of Na-APR-1 in this host was too low to be suitable for a manufacturing process. When the tobacco plant Nicotiana benthamiana was evaluated as an expression system, acceptable levels of solubility, yield, and stability were attained. Observed expression levels of Na-APR-1 (M74) using this system are ∼300 mg/kg. Here we describe the achievements and obstacles encountered during process development as well as characterization and stability of the purified Na-APR-1 (M74) protein and formulated vaccine. The expression, purification and analysis of purified Na-APR-1 (M74) protein obtained from representative 5 kg reproducibility runs performed to qualify the Na-APR-1 (M74) production process is also presented. This process has been successfully transferred to a pilot plant and a 50 kg scale manufacturing campaign under current Good Manufacturing Practice (cGMP) has been performed. The 50 kg run has provided a sufficient amount of protein to support the ongoing hookworm vaccine development program of the Sabin PDP.
Collapse
Affiliation(s)
- Christopher A Seid
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Elena Curti
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - R Mark Jones
- Fraunhofer Center for Molecular Biotechnology; Newark, DE, USA
| | - Elissa Hudspeth
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Wanderson Rezende
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Jeroen Pollet
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Lori Center
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Leroy Versteeg
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
| | - Sonya Pritchard
- Fraunhofer Center for Molecular Biotechnology; Newark, DE, USA
| | | | - Vidadi Yusibov
- Fraunhofer Center for Molecular Biotechnology; Newark, DE, USA
| | - Peter J Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
- Department of Biology; Baylor University; Waco, TX, USA
| | - Maria Elena Bottazzi
- Departments of Pediatrics and Molecular Virology and Microbiology; National School of Tropical Medicine; Baylor College of Medicine; Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development; Houston, TX, USA
- Department of Biology; Baylor University; Waco, TX, USA
| |
Collapse
|
31
|
Jacquet N, Navarre C, Desmecht D, Boutry M. Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity. PLoS One 2014; 9:e115944. [PMID: 25541987 PMCID: PMC4277400 DOI: 10.1371/journal.pone.0115944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/30/2014] [Indexed: 12/02/2022] Open
Abstract
The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1)pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ∼ 2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants.
Collapse
Affiliation(s)
- Nicolas Jacquet
- Institute of Life Sciences, University of Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Navarre
- Institute of Life Sciences, University of Louvain, Louvain-la-Neuve, Belgium
| | - Daniel Desmecht
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Marc Boutry
- Institute of Life Sciences, University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
32
|
Yusibov V, Kushnir N, Streatfield SJ. Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Rev Vaccines 2014; 14:519-35. [PMID: 25487788 DOI: 10.1586/14760584.2015.989988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Influenza infections continue to present a major threat to public health. Traditional modes of influenza vaccine manufacturing are failing to satisfy the global demand because of limited scalability and long production timelines. In contrast, subunit vaccines (SUVs) can be produced in heterologous expression systems in shorter times and at higher quantities. Plants are emerging as a promising platform for SUV production due to time efficiency, scalability, lack of harbored mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modifications. So far, several organizations have utilized plant-based transient expression systems to produce SUVs against influenza, including vaccines based on virus-like particles. Plant-produced influenza SUV candidates have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, the authors review ongoing efforts and challenges to producing influenza SUV candidates in plants and discuss the likelihood of bringing these products to the market.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | |
Collapse
|
33
|
Shoji Y, Prokhnevsky A, Leffet B, Vetter N, Tottey S, Satinover S, Musiychuk K, Shamloul M, Norikane J, Jones RM, Chichester JA, Green BJ, Streatfield SJ, Yusibov V. Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum Vaccin Immunother 2014; 11:118-23. [PMID: 25483524 PMCID: PMC4514423 DOI: 10.4161/hv.34365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022] Open
Abstract
The H1N1 influenza pandemic of 2009 stimulated interest in developing safe and effective subunit influenza vaccines using rapid and cost-effective recombinant technologies that can avoid dependence on hens' eggs supply and live viruses for production. Among alternative approaches to subunit vaccine development, virus-like particles (VLPs) represent an attractive strategy due to their safety and immunogenicity. Previously, we have produced a recombinant monomeric hemagglutinin (HA) protein derived from the A/California/04/09 (H1N1) strain of influenza virus in a plant-based transient expression system and demonstrated immunogenicity and safety of this monomeric HA in animal models and human volunteers. In an effort to produce higher potency influenza vaccine in plants, we have designed and generated enveloped VLPs using the ectodomain of HA from the A/California/04/09 strain and heterologous sequences. The resulting H1 HA VLPs (HAC-VLPs) elicited robust hemagglutination inhibition antibody responses in mice at doses lower than 1 µg in the presence or absence of Alhydrogel adjuvant. These results suggest enhanced immunogenicity of recombinant HA in the form of an enveloped VLP over soluble antigen.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Aluminum Hydroxide/administration & dosage
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/isolation & purification
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Nicotiana/genetics
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Vaccines, Virus-Like Particle/isolation & purification
Collapse
Affiliation(s)
- Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Alex Prokhnevsky
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Brett Leffet
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Nancy Vetter
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Shama Satinover
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Brian J Green
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
34
|
Jones RM, Chichester JA, Manceva S, Gibbs SK, Musiychuk K, Shamloul M, Norikane J, Streatfield SJ, van de Vegte-Bolmer M, Roeffen W, Sauerwein RW, Yusibov V. A novel plant-produced Pfs25 fusion subunit vaccine induces long-lasting transmission blocking antibody responses. Hum Vaccin Immunother 2014; 11:124-32. [PMID: 25483525 PMCID: PMC4514342 DOI: 10.4161/hv.34366] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/10/2014] [Indexed: 11/19/2022] Open
Abstract
Malaria transmission blocking vaccines (TBV) directed against proteins expressed on sexual stages of Plasmodium falciparum in the mosquito midgut are considered an effective means to reduce malaria transmission. Antibodies induced by TBV block sporogonic development in the mosquito, and thus transmission to the next human host. The Pfs25 protein, expressed on the surface of gametes, zygotes and ookinetes, is one of the primary targets for TBV development. Using a plant virus-based transient expression system, we have successfully produced Pfs25 fused to a modified lichenase (LicKM) carrier in Nicotiana benthamiana, purified and characterized the protein (Pfs25-FhCMB), and evaluated this vaccine candidate in animal models for the induction of transmission blocking antibodies. Soluble Pfs25-FhCMB was expressed in plants at a high level, and induced transmission blocking antibodies that persisted for up to 6 months post immunization in mice and rabbits. These data demonstrate the potential of the new malaria vaccine candidate and also support feasibility of expressing Plasmodium antigens in a plant-based system.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Transmission, Infectious/prevention & control
- Female
- Gene Expression
- Genetic Vectors
- Glycoside Hydrolases/genetics
- Glycoside Hydrolases/metabolism
- Malaria/prevention & control
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Potyvirus/genetics
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Rabbits
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Time Factors
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- R Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | | | - Sandra K Gibbs
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Marga van de Vegte-Bolmer
- Departments of Medical Microbiology; Nijmegen Center for Molecular Life Sciences; Radboud University Nijmegen Medical Center; Nijmegen, The Netherlands
| | - Will Roeffen
- Departments of Medical Microbiology; Nijmegen Center for Molecular Life Sciences; Radboud University Nijmegen Medical Center; Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Departments of Medical Microbiology; Nijmegen Center for Molecular Life Sciences; Radboud University Nijmegen Medical Center; Nijmegen, The Netherlands
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
35
|
Shamloul M, Trusa J, Mett V, Yusibov V. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 2014:51204. [PMID: 24796351 PMCID: PMC4174718 DOI: 10.3791/51204] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Collapse
Affiliation(s)
| | - Jason Trusa
- Fraunhofer USA Center for Molecular Biotechnology
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology
| | | |
Collapse
|
36
|
Cummings JF, Guerrero ML, Moon JE, Waterman P, Nielsen RK, Jefferson S, Gross FL, Hancock K, Katz JM, Yusibov V. Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1)pdm09 virus: a Phase 1 dose-escalation study in healthy adults. Vaccine 2014; 32:2251-9. [PMID: 24126211 PMCID: PMC9007152 DOI: 10.1016/j.vaccine.2013.10.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Novel influenza viruses continue to pose a potential pandemic threat worldwide. In recent years, plants have been used to produce recombinant proteins, including subunit vaccines. A subunit influenza vaccine, HAC1, based on recombinant hemagglutinin from the 2009 pandemic A/California/04/2009 (H1N1) strain of influenza virus, has been manufactured using a plant virus-based transient expression technology in Nicotiana benthamiana plants and demonstrated to be immunogenic and safe in pre-clinical studies (Shoji et al., 2011). METHODS A first-in-human, Phase 1, single-center, randomized, placebo-controlled, single-blind, dose escalation study was conducted to investigate safety, reactogenicity and immunogenicity of an HAC1 formulation at three escalating dose levels (15 μg, 45 μg and 90 μg) with and without Alhydrogel(®), in healthy adults 18-50 years of age (inclusive). Eighty participants were randomized into six study vaccine groups, a saline placebo group and an approved monovalent H1N1 vaccine group. Recipients received two doses of vaccine or placebo (except for the monovalent H1N1 vaccine cohort, which received a single dose of vaccine, later followed by a dose of placebo). RESULTS The experimental vaccine was safe and well tolerated, and comparable to placebo and the approved monovalent H1N1 vaccine. Pain and tenderness at the injection site were the only local solicited reactions reported following vaccinations. Nearly all adverse events were mild to moderate in severity. The HAC1 vaccine was also immunogenic, with the highest seroconversion rates, based on serum hemagglutination-inhibition and virus microneutralization antibody titers, in the 90 μg non-adjuvanted HAC1 vaccine group after the second vaccine dose (78% and 100%, respectively). CONCLUSIONS This is the first study demonstrating the safety and immunogenicity of a plant-produced subunit H1N1 influenza vaccine in healthy adults. The results support further clinical investigation of the HAC1 vaccine as well as demonstrate the feasibility of the plant-based technology for vaccine antigen production.
Collapse
MESH Headings
- Adult
- Antibodies, Viral/blood
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza, Human/prevention & control
- Male
- Middle Aged
- Recombinant Proteins/immunology
- Single-Blind Method
- Nicotiana
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- James F Cummings
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | - James E Moon
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Paige Waterman
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Robin K Nielsen
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stacie Jefferson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - F Liaini Gross
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Kathy Hancock
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE 19711, USA
| |
Collapse
|
37
|
Ling HY, Pelosi A, Walmsley AM. Current status of plant-made vaccines for veterinary purposes. Expert Rev Vaccines 2014; 9:971-82. [DOI: 10.1586/erv.10.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Jones RM, Chichester JA, Mett V, Jaje J, Tottey S, Manceva S, Casta LJ, Gibbs SK, Musiychuk K, Shamloul M, Norikane J, Mett V, Streatfield SJ, van de Vegte-Bolmer M, Roeffen W, Sauerwein RW, Yusibov V. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One 2013; 8:e79538. [PMID: 24260245 PMCID: PMC3832600 DOI: 10.1371/journal.pone.0079538] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/20/2013] [Indexed: 11/18/2022] Open
Abstract
Malaria transmission blocking vaccines (TBVs) are considered an effective means to control and eventually eliminate malaria. The Pfs25 protein, expressed predominantly on the surface of the sexual and sporogonic stages of Plasmodium falciparum including gametes, zygotes and ookinetes, is one of the primary targets for TBV. It has been demonstrated that plants are an effective, highly scalable system for the production of recombinant proteins, including virus-like particles (VLPs). We engineered VLPs (Pfs25-CP VLP) comprising Pfs25 fused to the Alfalfa mosaic virus coat protein (CP) and produced these non-enveloped hybrid VLPs in Nicotiana benthamiana plants using a Tobacco mosaic virus-based ‘launch’ vector. Purified Pfs25-CP VLPs were highly consistent in size (19.3±2.4 nm in diameter) with an estimated 20–30% incorporation of Pfs25 onto the VLP surface. Immunization of mice with one or two doses of Pfs25-CP VLPs plus Alhydrogel® induced serum antibodies with complete transmission blocking activity through the 6 month study period. These results support the evaluation of Pfs25-CP VLP as a potential TBV candidate and the feasibility of the ‘launch’ vector technology for the production of VLP-based recombinant vaccines against infectious diseases.
Collapse
Affiliation(s)
- R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jessica A. Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen Tottey
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Slobodanka Manceva
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Louis J. Casta
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Sandra K. Gibbs
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Konstantin Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Valentina Mett
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen J. Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | | | - Will Roeffen
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
39
|
Mamedov T, Yusibov V. In vivo deglycosylation of recombinant proteins in plants by co-expression with bacterial PNGase F. Bioengineered 2013; 4:338-42. [PMID: 23328084 PMCID: PMC3813534 DOI: 10.4161/bioe.23449] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/25/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022] Open
Abstract
At present, several eukaryotic expression systems including yeast, insect and mammalian cells and plants are used for the production of recombinant proteins. Proteins with potential N-glycosylation sites are efficiently glycosylated when expressed in these systems. However, the ability of the eukaryotic expression systems to glycosylate may be not desirable for some proteins. If target proteins that do not carry N-linked glycans in the native host contain potential N-linked glycosylation sites, they can be aberrantly glycosylated in the eukaryotic expression systems, thus, potentially impairing biological activity. Recently, we have developed a strategy of enzymatic deglycosylation of proteins in vivo by co-introducing bacterial PNGase F via agroinfiltration followed by transient expression in plants. (1) Here, we summarize our work on this topic and its potential implications.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
40
|
Musiychuk K, Sivalenka R, Jaje J, Bi H, Flores R, Shaw B, Jones RM, Golovina T, Schnipper J, Khandker L, Sun R, Li C, Kang L, Voskinarian-Berse V, Zhang X, Streatfield S, Hambor J, Abbot S, Yusibov V. Plant-produced human recombinant erythropoietic growth factors support erythroid differentiation in vitro. Stem Cells Dev 2013; 22:2326-40. [PMID: 23517237 PMCID: PMC3730378 DOI: 10.1089/scd.2012.0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/21/2013] [Indexed: 01/11/2023] Open
Abstract
Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system.
Collapse
Affiliation(s)
| | | | - Jennifer Jaje
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Rosemary Flores
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Brenden Shaw
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | - Tatiana Golovina
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| | | | | | - Ruiqiang Sun
- Celgene Cellular Therapeutics, Warren, New Jersey
| | - Chang Li
- Celgene Cellular Therapeutics, Warren, New Jersey
| | - Lin Kang
- Celgene Cellular Therapeutics, Warren, New Jersey
| | | | | | | | - John Hambor
- Celgene Cellular Therapeutics, Warren, New Jersey
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware
| |
Collapse
|
41
|
Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans. PLoS One 2013; 8:e66719. [PMID: 23799128 PMCID: PMC3682957 DOI: 10.1371/journal.pone.0066719] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022] Open
Abstract
Highly pathogenic avian influenza H5N1 viruses can result in poultry and occasionally in human mortality. A safe and effective H5N1 vaccine is urgently needed to reduce the pandemic potential. Hemagglutinin (HA), a major envelope protein accounting for approximately 80% of spikes in influenza virus, is often used as a major antigen for subunit vaccine development. In this study, we conducted a systematic study of the immune response against influenza virus infection following immunization with recombinant HA proteins expressed in insect (Sf9) cells, insect cells that contain exogenous genes for elaborating N-linked glycans (Mimic) and mammalian cells (CHO). While the antibody titers are higher with the insect cell derived HA proteins, the neutralization and HA inhibition titers are much higher with the mammalian cell produced HA proteins. Recombinant HA proteins containing tri- or tetra-antennary complex, terminally sialylated and asialyated-galactose type N-glycans induced better protective immunity in mice to lethal challenge. The results are highly relevant to issues that should be considered in the production of fragment vaccines.
Collapse
|
42
|
Rajesh Kumar S, Syed Khader SM, Kiener TK, Szyporta M, Kwang J. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus. PLoS One 2013; 8:e63856. [PMID: 23762234 PMCID: PMC3676417 DOI: 10.1371/journal.pone.0063856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/06/2013] [Indexed: 01/08/2023] Open
Abstract
Background Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. Methodology/Principal Findings In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA). The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n.) or subcutaneously (s.c.) with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. Conclusion Our results indicated that protection from high pathogenic H7N7 (NL/219/03) virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.
Collapse
MESH Headings
- Adaptation, Physiological/immunology
- Administration, Intranasal
- Animals
- Antibodies, Neutralizing/immunology
- Baculoviridae/genetics
- Enzyme-Linked Immunospot Assay
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunity, Cellular/immunology
- Immunity, Mucosal/immunology
- Immunization
- Influenza A Virus, H7N7 Subtype/genetics
- Influenza A Virus, H7N7 Subtype/immunology
- Influenza A Virus, H7N7 Subtype/pathogenicity
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Lung/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Reassortant Viruses/genetics
- Reassortant Viruses/immunology
- Reproducibility of Results
- Subcutaneous Tissue/immunology
- Subcutaneous Tissue/pathology
- Subcutaneous Tissue/virology
Collapse
Affiliation(s)
- Subaschandrabose Rajesh Kumar
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Syed Musthaq Syed Khader
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tanja K. Kiener
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Milene Szyporta
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
43
|
Phan HT, Pohl J, Floss DM, Rabenstein F, Veits J, Le BT, Chu HH, Hause G, Mettenleiter T, Conrad U. ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:582-93. [PMID: 23398695 DOI: 10.1111/pbi.12049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/17/2012] [Accepted: 01/07/2013] [Indexed: 06/01/2023]
Abstract
Reducing the cost of vaccine production is a key priority for veterinary research, and the possibility of heterologously expressing antigen in plants provides a particularly attractive means of achieving this. Here, we report the expression of the avian influenza virus haemagglutinin (AIV HA) in tobacco, both as a monomer and as a trimer in its native and its ELPylated form. We firstly presented evidence to produce stabilized trimers of soluble HA in plants. ELPylation of these trimers does not influence the trimerization. Strong expression enhancement in planta caused by ELPylation was demonstrated for trimerized H5-ELP. ELPylated trimers could be purified by a membrane-based inverse transition cycling procedure with the potential of successful scale-up. The trimeric form of AIV HA was found to enhance the HA-specific immune response compared with the monomeric form. Plant-derived AIV HA trimers elicited potentially neutralizing antibodies interacting with both homologous virus-like particles from plants and heterologous inactivated AIV. ELPylation did not influence the functionality and the antigenicity of the stabilized H5 trimers. These data allow further developments including scale-up of production, purification and virus challenge experiments with the final goal to achieve suitable technologies for efficient avian flu vaccine production.
Collapse
Affiliation(s)
- Hoang T Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research-IPK, Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bayne ACV, Boltz D, Owen C, Betz Y, Maia G, Azadi P, Archer-Hartmann S, Zirkle R, Lippmeier JC. Vaccination against influenza with recombinant hemagglutinin expressed by Schizochytrium sp. confers protective immunity. PLoS One 2013; 8:e61790. [PMID: 23626728 PMCID: PMC3634000 DOI: 10.1371/journal.pone.0061790] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/13/2013] [Indexed: 11/18/2022] Open
Abstract
For the rapid production of influenza vaccine antigens in unlimited quantities, a transition from conventional egg-based production to cell-based and recombinant systems is required. The need for higher-yield, lower-cost, and faster production processes is critical to provide adequate supplies of influenza vaccine to counter global pandemic threats. In this study, recombinant hemagglutinin proteins of influenza virus were expressed in the microalga Schizochytrium sp., an established, fermentable organism grown in large scale for the manufacture of polyunsaturated fatty acids for animal and human health applications. Schizochytrium was capable of exporting the full-length membrane-bound proteins in a secreted form suitable for vaccine formulation. One recombinant hemagglutinin (rHA) protein derived from A/Puerto Rico/8/34 (H1N1) influenza virus was evaluated as a vaccine in a murine challenge model. Protective immunity from lethal challenge with homologous virus was elicited by a single dose of 1.7, 5 or 15 µg rHA with or without adjuvant at survival rates between 80–100%. Full protection (100%) was established at all dose levels with or without adjuvant when mice were given a second vaccination. These data demonstrate the potential of Schizochytrium sp. as a platform for the production of recombinant antigens useful for vaccination against influenza.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Dose-Response Relationship, Immunologic
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunization, Secondary
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Mice
- Mice, Inbred BALB C
- Microalgae/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/mortality
- Orthomyxoviridae Infections/prevention & control
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Stramenopiles/genetics
Collapse
Affiliation(s)
- Anne-Cécile V. Bayne
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - David Boltz
- Division of Microbiology & Molecular Biology, IIT Research Institute, Illinois Institute of Technology, Chicago, Illinois, United States of America
| | - Carole Owen
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - Yelena Betz
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - Goncalo Maia
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ross Zirkle
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
| | - J. Casey Lippmeier
- Nutritional Lipids, DSM Nutritional Products, Columbia, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Chichester JA, Manceva SD, Rhee A, Coffin MV, Musiychuk K, Mett V, Shamloul M, Norikane J, Streatfield SJ, Yusibov V. A plant-produced protective antigen vaccine confers protection in rabbits against a lethal aerosolized challenge with Bacillus anthracis Ames spores. Hum Vaccin Immunother 2013; 9:544-52. [PMID: 23324615 PMCID: PMC3891710 DOI: 10.4161/hv.23233] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our launch vector-based plant transient expression system. Using this system, we have successfully engineered, expressed, purified and characterized full-length PA (pp-PA83) in Nicotiana benthamiana plants using agroinfiltration. This plant-produced antigen elicited high toxin neutralizing antibody titers in mice and rabbits after two vaccine administrations with Alhydrogel. In addition, immunization with this vaccine candidate protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. The vaccine effects were dose-dependent and required the presence of Alhydrogel adjuvant. In addition, the vaccine antigen formulated with Alhydrogel was stable and retained immunogenicity after two-week storage at 4°C, the conditions intended for clinical use. These results support the testing of this vaccine candidate in human volunteers and the utility of our plant expression system for the production of a recombinant anthrax vaccine.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Aerosols
- Aluminum Hydroxide/administration & dosage
- Animals
- Anthrax/immunology
- Anthrax/prevention & control
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/immunology
- Antibodies, Bacterial/blood
- Antibodies, Neutralizing/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/isolation & purification
- Bacterial Toxins/administration & dosage
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/isolation & purification
- Disease Models, Animal
- Inhalation Exposure
- Mice, Inbred BALB C
- Plants, Genetically Modified/genetics
- Rabbits
- Survival Analysis
- Nicotiana/genetics
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
| | | | - Amy Rhee
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
46
|
Shoji Y, Jones RM, Mett V, Chichester JA, Musiychuk K, Sun X, Tumpey TM, Green BJ, Shamloul M, Norikane J, Bi H, Hartman CE, Bottone C, Stewart M, Streatfield SJ, Yusibov V. A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge. Hum Vaccin Immunother 2013; 9:553-60. [PMID: 23296194 PMCID: PMC3891711 DOI: 10.4161/hv.23234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
The increased worldwide awareness of seasonal and pandemic influenza, including pandemic H1N1 virus, has stimulated interest in the development of economic platforms for rapid, large-scale production of safe and effective subunit vaccines. In recent years, plants have demonstrated their utility as such a platform and have been used to produce vaccine antigens against various infectious diseases. Previously, we have produced in our transient plant expression system a recombinant monomeric hemagglutinin (HA) protein (HAC1) derived from A/California/04/09 (H1N1) strain of influenza virus and demonstrated its immunogenicity and safety in animal models and human volunteers. In the current study, to mimic the authentic HA structure presented on the virus surface and to improve stability and immunogenicity of the HA antigen, we generated trimeric HA by introducing a trimerization motif from a heterologous protein into the HA sequence. Here, we describe the engineering, production in Nicotiana benthamiana plants, and characterization of the highly purified recombinant trimeric HA protein (tHA-BC) from A/California/04/09 (H1N1) strain of influenza virus. The results demonstrate the induction of serum hemagglutination inhibition antibodies by tHA-BC and its protective efficacy in mice against a lethal viral challenge. In addition, the immunogenic and protective doses of tHA-BC were much lower compared with monomeric HAC1. Further investigation into the optimum vaccine dose and/or regimen as well as the stability of trimerized HA is necessary to determine whether trimeric HA is a more potent vaccine antigen than monomeric HA.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Disease Models, Animal
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Plants, Genetically Modified/genetics
- Protein Engineering
- Protein Multimerization
- Survival Analysis
- Nicotiana/genetics
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | | | - Xiangjie Sun
- Influenza Division; National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Terrence M. Tumpey
- Influenza Division; National Center for Immunization and Respiratory Diseases; Centers for Disease Control and Prevention; Atlanta, GA USA
| | - Brian J. Green
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Moneim Shamloul
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Joey Norikane
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Cory Bottone
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | - Michelle Stewart
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| | | | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology; Newark, DE USA
| |
Collapse
|
47
|
Noisumdaeng P, Pooruk P, Kongchanagul A, Assanasen S, Kitphati R, Auewarakul P, Puthavathana P. Biological properties of H5 hemagglutinin expressed by vaccinia virus vector and its immunological reactivity with human sera. Viral Immunol 2013; 26:49-59. [PMID: 23374152 DOI: 10.1089/vim.2012.0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A recombinant vaccinia virus harboring the full length hemagglutinin (HA) gene derived from a highly pathogenic avian influenza A/Thailand/1(KAN-1)/2004 (H5N1) virus (rVac-H5 HA virus) was constructed. The immunogenicity of the expressed HA protein was characterized using goat antiserum, mouse monoclonal antibody, and human sera. The expressed HA protein localized both in the cytoplasm and on the cytoplasmic membrane of the thymidine kinase negative cells infected with the rVac-H5 HA virus, as determined by immunofluorescence assay. Western blot analysis demonstrated that the rVac-H5 HA protein was post-translationally processed by proteolytic cleavage of the HA0 precursor into HA1 and HA2 domains; and all of these HA forms were immunogenic in BALB/c mice. The molecular weight (MW) of each HA domain was the same as the wild-type H5 HA produced in Madin-Darby canine kidney cells infected with the H5N1 virus, but was higher than that expressed by a baculovirus-insect cell system. Sera from all H5N1 survivors reacted to HA0, HA1, and HA2 domains; whereas sera from H5N1-uninfected subjects reacted to the HA2 domain only, but not to HA0 or HA1, indicating that some cross-subtypic immunity exists in the general population. There was a lot-to-lot variation of the recombinant HA produced in the baculovirus-insect cell system that might affect the detection rate of antibody directed against certain HA domains.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Department of Microbiology, Mahidol University, Bangkok-noi, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
48
|
Shahid M, Shahzad A, Malik A, Sahai A. Plant Edible Vaccines: A Revolution in Vaccination. RECENT TRENDS IN BIOTECHNOLOGY AND THERAPEUTIC APPLICATIONS OF MEDICINAL PLANTS 2013. [PMCID: PMC7120501 DOI: 10.1007/978-94-007-6603-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohd. Shahid
- Arabian Gulf University, Department Of Medical Microbiology, College of Medicine & Medical Sciences, Manama, Bahrain
| | - Anwar Shahzad
- , Department of Botany, Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| | - Abida Malik
- , Department of Microbiology, Aligarh Muslim University, J. N. Medical College & Hospital, Aligarh, 202002 Uttar Pradesh India
| | - Aastha Sahai
- , Department of Botany, Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| |
Collapse
|
49
|
Chichester JA, Jones RM, Green BJ, Stow M, Miao F, Moonsammy G, Streatfield SJ, Yusibov V. Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/Indonesia/05/2005 (H5N1) influenza virus: a phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses 2012; 4:3227-44. [PMID: 23202523 PMCID: PMC3509691 DOI: 10.3390/v4113227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 01/23/2023] Open
Abstract
Recently, we have reported [1,2] on a subunit influenza vaccine candidate based on the recombinant hemagglutinin protein from the A/Indonesia/05/2005 (H5N1) strain of influenza virus, produced it using 'launch vector'-based transient expression technology in Nicotiana benthamiana, and demonstrated its immunogenicity in pre-clinical studies. Here, we present the results of a first-in-human, Phase 1 randomized, double-blind, placebo-controlled study designed to investigate safety, reactogenicity and immunogenicity of three escalating dose levels of this vaccine, HAI-05, (15, 45 and 90 µg) adjuvanted with Alhydrogel® (0.75 mg aluminum per dose) and the 90 µg dose level without Alhydrogel®. Vaccine was administered intramuscularly in two injections three weeks apart to healthy adults of 18-49 years of age. At all dose levels the vaccine was generally safe and well tolerated, with no reported serious adverse events or dose-limiting toxicities. Mild local and systemic reactions were observed in all vaccine dose groups and the placebo group and their occurrence was not dose related. The incidence rates were higher in the groups receiving vaccine with Alhydrogel®. The immune response elicited by the HAI-05 vaccine was variable with respect to both hemagglutination-inhibition and virus microneutralization antibody titers, with the highest responses observed in the 90 µg unadjuvanted group.
Collapse
|
50
|
Liu G, Song L, Reiserova L, Trivedi U, Li H, Liu X, Noah D, Hou F, Weaver B, Tussey L. Flagellin-HA vaccines protect ferrets and mice against H5N1 highly pathogenic avian influenza virus (HPAIV) infections. Vaccine 2012; 30:6833-8. [PMID: 23000130 DOI: 10.1016/j.vaccine.2012.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/08/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
In order to meet the global demand for rapid production of pandemic influenza vaccines, we have developed a recombinant fusion vaccine platform in which the globular head of hemagglutinin (HA) antigen is genetically fused to bacterial flagellin (a TLR5 ligand). These flagellin-HA fusion vaccine candidates elicit highly protective immunity against a lethal challenge with 2009 pandemic H1N1 (Liu, et al. PLoS ONE 2011; 6:e20928) or H5N1 influenza A/Vietnam/1203/04 (A/VN) infections in mice (Song, et al. Vaccine 2009;27:5875-88). Here we provide the first evidence showing that two A/VN vaccine candidates elicited HA-specific IgG, reduced nasal virus shedding, and conferred full protection against a lethal A/VN infection in ferrets. Furthermore, we show that similar flagellin-HA vaccine candidates of two other H5N1 HPAIV are immunogenic and/or efficacious in mice. Vaccines of A/Indonesia/5/05 (A/IN) induced significant HAI titers to homologous and heterologous A/Anhui/1/05 (A/AN) H5N1 viruses. Two subcutaneous immunizations with doses of either 0.3 μg or 3 μg of A/IN candidates resulted in ≥ 2.5 log(10) unit reduction in day 5 lung virus titer and 90-100% protection against a lethal A/IN challenge in mice. Both R3.HA5 IN and R3.2xHA5 IN vaccines elicited robust neutralizing antibody responses that last for at least 9 months and demonstrated a significant anamnestic antibody response upon further booster immunization. Finally, we found that two vaccine candidates of A/AN induced significant HAI titers in mice. Taken together, our recombinant flagellin-HA platform has been successfully used to generate potent H5N1 HPAIV vaccine candidates. These promising preclinical results justify the advancement of these candidates into the clinic.
Collapse
Affiliation(s)
- Ge Liu
- VaxInnate Corporation, 3 Cedar Brook Drive, Cranbury, NJ 08512, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|