1
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
2
|
Bedi R, Bayless NL, Glanville J. Challenges and Progress in Designing Broad-Spectrum Vaccines Against Rapidly Mutating Viruses. Annu Rev Biomed Data Sci 2023; 6:419-441. [PMID: 37196356 DOI: 10.1146/annurev-biodatasci-020722-041304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Viruses evolve to evade prior immunity, causing significant disease burden. Vaccine effectiveness deteriorates as pathogens mutate, requiring redesign. This is a problem that has grown worse due to population increase, global travel, and farming practices. Thus, there is significant interest in developing broad-spectrum vaccines that mitigate disease severity and ideally inhibit disease transmission without requiring frequent updates. Even in cases where vaccines against rapidly mutating pathogens have been somewhat effective, such as seasonal influenza and SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), designing vaccines that provide broad-spectrum immunity against routinely observed viral variation remains a desirable but not yet achieved goal. This review highlights the key theoretical advances in understanding the interplay between polymorphism and vaccine efficacy, challenges in designing broad-spectrum vaccines, and technology advances and possible avenues forward. We also discuss data-driven approaches for monitoring vaccine efficacy and predicting viral escape from vaccine-induced protection. In each case, we consider illustrative examples in vaccine development from influenza, SARS-CoV-2, and HIV (human immunodeficiency virus)-three examples of highly prevalent rapidly mutating viruses with distinct phylogenetics and unique histories of vaccine technology development.
Collapse
Affiliation(s)
- Rishi Bedi
- Centivax Inc., South San Francisco, California, USA
| | | | | |
Collapse
|
3
|
Cherepovich BS, Rtishchev AA, Akopova II, Borisova OV, Kost VY, Kutuzova NM, Markushin SG. Comparative study of the biological properties of influenza А virus mutants obtained by site-specific mutagenesis and the live influenza reassortant vaccine variant. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of study was to carry out comparative investigation of biological properties of site-specific mutants of Influenza A virus and variant of live cold-adapted (CA) influenza reassortant vaccine.
Materials and methods. The genetic stability of site-specific mutants (SSM) of the A/WSN/33 (H1N1) strain with ts (temperature sensitive)-mutations in polymerase genes was studied using a stress-test in MadinDarby Canine Kidney (MDCK) culture. A comparative study of immunogenicity of U2 and M26 mutants with the high genetic stability and the CA-reassortant with similar surface proteins was carried out. The increase in the antibody titer was investigated using enzyme-linked immunosorbent assay and the reaction of delayed hemagglutination. Ability of the studied viruses to induce type 1 interferon in A549 cells was determined using real-time polymerase chain reaction (real-time PCR).
Results. It was shown that U2 and M26 mutants, which have 3 ts-mutations or more in polymerase genes have high genetic stability. It was found that U2 and M26 mutants induced a higher antibody titers than the CA reassortant in mice following the intranasal immunization. The ability of site-specific mutants and CA reassortant to induce type 1 interferon was also investigated. Mutants U2 and M26 increased the level of interferon to a greater extent than the CA-reassortant.
Conclusion. The data obtained indicate that SSM U2 and M26 with 3 ts-mutations or more in the genome have a significant level of genetic stability. Mutants U2 and M26 have a higher immunogenicity and a higher ability to induce interferon in comparison with the CA reassortant. These facts allow us to conclude that SSM of the influenza virus with a set of mutations in polymerase genes can be considered as promising candidates for live influenza vaccines.
Collapse
|
4
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
5
|
Eccles R. Why is temperature sensitivity important for the success of common respiratory viruses? Rev Med Virol 2020; 31:1-8. [PMID: 32776651 PMCID: PMC7435572 DOI: 10.1002/rmv.2153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
This review explores the idea that temperature sensitivity is an important factor in determining the success of respiratory viruses as human parasites. The review discusses several questions. What is viral temperature sensitivity? At what range of temperatures are common respiratory viruses sensitive? What is the mechanism for their temperature sensitivity? What is the range of temperature along the human airway? What is it that makes respiratory viruses such successful parasites of the human airway? What is the role of temperature sensitivity in respiratory zoonoses? A definition of temperature sensitivity is proposed, as “the property of a virus to replicate poorly or not at all, at the normal body temperature of the host (restrictive temperature), but to replicate well at the lower temperatures found in the upper airway of the host (permissive temperature).” Temperature sensitivity may influence the success of a respiratory virus in several ways. Firstly; by restricting the infection to the upper airways and reducing the chance of systemic infection that may reduce host mobility and increase mortality, and thus limit the spread of the virus. Secondly; by causing a mild upper airway illness with a limited immune response compared to systemic infection, which means that persistent herd immunity does not develop to the same extent as with systemic infections, and re‐infection may occur later. Thirdly; infection of the upper airway triggers local reflex rhinorrhea, coughing and sneezing which aid the exit of the virus from the host and the spread of infection in the community.
Collapse
Affiliation(s)
- Ronald Eccles
- Emeritus Professor, Cardiff School of Biosciences, Cardiff University, UK
| |
Collapse
|
6
|
Smith A, Rodriguez L, El Ghouayel M, Nogales A, Chamberlain JM, Sortino K, Reilly E, Feng C, Topham DJ, Martínez-Sobrido L, Dewhurst S. A Live Attenuated Influenza Vaccine Elicits Enhanced Heterologous Protection When the Internal Genes of the Vaccine Are Matched to Those of the Challenge Virus. J Virol 2020; 94:e01065-19. [PMID: 31748399 PMCID: PMC6997774 DOI: 10.1128/jvi.01065-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality, despite the availability of viral vaccines. The efficacy of live attenuated influenza vaccines (LAIVs) has been especially poor in recent years. One potential reason is that the master donor virus (MDV), on which all LAIVs are based, contains either the internal genes of the 1960 A/Ann Arbor/6/60 or the 1957 A/Leningrad/17/57 H2N2 viruses (i.e., they diverge considerably from currently circulating strains). We previously showed that introduction of the temperature-sensitive (ts) residue signature of the AA/60 MDV into a 2009 pandemic A/California/04/09 H1N1 virus (Cal/09) results in only 10-fold in vivo attenuation in mice. We have previously shown that the ts residue signature of the Russian A/Leningrad/17/57 H2N2 LAIV (Len LAIV) more robustly attenuates the prototypical A/Puerto Rico/8/1934 (PR8) H1N1 virus. In this work, we therefore introduced the ts signature from Len LAIV into Cal/09. This new Cal/09 LAIV is ts in vitro, highly attenuated (att) in mice, and protects from a lethal homologous challenge. In addition, when our Cal/09 LAIV with PR8 hemagglutinin and neuraminidase was used to vaccinate mice, it provided enhanced protection against a wild-type Cal/09 challenge relative to a PR8 LAIV with the same attenuating mutations. These findings suggest it may be possible to improve the efficacy of LAIVs by better matching the sequence of the MDV to currently circulating strains.IMPORTANCE Seasonal influenza infection remains a major cause of disease and death, underscoring the need for improved vaccines. Among current influenza vaccines, the live attenuated influenza vaccine (LAIV) is unique in its ability to elicit T-cell immunity to the conserved internal proteins of the virus. Despite this, LAIV has shown limited efficacy in recent years. One possible reason is that the conserved, internal genes of all current LAIVs derive from virus strains that were isolated between 1957 and 1960 and that, as a result, do not resemble currently circulating influenza viruses. We have therefore developed and tested a new LAIV, based on a currently circulating pandemic strain of influenza. Our results show that this new LAIV elicits improved protective immunity compared to a more conventional LAIV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing
- Antibodies, Viral/immunology
- Dogs
- Female
- HEK293 Cells
- Humans
- Immunogenicity, Vaccine/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H2N2 Subtype/genetics
- Influenza A Virus, H2N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred C57BL
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Andrew Smith
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester, Rochester, New York, USA
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Maya El Ghouayel
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Jeffrey M Chamberlain
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Katherine Sortino
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Emma Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Changyong Feng
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
7
|
Comparative Study of the Temperature Sensitive, Cold Adapted and Attenuated Mutations Present in the Master Donor Viruses of the Two Commercial Human Live Attenuated Influenza Vaccines. Viruses 2019; 11:v11100928. [PMID: 31658679 PMCID: PMC6832241 DOI: 10.3390/v11100928] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza viruses cause annual, seasonal infection across the globe. Vaccination represents the most effective strategy to prevent such infections and/or to reduce viral disease. Two major types of influenza vaccines are approved for human use: inactivated influenza vaccines (IIVs) and live attenuated influenza vaccines (LAIVs). Two Master Donor Virus (MDV) backbones have been used to create LAIVs against influenza A virus (IAV): the United States (US) A/Ann Arbor/6/60 (AA) and the Russian A/Leningrad/134/17/57 (Len) H2N2 viruses. The mutations responsible for the temperature sensitive (ts), cold-adapted (ca) and attenuated (att) phenotypes of the two MDVs have been previously identified and genetically mapped. However, a direct comparison of the contribution of these residues to viral attenuation, immunogenicity and protection efficacy has not been conducted. Here, we compared the In vitro and in vivo phenotype of recombinant influenza A/Puerto Rico/8/34 H1N1 (PR8) viruses containing the ts, ca and att mutations of the US (PR8/AA) and the Russian (PR8/Len) MDVs. Our results show that PR8/Len is more attenuated in vivo than PR8/AA, although both viruses induced similar levels of humoral and cellular responses, and protection against homologous and heterologous viral challenges. Our findings support the feasibility of using a different virus backbone as MDV for the development of improved LAIVs for the prevention of IAV infections.
Collapse
|
8
|
Martínez-Sobrido L, Peersen O, Nogales A. Temperature Sensitive Mutations in Influenza A Viral Ribonucleoprotein Complex Responsible for the Attenuation of the Live Attenuated Influenza Vaccine. Viruses 2018; 10:E560. [PMID: 30326610 PMCID: PMC6213772 DOI: 10.3390/v10100560] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023] Open
Abstract
Live attenuated influenza vaccines (LAIV) have prevented morbidity and mortality associated with influenza viral infections for many years and represent the best therapeutic option to protect against influenza viral infections in humans. However, the development of LAIV has traditionally relied on empirical methods, such as the adaptation of viruses to replicate at low temperatures. These approaches require an extensive investment of time and resources before identifying potential vaccine candidates that can be safely implemented as LAIV to protect humans. In addition, the mechanism of attenuation of these vaccines is poorly understood in some cases. Importantly, LAIV are more efficacious than inactivated vaccines because their ability to mount efficient innate and adaptive humoral and cellular immune responses. Therefore, the design of potential LAIV based on known properties of viral proteins appears to be a highly appropriate option for the treatment of influenza viral infections. For that, the viral RNA synthesis machinery has been a research focus to identify key amino acid substitutions that can lead to viral attenuation and their use in safe, immunogenic, and protective LAIV. In this review, we discuss the potential to manipulate the influenza viral RNA-dependent RNA polymerase (RdRp) complex to generate attenuated forms of the virus that can be used as LAIV for the treatment of influenza viral infections, one of the current and most effective prophylactic options for the control of influenza in humans.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| | - Olve Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, CO 80523, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| |
Collapse
|
9
|
Ping X, Hu W, Xiong R, Zhang X, Teng Z, Ding M, Li L, Chang C, Xu K. Generation of a broadly reactive influenza H1 antigen using a consensus HA sequence. Vaccine 2018; 36:4837-4845. [PMID: 29960799 DOI: 10.1016/j.vaccine.2018.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
H1N1, one of the most prevalent influenza A virus subtypes affecting the human population, can cause infections varying from mild respiratory syndrome to severe pneumonia. The current H1N1 vaccine needs to be updated annually and does not protect against future outbreaks. Here, we downloaded 2,656 HA protein sequences of human H1N1 viruses from the NCBI influenza database (up to the date of Aug. 2012) and constructed a phylogenetic tree of these H1 proteins via the neighbor-joining method using MEGA 5.0 software. A consensus H1 protein (CH1) was generated and was further modified with published conserved T-cell and B-cell epitopes. Interestingly, this CH1 protein is genetically similar to an H1 isolate obtained during the 1980s (A/Memphis/7/1980), indicating that a universal HA antigen may exist in nature. Vaccination with a DNA vaccine expressing CH1 elicited broadly reactive T-cell and B-cell responses to heterologous H1N1 viruses, though this vaccine did not successfully neutralize pdm09 H1N1 viruses. A combination of CH1 and pdm09 HA in a DNA vaccination neutralized pdm09 H1N1 viruses and protected mice from lethal infections by all representative H1N1 viruses. Moreover, a recombinant chimeric PR8-CH1 virus carrying HA sequence of the consensus H1 and all other seven genes from the PR8 strain was highly attenuated in mice, with a lethal dose (LD50) of more than 106 pfu. Vaccination with PR8-CH1 virus provided complete protection against infections by heterologous H1N1 strains. Taken together, a universal H1 antigen, CH1, was developed by constructing a consensus HA sequence, and the PR8-CH1 virus containing this consensus sequence elicited broadly protective immunity against heterologous H1N1 viruses.
Collapse
Affiliation(s)
- Xianqiang Ping
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | - Weibin Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | - Rui Xiong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 MeiLong Road, Shanghai 200237, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Zheng Teng
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Minyi Ding
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 MeiLong Road, Shanghai 200237, China
| | - Li Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | - Chong Chang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | - Ke Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China.
| |
Collapse
|
10
|
Rodriguez L, Reedy S, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. Development of a novel equine influenza virus live-attenuated vaccine. Virology 2018; 516:76-85. [PMID: 29331866 PMCID: PMC5840510 DOI: 10.1016/j.virol.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/16/2022]
Abstract
H3N8 equine influenza virus (EIV) is an important and significant respiratory pathogen of horses. EIV is enzootic in Europe and North America, mainly due to the suboptimal efficacy of current vaccines. We describe, for the first time, the generation of a temperature sensitive (ts) H3N8 EIV live-attenuated influenza vaccine (LAIV) using reverse-genetics approaches. Our EIV LAIV was attenuated (att) in vivo and able to induce, upon a single intranasal administration, protection against H3N8 EIV wild-type (WT) challenge in both a mouse model and the natural host, the horse. Notably, since our EIV LAIV was generated using reverse genetics, the vaccine can be easily updated against drifting or emerging strains of EIV using the safety backbone of our EIV LAIV as master donor virus (MDV). These results demonstrate the feasibility of implementing a novel EIV LAIV approach for the prevention and control of currently circulating H3N8 EIVs in horse populations.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Stephanie Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
11
|
Interplay of PA-X and NS1 Proteins in Replication and Pathogenesis of a Temperature-Sensitive 2009 Pandemic H1N1 Influenza A Virus. J Virol 2017. [PMID: 28637750 DOI: 10.1128/jvi.00720-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics and occasional pandemics, representing a serious public health concern. It has been described that one mechanism used by some IAV strains to escape the host innate immune responses and modulate virus pathogenicity involves the ability of the PA-X and NS1 proteins to inhibit the host protein synthesis in infected cells. It was reported that for the 2009 pandemic H1N1 IAV (pH1N1) only the PA-X protein had this inhibiting capability, while the NS1 protein did not. In this work, we have evaluated, for the first time, the combined effect of PA-X- and NS1-mediated inhibition of general gene expression on virus pathogenesis, using a temperature-sensitive, live-attenuated 2009 pandemic H1N1 IAV (pH1N1 LAIV). We found that viruses containing PA-X and NS1 proteins that simultaneously have (PAWT+/NS1MUT+) or do not have (PAMUT-/NS1WT-) the ability to block host gene expression showed reduced pathogenicity in vivo However, a virus where the ability to inhibit host protein expression was switched between PA-X and NS1 (PAMUT-/NS1MUT+) presented pathogenicity similar to that of a virus containing both wild-type proteins (PAWT+/NS1WT-). Our findings suggest that inhibition of host protein expression is subject to a strict balance, which can determine the successful progression of IAV infection. Importantly, knowledge obtained from our studies could be used for the development of new and more effective vaccine approaches against IAV.IMPORTANCE Influenza A viruses (IAVs) are one of the most common causes of respiratory infections in humans, resulting in thousands of deaths annually. Furthermore, IAVs can cause unpredictable pandemics of great consequence when viruses not previously circulating in humans are introduced into humans. The defense machinery provided by the host innate immune system limits IAV replication; however, to counteract host antiviral activities, IAVs have developed different inhibition mechanisms, including prevention of host gene expression mediated by the viral PA-X and NS1 proteins. Here, we provide evidence demonstrating that optimal control of host protein synthesis by IAV PA-X and/or NS1 proteins is required for efficient IAV replication in the host. Moreover, we demonstrate the feasibility of genetically controlling the ability of IAV PA-X and NS1 proteins to inhibit host immune responses, providing an approach to develop more effective vaccines to combat disease caused by this important respiratory pathogen.
Collapse
|
12
|
Nogales A, Martinez-Sobrido L, Topham DJ, DeDiego ML. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses. J Virol 2017; 91:e01930-16. [PMID: 28003482 PMCID: PMC5309952 DOI: 10.1128/jvi.01930-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022] Open
Abstract
Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses.IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus surveillance to identify new mutations in the NS1 protein affecting the pathogenicity of the circulating viruses is highly important. In this work, we evaluated amino acid variability in the NS1 proteins from H3N2 human seasonal viruses and the effect of the mutations on innate immune responses and virus pathogenesis. NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, and recombinant viruses harboring these mutations were attenuated in a mouse model of influenza infection. Interestingly, a virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive phenotype, further attenuating the virus in vivo.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
13
|
Rodriguez L, Nogales A, Reilly EC, Topham DJ, Murcia PR, Parrish CR, Martinez Sobrido L. A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology 2017; 504:96-106. [PMID: 28167384 DOI: 10.1016/j.virol.2017.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 11/24/2022]
Abstract
Canine influenza is a contagious respiratory disease in dogs caused by two subtypes (H3N2 and H3N8) of canine influenza virus (CIV). Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIVs. Historically, live-attenuated influenza vaccines (LAIVs) have been shown to produce better immunogenicity and protection efficacy than IIVs. Here, we have engineered a CIV H3N2 LAIV by using the internal genes of a previously described CIV H3N8 LAIV as a master donor virus (MDV) and the surface HA and NA genes of a circulating CIV H3N2 strain. Our findings show that CIV H3N2 LAIV replicates efficiently at low temperature but its replication is impaired at higher temperatures. The CIV H3N2 LAIV was attenuated in vivo but induced better protection efficacy in mice against challenge with wild-type CIV H3N2 than a commercial CIV H3N2 IIV. This is the first description of a LAIV for the prevention of CIV H3N2 in dogs.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US
| | - Emma C Reilly
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US; David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, US
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, US
| | - Luis Martinez Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, US.
| |
Collapse
|
14
|
Temperature-Sensitive Live-Attenuated Canine Influenza Virus H3N8 Vaccine. J Virol 2017; 91:JVI.02211-16. [PMID: 27928017 DOI: 10.1128/jvi.02211-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Canine influenza is a respiratory disease of dogs caused by canine influenza virus (CIV). CIV subtypes responsible for influenza in dogs include H3N8, which originated from the transfer of H3N8 equine influenza virus to dogs; and the H3N2 CIV, which is an avian-origin virus that adapted to infect dogs. Influenza infections are most effectively prevented through vaccination to reduce transmission and future infection. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV in dogs. However, the efficacy of IIVs is suboptimal, and novel approaches are necessary for the prevention of disease caused by this canine respiratory pathogen. Using reverse genetics techniques, we have developed a live-attenuated CIV vaccine (LACIV) for the prevention of H3N8 CIV. The H3N8 LACIV replicates efficiently in canine cells at 33°C but is impaired at temperatures of 37 to 39°C and was attenuated compared to wild-type H3N8 CIV in vivo and ex vivo The LACIV was able to induce protection against H3N8 CIV challenge with a single intranasal inoculation in mice. Immunogenicity and protection efficacy were better than that observed with a commercial CIV H3N8 IIV but provided limited cross-reactive immunity and heterologous protection against H3N2 CIV. These results demonstrate the feasibility of implementing a LAIV approach for the prevention and control of H3N8 CIV in dogs and suggest the need for a new LAIV for the control of H3N2 CIV. IMPORTANCE Two influenza A virus subtypes has been reported in dogs in the last 16 years: the canine influenza viruses (CIV) H3N8 and H3N2 of equine and avian origins, respectively. To date, only inactivated influenza vaccines (IIVs) are available to prevent CIV infections. Here, we report the generation of a recombinant, temperature-sensitive H3N8 CIV as a live-attenuated influenza vaccine (LAIV), which was attenuated in mice and dog tracheal, explants compared to CIV H3N8 wild type. A single dose of H3N8 LACIV showed immunogenicity and protection against a homologous challenge that was better than that conferred with an H3N8 IIV, demonstrating the feasibility of implementing a LAIV approach for the improved control of H3N8 CIV infections in dogs.
Collapse
|
15
|
Isakova-Sivak I, Korenkov D, Smolonogina T, Tretiak T, Donina S, Rekstin A, Naykhin A, Shcherbik S, Pearce N, Chen LM, Bousse T, Rudenko L. Comparative studies of infectivity, immunogenicity and cross-protective efficacy of live attenuated influenza vaccines containing nucleoprotein from cold-adapted or wild-type influenza virus in a mouse model. Virology 2016; 500:209-217. [PMID: 27829176 DOI: 10.1016/j.virol.2016.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/23/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Abstract
This study sought to improve an existing live attenuated influenza vaccine (LAIV) by including nucleoprotein (NP) from wild-type virus rather than master donor virus (MDV). H7N9 LAIV reassortants with 6:2 (NP from MDV) and 5:3 (NP from wild-type virus) genome compositions were compared with regard to their growth characteristics, induction of humoral and cellular immune responses in mice, and ability to protect mice against homologous and heterologous challenge viruses. Although, in general, the 6:2 reassortant induced greater cell-mediated immunity in C57BL6 mice than the 5:3 vaccine, mice immunized with the 5:3 LAIV were better protected against heterologous challenge. The 5:3 LAIV-induced CTLs also had better in vivo killing activity against target cells loaded with the NP366 epitope of recent influenza viruses. Modification of the genome of reassortant vaccine viruses by incorporating the NP gene from wild-type viruses represents a simple strategy to improve the immunogenicity and cross-protection of influenza vaccines.
Collapse
Affiliation(s)
| | - Daniil Korenkov
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | | | - Tatiana Tretiak
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Svetlana Donina
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Andrey Rekstin
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Anatoly Naykhin
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | | | - Nicholas Pearce
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Li-Mei Chen
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tatiana Bousse
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
16
|
Reversion of Cold-Adapted Live Attenuated Influenza Vaccine into a Pathogenic Virus. J Virol 2016; 90:8454-63. [PMID: 27440882 PMCID: PMC5021423 DOI: 10.1128/jvi.00163-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The only licensed live attenuated influenza A virus vaccines (LAIVs) in the United States (FluMist) are created using internal protein-coding gene segments from the cold-adapted temperature-sensitive master donor virus A/Ann Arbor/6/1960 and HA/NA gene segments from circulating viruses. During serial passage of A/Ann Arbor/6/1960 at low temperatures to select the desired attenuating phenotypes, multiple cold-adaptive mutations and temperature-sensitive mutations arose. A substantial amount of scientific and clinical evidence has proven that FluMist is safe and effective. Nevertheless, no study has been conducted specifically to determine if the attenuating temperature-sensitive phenotype can revert and, if so, the types of substitutions that will emerge (i.e., compensatory substitutions versus reversion of existing attenuating mutations). Serial passage of the monovalent FluMist 2009 H1N1 pandemic vaccine at increasing temperatures in vitro generated a variant that replicated efficiently at higher temperatures. Sequencing of the variant identified seven nonsynonymous mutations, PB1-E51K, PB1-I171V, PA-N350K, PA-L366I, NP-N125Y, NP-V186I, and NS2-G63E. None occurred at positions previously reported to affect the temperature sensitivity of influenza A viruses. Synthetic genomics technology was used to synthesize the whole genome of the virus, and the roles of individual mutations were characterized by assessing their effects on RNA polymerase activity and virus replication kinetics at various temperatures. The revertant also regained virulence and caused significant disease in mice, with severity comparable to that caused by a wild-type 2009 H1N1 pandemic virus. IMPORTANCE The live attenuated influenza vaccine FluMist has been proven safe and effective and is widely used in the United States. The phenotype and genotype of the vaccine virus are believed to be very stable, and mutants that cause disease in animals or humans have never been reported. By propagating the virus under well-controlled laboratory conditions, we found that the FluMist vaccine backbone could regain virulence to cause severe disease in mice. The identification of the responsible substitutions and elucidation of the underlying mechanisms provide unique insights into the attenuation of influenza virus, which is important to basic research on vaccines, attenuation reversion, and replication. In addition, this study suggests that the safety of LAIVs should be closely monitored after mass vaccination and that novel strategies to continue to improve LAIV vaccine safety should be investigated.
Collapse
|
17
|
Fleming SB. Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists. Vaccines (Basel) 2016; 4:vaccines4030023. [PMID: 27367734 PMCID: PMC5041017 DOI: 10.3390/vaccines4030023] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/27/2022] Open
Abstract
The interferon (IFN) induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs) for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics.
Collapse
Affiliation(s)
- Stephen B Fleming
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St, Dunedin 9016, New Zealand.
| |
Collapse
|
18
|
Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses. Sci Rep 2016; 6:24154. [PMID: 27080193 PMCID: PMC4832183 DOI: 10.1038/srep24154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.
Collapse
|
19
|
Codon Deletions in the Influenza A Virus PA Gene Generate Temperature-Sensitive Viruses. J Virol 2016; 90:3684-93. [PMID: 26792748 DOI: 10.1128/jvi.03101-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The influenza virus RNA-dependent RNA polymerase, which is composed of three subunits, PB1, PB2, and PA, catalyzes genome replication and transcription within the cell nucleus. The PA linker (residues 197 to 256) can be altered by nucleotide substitutions to engineer temperature-sensitive (ts), attenuated mutants that display a defect in the transport of the PA-PB1 complex to the nucleus at a restrictive temperature. In this study, we investigated the ability of the PA linker to tolerate deletion mutations for further in vitro and in vivo characterization. Four viable mutants with single-codon deletions were generated; all of them exhibited a ts phenotype that was associated with the reduced efficiency of replication/transcription of a pseudoviral reporter RNA in a minireplicon assay. Using fluorescently tagged PB1, we observed that the deletion mutants did not efficiently recruit PB1 to reach the nucleus at a restrictive temperature (39.5°C). Mouse infections showed that the four mutants were attenuated and induced antibodies that were able to protect mice from challenge with a lethal homologous wild-type virus. Serial in vitro passages of two deletion mutants at 39.5°C and 37°C did not allow the restoration of a wild-type phenotype among virus progeny. Thus, our results identify codons that can be deleted in the PA gene to engineer genetically stable ts mutants that could be used to design novel attenuated vaccines. IMPORTANCE In order to generate genetically stable live influenza A virus vaccines, we constructed viruses with single-codon deletions in a discrete domain of the RNA polymerase PA gene. The four rescued viruses exhibited a temperature-sensitive phenotype that we found was associated with a defect in the transport of the PA-PB1 dimer to the nucleus, where viral replication occurs. These ts deletion mutants were shown to be attenuated and to be able to produce antibodies in mice and to protect them from a lethal challenge. Assays to select revertants that were able to grow efficiently at a restrictive temperature failed, showing that these deletion mutants are genetically more stable than conventional substitution mutants. These results are of interest for the design of genetically stable live influenza virus vaccines.
Collapse
|
20
|
Temperature-Sensitive Mutants in the Influenza A Virus RNA Polymerase: Alterations in the PA Linker Reduce Nuclear Targeting of the PB1-PA Dimer and Result in Viral Attenuation. J Virol 2015; 89:6376-90. [PMID: 25855727 DOI: 10.1128/jvi.00589-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/30/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The influenza virus RNA-dependent RNA polymerase catalyzes genome replication and transcription within the cell nucleus. Efficient nuclear import and assembly of the polymerase subunits PB1, PB2, and PA are critical steps in the virus life cycle. We investigated the structure and function of the PA linker (residues 197 to 256), located between its N-terminal endonuclease domain and its C-terminal structured domain that binds PB1, the polymerase core. Circular dichroism experiments revealed that the PA linker by itself is structurally disordered. A large series of PA linker mutants exhibited a temperature-sensitive (ts) phenotype (reduced viral growth at 39.5°C versus 37°C/33°C), suggesting an alteration of folding kinetic parameters. The ts phenotype was associated with a reduced efficiency of replication/transcription of a pseudoviral reporter RNA in a minireplicon assay. Using a fluorescent-tagged PB1, we observed that ts and lethal PA mutants did not efficiently recruit PB1 to reach the nucleus at 39.5°C. A protein complementation assay using PA mutants, PB1, and β-importin IPO5 tagged with fragments of the Gaussia princeps luciferase showed that increasing the temperature negatively modulated the PA-PB1 and the PA-PB1-IPO5 interactions or complex stability. The selection of revertant viruses allowed the identification of different types of compensatory mutations located in one or the other of the three polymerase subunits. Two ts mutants were shown to be attenuated and able to induce antibodies in mice. Taken together, our results identify a PA domain critical for PB1-PA nuclear import and that is a "hot spot" to engineer ts mutants that could be used to design novel attenuated vaccines. IMPORTANCE By targeting a discrete domain of the PA polymerase subunit of influenza virus, we were able to identify a series of 9 amino acid positions that are appropriate to engineer temperature-sensitive (ts) mutants. This is the first time that a large number of ts mutations were engineered in such a short domain, demonstrating that rational design of ts mutants can be achieved. We were able to associate this phenotype with a defect of transport of the PA-PB1 complex into the nucleus. Reversion substitutions restored the ability of the complex to move to the nucleus. Two of these ts mutants were shown to be attenuated and able to produce antibodies in mice. These results are of high interest for the design of novel attenuated vaccines and to develop new antiviral drugs.
Collapse
|
21
|
Kim YI, Murphy R, Majumdar S, Harrison LG, Aitken J, DeVincenzo JP. Relating plaque morphology to respiratory syncytial virus subgroup, viral load, and disease severity in children. Pediatr Res 2015; 78:380-8. [PMID: 26107392 PMCID: PMC4589428 DOI: 10.1038/pr.2015.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/26/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Viral culture plaque morphology in human cell lines are markers for growth capability and cytopathic effect, and have been used to assess viral fitness and select preattenuation candidates for live viral vaccines. We classified respiratory syncytial virus (RSV) plaque morphology and analyzed the relationship between plaque morphology as compared to subgroup, viral load and clinical severity of infection in infants and children. METHODS We obtained respiratory secretions from 149 RSV-infected children. Plaque morphology and viral load was assessed within the first culture passage in HEp-2 cells. Viral load was measured by polymerase chain reaction (PCR), as was RSV subgroup. Disease severity was determined by hospitalization, length of stay, intensive care requirement, and respiratory failure. RESULTS Plaque morphology varied between individual subjects; however, similar results were observed among viruses collected from upper and lower respiratory tracts of the same subject. Significant differences in plaque morphology were observed between RSV subgroups. No correlations were found among plaque morphology and viral load. Plaque morphology did not correlate with disease severity. CONCLUSION Plaque morphology measures parameters that are viral-specific and independent of the human host. Morphologies vary between patients and are related to RSV subgroup. In HEp-2 cells, RSV plaque morphology appears unrelated to disease severity in RSV-infected children.
Collapse
Affiliation(s)
- Young-In Kim
- grid.267301.10000 0004 0386 9246Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee ,grid.413728.b0000 0004 0383 6997Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee
| | - Ryan Murphy
- grid.267301.10000 0004 0386 9246Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee ,grid.413728.b0000 0004 0383 6997Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee
| | - Sirshendu Majumdar
- grid.267301.10000 0004 0386 9246Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee ,grid.413728.b0000 0004 0383 6997Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee
| | - Lisa G. Harrison
- grid.267301.10000 0004 0386 9246Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee ,grid.413728.b0000 0004 0383 6997Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee
| | - Jody Aitken
- grid.413728.b0000 0004 0383 6997Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee
| | - John P. DeVincenzo
- grid.267301.10000 0004 0386 9246Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee ,grid.413728.b0000 0004 0383 6997Children’s Foundation Research Institute at Le Bonheur Children’s Hospital, Memphis, Tennessee ,grid.267301.10000 0004 0386 9246Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
22
|
Development of a mouse-adapted live attenuated influenza virus that permits in vivo analysis of enhancements to the safety of live attenuated influenza virus vaccine. J Virol 2014; 89:3421-6. [PMID: 25552727 DOI: 10.1128/jvi.02636-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The live attenuated influenza virus vaccine (LAIV) is preferentially recommended for use in persons 2 through 49 years of age but has not been approved for children under 2 or asthmatics due to safety concerns. Therefore, increasing safety is desirable. Here we describe a murine LAIV with reduced pathogenicity that retains lethality at high doses and further demonstrate that we can enhance safety in vivo through mutations within NS1. This model may permit preliminary safety analysis of improved LAIVs.
Collapse
|
23
|
The temperature-sensitive and attenuation phenotypes conferred by mutations in the influenza virus PB2, PB1, and NP genes are influenced by the species of origin of the PB2 gene in reassortant viruses derived from influenza A/California/07/2009 and A/WSN/33 viruses. J Virol 2014; 88:12339-47. [PMID: 25122786 DOI: 10.1128/jvi.02142-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Live attenuated influenza vaccines in the United States are derived from a human virus that is temperature sensitive (ts), characterized by restricted (≥ 100-fold) replication at 39 °C. The ts genetic signature (ts sig) has been mapped to 5 loci in 3 genes: PB1 (391 E, 581 G, and 661 T), PB2 (265 S), and NP (34 G). However, when transferred into avian and swine influenza viruses, only partial ts and attenuation phenotypes occur. To investigate the reason for this, we introduced the ts sig into the human origin virus A/WSN/33 (WSN), the avian-origin virus A/Vietnam/1203/04 (VN04), and the swine origin triple-reassortant 2009 pandemic H1N1 virus A/California/07/2009 (CA07), which contains gene segments from human, avian, and swine viruses. The VN04(ts sig) and CA07(ts sig) viruses replicated efficiently in Madin-Darby canine kidney (MDCK) cells at 39 °C, but the replication of WSN(ts sig) was restricted ≥ 100-fold compared to that at 33 °C. Reassortant CA07(ts sig) viruses were generated with individual polymerase gene segments from WSN, and vice versa. Only ts sig viruses with a PB2 gene segment derived from WSN were restricted in replication ≥ 100-fold at 39 °C. In ferrets, the CA07(ts sig) virus replicated in the upper and lower respiratory tract, but the replication of a reassortant CA07(ts sig) virus with a WSN PB2 gene was severely restricted in the lungs. Taken together, these data suggest that the origin of the PB2 gene segment influences the ts phenotype in vitro and attenuation in vivo. This could have implications for the design of novel live vaccines against animal origin influenza viruses. IMPORTANCE Live attenuated influenza vaccines (LAIVs) on temperature-sensitive (ts) backbones derived from animal origin influenza viruses are being sought for use in the poultry and swine industries and to protect people against animal origin influenza. However, inserting the ts genetic signature from a licensed LAIV backbone fails to fully attenuate these viruses. Our data indicate this is associated with the presence of a PB2 gene segment derived from an avian influenza virus. We show that a reassortant 2009 pandemic H1N1 virus with the ts signature from a licensed LAIV donor virus is ts in vitro and attenuated in vivo when the PB2 gene is derived from a human origin virus but not from an avian virus. Our study provides information that could benefit the rational design of alternative LAIV backbones against animal origin influenza viruses.
Collapse
|
24
|
High-throughput identification of loss-of-function mutations for anti-interferon activity in the influenza A virus NS segment. J Virol 2014; 88:10157-64. [PMID: 24965464 DOI: 10.1128/jvi.01494-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Viral proteins often display several functions which require multiple assays to dissect their genetic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that confer a fitness disadvantage under a specified growth condition. Our methodology was achieved by genetically monitoring a mutant library under two growth conditions, with and without interferon, by deep sequencing. We employed a molecular tagging technique to distinguish true mutations from sequencing error. This approach enabled us to identify mutations that were negatively selected against, in addition to those that were positively selected for. Using this technique, we identified loss-of-function mutations in the influenza A virus NS segment that were sensitive to type I interferon in a high-throughput fashion. Mechanistic characterization further showed that a single substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach described in this study can be applied under any specified condition for any virus that can be genetically manipulated. IMPORTANCE Traditional genetics focuses on a single genotype-phenotype relationship, whereas high-throughput genetics permits phenotypic characterization of numerous mutants in parallel. High-throughput genetics often involves monitoring of a mutant library with deep sequencing. However, deep sequencing suffers from a high error rate (∼0.1 to 1%), which is usually higher than the occurrence frequency for individual point mutations within a mutant library. Therefore, only mutations that confer a fitness advantage can be identified with confidence due to an enrichment in the occurrence frequency. In contrast, it is impossible to identify deleterious mutations using most next-generation sequencing techniques. In this study, we have applied a molecular tagging technique to distinguish true mutations from sequencing errors. It enabled us to identify mutations that underwent negative selection, in addition to mutations that experienced positive selection. This study provides a proof of concept by screening for loss-of-function mutations on the influenza A virus NS segment that are involved in its anti-interferon activity.
Collapse
|
25
|
Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. J Clin Microbiol 2014; 52:1330-7. [PMID: 24501036 DOI: 10.1128/jcm.03265-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock.
Collapse
|
26
|
Zhou B, Pearce MB, Li Y, Wang J, Mason RJ, Tumpey TM, Wentworth DE. Asparagine substitution at PB2 residue 701 enhances the replication, pathogenicity, and transmission of the 2009 pandemic H1N1 influenza A virus. PLoS One 2013; 8:e67616. [PMID: 23799150 PMCID: PMC3683066 DOI: 10.1371/journal.pone.0067616] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/10/2013] [Indexed: 12/15/2022] Open
Abstract
The 2009/2010 pandemic influenza virus (H1N1pdm) contains an avian-lineage PB2 gene that lacks E627K and D701N substitutions important in the pathogenesis and transmission of avian-origin viruses in humans or other mammals. Previous studies have shown that PB2-627K is not necessary because of a compensatory Q591R substitution. The role that PB2-701N plays in the H1N1pdm phenotype is not well understood. Therefore, PB2-D701N was introduced into an H1N1pdm virus (A/New York/1682/2009 (NY1682)) and analyzed in vitro and in vivo. Mini-genome replication assay, in vitro replication characteristics in cell lines, and analysis in the mouse and ferret models demonstrated that PB2-D701N increased virus replication rates and resulted in more severe pathogenicity in mice and more efficient transmission in ferrets. In addition, compared to the NY1682-WT virus, the NY1682-D701N mutant virus induced less IFN-λ and replicated to a higher titer in primary human alveolar epithelial cells. These findings suggest that the acquisition of the PB2-701N substitution by H1N1pdm viruses may result in more severe disease or increase transmission in humans.
Collapse
Affiliation(s)
- Bin Zhou
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
| | - Melissa B. Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Yan Li
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jieru Wang
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Robert J. Mason
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Terrence M. Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Jang YH, Seong BL. Principles underlying rational design of live attenuated influenza vaccines. Clin Exp Vaccine Res 2012; 1:35-49. [PMID: 23596576 PMCID: PMC3623510 DOI: 10.7774/cevr.2012.1.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/23/2012] [Accepted: 06/10/2012] [Indexed: 12/18/2022] Open
Abstract
Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | |
Collapse
|