1
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Kreutzmann H, Dürlinger S, Knecht C, Koch M, Cabana M, Torrent G, Balasch M, Taylor LP, Balka G, Gerner W, Ladinig A. Efficacy of a Modified Live Virus Vaccine against Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) Administered to 1-Day-Old Piglets in Front of Heterologous PRRSV-1 Challenge. Pathogens 2021; 10:1342. [PMID: 34684293 PMCID: PMC8537468 DOI: 10.3390/pathogens10101342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
PRRSV is one of the most important viruses in the global swine industry and is often controlled by the use of modified live virus (MLV) vaccines. This study assessed the impact of a PRRSV-1 MLV vaccine applied to 1-day-old piglets challenged on day 28 of life with a PRRSV-1 field isolate (AUT15-33). Twenty-one piglets were vaccinated within 24 h of birth (T02), whereas 20 piglets were left unvaccinated (T01). Necropsy was performed two weeks post-challenge. Comparing the two groups, T02 piglets showed significantly higher (p = 0.017) average daily weight gain. In addition, significantly lower (p < 0.0001) PRRSV RNA loads were measured in serum of T02 piglets at all investigated time points. All T01 piglets were viremic and shed virus in nasal swabs, whereas only 71.4% and 38.1% of the T02 group were viremic or shed virus, respectively. Piglets from T02 had significantly higher numbers (p < 0.0001) of IFN-γ producing lymphocytes compared to T01. At necropsy, differences in gross and histologic lung lesions were statistically significant (p = 0.012 and p < 0.0001, respectively) between the two groups. Hence, this MLV vaccine administered to 1-day-old piglets was able to protect piglets against PRRSV infection at weaning.
Collapse
Affiliation(s)
- Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| | - Sophie Dürlinger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| | - Michaela Koch
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| | - Marta Cabana
- Zoetis Manufacturing and Research Spain S.L., Ctra. Camprodon s/n Finca La Riba, 17813 Girona, Spain; (M.C.); (G.T.); (M.B.)
| | - Gerard Torrent
- Zoetis Manufacturing and Research Spain S.L., Ctra. Camprodon s/n Finca La Riba, 17813 Girona, Spain; (M.C.); (G.T.); (M.B.)
| | - Mònica Balasch
- Zoetis Manufacturing and Research Spain S.L., Ctra. Camprodon s/n Finca La Riba, 17813 Girona, Spain; (M.C.); (G.T.); (M.B.)
| | - Lucas P. Taylor
- Global Development & Operations, Zoetis, Kalamazoo, MI 49007, USA;
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- The Pirbright Institute, Biotechnology and Biological Sciences Research Council (BBSRC), Woking GU24 0NF, UK
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (H.K.); (S.D.); (C.K.); (M.K.)
| |
Collapse
|
3
|
Commercial PRRS Modified-Live Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9020185. [PMID: 33671826 PMCID: PMC7926738 DOI: 10.3390/vaccines9020185] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) presents one of the challenging viral pathogens in the global pork industry. PRRS is characterized by two distinct clinical presentations; reproductive failure in breeding animals (gilts, sows, and boars), and respiratory disease in growing pigs. PRRSV is further divided into two species: PRRSV-1 (formerly known as the European genotype 1) and PRRSV-2 (formerly known as the North American genotype 2). A PRRSV-2 modified-live virus (MLV) vaccine was first introduced in North America in 1994, and, six years later, a PRRSV-1 MLV vaccine was also introduced in Europe. Since then, MLV vaccination is the principal strategy used to control PRRSV infection. Despite the fact that MLV vaccines have shown some efficacy, they were problematic as the efficacy of vaccine was often unpredictable and depended highly on the field virus. This paper focused on the efficacy of commercially available MLV vaccines at a global level based on respiratory disease in growing pigs, and maternal and paternal reproductive failure in breeding animals.
Collapse
|
4
|
Chen N, Li X, Xiao Y, Li S, Zhu J. Characterization of four types of MLV-derived porcine reproductive and respiratory syndrome viruses isolated in unvaccinated pigs from 2016 to 2020. Res Vet Sci 2020; 134:102-111. [PMID: 33360570 DOI: 10.1016/j.rvsc.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022]
Abstract
Modified live vaccines (MLVs) have been utilized to combat porcine reproductive and respiratory syndrome (PRRS), which raises a serious concern about the MLV-derived PRRS virus (PRRSV) isolates. During the routine investigation of PRRSV in China, four lung samples collected from unvaccinated diseased pigs from 2016 to 2020 were detected as PRRSV positive. The PRRSVs shared high ORF5 identities to CH-1R, JXA1-R, TJM-F92 and RespPRRS MLV vaccines, respectively. The viruses were isolated in Marc-145 cells and denominated as SD1612-1, JS1703-21, JSTZ1907-714 and JSYC20-05-1. Genome comparison confirmed that these isolates share the highest genomic homologies to CH-1R (97.96%), JXA1-R (99.64%), TJM-F92 (99.00%) and RespPRRS MLV (99.57%) than any other known isolates. Genome-based phylogenetic analysis showed that SD1612-1 and CH-1R, JS1703-21 and JXA1-R, JSTZ1907-714 and TJM-F92, JSYC20-05-1 and RespPRRS MLV were grouped in the same branches. In addition, amino acids unique to corresponding vaccine attenuations were also identified in our isolates. Noticeably, amino-acids potentially associated with the virulence revision from MLV strains to parental virulent viruses were also identified in the MLV-derived isolates. Our results confirm that the four types of MLV-derived isolates are circulating and evolving in Chinese swine herds for years, which highlights the necessity for the fair use of PRRS MLVs.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
5
|
Fitzgerald RM, Collins PJ, McMenamey MJ, Leonard FC, McGlynn H, O'Shea H. Porcine reproductive and respiratory syndrome virus: phylogenetic analysis of circulating strains in the Republic of Ireland from 2016 to 2017. Arch Virol 2020; 165:2057-2063. [PMID: 32594320 DOI: 10.1007/s00705-020-04710-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
In order to investigate the genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) strains currently circulating in the Republic of Ireland (ROI), the ORF5 gene from 17 field strains originating from four vaccinating commercial herds was sequenced and phylogenetically analysed. High genetic variability was observed between farms at the nucleotide (86.3-95.2%) and amino acid (85.5-96%) levels. Phylogenetic analysis confirmed that all field strains belonged to the European species (type 1) and clustered into three separate groups within the subtype 1 subgroup. This variation may pose challenges for diagnosis and prophylactic control of PRRSV through vaccination in the ROI.
Collapse
Affiliation(s)
- Rose M Fitzgerald
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Republic of Ireland.
| | - Patrick J Collins
- Veterinary Science Division, Agri-Food and Biosciences Institute, Stormont, Belfast, BT4 3SD, Northern Ireland
| | - Michael J McMenamey
- Veterinary Science Division, Agri-Food and Biosciences Institute, Stormont, Belfast, BT4 3SD, Northern Ireland
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 W6F6, Republic of Ireland
| | - Hugh McGlynn
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Republic of Ireland
| | - Helen O'Shea
- Bio-Explore, Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, T12 P928, Republic of Ireland
| |
Collapse
|
6
|
Chen N, Xiao Y, Ye M, Li X, Li S, Xie N, Wei Y, Wang J, Zhu J. High genetic diversity of Chinese porcine reproductive and respiratory syndrome viruses from 2016 to 2019. Res Vet Sci 2020; 131:38-42. [PMID: 32289611 DOI: 10.1016/j.rvsc.2020.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/07/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
High genetic diversity and limited cross-protection are two major reasons for ineffective control of porcine reproductive and respiratory syndrome virus (PRRSV) infection. Therefore, it's important to dynamically monitor the prevalence of PRRSV for adopting appropriate control strategy. In this study, we analyzed PRRSV infection by detecting 712 clinical samples collected from 2016 to 2019 in China. Totally 100 samples were detected as PRRSV positive, including 2 and 98 samples were infected with PRRSV1 and PRRSV2, respectively. In addition, two out of the 98 PRRSV2 positive samples were co-infected with two distinct viruses. ORF5-based phylogenetic analysis showed that JXA1-like HP-PRRSV2 (lineage 8) and NADC30-like PRRSV2 (lineage 1) isolates are currently predominant, but QYYZ-like PRRSV2, CH-1a-like PRRSV2 and PRRSV1 isolates also co-exist in Chinese swine herds. In addition, two commercial MLV-derived viruses (TJM-F92-like and JXA1-R-like) were frequently detected. GP5 alignment also detected insertion and deletion in the extravirion domain. Our study presents the up-to-date PRRSV infection status and highlights the high genetic diversity of PRRSV currently circulating in China.
Collapse
Affiliation(s)
- Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China.
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ningjun Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yue Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jialin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
7
|
Bailey RI, Cheng HH, Chase-Topping M, Mays JK, Anacleto O, Dunn JR, Doeschl-Wilson A. Pathogen transmission from vaccinated hosts can cause dose-dependent reduction in virulence. PLoS Biol 2020; 18:e3000619. [PMID: 32134914 PMCID: PMC7058279 DOI: 10.1371/journal.pbio.3000619] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Many livestock and human vaccines are leaky because they block symptoms but do not prevent infection or onward transmission. This leakiness is concerning because it increases vaccination coverage required to prevent disease spread and can promote evolution of increased pathogen virulence. Despite leakiness, vaccination may reduce pathogen load, affecting disease transmission dynamics. However, the impacts on post-transmission disease development and infectiousness in contact individuals are unknown. Here, we use transmission experiments involving Marek disease virus (MDV) in chickens to show that vaccination with a leaky vaccine substantially reduces viral load in both vaccinated individuals and unvaccinated contact individuals they infect. Consequently, contact birds are less likely to develop disease symptoms or die, show less severe symptoms, and shed less infectious virus themselves, when infected by vaccinated birds. These results highlight that even partial vaccination with a leaky vaccine can have unforeseen positive consequences in controlling the spread and symptoms of disease.
Collapse
Affiliation(s)
- Richard I. Bailey
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
| | - Hans H. Cheng
- USDA, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Margo Chase-Topping
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Jody K. Mays
- USDA, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Osvaldo Anacleto
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
| | - John R. Dunn
- USDA, Agricultural Research Service, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, Michigan, United States of America
| | - Andrea Doeschl-Wilson
- Division of Genetics and Genomics, The Roslin Institute, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
8
|
Chase-Topping M, Xie J, Pooley C, Trus I, Bonckaert C, Rediger K, Bailey RI, Brown H, Bitsouni V, Barrio MB, Gueguen S, Nauwynck H, Doeschl-Wilson A. New insights about vaccine effectiveness: Impact of attenuated PRRS-strain vaccination on heterologous strain transmission. Vaccine 2020; 38:3050-3061. [PMID: 32122719 DOI: 10.1016/j.vaccine.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
Vaccination is the main tool for controlling infectious diseases in livestock. Yet current vaccines only provide partial protection raising concerns about vaccine effectiveness in the field. Two successive transmission trials were performed involving 52 pigs to evaluate the effectiveness of a Porcine Reproductive and Respiratory Syndrome (PRRS) vaccinal strain candidate against horizontal transmission of a virulent heterologous strain. PRRS virus, above the specified limit of detection, was observed in serum and nasal secretions for all but one pig (the exception only tested positive for serum), indicating that vaccination did not protect pigs from becoming infected and shedding the heterologous strain. However, vaccination delayed the onset of viraemia, reduced the duration of shedding and significantly decreased viral load throughout infection. Serum antibody profiles indicated that 4 out of 13 (31%) vaccinates in one trial had no serological response (NSR). A Bayesian epidemiological model was fitted to the data to assess the impact of vaccination and presence of NSRs on PRRS virus transmission dynamics. Despite little evidence for reduction in the transmission rate, vaccinated animals were on average slower to become infectious, experienced a shorter infectious period and recovered faster. The overall PRRSV transmission potential, represented by the reproductive ratio R0 was lower for the vaccinated animals, although there was substantial overlap in the credibility intervals for both groups. Model selection suggests that transmission parameters of vaccinated pigs with NSR were more similar to those of unvaccinated animals. The presence of NSRs in a population, however, seemed to only marginally affect the transmission dynamics. The results suggest that even when vaccination can't prevent infection, it can still have beneficial impacts on the transmission dynamics and contribute to reducing a herd's R0. However, biosecurity and other measures need to be considered to decrease contact rates and lower R0 below 1.
Collapse
Affiliation(s)
- Margo Chase-Topping
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK; Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG Scotland, UK.
| | - Jiexiong Xie
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Christopher Pooley
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK; Biomathematics and Statistics Scotland (BIOSS), The King's Buildings, Edinburgh, EH9 3FD Scotland, UK
| | - Ivan Trus
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Caroline Bonckaert
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Kelly Rediger
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Richard I Bailey
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Helen Brown
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | | | - Maria Belén Barrio
- INRAE Département Santé Animale, UAR 0564 - ISP Bât 213, 37380 Nouzilly, France
| | - Sylvie Gueguen
- Biological Development Department, VIRBAC, 13ème rue, LID, BP27, 06511 Carros cedex, France
| | - Hans Nauwynck
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | | |
Collapse
|
9
|
Broad Protection of Pigs against Heterologous PRRSV Strains by a GP5-Mosaic DNA Vaccine Prime/GP5-Mosaic rVaccinia (VACV) Vaccine Boost. Vaccines (Basel) 2020; 8:vaccines8010106. [PMID: 32121277 PMCID: PMC7157218 DOI: 10.3390/vaccines8010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) viruses are a major cause of disease and economic loss in pigs worldwide. High genetic diversity among PRRSV strains is problematic for successful disease control by vaccination. Mosaic DNA and vaccinia (VACV) vaccines were developed in order to improve protection against heterologous PRRSV strains. METHODS Piglets were primed and boosted with GP5-Mosaic DNA vaccine and recombinant GP5-Mosaic VACV (rGP5-Mosaic VACV), respectively. Pigs vaccinated with rGP5-WT (VR2332) DNA and rGP5-WT VACV, or empty vector DNA and empty VACV respectively, served as controls. Virus challenge was given to separate groups of vaccinated pigs with VR2332 or MN184C. Necropsies were performed 14 days after challenge. RESULTS Vaccination with the GP5-Mosaic-based vaccines resulted in cellular reactivity and higher levels of neutralizing antibodies to both VR2332 and MN184C PRRSV strains. In contrast, vaccination of animals with the GP5-WT vaccines induced responses only to VR2332. Furthermore, vaccination with the GP5-Mosaic based vaccines resulted in protection against challenge with two heterologous virus strains, as demonstrated by the significantly lower viral loads in serum, tissues, porcine alveolar macrophages (PAMs), and bronchoalveolar lavage (BAL) fluids, and less severe lung lesions after challenge with either MN184C or VR2332, which have only 85% identity. In contrast, significant protection by the GP5-WT based vaccines was only achieved against the VR2332 strain. Conclusions: GP5-Mosaic vaccines, using a DNA-prime/VACV boost regimen, conferred protection in pigs against heterologous viruses.
Collapse
|
10
|
Ogno G, Rodríguez-Gómez IM, Canelli E, Ruedas-Torres I, Álvarez B, Domínguez J, Borghetti P, Martelli P, Gómez-Laguna J. Impact of PRRSV strains of different in vivo virulence on the macrophage population of the thymus. Vet Microbiol 2019; 232:137-145. [PMID: 31030838 DOI: 10.1016/j.vetmic.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
The emergence of "highly pathogenic" isolates of porcine reproductive and respiratory syndrome virus (HP-PRRSV) has raised new concerns about PRRS control. Cells from the porcine monocyte-macrophage lineage represent the target for this virus, which replicates mainly in the lung, and especially in HP-PRRSV strains, also in lymphoid organs, such as the thymus. This study aimed at evaluating the impact of two PRRSV strains of different virulence on thymic macrophages as well as after heterologous vaccination. After experimental infection with PR11 and PR40 PRRSV1 subtype 1 strains (low and high virulent, respectively) samples from thymus were analysed by histopathology and immunohistochemistry for PRRSV N protein, TUNEL, CD172a, CD163, CD107a and BA4D5 expression. Mortality was similar in both infected groups, but lung lesions and thymus atrophy were more intense in PR40 group. Animals died at 10-14 dpi after PR11 or PR40 infection showed the most severe histopathological lesions, with a strong inflammatory response of the stroma and extensive cell death phenomena in the cortex. These animals presented an increase in the number of N protein, CD172a, CD163 and BA4D5 positive cells in the stroma and the cortex together with a decrease in the number of CD107a positive cells. Our results highlight the recruitment of macrophages in the thymus, the increase in the expression of CD163 and the regulation of the host cytotoxic activity by macrophages. However, no marked differences were observed between PR11- and PR40-infected animals. Heterologous vaccination restrained virus spread and lesions extent in the thymus of PR40-infected animals.
Collapse
Affiliation(s)
- Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy
| | - Irene M Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Cordoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Elena Canelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Cordoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain
| | - Belén Álvarez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Javier Domínguez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10 - 43126, Parma, Italy
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Cordoba, International Excellence Agrifood Campus 'ceiA3', Córdoba, Spain.
| |
Collapse
|
11
|
Goldeck D, Perry DM, Hayes JWP, Johnson LPM, Young JE, Roychoudhury P, McLuskey EL, Moffat K, Bakker AQ, Kwakkenbos MJ, Frossard JP, Rowland RRR, Murtaugh MP, Graham SP. Establishment of Systems to Enable Isolation of Porcine Monoclonal Antibodies Broadly Neutralizing the Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:572. [PMID: 30972067 PMCID: PMC6445960 DOI: 10.3389/fimmu.2019.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023] Open
Abstract
The rapid evolution of porcine reproductive and respiratory syndrome viruses (PRRSV) poses a major challenge to effective disease control since available vaccines show variable efficacy against divergent strains. Knowledge of the antigenic targets of virus-neutralizing antibodies that confer protection against heterologous PRRSV strains would be a catalyst for the development of next-generation vaccines. Key to discovering these epitopes is the isolation of neutralizing monoclonal antibodies (mAbs) from immune pigs. To address this need, we sought to establish systems to enable the isolation of PRRSV neutralizing porcine mAbs. We experimentally produced a cohort of immune pigs by sequential challenge infection with four heterologous PRRSV strains spanning PRRSV-1 subtypes and PRRSV species. Whilst priming with PRRSV-1 subtype 1 did not confer full protection against a subsequent infection with a PRRSV-1 subtype 3 strain, animals were protected against a subsequent PRRSV-2 infection. The infection protocol resulted in high serum neutralizing antibody titers against PRRSV-1 Olot/91 and significant neutralization of heterologous PRRSV-1/-2 strains. Enriched memory B cells isolated at the termination of the study were genetically programmed by transduction with a retroviral vector expressing the Bcl-6 transcription factor and the anti-apoptotic Bcl-xL protein, a technology we demonstrated efficiently converts porcine memory B cells into proliferating antibody-secreting cells. Pools of transduced memory B cells were cultured and supernatants containing PRRSV-specific antibodies identified by flow cytometric staining of infected MARC-145 cells and in vitro neutralization of PRRSV-1. Collectively, these data suggest that this experimental system may be further exploited to produce a panel of PRRSV-specific mAbs, which will contribute both to our understanding of the antibody response to PRRSV and allow epitopes to be resolved that may ultimately guide the design of immunogens to induce cross-protective immunity.
Collapse
Affiliation(s)
| | - Dana M Perry
- The Pirbright Institute, Pirbright, United Kingdom.,School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jack W P Hayes
- The Pirbright Institute, Pirbright, United Kingdom.,School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Luke P M Johnson
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jordan E Young
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Parimal Roychoudhury
- The Pirbright Institute, Pirbright, United Kingdom.,College of Veterinary Science and Animal Husbandry, Central Agricultural University, Aizawl, India
| | - Elle L McLuskey
- The Pirbright Institute, Pirbright, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Katy Moffat
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Jean-Pierre Frossard
- Department of Virology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Raymond R R Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Michael P Murtaugh
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Simon P Graham
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Science, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
12
|
Canelli E, Catella A, Borghetti P, Ferrari L, Ogno G, De Angelis E, Bonilauri P, Guazzetti S, Nardini R, Martelli P. Efficacy of a modified-live virus vaccine in pigs experimentally infected with a highly pathogenic porcine reproductive and respiratory syndrome virus type 1 (HP-PRRSV-1). Vet Microbiol 2018; 226:89-96. [PMID: 30389048 DOI: 10.1016/j.vetmic.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
PRRS is one of the main viral diseases in pig production, causing huge economic losses to the swine industry worldwide. The virus shows an intrinsic genomic instability and is able to change continuously, with the emergence of new strains, with different pathogenicity patterns. Commercially available vaccines only partially prevent or counteract the disease and the correlated losses. Moreover, the emergence of highly virulent and pathogenetic isolates represents a particular concern for PRRS control and diagnosis. The purpose of this study was to evaluate the efficacy of a modified-live virus (MLV) PRRSV-1 commercial vaccine in reducing the severity of the disease and minimizing losses upon challenge with a highly pathogenic PRRSV-1.1 Italian isolate (PRRSV-1_PR40/2014). Four different groups were compared: C (unvaccinated-uninfected), VAC-C (vaccinated-uninfected), PR40 (unvaccinated-infected) and VAC-PR40 (vaccinated-infected). The tested vaccine provided partial, but statistically significant clinical, virological and pathological protection after challenge under experimental conditions. In particular, vaccinated animals showed reduced viremia in terms of duration and magnitude, reduced respiratory signs and pathological lesions. Vaccination was able to trigger adaptive immunity able to respond efficiently also against the HP PR40 isolate. Vaccinated animals showed higher average daily weight gain, even during the viremic period, compared to non-vaccinated challenged pigs.
Collapse
Affiliation(s)
- Elena Canelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Alessia Catella
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Bonilauri
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Unit of Reggio Emilia, Via Pitagora 2, 42100, Reggio Emilia, Italy
| | - Stefano Guazzetti
- AUSL Reggio Emilia, Via Giovanni Amendola 2, 42122, Reggio Emilia, Italy
| | - Roberto Nardini
- IZSLT, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
13
|
Stadler J, Naderer L, Beffort L, Ritzmann M, Emrich D, Hermanns W, Fiebig K, Saalmüller A, Gerner W, Glatthaar-Saalmüller B, Ladinig A. Safety and immune responses after intradermal application of Porcilis PRRS in either the neck or the perianal region. PLoS One 2018; 13:e0203560. [PMID: 30192831 PMCID: PMC6128605 DOI: 10.1371/journal.pone.0203560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023] Open
Abstract
The objective of the present study was to assess safety and immune responses in gilts after intradermal application of Porcilis® PRRS in two different application sites under field conditions. Forty-four gilts were allocated to one of three groups: Gilts of group 1 (n = 10) served as non-vaccinated controls, gilts of group 2 (n = 17) were vaccinated intradermally in the neck and gilts of group 3 (n = 17) received an intradermal vaccination in the perianal region. Clinical observations, local injection site reactions and histopathologic examination of the injection site were used for safety assessments. Frequency and degree of clinical signs were not significantly different between all three groups. Minor local reactions for both vaccination groups were observed; however, at 6, 7, 8, 9 and 15 days post-vaccination (dpv), the mean injection site reaction score was significantly lower in pigs vaccinated in the perianal region. In histopathologic examination, an extended inflammatory dimension was observed more frequently in pigs vaccinated in the neck. Blood samples were analyzed to quantify the post-vaccination humoral (ELISA and virus neutralization test) and cellular (IFN-γ ELISPOT) immune responses. PRRSV-specific antibodies were present in the serum of all vaccinated animals from 14 dpv onwards, whereas all control pigs remained negative throughout the study. Neutralizing antibody titers were significantly higher in pigs vaccinated in the perianal region at 28 dpv. At 14, 21 and 28 dpv, PRRSV-specific IFN-γ secreting cells were significantly increased in both vaccination groups compared to non-vaccinated gilts. Analysis of mean numbers of PRRSV-specific IFN-γ secreting cells did not result in statistically significant differences between both vaccination groups. The results of this study indicate that the perianal region is a safe alternative application site for intradermal vaccination of gilts with Porcilis PRRS. Furthermore, the intradermal application of Porcilis PRRS induced humoral and cellular immune responses independent of the administration site.
Collapse
Affiliation(s)
- Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Lena Naderer
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Lisa Beffort
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Mathias Ritzmann
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Daniela Emrich
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Walter Hermanns
- Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | | | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
14
|
Smith N, Power UF, McKillen J. Phylogenetic analysis of porcine reproductive and respiratory syndrome virus isolates from Northern Ireland. Arch Virol 2018; 163:2799-2804. [DOI: 10.1007/s00705-018-3886-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
|
15
|
Charleston B, Graham SP. Recent advances in veterinary applications of structural vaccinology. Curr Opin Virol 2018; 29:33-38. [PMID: 29550741 PMCID: PMC5954236 DOI: 10.1016/j.coviro.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 01/22/2023]
Abstract
The deployment of effective veterinary vaccines has had a major impact on improving food security and consequently human health. Effective vaccines were essential for the global eradication of Rinderpest and the control and eradication of foot-and-mouth disease in some regions of the world. Effective vaccines also underpin the development of modern intensive food production systems such as poultry and aquaculture. However, for some high consequence diseases there are still significant challenges to develop effective vaccines. There is a strong track record in veterinary medicine of early adoption of new technologies to produce vaccines. Here we provide examples of new technologies to interrogate B cell responses and using structural biology to improve antigens.
Collapse
Affiliation(s)
- Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Guildford GU24 0NF, Surrey, United Kingdom.
| | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Guildford GU24 0NF, Surrey, United Kingdom
| |
Collapse
|
16
|
Kristensen CS, Kvisgaard LK, Pawlowski M, Holmgaard Carlsen S, Hjulsager CK, Heegaard PMH, Bøtner A, Stadejek T, Haugegaard S, Larsen LE. Efficacy and safety of simultaneous vaccination with two modified live virus vaccines against porcine reproductive and respiratory syndrome virus types 1 and 2 in pigs. Vaccine 2017; 36:227-236. [PMID: 29191738 DOI: 10.1016/j.vaccine.2017.11.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/25/2022]
Abstract
The objective of the study was to compare responses of pigs vaccinated with a PRRS MLV vaccine against PRRSV-1 or PRRSV-2 with the responses of pigs vaccinated simultaneously with both vaccines. Furthermore, the efficacy of the two PRRSV MLV vaccination strategies was assessed following challenge. The experimental design included four groups of 4-weeks old SPF-pigs. On day 0 (DPV0), groups 1-3 (N=18 per group) were vaccinated with modified live virus vaccines (MLV) containing PRRSV-1 virus (VAC-T1), PRRSV-2 virus (VAC-T2) or both (VAC-T1T2). One group was left unvaccinated (N=12). On DPV 62, the pigs from groups 1-4 were mingled in new groups and challenged (DPC 0) with PRRSV-1, subtype 1, PRRSV-1, subtype 2 or PRRSV-2. On DPC 13/14 all pigs were necropsied. Samples were collected after vaccination and challenge. PRRSV was detected in all vaccinated pigs and the majority of the pigs were positive until DPV 28, but few of the pigs were still viremic 62 days after vaccination. Virus was detected in nasal swabs until DPV 7-14. No overt clinical signs were observed after challenge. PRRSV-2 vaccination resulted in a clear reduction in viral load in serum after PRRSV-2 challenge, whereas there was limited effect on the viral load in serum following challenge with the PRRSV-1 strains. Vaccination against PRRSV-1 had less impact on viremia following challenge. The protective effects of simultaneous vaccination with PRRSV Type 1 and 2 MLV vaccines and single PRRS MLV vaccination were comparable. None of the vaccines decreased the viral load in the lungs at necropsy. In conclusion, simultaneous vaccination with MLV vaccines containing PRRSV-1 and PRRSV-2 elicited responses comparable to single vaccination and the commercial PRRSV vaccines protected only partially against challenge with heterologous strains. Thus, simultaneous administration of the two vaccines is an option in herds with both PRRSV types.
Collapse
Affiliation(s)
| | - L K Kvisgaard
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.
| | - M Pawlowski
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark
| | - S Holmgaard Carlsen
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark
| | - C K Hjulsager
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.
| | - P M H Heegaard
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.
| | - A Bøtner
- Technical University of Denmark, National Veterinary Institute, Lindholm, Denmark.
| | - T Stadejek
- Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Warsaw, Poland.
| | - S Haugegaard
- Danish Pig Research Centre, Danish Agriculture & Food Council, Kjellerup, Denmark.
| | - L E Larsen
- Technical University of Denmark, National Veterinary Institute, Lyngby, Denmark.
| |
Collapse
|
17
|
Body temperature and motion: Evaluation of an online monitoring system in pigs challenged with Porcine Reproductive & Respiratory Syndrome Virus. Res Vet Sci 2017; 114:482-488. [DOI: 10.1016/j.rvsc.2017.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/14/2017] [Accepted: 09/22/2017] [Indexed: 11/15/2022]
|
18
|
Genetic and pathogenic characterization of a Russian subtype 2 PRRSV-1 isolate. Vet Microbiol 2017; 211:22-28. [PMID: 29102117 DOI: 10.1016/j.vetmic.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure and respiratory problems. Data about the virulence and pathogenicity of subtype 2 PRRSV-1 strains are limited. The main purposes of this investigation were to characterize the full genome sequence of the subtype 2 PRRSV-1 WestSib13 strain and to compare the pathogenicity with that of the subtype 1 PRRSV-1 Lelystad strain. Comparison of the whole genome sequence of the WestSib13 strain with that of PRRSV-1 prototype strains revealed a 76.2% (subtype 1 Lelystad virus) and 79.0% (subtype 3 Lena virus) identity, respectively The virulence and pathogenicity of the European subtype 2 PRRSV strain WestSib13 and the European subtype 1 PRRSV strain Lelystad were compared in 3-week-old piglets upon inoculation of 105.4 TCID50 of virus. Non-infected animals (control group) as well as animals infected with the Lelystad strain were clinically healthy until 14days post challenge. In contrast, animals infected with the WestSib13 strain demonstrated dyspnea starting at 3days post-inoculation (dpi). All piglets in this group died between 5 and 8 dpi. During that period, fever was not observed in WestSib13-infected animals. Viremia was detected in animals from both infected groups starting from 2 dpi. Viral loads in serum and lungs upon euthanasia were significantly higher (3 log10) in the WestSib13-infected than in the LV-infected animals. Taken together, this study provides the full genome sequence and the unusual virological and clinical outcome (high level viremia without fever) of the novel WestSib13 strain.
Collapse
|
19
|
Nan Y, Wu C, Gu G, Sun W, Zhang YJ, Zhou EM. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front Microbiol 2017; 8:1635. [PMID: 28894443 PMCID: PMC5581347 DOI: 10.3389/fmicb.2017.01635] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), one of the most economically significant pathogens worldwide, has caused numerous outbreaks during the past 30 years. PRRSV infection causes reproductive failure in sows and respiratory disease in growing and finishing pigs, leading to huge economic losses for the swine industry. This impact has become even more significant with the recent emergence of highly pathogenic PRRSV strains from China, further exacerbating global food security. Since new PRRSV variants are constantly emerging from outbreaks, current strategies for controlling PRRSV have been largely inadequate, even though our understanding of PRRSV virology, evolution and host immune response has been rapidly expanding. Meanwhile, practical experience has revealed numerous safety and efficacy concerns for currently licensed vaccines, such as shedding of modified live virus (MLV), reversion to virulence, recombination between field strains and MLV and failure to elicit protective immunity against heterogeneous virus. Therefore, an effective vaccine against PRRSV infection is urgently needed. Here, we systematically review recent advances in PRRSV vaccine development. Antigenic variations resulting from PRRSV evolution, identification of neutralizing epitopes for heterogeneous isolates, broad neutralizing antibodies against PRRSV, chimeric virus generated by reverse genetics, and novel PRRSV strains with interferon-inducing phenotype will be discussed in detail. Moreover, techniques that could potentially transform current MLV vaccines into a superior vaccine will receive special emphasis, as will new insights for future PRRSV vaccine development. Ultimately, improved PRRSV vaccines may overcome the disadvantages of current vaccines and minimize the PRRS impact to the swine industry.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Guoqian Gu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Weiyao Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College ParkMD, United States
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| |
Collapse
|
20
|
Zhou L, Yang B, Xu L, Jin H, Ge X, Guo X, Han J, Yang H. Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like. Vet Microbiol 2017; 207:108-116. [PMID: 28757009 DOI: 10.1016/j.vetmic.2017.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022]
Abstract
Porcine reproductive and respiratory syndrome reproductive virus is a devastating pathogen causing tremendous economic losses to swine production worldwide. Emergence of novel and variant PRRSV strains always leads to variable protection efficacy of modified-live virus (MLV) vaccines. Prevalence of PRRSV NADC30-like recently emerging in China has brought about clinical outbreaks of the disease. In the present study, the pathogenicity of a NADC30-like strain CHsx1401 for piglets was analyzed, and the potential cross-protective efficacy of three MLV vaccines including two commercial MLV vaccines and an attenuated low pathogenic PRRSV against this virus was further evaluated in piglets. The NADC30-like CHsx1401 was shown to cause fever, respiratory clinical signs, and lung gross and microscopic lesions of the inoculated piglets, suggesting that this virus is moderate virulent for piglets. Vaccination of piglets with the MLV vaccines could not reduce the clinical signs and lung lesions, and was partially efficacious in the reduction of viral loads in sera upon NADC30-like CHsx1401 challenge, indicating that these three MLV vaccines provide extremely limited cross-protection efficacy against the NADC30-like virus infection. Additionally, Ingelvac PRRS MLV appeared to exert some beneficial efficiency in shortening the period of clinical fever and in improving the growth performance of the challenged pigs. Our findings give valuable guidance for the choice and use of PRRSV MLV vaccines to control NADC30-like virus infection in the field.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Beina Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Lei Xu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Huan Jin
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
21
|
Renson P, Fablet C, Le Dimna M, Mahé S, Touzain F, Blanchard Y, Paboeuf F, Rose N, Bourry O. Preparation for emergence of an Eastern European porcine reproductive and respiratory syndrome virus (PRRSV) strain in Western Europe: Immunization with modified live virus vaccines or a field strain confers partial protection. Vet Microbiol 2017; 204:133-140. [PMID: 28532792 DOI: 10.1016/j.vetmic.2017.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/27/2023]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes huge economic losses for the swine industry worldwide. In the past several years, highly pathogenic strains that lead to even greater losses have emerged. For the Western European swine industry, one threat is the possible introduction of Eastern European PRRSV strains (example Lena genotype 1.3) which were shown to be more virulent than common Western resident strains under experimental conditions. To prepare for the possible emergence of this strain in Western Europe, we immunized piglets with a Western European PRRSV field strain (Finistere: Fini, genotype 1.1), a new genotype 1 commercial modified live virus (MLV) vaccine (MLV1) or a genotype 2 commercial MLV vaccine (MLV2) to evaluate and compare the level of protection that these strains conferred upon challenge with the Lena strain 4 weeks later. Results show that immunization with Fini, MLV1 or MLV2 strains shortened the Lena-induced hyperthermia. In the Fini group, a positive effect was also demonstrated in growth performance. The level of Lena viremia was reduced for all immunized groups (significantly so for Fini and MLV2). This reduction in Lena viremia was correlated with the level of Lena-specific IFNγ-secreting cells. In conclusion, we showed that a commercial MLV vaccine of genotype 1 or 2, as well as a field strain of genotype 1.1 may provide partial clinical and virological protection upon challenge with the Lena strain. The cross-protection induced by these immunizing strains was not related with the level of genetic similarity to the Lena strain. The slightly higher level of protection established with the field strain is attributed to a better cell-mediated immune response.
Collapse
Affiliation(s)
- P Renson
- Agence Nationale de Sécurité Sanitaire Alimentation Environnement Travail (Anses), Unité Virologie Immunologie Porcines, BP 53, 22440 Ploufragan, France; Union des Groupements de Producteurs de Viande de Bretagne (UGPVB), 104 rue Eugène Pottier, 35065 Rennes, France; Université Bretagne Loire, France
| | - C Fablet
- Anses, Unité Epidémiologie et Bien-être Porcins, BP 53, 22440 Ploufragan, France; Université Bretagne Loire, France
| | - M Le Dimna
- Agence Nationale de Sécurité Sanitaire Alimentation Environnement Travail (Anses), Unité Virologie Immunologie Porcines, BP 53, 22440 Ploufragan, France; Université Bretagne Loire, France
| | - S Mahé
- Agence Nationale de Sécurité Sanitaire Alimentation Environnement Travail (Anses), Unité Virologie Immunologie Porcines, BP 53, 22440 Ploufragan, France; Université Bretagne Loire, France
| | - F Touzain
- Anses, Unité Génétique Virale et Biosécurité, BP 53, 22440 Ploufragan, France; Université Bretagne Loire, France
| | - Y Blanchard
- Anses, Unité Génétique Virale et Biosécurité, BP 53, 22440 Ploufragan, France; Université Bretagne Loire, France
| | - F Paboeuf
- Anses, Service de Production de Porcs Assainis et Expérimental, BP 53, 22440 Ploufragan, France; Université Bretagne Loire, France
| | - N Rose
- Anses, Unité Epidémiologie et Bien-être Porcins, BP 53, 22440 Ploufragan, France; Université Bretagne Loire, France
| | - O Bourry
- Agence Nationale de Sécurité Sanitaire Alimentation Environnement Travail (Anses), Unité Virologie Immunologie Porcines, BP 53, 22440 Ploufragan, France; Université Bretagne Loire, France.
| |
Collapse
|
22
|
Cano G, Cavalcanti MO, Orveillon FX, Kroll J, Gomez-Duran O, Morillo A, Kraft C. Production results from piglets vaccinated in a field study in Spain with a Type 1 Porcine Respiratory and Reproductive virus modified live vaccine. Porcine Health Manag 2017; 2:22. [PMID: 28405448 PMCID: PMC5382400 DOI: 10.1186/s40813-016-0038-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/14/2016] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND PRRS is a viral disease of pigs and sows that is one of the most costly to the pig industry worldwide. The disease can be controlled by focusing on different aspects. One of them is the vaccination of piglets, which is more controversial and difficult to manage than the vaccination of sows. However, pig producers could consider a piglet vaccination strategy if it reduces the negative clinical disease and improves zootechnical performance, decreases the probability to be infected and/or reduces the spread of the virus once the vaccinated piglet is infected. The efficacy of a novel PRRS modified live vaccine (Ingelvac PRRSFLEX® EU) was studied in a blinded, side-by-side placebo controlled field study of piglet vaccination including piglets weaned for three consecutive weeks (week groups 1, 2 and 3). RESULTS This study established that PRRS piglet vaccination resulted in significantly better weight gain, seen as early as 4 weeks after vaccination, in naturally challenged pigs. Vaccine efficacy was supported by statistically significant increases in Average Daily Weight Gain (ADWG) among week group 3 vaccinated pigs from vaccination to the end of the study and statistically significant increases in bodyweight and ADWG from inclusion to 10 weeks of age in week group 2 vaccinated piglets. However, no differences were noted in week group 1 presumably because more than 30 % of the vaccinated pigs were viremic at the time of vaccination. Furthermore, the proportion of pigs showing any abnormal clinical sign at least once at any of the examination time points was lower in vaccinated pigs than in control pigs. Based on the viremia results (qPCR), early onset of PRRS was detected in this herd. Viremia occurred at the time of vaccination in week group 1 and shortly after vaccination in week groups 2 and 3. Peak wild type PRRSV infection was assumed at 4 weeks post vaccination in all groups based on the number of PRRS positive pigs in the control groups. CONCLUSION This study establishes that vaccination of piglets with Ingelvac PRRSFLEX® EU at 4 weeks of age improves weight gain and reduces the appearance of clinical sings during the growing period, even when the piglets are infected shortly after vaccination.
Collapse
Affiliation(s)
| | | | | | - Jeremy Kroll
- Boehringer Ingelheim Vetmedica Inc., Ames, IA USA
| | | | | | - Christian Kraft
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany
| |
Collapse
|
23
|
PBMC transcriptome profiles identifies potential candidate genes and functional networks controlling the innate and the adaptive immune response to PRRSV vaccine in Pietrain pig. PLoS One 2017; 12:e0171828. [PMID: 28278192 PMCID: PMC5344314 DOI: 10.1371/journal.pone.0171828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease affecting swine production, health and welfare throughout the world. A synergistic action of the innate and the adaptive immune system of the host is essential for mounting a durable protective immunity through vaccination. Therefore, the current study aimed to investigate the transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain pigs. The Affymetrix gene chip porcine gene 1.0 ST array was used for the transcriptome profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change ±1.5 as cutoff criteria, 295 and 115 transcripts were found to be differentially expressed in PBMCs during the stage of innate and adaptive response, respectively. The microarray expression results were technically validated by qRT-PCR. The gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and AP-1 transcription factor network pathways were indicating the involvement of altered genes in the antiviral defense. Network analysis revealed that four network modules were functionally involved with the transcriptional network of innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, RAD21, SP1 and GZMB are likely to be predictive for the adaptive immune transcriptional response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study advances our understanding of PRRS in term of host-vaccine interaction, and thereby contribute to design a rationale for disease control strategy.
Collapse
|
24
|
Han J, Zhou L, Ge X, Guo X, Yang H. Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:30-47. [PMID: 28292547 DOI: 10.1016/j.vetmic.2017.02.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has remained a major threat to the worldwide swine industry ever since its first discovery in the early 1990s. Under the selective pressures in the field, this positive-stranded RNA virus undergoes rapid genetic evolution that eventually leads to emergence in 2006 of the devastating Chinese highly pathogenic PRRSV (HP-PRRSV). The atypical nature of HP-PRRSV has caused colossal economic losses to the swine producers in China and the surrounding countries. In this review, we summarize the recent advances in our understanding of the pathogenesis, evolution and ongoing field practices on the control of this troubling virus in China.
Collapse
Affiliation(s)
- Jun Han
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
25
|
Vu HLX, Pattnaik AK, Osorio FA. Strategies to broaden the cross-protective efficacy of vaccines against porcine reproductive and respiratory syndrome virus. Vet Microbiol 2016; 206:29-34. [PMID: 27692670 DOI: 10.1016/j.vetmic.2016.09.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viral pathogens currently affecting swine production worldwide. Although PRRS vaccines have been commercially available for over 20 years, the available vaccines are considered inadequately effective for control and eradication of the virus. Major obstacles for the development of a highly effective PRRS vaccine include the highly variable nature of the viral genome, the viral ability to subvert the host immune system, and the incomplete understanding of the immune protection against PRRSV infection. This article summarizes the impediments for the development of a highly protective PRRS vaccine and reviews the vaccinology approaches that have been attempted to overcome one of the most formidable challenges, which is the substantial genetic variation among PRRSV isolates, to broaden the antigenic coverage of PRRS vaccines.
Collapse
Affiliation(s)
- Hiep L X Vu
- Nebraska Center for Virology, and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States.
| | - Asit K Pattnaik
- Nebraska Center for Virology, and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Fernando A Osorio
- Nebraska Center for Virology, and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| |
Collapse
|
26
|
Biernacka K, Karbowiak P, Wróbel P, Charęza T, Czopowicz M, Balka G, Goodell C, Rauh R, Stadejek T. Detection of porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV) in oral fluid of pigs. Res Vet Sci 2016; 109:74-80. [PMID: 27892877 DOI: 10.1016/j.rvsc.2016.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 11/28/2022]
Abstract
Recently oral fluid has become a novel sample type for pathogen nucleic acid and antibody detection, as it is easy to obtain with non-invasive procedures. The objective of the study was to analyze porcine reproductive and respiratory syndrome virus (PRRSV) and influenza A virus (IAV) circulation in growing pigs from three Polish production farms, using Real Time PCR and ELISA testing of oral fluid and serum. Oral fluids were collected every 2weeks, in the same 3-4 pens of pigs aged between 5 and 17weeks. Additionally, blood samples were collected every 4weeks from 4 pigs corresponding to the same pens as oral fluid and tested for the presence of PRRSV nucleic acid (pooled by 4) and antibodies. In farm A no PRRSV circulation was detected and only maternal antibodies were present. In farm B and farm C antibodies to PRRSV in serum and oral fluid were detected in most samples. In farm B PRRSV Type 1 was detected in 80.9% of oral fluid samples and in 58.3% of serum pools, and in farm C in 92.8% of oral fluid samples and 75% serum pools. Striking differences were observed between different pens in PRRSV detection patterns. In farms B and C ORF5 sequence analysis showed the presence of wild type strains which were about 84-85% identical to the modified live vaccine used. In all three farms two waves of IAV shedding with oral fluid were detected, in weaners and fatteners.
Collapse
Affiliation(s)
- Kinga Biernacka
- Warsaw University of Life Sciences - SGGW, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | | | - Paweł Wróbel
- Swine Vet Consulting L.L.C., Bolewskiego 40, 63-700 Krotoszyn, Poland
| | | | - Michał Czopowicz
- Warsaw University of Life Sciences - SGGW, Faculty of Veterinary Medicine, Laboratory of Veterinary Epidemiology and Economics, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Gyula Balka
- University of Veterinary Medicine, Department of Pathology, István u. 2, H-1078 Budapest, Hungary
| | | | - Rolf Rauh
- Tetracore Inc, 9901 Belward Campus Drive Suite 300, Rockville, MD 20850, USA
| | - Tomasz Stadejek
- Warsaw University of Life Sciences - SGGW, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
27
|
Bonckaert C, van der Meulen K, Rodríguez-Ballarà I, Pedrazuela Sanz R, Martinez MF, Nauwynck HJ. Modified-live PRRSV subtype 1 vaccine UNISTRAIN ® PRRS provides a partial clinical and virological protection upon challenge with East European subtype 3 PRRSV strain Lena. Porcine Health Manag 2016; 2:12. [PMID: 28405438 PMCID: PMC5382438 DOI: 10.1186/s40813-016-0029-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/10/2016] [Indexed: 01/12/2023] Open
Abstract
Background Western European porcine reproductive and respiratory syndrome virus (PRRSV) strains cause limited and mild clinical signs whereas more virulent strains are circulating in Eastern Europe. The emergence of such highly virulent strains in Western Europe might result in severe clinical problems and a financial disaster. In this context, the efficacy of the commercial modified-live PRRSV subtype 1 vaccine UNISTRAIN® PRRS was tested upon challenge with the East European subtype 3 PRRSV strain Lena. Results The mean duration of fever was shortened and the number of fever days was significantly lower in vaccinated pigs than in control pigs. Moreover, a lower number of vaccinated animals showed fever, respiratory disorders and conjunctivitis. The mean virus titers in the nasal secretions post challenge (AUC) were significantly lower in the vaccinated group than in the control group. The duration of viremia was slightly shorter (not significantly different) in the vaccinated group as compared to the control group. Conclusions Vaccination of pigs with the modified-live vaccine UNISTRAIN® PRRS provides a partial clinical and virological protection against the PRRSV subtype 3 strain Lena.
Collapse
Affiliation(s)
- Caroline Bonckaert
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Karen van der Meulen
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
28
|
Trus I, Frydas IS, Reddy VRAP, Bonckaert C, Li Y, Kvisgaard LK, Larsen LE, Nauwynck HJ. Immunity raised by recent European subtype 1 PRRSV strains allows better replication of East European subtype 3 PRRSV strain Lena than that raised by an older strain. Vet Res 2016; 47:15. [PMID: 26742636 PMCID: PMC4705580 DOI: 10.1186/s13567-015-0292-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
Stable spatial distribution of porcine reproductive and respiratory syndrome (PRRSV)-1 subtypes in Europe is accompanied by a strong population immunity induced by local PRRSV strains. In the present study, it was examined if the immunity induced by three West European subtype 1 PRRSV strains (2007 isolate 07V063 and 2013 isolates 13V091 and 13V117) offers protection against the highly virulent East European subtype 3 PRRSV strain Lena. The number of fever days was greater (p < 0.05) in the control group (7.6 ± 1.7 days) compared to the immune groups (07V063-immune: 4.0 ± 1.2 days, 13V091-immune: 4.6 ± 1.1 days, 13V117-immune: 4.0 ± 2.9 days). In all groups, protection was characterized by reduction (p < 0.05) of AUC values of nasal shedding (control: 14.6, 07V063-immune: 3.4, 13V091-immune: 8.9, 13V117-immune: 8.0) and viremia (control: 28.1, 07V063-immune: 5.4, 13V091-immune: 9.0, 13V117-immune: 8.3). Reduction of respiratory disease, nasal shedding (mean AUC and mean peak values) and viremia (mean AUC and mean peak values) was more pronounced in 07V063-immune (p < 0.05) than in 13V091-immune and 13V117-immune animals. Inoculation with subtype 1 PRRSV strains caused priming of the Lena-specific virus neutralization antibody response. Upon challenge with Lena, we observed a very strong serological booster effect for neutralizing antibodies against strains used for the first inoculation. Our results indicate that inoculation with subtype 1 PRRSV strains can partially protect against antigenically divergent subtype 3 strains. The lower protection level elicited by recently isolated subtype 1 PRRSV strains may impair the outcome of the spatial expansion of subtype 3 strains from East Europe to West Europe.
Collapse
Affiliation(s)
- Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Ilias S Frydas
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Vishwanatha R A P Reddy
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Caroline Bonckaert
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Yewei Li
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Lise K Kvisgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark.
| | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark.
| | - Hans J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
29
|
Characterization of immune responses following homologous reinfection of pigs with European subtype 1 and 3 porcine reproductive and respiratory syndrome virus strains that differ in virulence. Vet Microbiol 2016; 182:64-74. [DOI: 10.1016/j.vetmic.2015.10.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/28/2015] [Accepted: 10/28/2015] [Indexed: 01/10/2023]
|
30
|
Chen L, Ye S, Cai K, Zhang C, Zhou G, He Z, Han H. An aqueous platinum nanotube based fluorescent immuno-assay for porcine reproductive and respiratory syndrome virus detection. Talanta 2015; 144:324-8. [DOI: 10.1016/j.talanta.2015.06.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/11/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
|
31
|
Lyoo KS, Yeom M, Choi JY, Park JH, Yoon SW, Song D. Unusual severe cases of type 1 porcine reproductive and respiratory syndrome virus (PRRSV) infection in conventionally reared pigs in South Korea. BMC Vet Res 2015; 11:272. [PMID: 26497589 PMCID: PMC4619543 DOI: 10.1186/s12917-015-0584-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) causes a loss of approximately US$ 70 million every year to the South Korean pork industry. There are two distinct genotypes: European (type 1) and North American (type 2). In South Korea, type 1 and type 2 PRRSV are widely distributed and have evolved continuously since the infection was first described. Here, we present two field cases of type 1 PRRSV infection with unusually severe pathogenicity. CASE PRESENTATION The first case farm was a two-site production system comprising farrow-to-grower and grower-to-finish units and was historically free from PRRSV infections. The PRRSV vaccine had not been used in both units. In October 2014, pigs in the grower-to-finish unit experienced severe respiratory distress with the mortality rate reaching to 22%. Despite antibiotic treatment, clinical signs were still noticed in most pigs. The second case farm was also a two-site production system, but had two separate farrow-to-grower units (unit A and unit B). Historically, type 1 PRRSV was continuously present in unit A, but unit B was free from PRRSV. Thus, all grower pigs of unit B were vaccinated before being moved to the grower-to-finish unit. In November 2014, severe respiratory distress was seen in pigs of the grower-to-finish unit. Significant respiratory distress was observed in only the grower herd moved from unit B, and the mortality of those pigs was ~50%. However, no disease was shown in the grower pigs from unit A. CONCLUSIONS To our knowledge, the present study is the first observation of the cases of infection by highly pathogenic type 1 PRRSV in South Korea. The Korean type 1 PRRSV strains have undergone unique evolutionary dynamics for the last decade in this country. Although there are known to be three clusters of Korean type 1 PRRSV, their pathogenicity could not be categorized owing to their high level of genetic diversity. Therefore, further studies are needed to demonstrate the novel classification of Korean type 1 PRRSV strains according to their virulence factors.
Collapse
Affiliation(s)
- Kwang-Soo Lyoo
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan, South Korea.
| | - Minjoo Yeom
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, South Korea.
| | | | - Jong-Hwan Park
- College of Veterinary Medicine, Jeonnam National University, Gwangju, South Korea.
| | - Sun-Woo Yoon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| | - Daesub Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, South Korea.
| |
Collapse
|
32
|
A Synthetic Porcine Reproductive and Respiratory Syndrome Virus Strain Confers Unprecedented Levels of Heterologous Protection. J Virol 2015; 89:12070-83. [PMID: 26401031 DOI: 10.1128/jvi.01657-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Current vaccines do not provide sufficient levels of protection against divergent porcine reproductive and respiratory syndrome virus (PRRSV) strains circulating in the field, mainly due to the substantial variation of the viral genome. We describe here a novel approach to generate a PRRSV vaccine candidate that could confer unprecedented levels of heterologous protection against divergent PRRSV isolates. By using a set of 59 nonredundant, full-genome sequences of type 2 PRRSVs, a consensus genome (designated PRRSV-CON) was generated by aligning these 59 PRRSV full-genome sequences, followed by selecting the most common nucleotide found at each position of the alignment. Next, the synthetic PRRSV-CON strain was generated through the use of reverse genetics. PRRSV-CON replicates as efficiently as our prototype PRRSV strain FL12, both in vitro and in vivo. Importantly, when inoculated into pigs, PRRSV-CON confers significantly broader levels of heterologous protection than does wild-type PRRSV. Collectively, our data demonstrate that PRRSV-CON can serve as an excellent candidate for the development of a broadly protective PRRSV vaccine. IMPORTANCE The extraordinary genetic variation of RNA viruses poses a monumental challenge for the development of broadly protective vaccines against these viruses. To minimize the genetic dissimilarity between vaccine immunogens and contemporary circulating viruses, computational strategies have been developed for the generation of artificial immunogen sequences (so-called "centralized" sequences) that have equal genetic distances to the circulating viruses. Thus far, the generation of centralized vaccine immunogens has been carried out at the level of individual viral proteins. We expand this concept to PRRSV, a highly variable RNA virus, by creating a synthetic PRRSV strain based on a centralized PRRSV genome sequence. This study provides the first example of centralizing the whole genome of an RNA virus to improve vaccine coverage. This concept may be significant for the development of vaccines against genetically variable viruses that require active viral replication in order to achieve complete immune protection.
Collapse
|
33
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|