1
|
Drolet BS, Reister-Hendricks L, Mayo C, Rodgers C, Molik DC, McVey DS. Increased Virulence of Culicoides Midge Cell-Derived Bluetongue Virus in IFNAR Mice. Viruses 2024; 16:1474. [PMID: 39339950 PMCID: PMC11437402 DOI: 10.3390/v16091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bluetongue (BT) is a Culicoides midge-borne hemorrhagic disease affecting cervids and ruminant livestock species, resulting in significant economic losses from animal production and trade restrictions. Experimental animal infections using the α/β interferon receptor knockout IFNAR mouse model and susceptible target species are critical for understanding viral pathogenesis, virulence, and evaluating vaccines. However, conducting experimental vector-borne transmission studies with the vector itself are logistically difficult and experimentally problematic. Therefore, experimental infections are induced by hypodermic injection with virus typically derived from baby hamster kidney (BHK) cells. Unfortunately, for many U.S. BTV serotypes, it is difficult to replicate the severity of the disease seen in natural, midge-transmitted infections by injecting BHK-derived virus into target host animals. Using the IFNAR BTV murine model, we compared the virulence of traditional BHK cell-derived BTV-17 with C. sonorensis midge (W8) cell-derived BTV-17 to determine whether using cells of the transmission vector would provide an in vitro virulence aspect of vector-transmitted virus. At both low and high doses, mice inoculated with W8-BTV-17 had an earlier onset of viremia, earlier onset and peak of clinical signs, and significantly higher mortality compared to mice inoculated with BHK-BTV-17. Our results suggest using a Culicoides W8 cell-derived inoculum may provide an in vitro vector-enhanced infection to more closely represent disease levels seen in natural midge-transmitted infections while avoiding the logistical and experimental complexity of working with live midges.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Lindsey Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - David C. Molik
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583, USA;
| |
Collapse
|
2
|
Davis SK, Jia F, Wright QG, Islam MT, Bean A, Layton D, Williams DT, Lynch SE. Defining correlates of protection for mammalian livestock vaccines against high-priority viral diseases. Front Immunol 2024; 15:1397780. [PMID: 39100679 PMCID: PMC11294087 DOI: 10.3389/fimmu.2024.1397780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.
Collapse
Affiliation(s)
- Samantha K. Davis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Jiménez-Cabello L, Utrilla-Trigo S, Calvo-Pinilla E, Lorenzo G, Illescas-Amo M, Benavides J, Moreno S, Marín-López A, Nogales A, Ortego J. Co-expression of VP2, NS1 and NS2-Nt proteins by an MVA viral vector induces complete protection against bluetongue virus. Front Immunol 2024; 15:1440407. [PMID: 39072326 PMCID: PMC11272488 DOI: 10.3389/fimmu.2024.1440407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Bluetongue (BT), caused by bluetongue virus (BTV), is an important arthropod-borne livestock disease listed by the World Organization for Animal Health. Live-attenuated and inactivated vaccines have permitted to control BT but they do not simultaneously protect against the myriad of BTV serotypes. Recently, we identified the highly conserved BTV nonstructural protein NS1 and the N-terminal region of NS2 as antigens capable of conferring multiserotype protection against BTV. Methods Here, we designed Modified Vaccinia Ankara (MVA) viral vectors that expressed BTV-4 proteins VP2 or VP7 along with NS1 and NS2-Nt as well as MVAs that expressed proteins VP2, VP7 or NS1 and NS2-Nt. Results Immunization of IFNAR(-/-) mice with two doses of MVA-NS1-2A-NS2-Nt protected mice from BTV-4M infection by the induction of an antigen-specific T cell immune response. Despite rMVA expressing VP7 alone were not protective in the IFNAR(-/-) mouse model, inclusion of VP7 in the vaccine formulation amplified the cell-mediated response induced by NS1 and NS2-Nt. Expression of VP2 elicited protective non-cross-reactive neutralizing antibodies (nAbs) in immunized animals and improved the protection observed in the MVA-NS1-2A-NS2-Nt immunized mice when these three BTV antigens were co-expressed. Moreover, vaccines candidates co-expressing VP2 or VP7 along with NS1 and NS2-Nt provided multiserotype protection. We assessed protective efficacy of both vaccine candidates in sheep against virulent challenge with BTV-4M. Discussion Immunization with MVA-VP7-NS1-2A-NS2-Nt partially dumped viral replication and clinical disease whereas administration of MVA-VP2-NS1-2A-NS2-Nt promoted a complete protection, preventing viraemia and the pathology produced by BTV infection.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Julio Benavides
- Instituto de Ganadería de Montaña, CSIC-Universidad de León, León, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Kolla HB, Dutt M, Kumar A, Hebbandi Nanjunadappa R, Karakach T, Singh KP, Kelvin D, Clement Mertens PP, Umeshappa CS. Immuno-informatics study identifies conserved T cell epitopes in non-structural proteins of Bluetongue virus serotypes: formulation of a computationally optimized next-generation broad-spectrum multi-epitope vaccine. Front Immunol 2024; 15:1424307. [PMID: 39011043 PMCID: PMC11246920 DOI: 10.3389/fimmu.2024.1424307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Bluetongue (BT) poses a significant threat to the livestock industry, affecting various animal species and resulting in substantial economic losses. The existence of numerous BT virus (BTV) serotypes has hindered control efforts, highlighting the need for broad-spectrum vaccines. Methodology In this study, we evaluated the conserved amino acid sequences within key non-structural (NS) proteins of BTV and identified numerous highly conserved murine- and bovine-specific MHC class I-restricted (MHC-I) CD8+ and MHC-II-restricted CD4+ epitopes. We then screened these conserved epitopes for antigenicity, allergenicity, toxicity, and solubility. Using these epitopes, we developed in silico-based broad-spectrum multiepitope vaccines with Toll-like receptor (TLR-4) agonists. The predicted proinflammatory cytokine response was assessed in silico using the C-IMMSIM server. Structural modeling and refinement were achieved using Robetta and GalaxyWEB servers. Finally, we assessed the stability of the docking complexes through extensive 100-nanosecond molecular dynamics simulations before considering the vaccines for codon optimization and in silico cloning. Results We found many epitopes that meet these criteria within NS1 and NS2 proteins and developed in silico broad-spectrum vaccines. The immune simulation studies revealed that these vaccines induce high levels of IFN-γ and IL-2 in the vaccinated groups. Protein-protein docking analysis demonstrated promising epitopes with strong binding affinities to TLR-4. The docked complexes were stable, with minimal Root Mean Square Deviation and Root Mean Square Fluctuation values. Finally, the in silico-cloned plasmids have high % of GC content with > 0.8 codon adaptation index, suggesting they are suitable for expressing the protein vaccines in prokaryotic system. Discussion These next-generation vaccine designs are promising and warrant further investigation in wet lab experiments to assess their immunogenicity, safety, and efficacy for practical application in livestock. Our findings offer a robust framework for developing a comprehensive, broad-spectrum vaccine, potentially revolutionizing BT control and prevention strategies in the livestock industry.
Collapse
Affiliation(s)
- Harish Babu Kolla
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Mansi Dutt
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Anuj Kumar
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Roopa Hebbandi Nanjunadappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | - Tobias Karakach
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Karam Pal Singh
- Center for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Bareilly, India
| | - David Kelvin
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Pediatrics, Dalhousie University, Halifax, NS, Canada
- Immunology Division, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
5
|
Newbrook K, Khan N, Fisher A, Chong K, Gubbins S, Davies WC, Sanders C, Busquets MG, Cooke L, Corla A, Ashby M, Flannery J, Batten C, Stokes JE, Sanz-Bernardo B, Carpenter S, Moffat K, Darpel KE. Specific T-cell subsets have a role in anti-viral immunity and pathogenesis but not viral dynamics or onwards vector transmission of an important livestock arbovirus. Front Immunol 2024; 15:1328820. [PMID: 38357545 PMCID: PMC10864546 DOI: 10.3389/fimmu.2024.1328820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Bluetongue virus (BTV) is an arthropod-borne Orbivirus that is almost solely transmitted by Culicoides biting midges and causes a globally important haemorrhagic disease, bluetongue (BT), in susceptible ruminants. Infection with BTV is characterised by immunosuppression and substantial lymphopenia at peak viraemia in the host. Methods In this study, the role of cell-mediated immunity and specific T-cell subsets in BTV pathogenesis, clinical outcome, viral dynamics, immune protection, and onwards transmission to a susceptible Culicoides vector is defined in unprecedented detail for the first time, using an in vivo arboviral infection model system that closely mirrors natural infection and transmission of BTV. Individual circulating CD4+, CD8+, or WC1+ γδ T-cell subsets in sheep were depleted through the administration of specific monoclonal antibodies. Results The absence of cytotoxic CD8+ T cells was consistently associated with less severe clinical signs of BT, whilst the absence of CD4+ and WC1+ γδ T cells both resulted in an increased clinical severity. The absence of CD4+ T cells also impaired both a timely protective neutralising antibody response and the production of IgG antibodies targeting BTV non-structural protein, NS2, highlighting that the CD4+ T-cell subset is important for a timely protective immune response. T cells did not influence viral replication characteristics, including onset/dynamics of viraemia, shedding, or onwards transmission of BTV to Culicoides. We also highlight differences in T-cell dependency for the generation of immunoglobulin subclasses targeting BTV NS2 and the structural protein, VP7. Discussion This study identifies a diverse repertoire of T-cell functions during BTV infection in sheep, particularly in inducing specific anti-viral immune responses and disease manifestation, and will support more effective vaccination strategies.
Collapse
Affiliation(s)
- Kerry Newbrook
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
| | - Nakibul Khan
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Aimee Fisher
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
- School of Biosciences AND School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Karen Chong
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
- School of Biosciences AND School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Simon Gubbins
- Transmission Biology, The Pirbright Institute, Woking, United Kingdom
| | - William C. Davies
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | | | | | - Lyndsay Cooke
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
| | - Amanda Corla
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, United Kingdom
| | - Martin Ashby
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, United Kingdom
| | - John Flannery
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, United Kingdom
| | - Carrie Batten
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, United Kingdom
| | | | - Beatriz Sanz-Bernardo
- Large Deoxyribonucleic Acid (DNA), Viruses, The Pirbright Institute, Woking, United Kingdom
| | | | - Katy Moffat
- Flow Cytometry, The Pirbright Institute, Woking, United Kingdom
| | - Karin E. Darpel
- Orbivirus Research, The Pirbright Institute, Woking, United Kingdom
- Department of Diagnostics and Development, Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Westrich JA, McNulty EE, Carpenter M, Burton M, Reed K, Nalls A, Sandoval A, Mayo C, Mathiason CK. Monitoring longitudinal immunological responses to bluetongue virus 17 in experimentally infected sheep. Virus Res 2023; 338:199246. [PMID: 37858729 PMCID: PMC10594635 DOI: 10.1016/j.virusres.2023.199246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Bluetongue virus (BTV) is an economically important pathogen of ruminant species with worldwide prevalence. While many BTV infections are asymptomatic, animals with symptomatic presentation deteriorate quickly with the sickest succumbing to disease within one week. Animals that survive the infection often require months to recover. The immune response to BTV infection is thought to play a central role in controlling the disease. Key to understanding BTV disease is profiling vertebrate host immunological cellular and cytokine responses. Studies to characterize immune responses in ruminants have been limited by a lack of species-specific reagents and assay technology. Here we assess the longitudinal immunological response to experimental BTV-17-California (CA) infection in sheep using the most up to date assays. We infected a cohort of sheep with BTV-17-CA and longitudinally monitored each animal for clinical disease, viremia and specific immunological parameters (B cells, T cells, monocytes) by RT-qPCR, traditional flow cytometry and/or fluorescent based antibody arrays. BTV-inoculated sheep exhibited clinical signs characteristic of bluetongue virus disease. Circulating virus was demonstrated after 8 days post inoculation (DPI) and remained detectable for the remainder of the time course (24 DPI). A distinct lymphopenia was observed between 7 and 14 DPI that rebounded to mock-inoculated control levels at 17 DPI. In addition, we observed increased expression of pro-inflammatory cytokines after 8 DPI. Taken together, we have established a model of BTV infection in sheep and have successfully monitored the longitudinal vertebrate host immunological response and viral infection progression using a combination of traditional methods and cutting-edge technology.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin E McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Molly Carpenter
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mollie Burton
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kirsten Reed
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amy Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Audrey Sandoval
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christie Mayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
7
|
Bréard E, Turpaud M, Beaud G, Postic L, Fablet A, Beer M, Sailleau C, Caignard G, Viarouge C, Hoffmann B, Vitour D, Zientara S. Development and Validation of an ELISA for the Detection of Bluetongue Virus Serotype 4-Specific Antibodies. Viruses 2021; 13:v13091741. [PMID: 34578322 PMCID: PMC8473233 DOI: 10.3390/v13091741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
In this article, we describe the development and evaluation of a double antigen sandwich enzyme-linked immunosorbent assay (ELISA) able to detect serotype 4-specific antibodies from BTV-4 infected or vaccinated animals using a recombinant BTV-4 VP2 protein. The coding sequence of VP2 was inserted into a pVote plasmid by recombination in the Gateway® cloning system. Vaccinia virus (VacV) was used as a vector for the expression of the recombinant VP2. After production in BSR cells, recombinant VP2 was purified by immunoprecipitation using a FLAG tag and then used both as the coated ELISA antigen and as the HRP-tagged conjugate. The performance of the ELISA was evaluated with 1186 samples collected from BTV negative, infected or vaccinated animals. The specificity and sensitivity of the BTV-4 ELISA were above the expected standards for the detection of anti-BTV-4 VP2 antibodies in animals reared in Europe or in the Mediterranean basin. Cross-reactions were observed with reference sera for serotypes 10 and 20, and to a lesser extent with serotypes 12, 17 and 24, due to their genetic proximity to serotype 4. Nevertheless, these serotypes have never been detected in Europe and the Mediterranean area. This ELISA, which requires only the production of a recombinant protein, can be used to detect BTV serotype 4-specific antibodies and is therefore an attractive alternative diagnostic method to serum neutralization.
Collapse
Affiliation(s)
- Emmanuel Bréard
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
- Correspondence:
| | - Mathilde Turpaud
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Georges Beaud
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Lydie Postic
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Aurore Fablet
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (B.H.)
| | - Corinne Sailleau
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Grégory Caignard
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Cyril Viarouge
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (M.B.); (B.H.)
| | - Damien Vitour
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| | - Stéphan Zientara
- UMR 1161 Virologie, Laboratory for Animal Health, INRAE, Department of Animal Health, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (M.T.); (G.B.); (L.P.); (A.F.); (C.S.); (G.C.); (C.V.); (D.V.); (S.Z.)
| |
Collapse
|
8
|
Rodríguez-Martín D, Louloudes-Lázaro A, Avia M, Martín V, Rojas JM, Sevilla N. The Interplay between Bluetongue Virus Infections and Adaptive Immunity. Viruses 2021; 13:1511. [PMID: 34452376 PMCID: PMC8402766 DOI: 10.3390/v13081511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Viral infections have long provided a platform to understand the workings of immunity. For instance, great strides towards defining basic immunology concepts, such as MHC restriction of antigen presentation or T-cell memory development and maintenance, have been achieved thanks to the study of lymphocytic choriomeningitis virus (LCMV) infections. These studies have also shaped our understanding of antiviral immunity, and in particular T-cell responses. In the present review, we discuss how bluetongue virus (BTV), an economically important arbovirus from the Reoviridae family that affects ruminants, affects adaptive immunity in the natural hosts. During the initial stages of infection, BTV triggers leucopenia in the hosts. The host then mounts an adaptive immune response that controls the disease. In this work, we discuss how BTV triggers CD8+ T-cell expansion and neutralizing antibody responses, yet in some individuals viremia remains detectable after these adaptive immune mechanisms are active. We present some unpublished data showing that BTV infection also affects other T cell populations such as CD4+ T-cells or γδ T-cells, as well as B-cell numbers in the periphery. This review also discusses how BTV evades these adaptive immune mechanisms so that it can be transmitted back to the arthropod host. Understanding the interaction of BTV with immunity could ultimately define the correlates of protection with immune mechanisms that would improve our knowledge of ruminant immunology.
Collapse
Affiliation(s)
| | | | | | | | | | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (D.R.-M.); (A.L.-L.); (M.A.); (V.M.); (J.M.R.)
| |
Collapse
|
9
|
Inhibition of Orbivirus Replication by Fluvastatin and Identification of the Key Elements of the Mevalonate Pathway Involved. Viruses 2021; 13:v13081437. [PMID: 34452303 PMCID: PMC8402872 DOI: 10.3390/v13081437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/21/2023] Open
Abstract
Statin derivatives can inhibit the replication of a range of viruses, including hepatitis C virus (HCV, Hepacivirus), dengue virus (Flavivirus), African swine fever virus (Asfarviridae) and poliovirus (Picornaviridae). We assess the antiviral effect of fluvastatin in cells infected with orbiviruses (bluetongue virus (BTV) and Great Island virus (GIV)). The synthesis of orbivirus outer-capsid protein VP2 (detected by confocal immunofluorescence imaging) was used to assess levels of virus replication, showing a reduction in fluvastatin-treated cells. A reduction in virus titres of ~1.7 log (98%) in fluvastatin-treated cells was detected by a plaque assay. We have previously identified a fourth non-structural protein (NS4) of BTV and GIV, showing that it interacts with lipid droplets in infected cells. Fluvastatin, which inhibits 3-hydroxy 3-methyl glutaryl CoA reductase in the mevalonic acid pathway, disrupts these NS4 interactions. These findings highlight the role of the lipid pathways in orbivirus replication and suggest a greater role for the membrane-enveloped orbivirus particles than previously recognised. Chemical intermediates of the mevalonic acid pathway were used to assess their potential to rescue orbivirus replication. Pre-treatment of IFNAR(−/−) mice with fluvastatin promoted their survival upon challenge with live BTV, although only limited protection was observed.
Collapse
|
10
|
Rojas JM, Barba-Moreno D, Avia M, Sevilla N, Martín V. Vaccination With Recombinant Adenoviruses Expressing the Bluetongue Virus Subunits VP7 and VP2 Provides Protection Against Heterologous Virus Challenge. Front Vet Sci 2021; 8:645561. [PMID: 33778041 PMCID: PMC7987666 DOI: 10.3389/fvets.2021.645561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
Bluetongue virus (BTV) is the causative agent of a disease that affects domestic and wild ruminants and leads to critical economic losses. BTV is an arbovirus from the Reoviridae family that is typically transmitted by the bite of infected Culicoides midges. BTV possesses multiple serotypes (up to 28 have been described), and immunity to one serotype offers little cross-protection to other serotypes. The design of vaccines that provide protection across multiple serotypes is therefore highly desirable to control this disease. We previously reported that a recombinant replication-defective human adenovirus serotype 5 (Ad5) that expresses the VP7 inner core protein of BTV serotype 8 (Ad5VP7-8) induced T-cell responses and provided protection. In the present work, we evaluated as BTV vaccine the combination of Ad5VP7-8 with another recombinant Ad5 that expresses the outer core protein VP2 from BTV-1 (Ad5VP2-1). The combination of Ad5VP2-1 and Ad5VP7-8 protected against homologous BTV challenge (BTV-1 and BTV-8) and partially against heterologous BTV-4 in a murine model. Cross-reactive anti-BTV immunoglobulin G (IgG) were detected in immunized animals, but no significant titers of neutralizing antibodies were elicited. The Ad5VP7-8 immunization induced T-cell responses that recognized all three serotypes tested in this study and primed cytotoxic T lymphocytes specific for VP7. This study further confirms that targeting antigenic determinant shared by several BTV serotypes using cellular immunity could help develop multiserotype BTV vaccines.
Collapse
Affiliation(s)
- José Manuel Rojas
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Diego Barba-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Miguel Avia
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
11
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Reliable and Standardized Animal Models to Study the Pathogenesis of Bluetongue and Schmallenberg Viruses in Ruminant Natural Host Species with Special Emphasis on Placental Crossing. Viruses 2019; 11:v11080753. [PMID: 31443153 PMCID: PMC6722754 DOI: 10.3390/v11080753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Starting in 2006, bluetongue virus serotype 8 (BTV8) was responsible for a major epizootic in Western and Northern Europe. The magnitude and spread of the disease were surprisingly high and the control of BTV improved significantly with the marketing of BTV8 inactivated vaccines in 2008. During late summer of 2011, a first cluster of reduced milk yield, fever, and diarrhoea was reported in the Netherlands. Congenital malformations appeared in March 2012 and Schmallenberg virus (SBV) was identified, becoming one of the very few orthobunyaviruses distributed in Europe. At the start of both epizootics, little was known about the pathogenesis and epidemiology of these viruses in the European context and most assumptions were extrapolated based on other related viruses and/or other regions of the World. Standardized and repeatable models potentially mimicking clinical signs observed in the field are required to study the pathogenesis of these infections, and to clarify their ability to cross the placental barrier. This review presents some of the latest experimental designs for infectious disease challenges with BTV or SBV. Infectious doses, routes of infection, inoculum preparation, and origin are discussed. Particular emphasis is given to the placental crossing associated with these two viruses.
Collapse
|
13
|
Presence of Antibodies against Bluetongue Virus (BTV) in Sheep 5 to 7.5 Years after Vaccination with Inactivated BTV-8 Vaccines. Viruses 2019; 11:v11060533. [PMID: 31181733 PMCID: PMC6630684 DOI: 10.3390/v11060533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022] Open
Abstract
Thirty-six female sheep, previously vaccinated against Bluetongue virus serotype 8 (BTV-8) using inactivated vaccines, were included in this field study. In Germany, vaccination was compulsory in 2008 and 2009, voluntary in 2010 and early 2011, and later, was prohibited in 2011. Due to their age, eighteen sheep had been vaccinated for two or more consecutive years, while a further eighteen animals had only been vaccinated once or not at all. The sheep were blood sampled five (n = 31) to 7.5 years (n = 5) after their last vaccination. All serum samples (n = 36) were tested for BTV group-specific antibodies by an ELISA (IDScreen® Bluetongue Competition assay, ID Vet). In five of the animals, the BTV-8 serotype-specific antibody titers were measured by serum neutralization (SN). The majority of sheep that were vaccinated annually for two or more years showed a positive ELISA (14/18 sheep) and a SN (two of two sheep) result 5 years after their last vaccination. Most of the sheep vaccinated fewer than twice showed a negative ELISA result 5 to 7.5 years after their last vaccination (13/18 animals). The three animals in this group tested by SN showed one negative and two positive results. This short communication is the first to describe the presence of BTV antibodies in sheep 5 to 7.5 years after vaccination with inactivated BTV-8 vaccines.
Collapse
|
14
|
Bréard E, Gorlier A, Viarouge C, Donnet F, Sailleau C, Schulz C, Hoffmann B, Comtet L, Beer M, Zientara S, Vitour D. Evaluation of an IGM-specific ELISA for early detection of bluetongue virus infections in domestic ruminants sera. Transbound Emerg Dis 2018; 66:537-545. [PMID: 30394662 DOI: 10.1111/tbed.13060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/10/2018] [Accepted: 10/15/2018] [Indexed: 12/01/2022]
Abstract
Competitive-ELISA (c-ELISA) is the most widely used serological test for the detection of Bluetongue virus (BTV) viral protein 7 (VP7) antibodies (Ab). However, these BTV c-ELISAs cannot to distinguish between IgG and IgM. IgM Ab are generated shortly after the primary immune response against an infectious agent, indicating a recent infection or exposure to antigens, such as after vaccination. Because the BTV genome or anti-VP7 Ab can be detected in ruminant blood months after infection, BTV diagnostic tools cannot discriminate between recent and old infections. In this study, we evaluated an IgM-capture ELISA prototype to detect ruminant anti-BTV VP7 IgM on 1,650 serum samples from cattle, sheep, or goats. Animals were BTV-naive, infected, or/and vaccinated with BTV-1, -2, -4, -8, -9, -16, or -27, and we also included 30 sera from cattle infected with the Epizootic haemorrhagic disease virus (EHDV) serotype 6. Results demonstrated that this ELISA kit is specific and can detect the presence of IgM with satisfactory diagnostic specificity and sensitivity from 1 to 5 weeks after BTV infection in domestic ruminants (for goats and cattle; for sheep, at least up to 24 days). The peak of anti-VP7 IgM was reached when the level of infectious viruses and BTV RNA in blood were the highest. The possibility of detecting BTV-RNA in IgM-positive sera allows the amplification and sequencing of the partial RNA segment 2 (encoding the serotype specific to VP2) to determine the causative BTV serotype/strain. Therefore, BTV IgM ELISA can detect the introduction of BTV (or EHDV) in an area with BTV-seropositive domestic animals regardless of their serological BTV status. This approach may also be of particular interest for retrospective epidemiological studies on frozen serum samples.
Collapse
Affiliation(s)
- Emmanuel Bréard
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - Axel Gorlier
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - Cyril Viarouge
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | | | - Corinne Sailleau
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - Claudia Schulz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel, Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel, Riems, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel, Riems, Germany
| | - Stéphan Zientara
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - Damien Vitour
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| |
Collapse
|
15
|
Martinelle L, Dal Pozzo F, Thys C, De Leeuw I, Van Campe W, De Clercq K, Thiry E, Saegerman C. Assessment of cross-protection induced by a bluetongue virus (BTV) serotype 8 vaccine towards other BTV serotypes in experimental conditions. Vet Res 2018; 49:63. [PMID: 30012223 PMCID: PMC6048908 DOI: 10.1186/s13567-018-0556-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Bluetongue disease is caused by bluetongue virus (BTV) and BTV serotype 8 (BTV8) caused great economic damage in Europe during the last decade. From 1998 to 2007, in addition to BTV8, Europe had to face the emergence of BTV1, 2, 4, 9, and 16, spreading in countries where the virus has never been detected before. These unprecedented outbreaks trigger the need to evaluate and compare the clinical, virological and serological features of the European BTV serotypes in the local epidemiological context. In this study groups of calves were infected with one of the following European BTV serotypes, namely BTV1, 2, 4, 9 and 16. For each tested serotype, two groups of three male Holstein calves were used: one group vaccinated against BTV8, the other non-vaccinated. Clinical signs were quantified, viral RNA was detected in blood and organs and serological relationship was assessed. Calves were euthanized 35 days post-infection and necropsied. Most of the infected animals showed mild clinical signs. A partial serological cross reactivity has been reported between BTV8 and BTV4, and between BTV1 and BTV8. BTV2 and BTV4 viral RNA only reached low levels in blood, when compared to other serotypes, whereas in vitro growth assays could not highlight significant differences. Altogether the results of this study support the hypothesis of higher adaptation of some BTV strains to specific hosts, in this case calves. Furthermore, cross-protection resulting from a prior vaccination with BTV8 was highlighted based on cross-neutralization. However, the development of neutralizing antibodies is probably not totally explaining the mild protection induced by the heterologous vaccination.
Collapse
Affiliation(s)
- Ludovic Martinelle
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium
| | - Fabiana Dal Pozzo
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium
| | - Christine Thys
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium
| | | | | | | | - Etienne Thiry
- Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal and Health (FARAH) Center, Veterinary Virology and Animal Viral Diseases, University of Liege, Liege, Belgium
| | - Claude Saegerman
- Faculty of Veterinary Medicine, Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liege, Liege, Belgium.
| |
Collapse
|
16
|
Bréard E, Schulz C, Sailleau C, Bernelin-Cottet C, Viarouge C, Vitour D, Guillaume B, Caignard G, Gorlier A, Attoui H, Gallois M, Hoffmann B, Zientara S, Beer M. Bluetongue virus serotype 27: Experimental infection of goats, sheep and cattle with three BTV-27 variants reveal atypical characteristics and likely direct contact transmission BTV-27 between goats. Transbound Emerg Dis 2017; 65:e251-e263. [PMID: 29243405 DOI: 10.1111/tbed.12780] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 11/30/2022]
Abstract
Bluetongue virus (BTV) hitherto consisted of 26 recognized serotypes, of which all except BTV-26 are primarily transmitted by certain species of Culicoides biting midges. Three variants of an additional 27th bluetongue virus serotype (BTV-27v01-v03) were recently detected in asymptomatic goats in Corsica, France, 2014-2015. Molecular characterization revealed genetic differences between the three variants. Therefore, in vivo characteristics were investigated by experimental infection of a total of 15 goats, 11 sheep and 4 cattle with any one of the three variants in separated animal trials. In goat trials, BTV-naïve animals of the same species were kept in a facility where direct contact was unhindered. Of the 15 inoculated goats, 13 and 14 animals were found positive for BTV-RNA and antibodies (Ab), respectively, until the end of the experiments. Surprisingly, BTV-Ab levels as measured with ELISA and neutralization test (SNT) were remarkably low in all seropositive goats. Virus isolation from whole-blood was possible at the peak of viremia until 49 dpi. Moreover, detection of BTV-27v02-RNA and Ab in one contact goat indicated that-similar to BTV-26-at least one of three BTV-27 variants may be transmitted by contact between goats. In the field, BTV-27 RNA can be detected up to 6 months in the whole-blood of BTV-27-infected Corsican goats. In contrast, BTV RNA was not detected in the blood of cattle or sheep. In addition, BTV-27 Abs were not detected in cattle and only a transient increase in Ab levels was observed in some sheep. None of the 30 animals showed obvious BT-like clinical signs. In summary, the phenotypes observed for BTV-27v01-v03 phenotypes correspond to a mixture of characteristics known for BTV-25 and 26.
Collapse
Affiliation(s)
- E Bréard
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - C Schulz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - C Sailleau
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - C Bernelin-Cottet
- Virologie et Immunologie Moléculaires, UR892 INRA, Domaine de Vilvert, Jouy-en-Josas, France
| | - C Viarouge
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - D Vitour
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - B Guillaume
- Ecole Nationale Veterinaire d'Alfort, Unite de Pathologie du Betail, Universite Paris-Est, Maisons-Alfort, France
| | - G Caignard
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - A Gorlier
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - H Attoui
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - M Gallois
- Regional Federation of Corsican Animal Health Groups, FRGDSB20, Ajaccio, France
| | - B Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - S Zientara
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
17
|
More S, Bicout D, Bøtner A, Butterworth A, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Mertens P, Savini G, Zientara S, Broglia A, Baldinelli F, Gogin A, Kohnle L, Calistri P. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): bluetongue. EFSA J 2017; 15:e04957. [PMID: 32625623 PMCID: PMC7010010 DOI: 10.2903/j.efsa.2017.4957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A specific concept of strain was developed in order to classify the BTV serotypes ever reported in Europe based on their properties of animal health impact: the genotype, morbidity, mortality, speed of spread, period and geographical area of occurrence were considered as classification parameters. According to this methodology the strain groups identified were (i) the BTV strains belonging to serotypes BTV-1-24, (ii) some strains of serotypes BTV-16 and (iii) small ruminant-adapted strains belonging to serotypes BTV-25, -27, -30. Those strain groups were assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7, Article 5 on the eligibility of bluetongue to be listed, Article 9 for the categorisation according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to bluetongue. The assessment has been performed following a methodology composed of information collection, expert judgement at individual and collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. The strain group BTV (1-24) can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL, while the strain group BTV-25-30 and BTV-16 cannot. The strain group BTV-1-24 meets the criteria as in Sections 2 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b) and (e) of Article 9(1) of the AHL. The animal species that can be considered to be listed for BTV-1-24 according to Article 8(3) are several species of Bovidae, Cervidae and Camelidae as susceptible species; domestic cattle, sheep and red deer as reservoir hosts, midges insect of genus Culicoides spp. as vector species.
Collapse
|
18
|
Abstract
The performance of different bluetongue control measures related to both vaccination and protection from bluetongue virus (BTV) vectors was assessed. By means of a mathematical model, it was concluded that when vaccination is applied on 95% of animals even for 3 years, bluetongue cannot be eradicated and is able to re‐emerge. Only after 5 years of vaccination, the infection may be close to the eradication levels. In the absence of vaccination, the disease can persist for several years, reaching an endemic condition with low level of prevalence of infection. Among the mechanisms for bluetongue persistence, the persistence in the wildlife, the transplacental transmission in the host, the duration of viraemia and the possible vertical transmission in vectors were assessed. The criteria of the current surveillance scheme in place in the EU for demonstration of the virus absence need revision, because it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over‐wintering and criteria for the seasonally vector‐free period was updated. Some Culicoides species are active throughout the year and an absolute vector‐free period may not exist at least in some areas in Europe. To date, there is no evidence that the use of insecticides and repellents reduce the transmission of BTV in the field, although this may reduce host/vector contact. By only using pour‐on insecticides, protection of animals is lower than the one provided by vector‐proof establishments. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1182/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1171/full
Collapse
|
19
|
Abstract
Bluetongue virus (BTV) is the type species of genus Orbivirus within family Reoviridae. Bluetongue virus is transmitted between its ruminant hosts by the bite of Culicoides spp. midges. Severe BT cases are characterized by symptoms including hemorrhagic fever, particularly in sheep, loss of productivity, and death. To date, 27 BTV serotypes have been documented. These include novel isolates of atypical BTV, which have been almost fully characterized using deep sequencing technologies and do not rely on Culicoides vectors for their transmission among hosts. Due to its high economic impact, BT is an Office International des Epizooties (OIE) listed disease that is strictly controlled in international commercial exchanges. During the 20th century, BTV has been endemic in subtropical regions. In the last 15 years, novel strains of nine "typical" BTV serotypes (1, 2, 4, 6, 8, 9, 11, 14, and 16) invaded Europe, some of which caused disease in naive sheep and unexpectedly in bovine herds (particularly serotype 8). Over the past few years, three novel "atypical" serotypes (25-27) were characterized during sequencing studies of animal samples from Switzerland, Kuwait, and France, respectively. Classical serotype-specific inactivated vaccines, although expensive, were very successful in controlling outbreaks as shown with the northern European BTV-8 outbreak which started in the summer of 2006. Technological jumps in deep sequencing methodologies made rapid full characterizations of BTV genome from isolates/tissues feasible. Next-generation sequencing (NGS) approaches are powerful tools to study the variability of BTV genomes on a fine scale. This paper provides information on how NGS impacted our knowledge of the BTV genome.
Collapse
|
20
|
Feenstra F, van Rijn PA. Current and next-generation bluetongue vaccines: Requirements, strategies, and prospects for different field situations. Crit Rev Microbiol 2016; 43:142-155. [PMID: 27800699 DOI: 10.1080/1040841x.2016.1186005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bluetongue virus (BTV) causes the hemorrhagic disease bluetongue (BT) in ruminants. The best way to control outbreaks is vaccination. Currently, conventionally modified-live and inactivated vaccines are commercially available, which have been successfully used to control BT, but nonetheless have their specific shortcomings. Therefore, there is a need for improved BT vaccines. The ideal BT vaccine is efficacious, safe, affordable, protective against multiple serotypes and enables the differentiation of infected from vaccinated animals. Different field situations require specific vaccine profiles. Single serotype outbreaks in former BT-free areas need rapid onset of protection against viremia of the respective serotype. In contrary, endemic multiple serotype situations require long-lasting protection against all circulating serotypes. The ideal BT vaccine for all field situations does not exist and balancing between vaccine properties is needed. Many new vaccines candidates, ranging from non-replicating subunits to replicating next-generation reverse genetics based vaccines, have been developed. Some have been tested extensively in large numbers of ruminants, whereas others were developed recently and have only been tested in vitro and in mice models. Most vaccine candidates are promising, but have their specific shortcomings and advantages. In this review, current and next-generation BT vaccines are discussed in the light of prerequisites for different field situations.
Collapse
Affiliation(s)
- Femke Feenstra
- a Department of Virology , Central Veterinary Institute of Wageningen UR , Lelystad , The Netherlands.,b Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine , Utrecht University , Utrecht , The Netherlands
| | - Piet A van Rijn
- a Department of Virology , Central Veterinary Institute of Wageningen UR , Lelystad , The Netherlands.,c Department of Biochemistry , Center for Human Metabolomics, North-West University , Potchefstroom , South Africa
| |
Collapse
|
21
|
Breard E, Garnier A, Despres P, Blaise Boisseau S, Comtet L, Viarouge C, Bakkali-Kassimi L, Pourquier P, Hudelet P, Vitour D, Rossi S, Belbis G, Sailleau C, Zientara S. Development of a Double-Antigen Microsphere Immunoassay for Simultaneous Group and Serotype Detection of Bluetongue Virus Antibodies. Transbound Emerg Dis 2016; 64:1837-1847. [PMID: 27667484 DOI: 10.1111/tbed.12578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Indexed: 11/30/2022]
Abstract
Bluetongue viruses (BTV) are arboviruses responsible for infections in ruminants. The confirmation of BTV infections is based on rapid serological tests such as enzyme-linked immunosorbent assays (ELISAs) using the BTV viral protein 7 (VP7) as antigen. The determination of the BTV serotype by serological analyses could be only performed by neutralization tests (VNT) which are time-consuming and require BSL3 facilities. VP2 protein is considered the major serotype-defining protein of BTV. To improve the serological characterization of BTV infections, the recombinant VP7 and BTV serotype 8 (BTV-8) VP2 were synthesized using insect cells expression system. The purified antigens were covalently bound to fluorescent beads and then assayed with 822 characterized ruminant sera from BTV vaccinations or infections in a duplex microsphere immunoassay (MIA). The revelation step of this serological duplex assay was performed with biotinylated antigens instead of antispecies conjugates to use it on different ruminant species. The results demonstrated that MIA detected the anti-VP7 antibodies with a high specificity as well as a competitive ELISA approved for BTV diagnosis, with a better efficiency for the early detection of the anti-VP7 antibodies. The VP2 MIA results showed that this technology is also an alternative to VNT for BTV diagnosis. Comparisons between the VP2 MIA and VNT results showed that VNT detects the anti-VP2 antibodies in an early stage and that the VP2 MIA is as specific as VNT. This novel immunoassay provides a platform for developing multiplex assays, in which the presence of antibodies against multiple BTV serotypes can be detected simultaneously.
Collapse
Affiliation(s)
- E Breard
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Université Paris Est, ANSES, Maisons-Alfort, France
| | - A Garnier
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Université Paris Est, ANSES, Maisons-Alfort, France
| | - P Despres
- UMR PIMIT (I2T), Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, technology platform CYROI, Saint-Clotilde, La Reunion, France
| | - S Blaise Boisseau
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Université Paris Est, ANSES, Maisons-Alfort, France
| | | | - C Viarouge
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Université Paris Est, ANSES, Maisons-Alfort, France
| | - L Bakkali-Kassimi
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Université Paris Est, ANSES, Maisons-Alfort, France
| | | | | | - D Vitour
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Université Paris Est, ANSES, Maisons-Alfort, France
| | - S Rossi
- Unité Sanitaire de la Faune, Office National de la Chasse et de la Faune Sauvage, Gap, France
| | - G Belbis
- Unité de Pathologie du Bétail, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - C Sailleau
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Université Paris Est, ANSES, Maisons-Alfort, France
| | - S Zientara
- UMR 1161 VIROLOGIE ANSES-INRA-ENVA, Université Paris Est, ANSES, Maisons-Alfort, France
| |
Collapse
|
22
|
Development and Evaluation of Real Time RT-PCR Assays for Detection and Typing of Bluetongue Virus. PLoS One 2016; 11:e0163014. [PMID: 27661614 PMCID: PMC5035095 DOI: 10.1371/journal.pone.0163014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple 'TaqMan' fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the 'Orbivirus Reference Collection' (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures.
Collapse
|
23
|
Marín-López A, Barriales D, Moreno S, Ortego J, Calvo-Pinilla E. Defeating Bluetongue virus: new approaches in the development of multiserotype vaccines. Future Virol 2016. [DOI: 10.2217/fvl-2016-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bluetongue virus (BTV) is a global threat to domestic and wild ruminants, causing massive economic losses throughout the world. New serotypes of the virus are rapidly emerging in different continents, unfortunately there is little cross-protection between BTV serotypes. The eradication of the virus from a region is particularly complicated in areas where multiple serotypes circulate for a long time. The present review summarizes the actual concerns about the spread of the virus and relevant approaches to develop efficient vaccines against BTV, in particular those focused on a multiserotype design.
Collapse
Affiliation(s)
| | - Diego Barriales
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos-Madrid, Spain
| |
Collapse
|
24
|
Hanon JB, Vandenberge V, Deruelle M, De Leeuw I, De Clercq K, Van Borm S, Koenen F, Liu L, Hoffmann B, Batten CA, Zientara S, Breard E, Van der Stede Y. Inter-laboratory evaluation of the performance parameters of a Lateral Flow Test device for the detection of Bluetongue virus-specific antibodies. J Virol Methods 2015; 228:140-50. [PMID: 26687976 DOI: 10.1016/j.jviromet.2015.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/01/2022]
Abstract
Bluetongue (BT) is a viral vector-borne disease affecting domestic and wild ruminants worldwide. In this study, a commercial rapid immuno-chromatographic method or Lateral Flow Test (LFT) device, for the detection of BT virus-specific antibodies in animal serum, was evaluated in an international inter-laboratory proficiency test. The evaluation was done with sera samples of variable background (ruminant species, serotype, field samples, experimental infections, vaccinated animals). The diagnostic sensitivity was 100% (95% C.I. [90.5-100]) and the diagnostic specificity was 95.2% (95% C.I. [76.2-99.9]). The repeatability (accordance) and reproducibility (concordance) were 100% for seropositive samples but were lower for two of the seronegative samples (45% and 89% respectively). The analytical sensitivity, evaluated by testing positive sera at increasing dilutions was better for the BT LFT compared to some commercial ELISAs. Seroconversion of an infected sheep was detected at 4 days post infection. Analytical specificity was impaired by cross-reactions observed with some of the samples seropositive for Epizootic Haemorrhagic Disease Virus (EHDV). The agreement (Cohen's kappa) between the LFT and a commercial BT competitive ELISA was 0.79 (95% CI [0.62-0.95]). Based on these results, it can be concluded that the BT LFT device is a rapid and sensitive first-line serological test that can be used in the field, especially in areas endemic for the disease where there is a lack of diagnostic facilities.
Collapse
Affiliation(s)
- Jean-Baptiste Hanon
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Coordination of the Veterinary Diagnostic, Epidemiology and Risk Analysis Unit (CDV-ERA), Groeselenberg 99, 1180 Brussels, Belgium.
| | - Valerie Vandenberge
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Coordination of the Veterinary Diagnostic, Epidemiology and Risk Analysis Unit (CDV-ERA), Groeselenberg 99, 1180 Brussels, Belgium
| | - Matthias Deruelle
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Coordination of the Veterinary Diagnostic, Epidemiology and Risk Analysis Unit (CDV-ERA), Groeselenberg 99, 1180 Brussels, Belgium
| | - Ilse De Leeuw
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Vesicular and Exotic Diseases Unit, National Reference Laboratory for Bluetongue, Groeselenberg 99, 1180 Brussels, Belgium
| | - Kris De Clercq
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Vesicular and Exotic Diseases Unit, National Reference Laboratory for Bluetongue, Groeselenberg 99, 1180 Brussels, Belgium
| | - Steven Van Borm
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Molecular Platform Unit, Groeselenberg 99, 1180 Brussels, Belgium
| | - Frank Koenen
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Coordination of the Veterinary Diagnostic, Epidemiology and Risk Analysis Unit (CDV-ERA), Groeselenberg 99, 1180 Brussels, Belgium
| | - Lihong Liu
- National Veterinary Institute (SVA), Department of Virology, Immunobiology and Parasitology (VIP), SE-751 89 Uppsala, Sweden
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut (FLI), Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Carrie Anne Batten
- The Pirbright Institute, Non Vesicular Reference Laboratory, Ash Road, Pirbright, Woking GU240NF, United Kingdom
| | - Stéphan Zientara
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), UPE, UMR Anses, INRA, ENVA, 14 rue Pierre et Marie Curie, laboratoire de santé animale, Maisons-Alfort, France
| | - Emmanuel Breard
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), UPE, UMR Anses, INRA, ENVA, 14 rue Pierre et Marie Curie, laboratoire de santé animale, Maisons-Alfort, France
| | - Yves Van der Stede
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Coordination of the Veterinary Diagnostic, Epidemiology and Risk Analysis Unit (CDV-ERA), Groeselenberg 99, 1180 Brussels, Belgium; Ghent University, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|