1
|
Aodah AH, Alkholifi FK, Alharthy KM, Devi S, Foudah AI, Yusufoglu HS, Alam A. Effects of kaempherol-3-rhamnoside on metabolic enzymes and AMPK in the liver tissue of STZ-induced diabetes in mice. Sci Rep 2024; 14:16167. [PMID: 39003280 PMCID: PMC11246446 DOI: 10.1038/s41598-024-66426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia. It involves disturbances in carbohydrate, fat, and protein metabolism due to defects in insulin secretion, insulin action, or both. Novel therapeutic approaches are continuously being explored to enhance metabolic control and prevent complications associated with the disease. This study investigates the therapeutic potential of kaempherol-3-rhamnoside, a flavonoid, in managing diabetes by modulating the AMP-activated protein kinase (AMPK) pathway and improving metabolic enzyme activities in streptozotocin (STZ) -induced diabetic mice. Diabetic mice were treated with varying doses of kaempherol-3-rhamnoside and/or insulin over a 28-day period. Glycolytic and gluconeogenesis enzyme activities in the liver, fasting blood glucose levels, serum insulin levels, lipid profiles and oxidative stress markers were assessed. Treatment with kaempherol-3-rhamnoside significantly improved glycolytic enzyme activities, reduced fasting blood glucose, and enhanced insulin levels compared to diabetic controls. The compound also normalized lipid profiles and reduced oxidative stress in the liver, suggesting its potential in reversing diabetic dyslipidemia and oxidative damage. Furthermore, kaempherol-3-rhamnoside activated the AMPK pathway, indicating a mechanism through which it could exert its effects. Kaempherol-3-rhamnoside exhibits promising antidiabetic properties, potentially through AMPK pathway activation and metabolic enzyme modulation. These findings support its potential use as an adjunct therapy for diabetes management. Further clinical studies are warranted to validate these results in human subjects.
Collapse
Affiliation(s)
- Alhussain H Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Faisal K Alkholifi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Khalid M Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Hasan S Yusufoglu
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia.
| |
Collapse
|
2
|
Plieskatt J, Bang P, Wood GK, Naghizadeh M, Singh SK, Jore MM, Theisen M. Clinical formulation development of Plasmodium falciparum malaria vaccine candidates based on Pfs48/45, Pfs230, and PfCSP. Vaccine 2024; 42:1980-1992. [PMID: 38388238 DOI: 10.1016/j.vaccine.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Two malaria transmission-blocking vaccine (TBV) candidates, R0.6C and ProC6C, have completed preclinical development including the selection of adjuvants, Alhydrogel® with or without the saponin based adjuvant Matrix-M™. Here, we report on the final drug product (formulation) design of R0.6C and ProC6C and evaluate their safety and biochemical stability in preparation for preclinical and clinical pharmacy handling. The point-of-injection stability studies demonstrated that both the R0.6C and ProC6C antigens are stable on Alhydrogel in the presence or absence of Matrix-M for up to 24 h at room temperature. As this is the first study to combine Alhydrogel and Matrix-M for clinical use, we also evaluated their potential interactions. Matrix-M adsorbs to Alhydrogel, while not displacing the > 95 % adsorbed protein. The R0.6C and ProC6C formulations were found to be safe and well tolerated in repeated dose toxicity studies in rabbits generating high levels of functional antibodies that blocked infection of mosquitoes. Further, the R0.6C and ProC6C drug products were found to be stable for minimally 24 months when stored at 2-8 °C, with studies ongoing through 36 months. Together, this data demonstrates the safety and suitability of the L. lactis expression system as well as supports the clinical testing of the R0.6C and ProC6C malaria vaccine candidates in First-In-Human clinical trials.
Collapse
Affiliation(s)
- Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Bang
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut, Copenhagen, Denmark
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Nurpeisova A, Khairullin B, Abitaev R, Shorayeva K, Jekebekov K, Kalimolda E, Kerimbayev A, Akylbayeva K, Abay Z, Myrzakhmetova B, Nakhanov A, Absatova Z, Nurabayev S, Orynbayev M, Assanzhanova N, Abeuov K, Kutumbetov L, Kassenov M, Abduraimov Y, Zakarya K. Safety and immunogenicity of the first Kazakh inactivated vaccine for COVID-19. Hum Vaccin Immunother 2022; 18:2087412. [PMID: 35960911 DOI: 10.1080/21645515.2022.2087412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This article describes the results of a preclinical safety and immunogenicity study of QazCovid-in®, the first COVID-19 vaccine developed in Kazakhstan, on BALB/c mice, rats, ferrets, Syrian hamsters and rhesus macaques (Macaca mulatta). The study's safety data suggests that this immunobiological preparation can be technically considered a Class 5 nontoxic vaccine. The series of injections that were made did not produce any adverse effect or any change in the general condition of the model animals' health, while macroscopy and histology studies identified no changes in the internal organs of the BALB/c mice and rats. This study has demonstrated that a double immunization enhances the growth of antibody titers as assessed by the microneutralization assay (MNA) and the enzyme-linked immunosorbent assay (ELISA) in a pre-clinical immunogenicity test on animal models. The best GMT results were assessed in MNA and ELISA 7 days after re-vaccination; however, we noted that GMT antibody results in ELISA were lower than in MNA. A comparative GMT assessment after the first immunization and the re-immunization identified significant differences between model animal groups and a growth of GMT antibodies in all of them; also, differences between the gender groups were statistically significant. Moreover, the most marked MNA immune response to the QazCovid-in® vaccine was seen in the Syrian hamsters, while their SARS-CoV-2-specific antibody activity as assessed with ELISA was the lowest.
Collapse
Affiliation(s)
- Ainur Nurpeisova
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Ruslan Abitaev
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Kamshat Shorayeva
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Kuanish Jekebekov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Elina Kalimolda
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Karligash Akylbayeva
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Zhandos Abay
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | | | - Aziz Nakhanov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Zharkinay Absatova
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Mukhit Orynbayev
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Nurika Assanzhanova
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Khairulla Abeuov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Yergaly Abduraimov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| |
Collapse
|
4
|
Chiarot E, Pizza M. Animal models in vaccinology: state of the art and future perspectives for an animal-free approach. Curr Opin Microbiol 2021; 66:46-55. [PMID: 34953265 DOI: 10.1016/j.mib.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Vaccine discovery and development is mainly driven by studies on immunogenicity and safety based on the appropriate animal models. In this review we will describe the importance of animal models in vaccinology, from research and development to pre-licensure and post-licensure commitments with particular emphasis on the advantages and limitations of each animal species. Finally, we will describe the most modern technologies, the new in vitro and ex vivo models and the new advances in the field which may drive into a new era of 'animal free' vaccinology.
Collapse
|
5
|
K B M, Nayar SA, P V M. Vaccine and vaccination as a part of human life: In view of COVID-19. Biotechnol J 2021; 17:e2100188. [PMID: 34665927 PMCID: PMC8646257 DOI: 10.1002/biot.202100188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022]
Abstract
Background Vaccination created a great breakthrough toward the improvement to the global health. The development of vaccines and their use made a substantial decrease and control in infectious diseases. The abundance and emergence of new vaccines has facilitated targeting populations to alleviate and eliminate contagious pathogens from their innate reservoir. However, along with the infections like malaria and HIV, effective immunization remains obscure and imparts a great challenge to science. Purpose and scope The novel Corona virus SARS‐CoV‐2 is the reason for the 2019 COVID‐19 pandemic in the human global population, in the first half of 2019. The need for establishing a protected and compelling COVID‐19 immunization is a global prerequisite to end this pandemic. Summary and conclusion The different vaccine technologies like inactivation, attenuation, nucleic acid, viral vector, subunit, and viral particle based techniques are employed to develop a safe and highly efficient vaccine. The progress in vaccine development for SARS‐CoV2 is much faster in the history of science. Even though there exist of lot of limitations, continuous efforts has put forward so as to develop highly competent and effective vaccine for many human and animal linked diseases due to its unlimited prospective. This review article focuses on the historical outlook and the development of the vaccine as it is a crucial area of research where the life of the human is saved from various potential diseases.
Collapse
Affiliation(s)
- Megha K B
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, India
| | - Seema A Nayar
- Microbiology Department, Government Medical College, Trivandrum, India
| | - Mohanan P V
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, India
| |
Collapse
|
6
|
Wolfe DN, Taylor MJ, Zarrabian AG. Lessons learned from Zaire ebolavirus to help address urgent needs for vaccines against Sudan ebolavirus and Marburg virus. Hum Vaccin Immunother 2020; 16:2855-2860. [PMID: 32275465 PMCID: PMC7734060 DOI: 10.1080/21645515.2020.1741313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023] Open
Abstract
The 2014-2016 Ebola virus epidemic in West Africa triggered extensive investments from public and private partners in an attempt to slow the spread of disease and bring the outbreak under control. This significantly accelerated the pace of development of countermeasures against Zaire ebolavirus that enabled vaccines to be a part of an effective response to the most recent 2018-2019 outbreak in the Democratic Republic of the Congo. However, there remain urgent and unmet needs for medical countermeasures against other members of the Filoviridae family that cause viral hemorrhagic fevers. To improve the national and global preparedness posture for viral hemorrhagic fevers, a renewed emphasis is being placed on developing vaccines for filoviruses other than Zaire ebolavirus. Here we discuss lessons learned from the West Africa epidemic and how those lessons apply to the development of vaccine candidates for other filoviruses, specifically Sudan ebolavirus and Marburg virus. This commentary will highlight some of the key product development gaps to address in preparation for future disease outbreaks caused by these viruses.
Collapse
Affiliation(s)
- Daniel N. Wolfe
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Marva J. Taylor
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority, Washington, DC, USA
| | - Amanda G. Zarrabian
- Division of CBRN Countermeasures, Biomedical Advanced Research and Development Authority, Washington, DC, USA
| |
Collapse
|
7
|
Oliva R, Fraleigh NL, Lewicky JD, Fariñas M, Hernández T, Martel AL, Navarro I, Dagmar GR, Acevedo R, Le HT. Repeat-Dose Toxicity Study Using the AFPL1-Conjugate Nicotine Vaccine in Male Sprague Dawley Rats. Pharmaceutics 2019; 11:pharmaceutics11120626. [PMID: 31771151 PMCID: PMC6955701 DOI: 10.3390/pharmaceutics11120626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/04/2023] Open
Abstract
Tobacco smoking is the cause of 20% of Canadian deaths per year. Nicotine vaccines present a promising alternative to traditional smoking cessation products, but to date, no vaccine has been able to move through all phases of clinical trials. We have previously demonstrated that the AFPL1-conjugate nicotine vaccine does not induce systemic or immunotoxicity in a mouse model and that a heterologous vaccination approach is more advantageous than the homologous routes to inducing mucosal and systemic anti-nicotine antibodies. The purpose of this study was to confirm the safety profile of the vaccine in a repeat-dose toxicity study. The heterologous vaccination strategy was again used, and Sprague Dawley rats were administered a dose five times greater than in our previous studies. Physiological conditions, food and water consumption, body temperature, injection site inflammation, relative weights of organs, histopathology, and blood chemistry and hematology were evaluated during the course of the vaccination period to determine the safety of the vaccine. The AFPL1-conjugate nicotine vaccine did not induce clinically relevant changes or induce symptoms that would be associated with toxicity, making it a promising candidate for future investigations.
Collapse
Affiliation(s)
- Reynaldo Oliva
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Nya L. Fraleigh
- Health Sciences North Research Institute (HSNRI), Sudbury, ON P3E 2H3, Canada; (N.L.F.); (J.D.L.); (A.L.M.)
| | - Jordan D. Lewicky
- Health Sciences North Research Institute (HSNRI), Sudbury, ON P3E 2H3, Canada; (N.L.F.); (J.D.L.); (A.L.M.)
| | - Mildrey Fariñas
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Tamara Hernández
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Alexandrine L. Martel
- Health Sciences North Research Institute (HSNRI), Sudbury, ON P3E 2H3, Canada; (N.L.F.); (J.D.L.); (A.L.M.)
| | - Ingrid Navarro
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - García-Rivera Dagmar
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Reinaldo Acevedo
- Finlay Institute of Vaccine, Havana 11600, Cuba; (R.O.); (M.F.); (T.H.); (I.N.); (G.-R.D.); (R.A.)
| | - Hoang-Thanh Le
- Health Sciences North Research Institute (HSNRI), Sudbury, ON P3E 2H3, Canada; (N.L.F.); (J.D.L.); (A.L.M.)
- Northern Ontario School of Medicine (NOSM), Laurentian University, Sudbury, ON P3E 2C6, Canada
- Chemistry & Biochemistry and Biology Departments, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: ; Tel.: +1-705-523-7300 (ext. 2613)
| |
Collapse
|
8
|
Sellers RS, Nelson K, Bennet B, Wolf J, Tripathi N, Chamanza R, Perron Lepage MF, Adkins K, Laurent S, Troth SP. Scientific and Regulatory Policy Committee Points to Consider*: Approaches to the Conduct and Interpretation of Vaccine Safety Studies for Clinical and Anatomic Pathologists. Toxicol Pathol 2019; 48:257-276. [PMID: 31594486 DOI: 10.1177/0192623319875085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design and execution of toxicology studies supporting vaccine development have some unique considerations relative to those supporting traditional small molecules and biologics. A working group of the Society of Toxicologic Pathology Scientific and Regulatory Policy Committee conducted a review of the scientific, technical, and regulatory considerations for veterinary pathologists and toxicologists related to the design and evaluation of regulatory toxicology studies supporting vaccine clinical trials. Much of the information in this document focuses on the development of prophylactic vaccines for infectious agents. Many of these considerations also apply to therapeutic vaccine development (such as vaccines directed against cancer epitopes); important differences will be identified in various sections as appropriate. The topics addressed in this Points to Consider article include regulatory guidelines for nonclinical vaccine studies, study design (including species selection), technical considerations in dosing and injection site collection, study end point evaluation, and data interpretation. The intent of this publication is to share learnings related to nonclinical studies to support vaccine development to help others as they move into this therapeutic area. [Box: see text].
Collapse
Affiliation(s)
| | | | - Bindu Bennet
- Janssen Research & Development LLC, Spring House, PA, USA
| | | | | | - Ronnie Chamanza
- Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | | | | | | | | |
Collapse
|