1
|
Zhu L, Cui X, Yan Z, Tao Y, Shi L, Zhang X, Yao Y, Shi L. Design and evaluation of a multi-epitope DNA vaccine against HPV16. Hum Vaccin Immunother 2024; 20:2352908. [PMID: 38780076 PMCID: PMC11123455 DOI: 10.1080/21645515.2024.2352908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Cervical cancer, among the deadliest cancers affecting women globally, primarily arises from persistent infection with high-risk human papillomavirus (HPV). To effectively combat persistent infection and prevent the progression of precancerous lesions into malignancy, a therapeutic HPV vaccine is under development. This study utilized an immunoinformatics approach to predict epitopes of cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) using the E6 and E7 oncoproteins of the HPV16 strain as target antigens. Subsequently, through meticulous selection of T-cell epitopes and other necessary elements, a multi-epitope vaccine was constructed, exhibiting good immunogenic, physicochemical, and structural characteristics. Furthermore, in silico simulations showed that the vaccine not only interacted well with toll-like receptors (TLR2/TLR3/TLR4), but also induced a strong innate and adaptive immune response characterized by elevated Th1-type cytokines, such as interferon-gamma (IFN-γ) and interleukin-2 (IL2). Additionally, our study investigated the effects of different immunization intervals on immune responses, aiming to optimize a time-efficient immunization program. In animal model experiments, the vaccine exhibited robust immunogenic, therapeutic, and prophylactic effects. Administered thrice, it consistently induced the expansion of specific CD4 and CD8 T cells, resulting in substantial cytokines release and increased proliferation of memory T cell subsets in splenic cells. Overall, our findings support the potential of this multi-epitope vaccine in combating HPV16 infection and signify its candidacy for future HPV vaccine development.
Collapse
Affiliation(s)
- Lanfang Zhu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xiangjie Cui
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The No. 3 Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yufen Tao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Xinwen Zhang
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
2
|
Navarro-Torné A, Anderson A, Panwar K, Ghys E, Benninghoff B, Weynants V, Beddows S, Checchi M. How has post-implementation surveillance of high-coverage vaccination with HPV16/18-AS04 vaccine in England added to evidence about its cross-protective effects? Vaccine 2024; 42:126215. [PMID: 39213982 DOI: 10.1016/j.vaccine.2024.126215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Bivalent human papillomavirus HPV16/18-AS04 vaccine (Cervarix, GSK) offers direct protection against HPV16/18. Results from randomised controlled trials showed cross protective effects and suggested that declines in some closely related HPV types could be expected in a population with high vaccination coverage. AIM To evaluate the evidence for cross-protection afforded by HPV16/18-AS04 from post-implementation surveillance in England, and how this complements clinical trial data and post-implementation observations in other countries. METHODS Evidence of cross-protection in young women offered vaccination with HPV16/18-AS04 was gathered from HPV surveillance in England. Data from clinical trials and other post-implementation studies were reviewed. RESULTS Surveillance using anonymised residual specimens in England found declines of 52.3%, 67.4% and 33.3% against grouped HPV-31/33/45 in 16-18, 19-21, and 22-24 year olds, respectively. Additionally, type-specific analysis found that the prevalence of HPV31 declined to below 1% across all age groups. Cross-protection has been monitored and maintained for over 10 years since the introduction of the vaccination programme. Cross-protection against HPV6/11 was not found in English surveillance outcomes. CONCLUSION Surveillance of type-specific infections in vaccine-eligible populations in England has generated clear evidence of cross-protective effects from HPV16/18-AS04 vaccination against high-risk HPV 31/33/45 infections, consistent with other post-implementation observations and confirming and in some ways exceeding expectations from clinical trials.
Collapse
|
3
|
Rantshabeng PS, Tsima BM, Ndlovu AK, Motlhatlhedi K, Sharma K, Masole CB, Moraka NO, Motsumi K, Maoto-Mokote AKT, Eshetu AB, Tawe L, Gaolathe T, Moyo S, Kyokunda LT. High-risk human papillomavirus diversity among indigenous women of western Botswana with normal cervical cytology and dysplasia. BMC Infect Dis 2024; 24:1163. [PMID: 39407130 PMCID: PMC11481587 DOI: 10.1186/s12879-024-10058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cervical cancer remains a public health problem despite heavy global investment in health systems especially in low-and-middle-income countries (LMIC). Prophylactic vaccines against the most commonly detected human papillomavirus (HPV) types in cervical cancers are available and decisions on the selection of vaccine design depends on the prevalence of high-risk (hr) HPV genotypes for a particular region. In 2015, Botswana adopted the use of a quadrivalent HPV vaccine as a primary prevention strategy. Secondary prevention includes cervical smear screening whose uptake remains notably low among indigenous and marginalized communities despite efforts to improve access. AIM To determine the prevalence of hrHPV genotypes and cervical lesions' burden in women from the indigenous and marginalized communities of Botswana. METHODS This prospective survey enrolled 171 non-HPV vaccinated women aged 21 years and older. Face-to-face interviews, Pap smear screening, hr-HPV and Human Immuno-deficiency virus (HIV) testing were carried out. Conventional Papanicolau smears were analyzed and cervical brushes were preserved for hrHPV testing using the Ampfire Multiplex HR-HPV protocol which detects the following genotypes: HPV 16, 18, 31, 35, 39, 45, 51, 52, 53, 56, 58, 59 and 68. RESULTS In this study, 168/171 (98.6%) of the women consented to HIV testing; 53/171 (31%) were living with HIV and self-reported enrolment on antiretroviral therapy. Among the women examined, 23/171 (13.5%) had cervical dysplasia with most presenting with Atypical Squamous Cells of Undetermined Significance 8/23 (35%), Low-Grade Squamous Intraepithelial Lesions 8/23 (35%), Atypical Squamous Cells-High Grade 4/23 (17%), Atypical Endocervical Cells 2/23 (9%) and Atypical Endocervical Cell favoring neoplasia 1/23(4%). However, no High-Grade Squamous Intraepithelial Lesions (HSIL) or squamous cell carcinoma (SCC) were detected. Overall hrHPV prevalence in this study was at 56/171 (32.7%). The most commonly detected hrHPV genotypes in women with cervical dysplasia were HPV39 (6.25%), HPV51 (14.5%), HPV52 (12.5%) and HPV56 (4%). Notably, HPV 16 and 18 were not found in women with cervical dysplasia. CONCLUSIONS Our study provides valuable insights into the prevalence and distribution of hrHPV genotypes in indigenous and marginalized communities in Botswana, and the need for further investigation of their potential role in cervical carcinogenesis in this population. These results may also serve as baseline data to facilitate future evaluation of the HPV vaccine needs.
Collapse
Affiliation(s)
- Patricia S Rantshabeng
- Department of Pathology, Faculty of Medicine, University of Botswana, Gaborone, Botswana.
- School of Allied Health Profession, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.
| | - Billy M Tsima
- Department of Family Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Andrew K Ndlovu
- School of Allied Health Profession, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Keneilwe Motlhatlhedi
- Department of Family Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Kirthana Sharma
- Rutgers Global Health Institute, Paterson, St New Brunswick, 112, USA
| | - Carol B Masole
- School of Allied Health Profession, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Kesego Motsumi
- Botswana- Harvard Health Partnership, Gaborone, Botswana
| | | | - Alemayehu B Eshetu
- Department of Pathology, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Leabaneng Tawe
- School of Allied Health Profession, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana-UPenn Partnership, Gaborone, Botswana
| | - Tendani Gaolathe
- Department of Internal Medicine, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Sikhulile Moyo
- School of Allied Health Profession, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana- Harvard Health Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lynnette T Kyokunda
- Department of Pathology, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
4
|
Jung HG, Jeong S, Kang MJ, Hong I, Park YS, Ko E, Kim JO, Choi DY. Molecular Design of Encapsulin Protein Nanoparticles to Display Rotavirus Antigens for Enhancing Immunogenicity. Vaccines (Basel) 2024; 12:1020. [PMID: 39340050 PMCID: PMC11435836 DOI: 10.3390/vaccines12091020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Rotavirus considerably threatens global health, particularly for children <5 years. Current, licensed oral attenuated vaccine formulations have limitations including insufficient efficacy in children in low- and middle-income countries, warranting urgent development of novel vaccines with improved efficacy and safety profiles. Herein, we present a novel approach utilizing an encapsulin (ENC) nanoparticle (NP)-based non-replicating rotavirus vaccine. ENC, originating from bacteria, offers a self-assembling scaffold that displays rotavirus VP8* antigens on its surface. To enhance the correct folding and soluble expression of monomeric antigens and their subsequent assembly into NP, we adopted an RNA-interacting domain (RID) of mammalian transfer RNA synthetase as an expression tag fused to the N-terminus of the ENC-VP8* fusion protein. Using the RID-ENC-VP8* tripartite modular design, insertion of linkers of appropriate length and sequence and the universal T cell epitope P2 remarkably improved the production yield and immunogenicity. Cleavage of the RID rendered a homogenous assembly of ENC-P2-VP8* into protein NPs. Immunization with ENC-P2-VP8* induced markedly higher levels of VP8*-specific antibodies and virus neutralization titers in mice than those induced by P2-VP8* without ENC. Altogether, these results highlight the potential of the designed ENC NP-based rotavirus vaccine as an effective strategy against rotavirus disease to address global health challenges.
Collapse
Affiliation(s)
| | - Seonghun Jeong
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Min-Ji Kang
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Ingi Hong
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Young-Shin Park
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Eunbyeol Ko
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | - Jae-Ouk Kim
- Molecular Immunology, Science Unit, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.); (M.-J.K.); (I.H.); (Y.-S.P.); (E.K.)
| | | |
Collapse
|
5
|
Gray P, Mariz FC, Eklund C, Eriksson T, Faust H, Kann H, Müller M, Paavonen J, Pimenoff VN, Sehr P, Surcel HM, Dillner J, Waterboer T, Lehtinen M. Lack of detectable HPV18 antibodies in 14% of quadrivalent vaccinees in a longitudinal cohort study. NPJ Vaccines 2024; 9:146. [PMID: 39138224 PMCID: PMC11322158 DOI: 10.1038/s41541-024-00941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Although HPV vaccines are highly efficacious, a notable proportion of quadrivalent vaccinees are HPV18 seronegative post-vaccination. We have investigated this findings' validity by comparing vaccine-induced antibody responses using two different immunoassays. 6558 16-17-year-old females participated in the FUTURE II (NCT00092534) and PATRICIA (NCT00122681) trials in 2002-2004. Both the quadrivalent and bivalent vaccine recipients (QVR and BVR) received three doses. Twelve-year follow-up for 648 vaccinees was conducted by the Finnish Maternity Cohort. The presence of neutralising and binding HPV antibodies was analysed via HPV pseudovirion-based neutralisation and pseudovirion-binding assays. Four percent and 14.3% of the QVRs were seronegative for neutralising and binding antibodies to HPV16 and HPV18, respectively. No BVRs were HPV16/18 seronegative post-vaccination. The antibody titres were strongly correlated between the assays, Pearson's correlation coefficient, r[HPV16] = 0.92 and 0.85, and r[HPV18] = 0.91 and 0.86 among the QVRs and BVRs respectively. Fourteen percent of QVRs lacked detectable HPV18 antibodies in long-term follow-up.
Collapse
Affiliation(s)
- Penelope Gray
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Filipe Colaço Mariz
- Tumorvirus-Specific Vaccination Strategies, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Carina Eklund
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Tiina Eriksson
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
- Wellbeing services county of Pirkanmaa, PIRHA, Tays Research Services, Tampere, Finland
| | - Helena Faust
- Medical Products Agency Läkemedelsverket, Uppsala, Sweden
| | - Hanna Kann
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Müller
- Tumorvirus-Specific Vaccination Strategies, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Jorma Paavonen
- Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Ville N Pimenoff
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biobank Borealis of Northern Finland, University of Oulu, Oulu, Finland
| | - Peter Sehr
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Heljä-Marja Surcel
- Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biobank Borealis of Northern Finland, University of Oulu, Oulu, Finland
| | - Joakim Dillner
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Matti Lehtinen
- Center for Cervical Cancer Elimination, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| |
Collapse
|
6
|
Sahasrabuddhe VV. Cervical Cancer: Precursors and Prevention. Hematol Oncol Clin North Am 2024; 38:771-781. [PMID: 38760198 DOI: 10.1016/j.hoc.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Cervical cancer, caused due to oncogenic types of human papillomavirus (HPV), is a leading preventable cause of cancer morbidity and mortality globally. Chronic, persistent HPV infection-induced cervical precursor lesions, if left undetected and untreated, can progress to invasive cancer. Cervical cancer screening approaches have evolved from cytology (Papanicolaou test) to highly sensitive HPV-based molecular methods and personalized, risk-stratified, management guidelines. Innovations like self-collection of samples to increase screening access, innovative triage methods to optimize management of screen positives, and scalable and efficacious precancer treatment approaches will be key to further enhance the utility of prevention interventions.
Collapse
Affiliation(s)
- Vikrant V Sahasrabuddhe
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Room 5E-338, Rockville, MD, USA.
| |
Collapse
|
7
|
Björnsson KH, Bassi MR, Knudsen AS, Aves KL, Morella Roig È, Sander AF, Barfod L. Leveraging Immunofocusing and Virus-like Particle Display to Enhance Antibody Responses to the Malaria Blood-Stage Invasion Complex Antigen PfCyRPA. Vaccines (Basel) 2024; 12:859. [PMID: 39203985 PMCID: PMC11359962 DOI: 10.3390/vaccines12080859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
A vaccine protecting against malaria caused by Plasmodium falciparum is urgently needed. The blood-stage invasion complex PCRCR consists of the five malarial proteins PfPTRAMP, PfCSS, PfRipr, PfCyRPA, and PfRH5. As each subcomponent represents an essential and highly conserved antigen, PCRCR is considered a promising vaccine target. Furthermore, antibodies targeting the complex can block red blood cell invasion by the malaria parasite. However, extremely high titers of neutralizing antibodies are needed for this invasion-blocking effect, and a vaccine based on soluble PfRH5 protein has proven insufficient in inducing a protective response in a clinical trial. Here, we present the results of two approaches to increase the neutralizing antibody titers: (A) immunofocusing and (B) increasing the immunogenicity of the antigen via multivalent display on capsid virus-like particles (cVLPs). The immunofocusing strategies included vaccinating with peptides capable of binding the invasion-blocking anti-PfCyRPA monoclonal antibody CyP1.9, as well as removing non-neutralizing epitopes of PfCyRPA through truncation. Vaccination with PfCyRPA coupled to the AP205 cVLP induced nearly two-fold higher IgG responses compared to vaccinating with soluble PfCyRPA protein. Immunofocusing using a linear peptide greatly increased the neutralizing capacity of the anti-PfCyRPA antibodies. However, significantly lower total anti-PfCyRPA titers were achieved using this strategy. Our results underline the potential of a cVLP-based malaria vaccine including full-length PfCyRPA, which could be combined with other leading malaria vaccine antigens presented on cVLPs.
Collapse
Affiliation(s)
- Kasper H. Björnsson
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Maria R. Bassi
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Anne S. Knudsen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Kara-Lee Aves
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Èlia Morella Roig
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| | - Adam F. Sander
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
- AdaptVac, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Lea Barfod
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.H.B.); (M.R.B.); (A.F.S.)
| |
Collapse
|
8
|
Xi Y, Ma R, Li S, Liu G, Liu C. Functionally Designed Nanovaccines against SARS-CoV-2 and Its Variants. Vaccines (Basel) 2024; 12:764. [PMID: 39066402 PMCID: PMC11281565 DOI: 10.3390/vaccines12070764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
COVID-19, generated by SARS-CoV-2, has significantly affected healthcare systems worldwide. The epidemic has highlighted the urgent need for vaccine development. Besides the conventional vaccination models, which include live-attenuated, recombinant protein, and inactivated vaccines, nanovaccines present a distinct opportunity to progress vaccine research and offer convenient alternatives. This review highlights the many widely used nanoparticle vaccine vectors, outlines their benefits and drawbacks, and examines recent developments in nanoparticle vaccines to prevent SARS-CoV-2. It also offers a thorough overview of the many advantages of nanoparticle vaccines, including an enhanced host immune response, multivalent antigen delivery, and efficient drug delivery. The main objective is to provide a reference for the development of innovative antiviral vaccines.
Collapse
Affiliation(s)
- Yue Xi
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
| | - Rongrong Ma
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Shuo Li
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China;
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (Y.X.); (R.M.); (S.L.)
- China Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
9
|
Boucher R, Haigh O, Racy E, Bordonne C, Barreau E, Rousseau A, Labetoulle M. Human papilloma virus (HPV) presence in primary tumors of the lacrimal sac: a case series and review of the literature. Orbit 2024:1-10. [PMID: 38913546 DOI: 10.1080/01676830.2024.2370056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
Primary tumors of the lacrimal sac (PTLS) are a rare subtype of ocular adnexa tumors, with potentially life-threatening clinical course. There has been growing evidence of human papilloma virus (HPV) as an etiological agent in these tumors.In this retrospective observational case series, we report three cases of PTLS. All three underwent an initial dacryocystorhinostomy revealing a tissular mass in the lacrimal sac. Histological findings were respectively epithelial papilloma, epithelial Malpighian papilloma, and undifferentiated epidermoid carcinoma. PCR evaluation identified HPV serotype 6 in the first case and 16 in the third, and high p16 expression was found in the second case.These three cases of PTLS with HPV detection complement 36 other cases identified in the literature, further incriminating HPV in the pathogenesis of these neoplasms. Ophthalmologists must remain wary of chronic lacrimal occlusion symptoms, and resort to CT scan and orbital Doppler sonography whenever first-line treatment fails.
Collapse
Affiliation(s)
- Rafael Boucher
- Department of Immunology of Viral and Auto-Immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
- Ophthalmology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France
| | - Oscar Haigh
- Department of Immunology of Viral and Auto-Immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
| | - Emmanuel Racy
- Department of Otolaryngology - Head and Neck Surgery, Fondation Saint-Jean-de-Dieu, Paris, France
| | - Corinne Bordonne
- Department of Radiology, Centre Hospitalier Universitaire (CHU) Hotel Dieu, Paris, France
| | - Emmanuel Barreau
- Ophthalmology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France
| | - Antoine Rousseau
- Department of Immunology of Viral and Auto-Immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
- Ophthalmology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France
| | - Marc Labetoulle
- Department of Immunology of Viral and Auto-Immune Disease (IMVA DSV/iMETI/IDMIT), UMR1184, CEA, Fontenay-aux-Roses, France
- Ophthalmology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Centre de Référence pour les maladies rares en ophtalmologie (OPHTARA), Le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Shing JZ, Porras C, Pinheiro M, Herrero R, Hildesheim A, Liu D, Gail MH, Romero B, Schiller JT, Zúñiga M, Mishra S, Burdette L, Jones K, Schussler J, Ocampo R, Fang J, Liu Z, Lowy DR, Tsang SH, Rodríguez AC, Schiffman M, Haas CB, Carvajal LJ, Brown JR, Kreimer AR, Mirabello L. Differential long-term bivalent HPV vaccine cross-protection by variants in the Costa Rica HPV vaccine trial. NPJ Vaccines 2024; 9:101. [PMID: 38851816 PMCID: PMC11162434 DOI: 10.1038/s41541-024-00896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
The AS04-adjuvanted human papillomavirus (HPV)16/18 vaccine, an L1-based vaccine, provides strong vaccine efficacy (VE) against vaccine-targeted type infections, and partial cross-protection to phylogenetically-related types, which may be affected by variant-level heterogeneity. We compared VE against incident HPV31, 33, 35, and 45 detections between lineages and SNPs in the L1 region among 2846 HPV-vaccinated and 5465 HPV-unvaccinated women through 11-years of follow-up in the Costa Rica HPV Vaccine Trial. VE was lower against HPV31-lineage-B (VE=60.7%;95%CI = 23.4%,82.8%) compared to HPV31-lineage-A (VE=94.3%;95%CI = 83.7%,100.0%) (VE-ratio = 0.64;95%CI = 0.25,0.90). Differential VE was observed at several lineage-associated HPV31-L1-SNPs, including a nonsynonymous substitution at position 6372 on the FG-loop, an important neutralization domain. For HPV35, the only SNP-level difference was at position 5939 on the DE-loop, with significant VE against nucleotide-G (VE=65.0%;95%CI = 28.0,87.8) but not for more the common nucleotide-A (VE=7.4%;95%CI = -34.1,36.7). Because of the known heterogeneity in precancer/cancer risk across cross-protected HPV genotype variants by race and region, our results of differential variant-level AS04-adjuvanted HPV16/18 vaccine efficacy has global health implications.
Collapse
Affiliation(s)
- Jaimie Z Shing
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, San José, Costa Rica
| | - Maísa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, San José, Costa Rica
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Danping Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mitchell H Gail
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Byron Romero
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, San José, Costa Rica
| | - John T Schiller
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael Zúñiga
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, San José, Costa Rica
| | - Sambit Mishra
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John Schussler
- Information Management Services Inc, Silver Spring, MD, USA
| | - Rebeca Ocampo
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, San José, Costa Rica
| | - Jianwen Fang
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Douglas R Lowy
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sabrina H Tsang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Cameron B Haas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Loretto J Carvajal
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Agencia Costarricense de Investigaciones Biomédicas (ACIB), formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA, San José, Costa Rica
| | - Jalen R Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Aimée R Kreimer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
11
|
McBride AA. Human malignancies associated with persistent HPV infection. Oncologist 2024; 29:457-464. [PMID: 38630576 PMCID: PMC11144980 DOI: 10.1093/oncolo/oyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
Human papillomavirus (HPV)-associated malignancies account for ~5% of human cancers worldwide. Thirteen, or more, HPV types are oncogenic, but infection with these viruses is common and usually cleared within 2 years. Only infections that become persistent are associated with the development of cancer, often occurring several decades later. These cancers mostly arise in 6 different anatomical regions: 5 are anogenital (anus, cervix, penis, vagina, and vulva) and the sixth is the oropharynx. Oncogenic HPVs promote cellular proliferation and genomic instability, but the anatomical niche of the target tissue also plays an important role in the development of cancer. Cells that reside in transitional regions between different types of epithelia, such as in the anus, cervix, and oropharynx, are particularly vulnerable to oncogenesis.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
12
|
Alouini S, Pichon C. Therapeutic Vaccines for HPV-Associated Cervical Malignancies: A Systematic Review. Vaccines (Basel) 2024; 12:428. [PMID: 38675811 PMCID: PMC11054545 DOI: 10.3390/vaccines12040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
IMPORTANCE Despite widespread prophylactic vaccination, cervical cancer continues to be a major health problem with considerable mortality. Currently, therapeutic vaccines for HPV-associated cervical malignancies are being evaluated as a potential complement to the standard treatment. OBJECTIVE The present systematic review was conducted on randomized controlled trials (RCTs) to investigate the effects of therapeutic vaccines on the treatment of patients with cervical cancer and cervical intraepithelial neoplasia (CIN) of Grades 2 and 3. EVIDENCE REVIEW The PubMed, Embase, and Cochrane Central Register of Controlled Trials databases were searched. Only articles in English published up until 31 January 2024 were selected. Also, reference lists of the selected original papers and recent review articles were manually searched for additional sources. Data on study characteristics were extracted from the selected articles. Data on outcomes of interest were synthesized, and vaccine efficacy endpoints (histological lesion regression, clinical response, and overall survival) were selected as the basis for grouping the studies. FINDINGS After screening 831 articles, nine RCTs with 800 participants were included, of which seven studies with 677 participants involved CIN2 and CIN3 and examined lesion regression to ≤CIN1 as the efficacy endpoint. Results of two of these studies were deemed to have a high risk of bias, and another one did not contain statistical analyses. Results of the other four studies were quantitively synthesized, and the pooling of p-values revealed a significant difference between the vaccine and placebo groups in terms of lesion regression (p-values of 0.135, 0.049, and 0.034 in RCTs, yielding a combined p-value of 0.010). The certainty of the evidence was rated as moderate. Patients with advanced cervical cancers were studied in two RCTs with 123 participants. Clinical response and overall survival were taken as endpoints, and the results were reported as not significant. The certainty of the evidence of these results was rated as very low, mainly due to the very small number of events. All studies reported good tolerance for the vaccines. CONCLUSIONS AND RELEVANCE The results indicate the potential for therapeutic vaccines in the regression of CIN2 and CIN3 lesions. Moreover, a potential gap in evidence is identified regarding the very low number of RCTs in patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Souhail Alouini
- Departement of Gynecological Surgery, Centre Hospitalier Universitaire d’Orléans, 14 Avenue de l’Hôpital, 45100 Orleans, France
- Faculté de Médecine, Université d’Orléans, 45100 Orleans, France
| | - Chantal Pichon
- Institut Universitaire de France, 1 rue Descartes, 75035 Paris, France;
- INSERM ART ARNm, University of Orléans, 45100 Orleans, France
| |
Collapse
|
13
|
Stanton SE, Castle PE, Finn OJ, Sei S, Emens LA. Advances and challenges in cancer immunoprevention and immune interception. J Immunother Cancer 2024; 12:e007815. [PMID: 38519057 PMCID: PMC10961508 DOI: 10.1136/jitc-2023-007815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/24/2024] Open
Abstract
Invasive cancers typically evade immune surveillance through profound local and systemic immunosuppression, preventing their elimination or control. Targeting immune interventions to prevent or intercept premalignant lesions, before significant immune dysregulation has occurred, may be a more successful strategy. The field of cancer immune interception and prevention is nascent, and the scientific community has been slow to embrace this potentially most rational approach to reducing the global burden of cancer. This may change due to recent promising advances in cancer immunoprevention including the use of vaccines for the prevention of viral cancers, the use of cancer-associated antigen vaccines in the setting of precancers, and the development of cancer-preventative vaccines for high-risk individuals who are healthy but carry cancer-associated heritable genetic mutations. Furthermore, there is increasing recognition of the importance of cancer prevention and interception by national cancer organizations. The National Cancer Institute (NCI) recently released the National Cancer Plan, which includes cancer prevention among the top priorities of the institute. The NCI's Division of Cancer Prevention has been introducing new funding opportunities for scientists with an interest in the field of cancer prevention: The Cancer Prevention-Interception Targeted Agent Discovery Program and The Cancer Immunoprevention Network. Moreover, the Human Tumor Atlas Network is spearheading the development of a precancer atlas to better understand the biology of pre-invasive changes, including the tissue microenvironment and the underlying genetics that drive carcinogenesis. These data will inform the development of novel immunoprevention/immuno-interception strategies. International cancer foundations have also started recognizing immunoprevention and immune interception with the American Association for Cancer Research, Cancer Research UK and the Society for Immunotherapy of Cancer each implementing programming focused on this area. This review will present recent advances, opportunities, and challenges in the emerging field of cancer immune prevention and immune interception.
Collapse
Affiliation(s)
- Sasha E Stanton
- Cancer Immunoprevention Laboratory, Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Philip E Castle
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shizuko Sei
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | | |
Collapse
|
14
|
Baisley K, Kemp TJ, Mugo NR, Whitworth H, Onono MA, Njoroge B, Indangasi J, Bukusi EA, Prabhu PR, Mutani P, Galloway DA, Mwanzalime D, Kapiga S, Lacey CJ, Hayes RJ, Changalucha J, Pinto LA, Barnabas RV, Watson-Jones D. Comparing one dose of HPV vaccine in girls aged 9-14 years in Tanzania (DoRIS) with one dose in young women aged 15-20 years in Kenya (KEN SHE): an immunobridging analysis of randomised controlled trials. Lancet Glob Health 2024; 12:e491-e499. [PMID: 38365419 PMCID: PMC10882205 DOI: 10.1016/s2214-109x(23)00586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND The first randomised controlled trial of single-dose human papillomavirus (HPV) vaccine efficacy, the Kenya single-dose HPV-vaccine efficacy (KEN SHE) trial, showed greater than 97% efficacy against persistent HPV16 and HPV18 infection at 36 months among women in Kenya. We compared antibody responses after one dose of HPV vaccine in the Dose Reduction Immunobridging and Safety Study (DoRIS), the first randomised trial of the single- dose regimen in girls aged 9-14 years, the target age range for vaccination, with those after one dose of the same vaccine in KEN SHE. METHODS In the DoRIS trial, 930 girls aged 9-14 years in Tanzania were randomly assigned to one, two, or three doses of the 2-valent vaccine (Cervarix) or the 9-valent vaccine (Gardasil-9). The proportion seroconverting and geometric mean concentrations (GMCs) at month 24 after one dose were compared with those in women aged 15-20 years who were randomly assigned to one dose of the same vaccines at the same timepoint in KEN SHE. Batched samples were tested together by virus-like particle ELISA for HPV16 and HPV18 IgG antibodies. Non-inferiority of GMC ratios (DoRIS trial:KEN SHE) was predefined as a lower bound of the 95% CI less than 0·50. FINDINGS Month 24 HPV16 and HPV18 antibody GMCs in DoRIS were similar or higher than those in KEN SHE. 2-valent GMC ratios were 0·90 (95% CI 0·72-1·14) for HPV16 and 1·02 (0·78-1·33) for HPV18. 9-valent GMC ratios were 1·44 (95% CI 1·14-1·82) and 1·47 (1·13-1·90), respectively. Non-inferiority of antibody GMCs and seropositivity was met for HPV16 and HPV18 for both vaccines. INTERPRETATION HPV16 and HPV18 immune responses in young girls 24 months after a single dose of 2-valent or 9-valent HPV vaccine were comparable to those in young women who were randomly assigned to a single dose of the same vaccines and in whom efficacy had been shown. A single dose of HPV vaccine, when given to girls in the target age range for vaccination, induces immune responses that could be effective against persistent HPV16 and HPV18 infection at least two years after vaccination. FUNDING The UK Department of Health and Social Care, the Foreign, Commonwealth, & Development Office, the Global Challenges Research Fund, the UK Medical Research Council and Wellcome Trust Joint Global Health Trials scheme, the Bill and Melinda Gates Foundation, the US National Cancer Institute; the US National Institutes of Health, and the Francis and Dorothea Reed Endowed Chair in Infectious Diseases. TRANSLATION For the KiSwahili translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Kathy Baisley
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| | - Troy J Kemp
- HPV Serology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nelly R Mugo
- Department of Global Health, University of Washington, Seattle, WA, USA; Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Hilary Whitworth
- Faculty of Infectious and Tropical Diseases UK, London School of Hygiene & Tropical Medicine, London, UK; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Maricianah A Onono
- Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Betty Njoroge
- Center for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Jackton Indangasi
- Faculty of Infectious and Tropical Diseases UK, London School of Hygiene & Tropical Medicine, London, UK; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Elizabeth A Bukusi
- Department of Global Health, University of Washington, Seattle, WA, USA; Center for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Priya R Prabhu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Paul Mutani
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Denise A Galloway
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David Mwanzalime
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Saidi Kapiga
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Charles J Lacey
- York Biomedical Research Institute & Hull York Medical School, University of York, York, UK
| | - Richard J Hayes
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - John Changalucha
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Ligia A Pinto
- HPV Serology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ruanne V Barnabas
- Department of Global Health, University of Washington, Seattle, WA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Deborah Watson-Jones
- Faculty of Infectious and Tropical Diseases UK, London School of Hygiene & Tropical Medicine, London, UK; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| |
Collapse
|
15
|
Hernández-Silva CD, Ramírez de Arellano A, Pereira-Suárez AL, Ramírez-López IG. HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women. Viruses 2024; 16:327. [PMID: 38543693 PMCID: PMC10974876 DOI: 10.3390/v16030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 05/23/2024] Open
Abstract
Cervical cancer is primarily caused by Human Papillomavirus (HPV) infection and remains a significant public health concern, particularly in Latin American regions. This comprehensive narrative review addresses the relationship between Human Papillomavirus (HPV) and cervical cancer, focusing on Latin American women. It explores molecular and immunological aspects of HPV infection, its role in cervical cancer development, and the epidemiology in this region, highlighting the prevalence and diversity of HPV genotypes. The impact of vaccination initiatives on cervical cancer rates in Latin America is critically evaluated. The advent of HPV vaccines has presented a significant tool in combating the burden of this malignancy, with notable successes observed in various countries, the latter due to their impact on immune responses. The review synthesizes current knowledge, emphasizes the importance of continued research and strategies for cervical cancer prevention, and underscores the need for ongoing efforts in this field.
Collapse
Affiliation(s)
- Christian David Hernández-Silva
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (C.D.H.-S.); (A.L.P.-S.)
| | - Adrián Ramírez de Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (C.D.H.-S.); (A.L.P.-S.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Inocencia Guadalupe Ramírez-López
- Departamento de Ciencias de La Salud, CUValles, Universidad de Guadalajara, Guadalajara-Ameca Rd Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
16
|
Kamuyu G, Coelho da Silva F, Tenet V, Schussler J, Godi A, Herrero R, Porras C, Mirabello L, Schiller JT, Sierra MS, Kreimer AR, Clifford GM, Beddows S. Global evaluation of lineage-specific human papillomavirus capsid antigenicity using antibodies elicited by natural infection. Nat Commun 2024; 15:1608. [PMID: 38383518 PMCID: PMC10881982 DOI: 10.1038/s41467-024-45807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Human Papillomavirus (HPV) type variants have been classified into lineages and sublineages based upon their whole genome sequence. Here we have examined the specificity of antibodies generated following natural infection with lineage variants of oncogenic types (HPV16, 18, 31, 33, 45, 52 and 58) by testing serum samples assembled from existing archives from women residing in Africa, The Americas, Asia or Europe against representative lineage-specific pseudoviruses for each genotype. We have subjected the resulting neutralizing antibody data to antigenic clustering methods and created relational antigenic profiles for each genotype to inform the delineation of lineage-specific serotypes. For most genotypes, there was evidence of differential recognition of lineage-specific antigens and in some cases of a sufficient magnitude to suggest that some lineages should be considered antigenically distinct within their respective genotypes. These data provide compelling evidence for a degree of lineage specificity within the humoral immune response following natural infection with oncogenic HPV.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Filomeno Coelho da Silva
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Vanessa Tenet
- International Agency for Research on Cancer (IARC/WHO) Early Detection, Prevention and Infections Branch, Lyon, France
| | - John Schussler
- Information Management Services Inc, Silver Spring, MD, USA
| | - Anna Godi
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas (ACIB) formerly Proyecto Epidemiológico Guanacaste, Fundación INCIENSA (FUNIN), San José, Costa Rica
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John T Schiller
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mónica S Sierra
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Aimée R Kreimer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Gary M Clifford
- International Agency for Research on Cancer (IARC/WHO) Early Detection, Prevention and Infections Branch, Lyon, France
| | - Simon Beddows
- Virus Reference Department, Public Health Microbiology Division, UK Health Security Agency, London, UK.
- Blood Safety, Hepatitis, Sexually Transmitted Infections and HIV Division, UK Health Security Agency, London, UK.
| |
Collapse
|
17
|
Vernhes E, Larbi Chérif L, Ducrot N, Vanbergue C, Ouldali M, Zig L, Sidibe N, Hoos S, Ramirez-Chamorro L, Renouard M, Rossier O, England P, Schoehn G, Boulanger P, Benihoud K. Antigen self-anchoring onto bacteriophage T5 capsid-like particles for vaccine design. NPJ Vaccines 2024; 9:6. [PMID: 38177231 PMCID: PMC10766600 DOI: 10.1038/s41541-023-00798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
The promises of vaccines based on virus-like particles stimulate demand for universal non-infectious virus-like platforms that can be efficiently grafted with large antigens. Here, we harnessed the modularity and extreme affinity of the decoration protein pb10 for the capsid of bacteriophage T5. SPR experiments demonstrated that pb10 fused to mCherry or to the model antigen ovalbumin (Ova) retained picomolar affinity for DNA-free T5 capsid-like particles (T5-CLPs), while cryo-EM studies attested to the full occupancy of the 120 capsid binding sites. Mice immunization with CLP-bound pb10-Ova chimeras elicited strong long-lasting anti-Ova humoral responses involving a large panel of isotypes, as well as CD8+ T cell responses, without any extrinsic adjuvant. Therefore, T5-CLP constitutes a unique DNA-free bacteriophage capsid able to display a regular array of large antigens through highly efficient chemical-free anchoring. Its ability to elicit robust immune responses paves the way for further development of this novel vaccination platform.
Collapse
Affiliation(s)
- Emeline Vernhes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Linda Larbi Chérif
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Nicolas Ducrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Clément Vanbergue
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Lena Zig
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - N'diaye Sidibe
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Sylviane Hoos
- Institut Pasteur, Biophysique Moléculaire, CNRS UMR 3528, Paris, France
| | - Luis Ramirez-Chamorro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Madalena Renouard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ombeline Rossier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Patrick England
- Institut Pasteur, Biophysique Moléculaire, CNRS UMR 3528, Paris, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Pascale Boulanger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Karim Benihoud
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France.
| |
Collapse
|
18
|
Martinez FG, Zielke RA, Fougeroux CE, Li L, Sander AF, Sikora AE. Development of a Tag/Catcher-mediated capsid virus-like particle vaccine presenting the conserved Neisseria gonorrhoeae SliC antigen that blocks human lysozyme. Infect Immun 2023; 91:e0024523. [PMID: 37916806 PMCID: PMC10715030 DOI: 10.1128/iai.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Virus-like particles (VLPs) are promising nanotools for the development of subunit vaccines due to high immunogenicity and safety. Herein, we explored the versatile and effective Tag/Catcher-AP205 capsid VLP (cVLP) vaccine platform to address the urgent need for the development of an effective and safe vaccine against gonorrhea. The benefits of this clinically validated cVLP platform include its ability to facilitate unidirectional, high-density display of complex/full-length antigens through an effective split-protein Tag/Catcher conjugation system. To assess this modular approach for making cVLP vaccines, we used a conserved surface lipoprotein, SliC, that contributes to the Neisseria gonorrhoeae defense against human lysozyme, as a model antigen. This protein was genetically fused at the N- or C-terminus to the small peptide Tag enabling their conjugation to AP205 cVLP, displaying the complementary Catcher. We determined that SliC with the N-terminal SpyTag, N-SliC, retained lysozyme-blocking activity and could be displayed at high density on cVLPs without causing aggregation. In mice, the N-SliC-VLP vaccines, adjuvanted with AddaVax or CpG, induced significantly higher antibody titers compared to controls. In contrast, similar vaccine formulations containing monomeric SliC were non-immunogenic. Accordingly, sera from N-SliC-VLP-immunized mice also had significantly higher human complement-dependent serum bactericidal activity. Furthermore, the N-SliC-VLP vaccines administered subcutaneously with an intranasal boost elicited systemic and vaginal IgG and IgA, whereas subcutaneous delivery alone failed to induce vaginal IgA. The N-SliC-VLP with CpG (10 µg/dose) induced the most significant increase in total serum IgG and IgG3 titers, vaginal IgG and IgA, and bactericidal antibodies.
Collapse
Affiliation(s)
- Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | | | - Lixin Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Adam F. Sander
- AdaptVac Aps, Hørsholm, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
19
|
Mariz FC, Putzker K, Sehr P, Müller M. Advances on two serological assays for human papillomavirus provide insights on the reactivity of antibodies against a cross-neutralization epitope of the minor capsid protein L2. Front Immunol 2023; 14:1272018. [PMID: 38022617 PMCID: PMC10663238 DOI: 10.3389/fimmu.2023.1272018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction A second generation of prophylactic human papillomavirus (HPV) vaccines based on the minor capsid protein L2 has entered clinical trials as promising alternative to meet the gaps left out by the current vaccines concerning type-restricted protection, high costs and low penetrance in immunization programs of lowand middle-income countries. Most of the serological assays available to assess anti-HPV humoral responses are, however, not well suited for measuring vaccine-induced anti-L2 antibody responses. Methods In this work, we have advanced our automated, purely add-on High-Throughput Pseudovirion-Based Neutralization Assay (HT-PBNA) in an L2-oriented approach for measuring antibody-mediated neutralization of HPV types 6/16/18/31/33/52/58. Results and discussion With the optimized settings, we observed 24- to 120-fold higher sensitivity for detection of neutralizing Ab to the L2 protein of HPV6, HPV16, HPV18, and HPV31, compared to the standard HT-PBNA. Alternatively, we have also developed a highly sensitive, cell-free, colorimetric L2-peptide capture ELISA for which the results were strongly concordant with those of the advanced neutralization assay, named HT-fc-PBNA. These two high-throughput scalable assays represent attractive approaches to determine antibody-based correlates of protection for the HPV L2 vaccines that are to come.
Collapse
Affiliation(s)
- Filipe Colaco Mariz
- Tumorvirus-Specific Vaccination Strategies (F035), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Kerstin Putzker
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter Sehr
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Müller
- Tumorvirus-Specific Vaccination Strategies (F035), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Martin TM, Robinson ST, Huang Y. Discovery medicine - the HVTN's iterative approach to developing an HIV-1 broadly neutralizing vaccine. Curr Opin HIV AIDS 2023; 18:290-299. [PMID: 37712873 PMCID: PMC10552837 DOI: 10.1097/coh.0000000000000821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW In the past two decades, there has been an explosion in the discovery of HIV-1 broadly neutralizing antibodies (bnAbs) and associated vaccine strategies to induce them. This abundance of approaches necessitates a system that accurately and expeditiously identifies the most promising regimens. We herein briefly review the background science of bnAbs, provide a description of the first round of phase 1 discovery medicine studies, and suggest an approach to integrate these into a comprehensive HIV-1-neutralizing vaccine. RECENT FINDINGS With recent preclinical success including induction of early stage bnAbs in mouse knockin models and rhesus macaques, successful priming of VRC01-class bnAbs with eOD-GT8 in a recent study in humans, and proof-of-concept that intravenous infusion of VRC01 prevents sexual transmission of virus in humans, the stage is set for a broad and comprehensive bnAb vaccine program. Leveraging significant advances in protein nanoparticle science, mRNA technology, adjuvant development, and B-cell and antibody analyses, the HVTN has reconfigured its HIV-1 vaccine strategy by developing the Discovery Medicine Program to test promising vaccine candidates targeting six key epitopes. SUMMARY The HVTN Discovery Medicine program is testing multiple HIV-1-neutralizing vaccine candidates.
Collapse
Affiliation(s)
- Troy M Martin
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | |
Collapse
|
21
|
Han L, Zhang B. Can prophylactic HPV vaccination reduce the recurrence of cervical lesions after surgery? Review and prospect. Infect Agent Cancer 2023; 18:66. [PMID: 37898754 PMCID: PMC10613367 DOI: 10.1186/s13027-023-00547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Women with HSIL typically undergo conization/LEEP to remove cervical lesions, but the risk of HSIL lesions returning after surgical treatment remains higher than in the general population. HPV vaccination is essential to prevent cervical cancer. However, the effect of prophylactic HPV vaccination on reducing the risk of recurrent cervical lesions after surgical treatment remains unclear. This review aims to analyze and summarize the latest literature on the role of prophylactic HPV vaccine in reducing the recurrence of cervical lesions after surgery in patients with HSIL, and to review and update the history, efficacy, effectiveness and safety of HPV vaccine, focusing on the current status of global HPV vaccine implementation and obstacles.
Collapse
Affiliation(s)
- Ling Han
- Department of Obstetrics and Gynecology, The First College of Clinical Medical Science, China Three Gorges University, Yichang City, Hubei Province, People's Republic of China
- Department of Obstetrics and Gynecology, Yichang Central People's Hospital, Yichang City, Hubei Province, People's Republic of China
| | - Bingyi Zhang
- Department of Ultrasound Imaging, The First College of Clinical Medical Science,, China Three Gorges University, Jiefang Road 2, Yichang City, 443003, Hubei Province, People's Republic of China.
- Department of Ultrasound Imaging, Yichang Central People's Hospital, Jiefang Road 2, Yichang City, 443003, Hubei Province, People's Republic of China.
| |
Collapse
|
22
|
Kwak K, Sohn H, George R, Torgbor C, Manzella-Lapeira J, Brzostowski J, Pierce SK. B cell responses to membrane-presented antigens require the function of the mechanosensitive cation channel Piezo1. Sci Signal 2023; 16:eabq5096. [PMID: 37751477 PMCID: PMC10691204 DOI: 10.1126/scisignal.abq5096] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
The demand for a vaccine for coronavirus disease 2019 (COVID-19) highlighted gaps in our understanding of the requirements for B cell responses to antigens, particularly to membrane-presented antigens, as occurs in vivo. We found that human B cell responses to membrane-presented antigens required the function of Piezo1, a plasma membrane mechanosensitive cation channel. Simply making contact with a glass probe induced calcium (Ca2+) fluxes in B cells that were blocked by the Piezo1 inhibitor GsMTx4. When placed on glass surfaces, the plasma membrane tension of B cells increased, which stimulated Ca2+ influx and spreading of B cells over the glass surface, which was blocked by the Piezo1 inhibitor OB-1. B cell responses to membrane-presented antigens but not to soluble antigens were inhibited both by Piezo1 inhibitors and by siRNA-mediated knockdown of Piezo1. Thus, the activation of Piezo1 defines an essential event in B cell activation to membrane-presented antigens that may be exploited to improve the efficacy of vaccines.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Rachel George
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Charles Torgbor
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
23
|
Sharifi E, Yousefiasl S, Trovato M, Sartorius R, Esmaeili Y, Goodarzi H, Ghomi M, Bigham A, Moghaddam FD, Heidarifard M, Pourmotabed S, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N, Wang X, Tay FR. Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants. J Nanobiotechnology 2023; 21:199. [PMID: 37344894 PMCID: PMC10283343 DOI: 10.1186/s12951-023-01938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Trovato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), 80131, Naples, Italy
| | - Yasaman Esmaeili
- School of Advanced Technologies in Medicine, Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Hamid Goodarzi
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Ashkan Bigham
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Maryam Heidarifard
- Centre de recherche, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Départment d'Ophtalmologie, Université de Montréal, Montreal, QC, Canada
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
24
|
Losada C, Samaha H, Scherer EM, Kazzi B, Khalil L, Ofotokun I, Rouphael N. Efficacy and Durability of Immune Response after Receipt of HPV Vaccines in People Living with HIV. Vaccines (Basel) 2023; 11:1067. [PMID: 37376456 DOI: 10.3390/vaccines11061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
People living with HIV (PLH) experience higher rates of HPV infection as well as an increased risk of HPV-related disease, including malignancies. Although they are considered a high-priority group for HPV vaccination, there are limited data regarding the long-term immunogenicity and efficacy of HPV vaccines in this population. Seroconversion rates and geometric mean titers elicited by vaccination are lower in PLH compared to immunocompetent participants, especially in individuals with CD4 counts below 200 cells/mm3 and a detectable viral load. The significance of these differences is still unclear, as a correlate of protection has not been identified. Few studies have focused on demonstrating vaccine efficacy in PLH, with variable results depending on the age at vaccination and baseline seropositivity. Although waning humoral immunity for HPV seems to be more rapid in this population, there is evidence that suggests that seropositivity lasts at least 2-4 years following vaccination. Further research is needed to determine the differences between vaccine formulations and the impact of administrating additional doses on durability of immune protection.
Collapse
Affiliation(s)
- Cecilia Losada
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA
| | - Hady Samaha
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA
| | - Erin M Scherer
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA
| | - Bahaa Kazzi
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA
| | - Lana Khalil
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA
| | - Ighovwerha Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Nadine Rouphael
- The Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, Decatur, GA 30030, USA
| |
Collapse
|
25
|
Gupta A, Singh AP, Singh VK, Sinha RP. Recent Developments and Future Perspectives of Vaccines and Therapeutic Agents against SARS-CoV2 Using the BCOV_S1_CTD of the S Protein. Viruses 2023; 15:1234. [PMID: 37376534 DOI: 10.3390/v15061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the virus kept developing and mutating into different variants over time, which also gained increased transmissibility and spread in populations at a higher pace, culminating in successive waves of COVID-19 cases. The scientific community has developed vaccines and antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease. Realizing that growing SARS-CoV-2 variations significantly impact the efficacy of antiviral therapies and vaccines, we summarize the appearance and attributes of SARS-CoV-2 variants for future perspectives in drug design, providing up-to-date insights for developing therapeutic agents targeting the variants. The Omicron variant is among the most mutated form; its strong transmissibility and immune resistance capacity have prompted international worry. Most mutation sites currently being studied are in the BCOV_S1_CTD of the S protein. Despite this, several hurdles remain, such as developing vaccination and pharmacological treatment efficacies for emerging mutants of SARS-CoV-2 strains. In this review, we present an updated viewpoint on the current issues faced by the emergence of various SARS-CoV-2 variants. Furthermore, we discuss the clinical studies conducted to assist the development and dissemination of vaccines, small molecule therapeutics, and therapeutic antibodies having broad-spectrum action against SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinay K Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- University Center for Research & Development (UCRD), Chandigarh University, Chandigarh 140413, India
| |
Collapse
|
26
|
Affiliation(s)
- Lauri E Markowitz
- From the Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (L.E.M.), and the Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (E.R.U.), Centers for Disease Control and Prevention, Atlanta
| | - Elizabeth R Unger
- From the Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (L.E.M.), and the Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (E.R.U.), Centers for Disease Control and Prevention, Atlanta
| |
Collapse
|
27
|
Chen CW, Saubi N, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24098060. [PMID: 37175776 PMCID: PMC10179162 DOI: 10.3390/ijms24098060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Narcís Saubi
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
28
|
Roy V, Jung W, Linde C, Coates E, Ledgerwood J, Costner P, Yamshchikov G, Streeck H, Juelg B, Lauffenburger DA, Alter G. Differences in HPV-specific antibody Fc-effector functions following Gardasil® and Cervarix® vaccination. NPJ Vaccines 2023; 8:39. [PMID: 36922512 PMCID: PMC10017795 DOI: 10.1038/s41541-023-00628-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
Gardasil® (Merck) and Cervarix® (GlaxoSmithKline) both provide protection against infection with Human Papillomavirus 16 (HPV16) and Human Papillomavirus 18 (HPV18), that account for around 70% of cervical cancers. Both vaccines have been shown to induce high levels of neutralizing antibodies and are known to protect against progression beyond cervical intraepithelial neoplasia grade 2 (CIN2+), although Cervarix® has been linked to enhanced protection from progression. However, beyond the transmission-blocking activity of neutralizing antibodies against HPV, no clear correlate of protection has been defined that may explain persistent control and clearance elicited by HPV vaccines. Beyond blocking, antibodies contribute to antiviral activity via the recruitment of the cytotoxic and opsonophagocytic power of the immune system. Thus, here, we used systems serology to comprehensively profile Gardasil®- and Cervarix®- induced antibody subclass, isotype, Fc-receptor binding, and Fc-effector functions against the HPV16 and HPV18 major capsid protein (L1). Overall, both vaccines induced robust functional humoral immune responses against both HPV16 and HPV18. However, Cervarix® elicited higher IgG3 and antibody-dependent complement activating responses, and an overall more coordinated response between HPV16 and 18 compared to Gardasil®, potentially related to the distinct adjuvants delivered with the vaccines. Thus, these data point to robust Fc-effector functions induced by both Gardasil® and Cervarix®, albeit with enhanced coordination observed with Cervarix®, potentially underlying immunological correlates of post-infection control of HPV.
Collapse
Affiliation(s)
- Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.,Institute of Virology, University Hospital Bonn, Bonn, Germany
| | - Wonyeong Jung
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Caitlyn Linde
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Emily Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Costner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hendrik Streeck
- Institute of Virology, University Hospital Bonn, Bonn, Germany
| | - Boris Juelg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Kamani MO, Kyrgiou M, Joura E, Zapardiel I, Grigore M, Arbyn M, Preti M, Planchamp F, Gultekin M. ESGO Prevention Committee opinion: is a single dose of HPV vaccine good enough? Int J Gynecol Cancer 2023; 33:462-464. [PMID: 36889817 DOI: 10.1136/ijgc-2023-004295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Affiliation(s)
- Mustafa Onur Kamani
- Department of Obstetrics and Gynecology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Maria Kyrgiou
- IRDB, Department of MDR - Surgery & Cancer, Imperial College London, London, UK
- West London Gynaecological Cancer Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Elmar Joura
- Department of Gynecology and Gynecologic Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Mihaela Grigore
- Department of Obstetrics and Gynecology, Grigore T Popa University of Medicine and Pharmacy Faculty of Medicine, Iasi, Romania
| | - Marc Arbyn
- Unit of Cancer Epidemiology, Belgian Cancer Centre Sciensano, Brussels, Belgium
- Department of Human Structure and Repair, Ghent University Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Mario Preti
- Department of Obstetrics and Gynaecology, Università degli Studi di Torino, Torino, Piemonte, Italy
| | | | - Murat Gultekin
- Department of Obstetrics and Gynecology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
30
|
Adams A, Hendrikse M, Rybicki EP, Hitzeroth II. Optimal size of DNA encapsidated by plant produced human papillomavirus pseudovirions. Virology 2023; 580:88-97. [PMID: 36801669 DOI: 10.1016/j.virol.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
Human papillomaviruses (HPVs) are known to be the cause of anogenital and oropharyngeal cancers as well as genital and common warts. HPV pseudovirions (PsVs) are synthetic viral particles that are made up of the L1 major and L2 minor HPV capsid proteins and up to 8 Kb of encapsidated pseudogenome dsDNA. HPV PsVs are used to test novel neutralising antibodies elicited by vaccines, for studying the virus life cycle, and potentially for the delivery of therapeutic DNA vaccines. HPV PsVs are typically produced in mammalian cells, however, it has recently been shown that Papillomavirus PsVs can be produced in plants, a potentially safer, cheaper and more easily scalable means of production. We analysed the encapsidation frequencies of pseudogenomes expressing EGFP, ranging in size from 4.8 Kb to 7.8 Kb, by plant-made HPV-35 L1/L2 particles. The smaller pseudogenomes were found to be packaged more efficiently into PsVs as higher concentrations of encapsidated DNA and higher levels of EGFP expression were obtained with the 4.8 Kb pseudogenome, compared to the larger 5.8-7.8 Kb pseudogenomes. Thus, smaller pseudogenomes, of 4.8 Kb, should be used for efficient plant production of HPV-35 PsVs.
Collapse
Affiliation(s)
- Ayesha Adams
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Megan Hendrikse
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
31
|
Lacey CJ. Unresolved issues in the management of human papillomavirus-associated mucosal high-grade pre-cancers. Tumour Virus Res 2023; 15:200250. [PMID: 36682539 PMCID: PMC9880239 DOI: 10.1016/j.tvr.2022.200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/21/2023] Open
Abstract
This article reviews human papillomavirus-associated mucosal high-grade pre-cancers and their management. It examines pre-cancer classification systems, the natural history of HPV-associated pre-cancers, the various types of management and treatment for HPV pre-cancers, the various mucosal site-specific considerations, and then some of the unresolved issues. Different conclusions are reached for each of the relevant mucosal sites, which are cervix, vagina, vulva, anus, penis and oro-pharynx, and indeed there are differing volumes of evidence relating to each of these sites, and thus differing degrees of certainty/uncertainty in the recommendations.
Collapse
Affiliation(s)
- Charles Jn Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, UK.
| |
Collapse
|
32
|
Schiller JT, Lowy DR. Prospects for preventing cancer with anti-microbial prophylactic vaccines. Cell Host Microbe 2023; 31:137-140. [PMID: 36423642 DOI: 10.1016/j.chom.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vaccines against cancer-causing microbes could potentially prevent 15% of cancers worldwide and thereby address global disparities in cancer control. To reach this potential, the established hepatitis B virus and human papillomavirus vaccines must be more widely implemented, and effective vaccines against Epstein-Barr virus, hepatitis C virus, and Helicobacter pylori must be developed.
Collapse
Affiliation(s)
- John T Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
33
|
Illah O, Olaitan A. Updates on HPV Vaccination. Diagnostics (Basel) 2023; 13:243. [PMID: 36673053 PMCID: PMC9857409 DOI: 10.3390/diagnostics13020243] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Cervical cancer still poses a significant global challenge. Developed countries have mitigated this challenge by the introduction of structured screening programmes and, more recently, the HPV vaccine. Countries that have successfully introduced national HPV vaccination programmes are on course for cervical cancer elimination in a few decades. In developing countries that lack structured screening and HPV vaccination programmes, cervical cancer remains a major cause of morbidity and mortality. The HPV vaccine is key to addressing the disproportionate distribution of cervical cancer incidence, with much to be gained from increasing vaccine coverage and uptake globally. This review covers the history and science of the HPV vaccine, its efficacy, effectiveness and safety, and some of the considerations and challenges posed to the achievement of global HPV vaccination coverage and the consequent elimination of cervical cancer.
Collapse
Affiliation(s)
- Ojone Illah
- Women’s Cancer Department, EGA Institute for Women’s Health, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
34
|
Joshi S, Anantharaman D, Muwonge R, Bhatla N, Panicker G, Butt J, Rani Reddy Poli U, Malvi SG, Esmy PO, Lucas E, Verma Y, Shah A, Zomawia E, Pimple S, Jayant K, Hingmire S, Chiwate A, Divate U, Vashist S, Mishra G, Jadhav R, Siddiqi M, Sankaran S, Pillai Rameshwari Ammal Kannan T, Kartha P, Shastri SS, Sauvaget C, Radhakrishna Pillai M, Waterboer T, Müller M, Sehr P, Unger ER, Sankaranarayanan R, Basu P. Evaluation of immune response to single dose of quadrivalent HPV vaccine at 10-year post-vaccination. Vaccine 2023; 41:236-245. [PMID: 36446654 PMCID: PMC9792650 DOI: 10.1016/j.vaccine.2022.11.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 11/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The recent World Health Organization recommendation supporting single-dose of HPV vaccine will significantly reduce programmatic cost, mitigate the supply shortage, and simplify logistics, thus allowing more low- and middle-income countries to introduce the vaccine. From a programmatic perspective the durability of protection offered by a single-dose will be a key consideration. The primary objectives of the present study were to determine whether recipients of a single-dose of quadrivalent HPV vaccine had sustained immune response against targeted HPV types (HPV 6,11,16,18) at 10 years post-vaccination and whether this response was superior to the natural antibody titres observed in unvaccinated women. METHODS Participants received at age 10-18 years either one, two or three doses of the quadrivalent HPV vaccine. Serology samples were obtained at different timepoints up to 10 years after vaccination from a convenience sample of vaccinated participants and from age-matched unvaccinated women at one timepoint. The evolution of the binding and neutralizing antibody response was presented by dose received. 10-year durability of immune responses induced by a single-dose was compared to that after three doses of the vaccine and in unvaccinated married women. RESULTS The dynamics of antibody response among the single-dose recipients observed over 120 months show stabilized levels 18 months after vaccination for all four HPV types. Although the HPV type-specific (binding or neutralizing) antibody titres after a single-dose were significantly inferior to those after three doses of the vaccine (lower bounds of GMT ratios < 0.5), they were all significantly higher than those observed in unvaccinated women following natural infections (GMT ratios: 2.05 to 4.04-fold higher). The results correlate well with the high vaccine efficacy of single-dose against persistent HPV 16/18 infections reported by us earlier at 10-years post-vaccination. CONCLUSION Our study demonstrates the high and durable immune response in single-dose recipients of HPV vaccine at 10-years post vaccination.
Collapse
Affiliation(s)
- Smita Joshi
- Jehangir Clinical Development Centre, Jehangir Hospital Premises, Pune 411 001, India
| | - Devasena Anantharaman
- Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Richard Muwonge
- Early Detection, Prevention & Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Neerja Bhatla
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Gitika Panicker
- National Center for Emerging and Zoonotic Infectious Diseases, CDC, USA
| | - Julia Butt
- Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | - Sylla G Malvi
- Tata Memorial Centre Rural Cancer Project, Nargis Dutt Memorial Cancer Hospital, Barshi District Solapur, Maharashtra 413 401, India
| | - Pulikkottil O Esmy
- Christian Fellowship Community Health Centre, Ambillikai (near Oddanchathram), Dindigul District, Tamil Nadu 624 612, India
| | - Eric Lucas
- Early Detection, Prevention & Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Yogesh Verma
- Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, Sikkim 737102, India
| | - Anand Shah
- Gujarat Cancer & Research Institute (GCRI), M.P. Shah Cancer Hospital, Civil Hospital Campus, Asarwa, Ahmedabad 380 016, India
| | | | - Sharmila Pimple
- Department of Preventive Oncology, Centre for Cancer Epidemiology (CCE), Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, India
| | - Kasturi Jayant
- Tata Memorial Centre Rural Cancer Project, Nargis Dutt Memorial Cancer Hospital, Barshi District Solapur, Maharashtra 413 401, India
| | - Sanjay Hingmire
- Tata Memorial Centre Rural Cancer Project, Nargis Dutt Memorial Cancer Hospital, Barshi District Solapur, Maharashtra 413 401, India
| | - Aruna Chiwate
- Tata Memorial Centre Rural Cancer Project, Nargis Dutt Memorial Cancer Hospital, Barshi District Solapur, Maharashtra 413 401, India
| | - Uma Divate
- Jehangir Clinical Development Centre, Jehangir Hospital Premises, Pune 411 001, India
| | - Shachi Vashist
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Gauravi Mishra
- Department of Preventive Oncology, Centre for Cancer Epidemiology (CCE), Homi Bhabha National Institute, Tata Memorial Centre, Mumbai, India
| | - Radhika Jadhav
- Jehangir Clinical Development Centre, Jehangir Hospital Premises, Pune 411 001, India
| | - Maqsood Siddiqi
- Cancer Foundation of India, Kolkata, West Bengal 700 039, India
| | - Subha Sankaran
- Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | | | - Purnima Kartha
- Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Surendra S Shastri
- Department of Health Disparities Research, Division of Cancer Prevention and Population Sciences, University of Texas M.D. Anderson Cancer Centre, 1400 Pressler St, Houston, TX 77030-3906, United States
| | - Catherine Sauvaget
- Early Detection, Prevention & Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - M Radhakrishna Pillai
- Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Tim Waterboer
- Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | - Martin Müller
- Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | - Peter Sehr
- EMBL-DKFZ Chemical Biology Core Facility, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Elizabeth R Unger
- National Center for Emerging and Zoonotic Infectious Diseases, CDC, USA
| | - Rengaswamy Sankaranarayanan
- Early Detection, Prevention & Infections Branch, International Agency for Research on Cancer, Lyon, France; Karkinos Healthcare, Kerala Operations, Ernakulam, India
| | - Partha Basu
- Early Detection, Prevention & Infections Branch, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
35
|
Ulbricht C, Cao Y, Niesner RA, Hauser AE. In good times and in bad: How plasma cells resolve stress for a life-long union with the bone marrow. Front Immunol 2023; 14:1112922. [PMID: 37033993 PMCID: PMC10080396 DOI: 10.3389/fimmu.2023.1112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Yu Cao
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- *Correspondence: Anja E. Hauser,
| |
Collapse
|
36
|
Gheit T, Muwonge R, Lucas E, Galati L, Anantharaman D, McKay-Chopin S, Malvi SG, Jayant K, Joshi S, Esmy PO, Pillai MR, Basu P, Sankaranarayanan R, Tommasino M. Impact of HPV vaccination on HPV-related oral infections. Oral Oncol 2023; 136:106244. [PMID: 36402055 PMCID: PMC9833124 DOI: 10.1016/j.oraloncology.2022.106244] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) is one of the most common sexually transmitted infections worldwide. Although the efficacy of the HPV vaccine in preventing the development of cervical pre-malignant lesions has been well demonstrated, the efficacy of the HPV vaccine in preventing HPV infection in the upper respiratory tract has been poorly studied. METHODS In the context of the IARC cohort study of two versus three doses of HPV vaccine in India, we compared the HPV type prevalence in the oral cavity of women vaccinated with three doses, two doses, or a single dose of quadrivalent HPV vaccine with that of unvaccinated women. A total of 997 oral samples, from 818 vaccinated women and 179 unvaccinated women, were collected at three study sites. All the participants were sexually active at the time of sample collection. RESULTS The age-standardized proportion (ASP) of HPV16/18 infections was 2.0 % (95 % CI, 1.0-3.0 %) in vaccinated women and 4.2 % (95 % CI, 1.2-7.2 %) in unvaccinated women. HPV16 was detected in 3.5 % of single-dose recipients, 1.2 % of two-dose recipients (days 1 and 180), and 1.5 % of three-dose recipients (days 1, 60, and 180), whereas 3.3 % of the unvaccinated women tested positive for HPV16. The same trend was observed for HPV18. DISCUSSION Our findings agree with those of previous studies on the efficacy of HPV vaccination in reducing oral HPV infections and provide indications that a single vaccine dose may be less efficient than two or three doses in preventing oral HPV infection.
Collapse
Affiliation(s)
- Tarik Gheit
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Richard Muwonge
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Eric Lucas
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Luisa Galati
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Devasena Anantharaman
- Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India
| | - Sandrine McKay-Chopin
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Sylla G Malvi
- Tata Memorial Centre Rural Cancer Project, Nargis Dutt Memorial Cancer Hospital, Barshi District Solapur, Maharashtra, India
| | - Kasturi Jayant
- Tata Memorial Centre Rural Cancer Project, Nargis Dutt Memorial Cancer Hospital, Barshi District Solapur, Maharashtra, India
| | - Smita Joshi
- Jehangir Clinical Development Centre, Jehangir Hospital Premises, Pune, India
| | - Pulikkottil O Esmy
- Christian Fellowship Community Health Centre, Ambillikai, Dindigul District, Tamil Nadu, India
| | | | - Partha Basu
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | | |
Collapse
|
37
|
Katsura M, Fukushima M, Kameyama KI, Kokuho T, Nakahira Y, Takeuchi K. Novel bovine viral diarrhea virus (BVDV) virus-like particle vaccine candidates presenting the E2 protein using the SpyTag/SpyCatcher system induce a robust neutralizing antibody response in mice. Arch Virol 2023; 168:49. [PMID: 36609880 PMCID: PMC9825097 DOI: 10.1007/s00705-022-05653-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/07/2022] [Indexed: 01/08/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is a pathogen of commercial consequence in cattle. Although many modified live and killed vaccines are commercially available, their drawbacks precipitate the need for new effective vaccines. Virus-like particles (VLPs) are a safe and powerful technology used in several human and veterinary vaccines; however, it is difficult to produce large amounts of BVDV VLPs. In this study, we generated red-spotted grouper nervous necrosis virus (RGNNV) VLPs presenting the BVDV E2 protein (domain I to IIIb) of the Nose (BVDV-1) or KZ-91-CP (BVDV-2) strain by exploiting SpyTag/SpyCatcher technology. Mice immunized twice with 30 μg of RGNNV VLPs conjugated with 10 μg of E2 proteins of the Nose or KZ-91-CP strain with a 14-day interval elicited high (1:512,000 to 1:1,024,000) and moderate (1:25,600 to 1:102,400) IgG titers against E2 proteins of homologous and heterologous strains, respectively. In addition, this prime-boost regimen induced strong (1:800 to 1:3,200) and weak (~1:10) neutralization titers against homologous and heterologous BVDV strains, respectively. Our results indicate that conjugation of the E2 protein to RGNNV VLPs strongly enhances the antigenicity of the E2 protein and that RGNNV VLPs presenting the E2 protein are promising BVDV vaccine candidates.
Collapse
Affiliation(s)
- Miki Katsura
- grid.20515.330000 0001 2369 4728Laboratory of Environmental Microbiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Masaki Fukushima
- grid.20515.330000 0001 2369 4728Laboratory of Environmental Microbiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575 Japan
| | - Ken-ichiro Kameyama
- grid.416882.10000 0004 0530 9488Exotic Disease Research Group, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo 187-0022 Japan
| | - Takehiko Kokuho
- grid.416882.10000 0004 0530 9488Exotic Disease Research Group, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 6-20-1 Josuihoncho, Kodaira, Tokyo 187-0022 Japan
| | - Yoichi Nakahira
- grid.410773.60000 0000 9949 0476College of Agriculture, Ibaraki University, 3-21 Chuo, Ami, Ibaraki 300-0332 Japan
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
38
|
Tsakogiannis D, Nikolaidis M, Zagouri F, Zografos E, Kottaridi C, Kyriakopoulou Z, Tzioga L, Markoulatos P, Amoutzias GD, Bletsa G. Mutation Profile of HPV16 L1 and L2 Genes in Different Geographic Areas. Viruses 2022; 15:141. [PMID: 36680181 PMCID: PMC9867070 DOI: 10.3390/v15010141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
The causal relationship between HPV and cervical cancer in association with the high prevalence of high risk HPV genotypes led to the design of HPV vaccines based on the major capsid L1 protein. In recent years, capsid protein L2 has also become a focal point in the field of vaccine research. The present review focuses on the variability of HPV16 L1 and L2 genes, emphasizing the distribution of specific amino acid changes in the epitopes of capsid proteins. Moreover, a substantial bioinformatics analysis was conducted to describe the worldwide distribution of amino acid substitutions throughout HPV16 L1, L2 proteins. Five amino acid changes (T176N, N181T; EF loop), (T266A; FG loop), (T353P, T389S; HI loop) are frequently observed in the L1 hypervariable surface loops, while two amino acid substitutions (D43E, S122P) are adjacent to L2 specific epitopes. These changes have a high prevalence in certain geographic regions. The present review suggests that the extensive analysis of the amino acid substitutions in the HPV16 L1 immunodominant loops may provide insights concerning the ability of the virus in evading host immune response in certain populations. The genetic variability of the HPV16 L1 and L2 epitopes should be extensively analyzed in a given population.
Collapse
Affiliation(s)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, 11528 Athens, Greece
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, National and Kapodistrian University of Athens School of Medicine, 11528 Athens, Greece
| | - Christine Kottaridi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Zaharoula Kyriakopoulou
- Department of Environment, School of Technology, University of Thessaly, Gaiopolis, 41500 Larissa, Greece
| | - Lamprini Tzioga
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece
| | | | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Garyfalia Bletsa
- Research Center, Hellenic Anticancer Institute, 10680 Athens, Greece
| |
Collapse
|
39
|
Shadab R, Lavery JV, McFadden SM, Elharake JA, Malik F, Omer SB. Key ethical considerations to guide the adjudication of a single-dose HPV vaccine schedule. Hum Vaccin Immunother 2022; 18:1917231. [PMID: 34010096 PMCID: PMC8920253 DOI: 10.1080/21645515.2021.1917231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is a high burden of human papillomavirus (HPV) associated cancers in low- and middle-income countries (LMICs). Reducing the recommended dosing schedule from two doses to one makes the vaccine schedule logistically simpler and lowers the cost. This could make the distribution of the current vaccine supply more equitable and lead to the protection of more people. However, the clinical trials studying the efficacy of a single-dose schedule have not yet delivered final results. Against this background, the question is whether a single-dose HPV vaccine recommendation is appropriate now, and if so, what are the ethical considerations of such a recommendation? We developed three ethical recommendations: (1) adopt a holistic view of evidence to justify policy decisions; (2) prioritize the reduction in global disparities in decision-making at all levels; and (3) be transparent in the reporting of how key stakeholder interests have shaped the collection and interpretation of the evidence, and ultimate decisions. The complex discussion regarding the HPV single-dose vaccine schedule highlights the need for in-depth engagement globally to improve our understanding of country-specific contexts, and how those contexts influence decisions regarding the HPV vaccine single-dose recommendation.
Collapse
Affiliation(s)
- Ruha Shadab
- Yale Institute for Global Health, New Haven, CT, USA
| | - James V. Lavery
- Hubert Department of Global Health, Rollins School of Public Health and Center for Ethics, Emory University, Atlanta, GA, USA
| | - SarahAnn M. McFadden
- Yale Institute for Global Health, New Haven, CT, USA
- Department of Internal Medicine, Infectious Disease, Yale School of Medicine, New Haven, CT, USA
- CONTACT SarahAnn M. McFadden Yale Institute for Global Health, 1 Church St, Ste 340, New Haven, CT06510
| | - Jad A. Elharake
- Yale Institute for Global Health, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Fauzia Malik
- Yale Institute for Global Health, New Haven, CT, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
| | - Saad B. Omer
- Yale Institute for Global Health, New Haven, CT, USA
- Department of Internal Medicine, Infectious Disease, Yale School of Medicine, New Haven, CT, USA
- Yale School of Nursing, Orange, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
40
|
Chen CW, Saubi N, Kilpeläinen A, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines (Basel) 2022; 11:vaccines11010015. [PMID: 36679860 PMCID: PMC9861546 DOI: 10.3390/vaccines11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Athina Kilpeläinen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
41
|
Wang WV, Kothari S, Skufca J, Giuliano AR, Sundström K, Nygård M, Koro C, Baay M, Verstraeten T, Luxembourg A, Saah AJ, Garland SM. Real-world impact and effectiveness of the quadrivalent HPV vaccine: an updated systematic literature review. Expert Rev Vaccines 2022; 21:1799-1817. [PMID: 36178094 DOI: 10.1080/14760584.2022.2129615] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Human papillomavirus (HPV) infection, which poses significant disease burden, is decreasing following implementation of vaccination programs. Synthesized evidence on HPV vaccine real-world benefit was published in 2016. However, long-term impact of vaccination, and how vaccination programs influence infection rates and disease outcomes, requires further examination. AREAS COVERED We systematically reviewed observational studies on HPV vaccination within MEDLINE, EMBASE, and Google Scholar from 2016 to 2020, involving 14 years of follow-up data. We identified 138 peer-reviewed publications reporting HPV vaccine impact or effectiveness. Outcomes of interest included rates of infection at different anatomical sites and incidence of several HPV-related disease endpoints. EXPERT OPINION The expansion of HPV vaccination programs worldwide has led to a reduction in genital infection and significant decreases in incidence of HPV-related disease outcomes. Therefore, the WHO has set goals for the elimination of cervical cancer as a public health concern. To track progress toward this requires an understanding of the effectiveness of different vaccination initiatives. However, the impact on males, and potential benefit of gender-neutral vaccination programs have not been fully explored. To present an accurate commentary on the current outlook of vaccination and to help shape policy therefore requires a systematic review of available data.
Collapse
Affiliation(s)
- Wei Vivian Wang
- Center for Observational and Real-World Evidence, Merck Sharp & Dohme LLC, Rahway, NJ, USA
| | - Smita Kothari
- Center for Observational and Real-World Evidence, Merck Sharp & Dohme LLC, Rahway, NJ, USA
| | - Jozica Skufca
- Epidemiology & Pharmacovigilance, P95, Leuven, Belgium
| | - Anna R Giuliano
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, FL USA
| | - Karin Sundström
- Department of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Mari Nygård
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Carol Koro
- Center for Observational and Real-World Evidence, Merck Sharp & Dohme LLC, Rahway, NJ, USA
| | - Marc Baay
- Epidemiology & Pharmacovigilance, P95, Leuven, Belgium
| | | | - Alain Luxembourg
- Center for Observational and Real-World Evidence, Merck Sharp & Dohme LLC, Rahway, NJ, USA
| | - Alfred J Saah
- Center for Observational and Real-World Evidence, Merck Sharp & Dohme LLC, Rahway, NJ, USA
| | - Suzanne M Garland
- Department of Obstetrics and Gynecology, The University of Melbourne, Royal Women's Hospital (RWH), Murdoch Childrens Research Institute, Melbourne, Australia
| |
Collapse
|
42
|
Akhatova A, Azizan A, Atageldiyeva K, Ashimkhanova A, Marat A, Iztleuov Y, Suleimenova A, Shamkeeva S, Aimagambetova G. Prophylactic Human Papillomavirus Vaccination: From the Origin to the Current State. Vaccines (Basel) 2022; 10:1912. [PMID: 36423008 PMCID: PMC9696339 DOI: 10.3390/vaccines10111912] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Immunization is the most successful method in preventing and controlling infectious diseases, which has helped saving millions of lives worldwide. The discovery of the human papillomavirus (HPV) infection being associated with a variety of benign conditions and cancers has driven the development of prophylactic HPV vaccines. Currently, four HPV vaccines are available on the pharmaceutical market: Cervarix, Gardasil, Gardasil-9, and the recently developed Cecolin. Multiple studies have proven the HPV vaccines' safety and efficacy in preventing HPV-related diseases. Since 2006, when the first HPV vaccine was approved, more than 100 World Health Organization member countries reported the implementation of HPV immunization. However, HPV vaccination dread, concerns about its safety, and associated adverse outcomes have a significant impact on the HPV vaccine implementation campaigns all over the world. Many developed countries have successfully implemented HPV immunization and achieved tremendous progress in preventing HPV-related conditions. However, there are still many countries worldwide which have not created, or have not yet implemented, HPV vaccination campaigns, or have failed due to deficient realization plans associated with establishing successful HPV vaccination programs. Lack of proper HPV information campaigns, negative media reflection, and numerous myths and fake information have led to HPV vaccine rejection in many states. Thus, context-specific health educational interventions on HPV vaccination safety, effectiveness, and benefits are important to increase the vaccines' acceptance for efficacious prevention of HPV-associated conditions.
Collapse
Affiliation(s)
- Ayazhan Akhatova
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Azliyati Azizan
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University, Henderson, NV 89014, USA
| | - Kuralay Atageldiyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Clinical Academic Department of Internal Medicine, CF University Medical Center, Astana 10000, Kazakhstan
| | - Aiymkul Ashimkhanova
- Department of Medicine, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Aizada Marat
- Department of Obstetrics and Gynecology #1, NJSC “Astana Medical University”, Astana 010000, Kazakhstan
| | - Yerbolat Iztleuov
- Medical Center, Marat Ospanov West-Kazakhstan Medical University, Aktobe 030000, Kazakhstan
| | - Assem Suleimenova
- Kazakh Institute of Oncology and Radiology, Almaty 050000, Kazakhstan
| | - Saikal Shamkeeva
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University Hospital, 04103 Leipzig, Germany
| | - Gulzhanat Aimagambetova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
43
|
Antanasijevic A, Schulze AJ, Reddy VS, Ward AB. High-resolution structural analysis of enterovirus-reactive polyclonal antibodies in complex with whole virions. PNAS NEXUS 2022; 1:pgac253. [PMID: 36712368 PMCID: PMC9802058 DOI: 10.1093/pnasnexus/pgac253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Non-polio enteroviruses (NPEVs) cause serious illnesses in young children and neonates, including aseptic meningitis, encephalitis, and inflammatory muscle disease, among others. While over 100 serotypes have been described to date, vaccine only exists for EV-A71. Efforts toward rationally designed pan-NPEV vaccines would greatly benefit from structural biology methods for rapid and comprehensive evaluation of vaccine candidates and elicited antibody responses. Toward this goal, we introduced a cryo-electron-microscopy-based approach for structural analysis of virus- or vaccine-elicited polyclonal antibodies (pAbs) in complex with whole NPEV virions. We demonstrated the feasibility using coxsackievirus A21 and reconstructed five structurally distinct pAbs bound to the virus. The pAbs targeted two immunodominant epitopes, one overlapping with the receptor binding site. These results demonstrate that our method can be applied to map broad-spectrum polyclonal immune responses against intact virions and define potentially cross-reactive epitopes.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA,International AIDS Vaccine Initiative Neutralizing Antibody Center, Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Autumn J Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
44
|
Man I, Georges D, de Carvalho TM, Ray Saraswati L, Bhandari P, Kataria I, Siddiqui M, Muwonge R, Lucas E, Berkhof J, Sankaranarayanan R, Bogaards JA, Basu P, Baussano I. Evidence-based impact projections of single-dose human papillomavirus vaccination in India: a modelling study. Lancet Oncol 2022; 23:1419-1429. [PMID: 36174583 PMCID: PMC9622421 DOI: 10.1016/s1470-2045(22)00543-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Despite the high burden of cervical cancer, access to preventive measures remains low in India. A single-dose immunisation schedule could facilitate the scale-up of human papillomavirus (HPV) vaccination, contributing to global elimination of cervical cancer. We projected the effect of single-dose quadrivalent HPV vaccination in India in comparison with no vaccination or to a two-dose schedule. METHODS In this modelling study, we adapted an HPV transmission model (EpiMetHeos) to Indian data on sexual behaviour (from the Demographic and Health Survey and the Indian National AIDS Control Organisation), HPV prevalence data (from two local surveys, from the states of Tamil Nadu and West Bengal), and cervical cancer incidence data (from Cancer Incidence in Five Continents for the period 2008-12 [volume XI], and the Indian National Centre for Disease Informatics and Research for the period 2012-16). Using the model, we projected the nationwide and state-specific effect of HPV vaccination on HPV prevalence and cervical cancer incidence, and lifetime risk of cervical cancer, for 100 years after the introduction of vaccination or in the first 50 vaccinated birth cohorts. Projections were derived under a two-dose vaccination scenario assuming life-long protection and under a single-dose vaccination scenario with protection duration assumptions derived from International Agency for Research on Cancer (IARC) India vaccine trial data, in combination with different vaccination coverages and catch-up vaccination age ranges. We used two thresholds to define cervical cancer elimination: an age-standardised incidence rate of less than 4 cases per 100 000 woman-years, and standardised lifetime risk of less than 250 cases per 100 000 women born. FINDINGS Assuming vaccination in girls aged 10 years, with 90% coverage, and life-long protection by two-dose or single-dose schedule, HPV vaccination could reduce the prevalence of HPV16 and HPV18 infection by 97% (80% UI 96-99) in 50 years, and the lifetime risk of cervical cancer by 71-78% from 1067 cases per 100 000 women born under a no vaccination scenario to 311 (80% UI 284-339) cases per 100 000 women born in the short term and 233 (219-252) cases per 100 000 women born in the long term in vaccinated cohorts. Under this scenario, we projected that the age-standardised incidence rate threshold for elimination could be met across India (range across Indian states: 1·6 cases [80% UI 1·5-1·7] to 4·0 cases [3·8-4·4] per 100 000 woman-years), while the complementary threshold based on standardised lifetime risk was attainable in 17 (68%) of 25 states, but not nationwide (range across Indian states: 207 cases [80% UI 194-223] to 477 cases [447-514] per 100 000 women born). Under the considered assumptions of waning vaccine protection, single-dose vaccination was projected to have a 21-100% higher per-dose efficiency than two-dose vaccination. Single-dose vaccination with catch-up for girls and women aged 11-20 years was more impactful than two-dose vaccination without catch-up, with reduction of 39-65% versus 38% in lifetime risk of cervical cancer across the ten catch-up birth cohorts and the first ten routine vaccination birth cohorts. INTERPRETATION Our evidence-based projections suggest that scaling up cervical cancer prevention through single-dose HPV vaccination could substantially reduce cervical cancer burden in India. FUNDING The Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Irene Man
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France.
| | - Damien Georges
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Tiago M de Carvalho
- Amsterdam UMC location Vrije Universiteit Amsterdam, Epidemiology and Data Science, Amsterdam, Netherlands; Amsterdam Public Health, Amsterdam, Netherlands
| | | | | | - Ishu Kataria
- Center for Global Noncommunicable Diseases, RTI International, New Delhi, India
| | | | - Richard Muwonge
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Eric Lucas
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Johannes Berkhof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Epidemiology and Data Science, Amsterdam, Netherlands; Amsterdam Public Health, Amsterdam, Netherlands
| | | | - Johannes A Bogaards
- Amsterdam UMC location Vrije Universiteit Amsterdam, Epidemiology and Data Science, Amsterdam, Netherlands; Amsterdam Public Health, Amsterdam, Netherlands
| | - Partha Basu
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Iacopo Baussano
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| |
Collapse
|
45
|
Watson-Jones D, Changalucha J, Whitworth H, Pinto L, Mutani P, Indangasi J, Kemp T, Hashim R, Kamala B, Wiggins R, Songoro T, Connor N, Mbwanji G, Pavon MA, Lowe B, Mmbando D, Kapiga S, Mayaud P, de SanJosé S, Dillner J, Hayes RJ, Lacey CJ, Baisley K. Immunogenicity and safety of one-dose human papillomavirus vaccine compared with two or three doses in Tanzanian girls (DoRIS): an open-label, randomised, non-inferiority trial. Lancet Glob Health 2022; 10:e1473-e1484. [PMID: 36113531 PMCID: PMC9638030 DOI: 10.1016/s2214-109x(22)00309-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND An estimated 15% of girls aged 9-14 years worldwide have been vaccinated against human papillomavirus (HPV) with the recommended two-dose or three-dose schedules. A one-dose HPV vaccine schedule would be simpler and cheaper to deliver. We report immunogenicity and safety results of different doses of two different HPV vaccines in Tanzanian girls. METHODS In this open-label, randomised, phase 3, non-inferiority trial, we enrolled healthy schoolgirls aged 9-14 years from Government schools in Mwanza, Tanzania. Eligible participants were randomly assigned to receive one, two, or three doses of either the 2-valent vaccine (Cervarix, GSK Biologicals, Rixensart) or the 9-valent vaccine (Gardasil-9, Sanofi Pasteur MSD, Lyon). The primary outcome was HPV 16 specific or HPV 18 specific seropositivity following one dose compared with two or three doses of the same HPV vaccine 24 months after vaccination. Safety was assessed as solicited adverse events up to 30 days after each dose and unsolicited adverse events up to 24 months after vaccination or to last study visit. The primary outcome was done in the per-protocol population, and safety was analysed in the total vaccinated population. This study was registered in ClinicalTrials.gov, NCT02834637. FINDINGS Between Feb 23, 2017, and Jan 6, 2018, we screened 1002 girls for eligibility. 72 girls were excluded. 930 girls were enrolled and randomly assigned to receive one dose of Cervarix (155 participants), two doses of Cervarix (155 participants), three doses of Cervarix (155 participants), one dose of Gardasil-9 (155 participants), two doses of Gardasil-9 (155 participants), or three doses of Gardasil-9 (155 participants). 922 participants received all scheduled doses within the defined window (three withdrew, one was lost to follow-up, and one died before completion; two received their 6-month doses early, and one received the wrong valent vaccine in error; all 930 participants were included in the total vaccinated cohort). Retention at 24 months was 918 (99%) of 930 participants. In the according-to-protocol cohort, at 24 months, 99% of participants who received one dose of either HPV vaccine were seropositive for HPV 16 IgG antibodies, compared with 100% of participants who received two doses, and 100% of participants who received three doses. This met the prespecified non-inferiority criteria. Anti-HPV 18 seropositivity at 24 months did not meet non-inferiority criteria for one dose compared to two doses or three doses for either vaccine, although more than 98% of girls in all groups had HPV 18 antibodies. 53 serious adverse events (SAEs) were experienced by 42 (4·5%) of 930 girls, the most common of which was hospital admission for malaria. One girl died of malaria. Number of events was similar between groups and no SAEs were considered related to vaccination. INTERPRETATION A single dose of the 2-valent or 9-valent HPV vaccine in girls aged 9-14 years induced robust immune responses up to 24 months, suggesting that this reduced dose regimen could be suitable for prevention of HPV infection among girls in the target age group for vaccination. FUNDING UK Department for International Development/UK Medical Research Council/Wellcome Trust Joint Global Health Trials Scheme, The Bill & Melinda Gates Foundation, and the US National Cancer Institute. TRANSLATION For the KiSwahili translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Deborah Watson-Jones
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - John Changalucha
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Hilary Whitworth
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ligia Pinto
- HPV Serology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Paul Mutani
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Jackton Indangasi
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Troy Kemp
- HPV Serology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Ramadhan Hashim
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Beatrice Kamala
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Rebecca Wiggins
- York Biomedical Research Institute & Hull York Medical School, University of York, York, UK
| | - Twaib Songoro
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Nicholas Connor
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Gladys Mbwanji
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Miquel A Pavon
- Infection and Cancer Laboratory, Cancer Epidemiology Research Programme, ICO-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - Brett Lowe
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Devis Mmbando
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| | - Saidi Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania; Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Philippe Mayaud
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Silvia de SanJosé
- Unit of Infections and Cancer Cancer Epidemiology Research Programme, Institut Català d' Oncologia, Barcelona, Spain; National Cancer Institute, Rockville, USA
| | | | - Richard J Hayes
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Charles J Lacey
- York Biomedical Research Institute & Hull York Medical School, University of York, York, UK
| | - Kathy Baisley
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
46
|
Bhattacharjee R, Kumar L, Dhasmana A, Mitra T, Dey A, Malik S, Kim B, Gundamaraju R. Governing HPV-related carcinoma using vaccines: Bottlenecks and breakthroughs. Front Oncol 2022; 12:977933. [PMID: 36176419 PMCID: PMC9513379 DOI: 10.3389/fonc.2022.977933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human papillomavirus (HPV) contributes to sexually transmitted infection, which is primarily associated with pre-cancerous and cancerous lesions in both men and women and is among the neglected cancerous infections in the world. At global level, two-, four-, and nine-valent pure L1 protein encompassed vaccines in targeting high-risk HPV strains using recombinant DNA technology are available. Therapeutic vaccines are produced by early and late oncoproteins that impart superior cell immunity to preventive vaccines that are under investigation. In the current review, we have not only discussed the clinical significance and importance of both preventive and therapeutic vaccines but also highlighted their dosage and mode of administration. This review is novel in its way and will pave the way for researchers to address the challenges posed by HPV-based vaccines at the present time.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Tamoghni Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Bonglee Kim, ; Rohit Gundamaraju,
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
- *Correspondence: Bonglee Kim, ; Rohit Gundamaraju,
| |
Collapse
|
47
|
Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH, Ke FY, Su SC, Liang KH, Yuan JPY, Chiang HL, Sun CP, Lee IJ, Li WS, Hsieh HP, Tao MH, Wu HC. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci 2022; 29:68. [PMID: 36096815 PMCID: PMC9465653 DOI: 10.1186/s12929-022-00852-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/01/2022] [Indexed: 12/12/2022] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Monika Kumari
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Mu-Chun Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jhih-Liang Huang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Fu-Fei Hsu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiao-Ling Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Cheng-Pu Sun
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Jung Lee
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Pang Hsieh
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Mi-Hua Tao
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan.
| |
Collapse
|
48
|
Ximba P, Chapman R, Meyers A, Margolin E, van Diepen MT, Sander AF, Woodward J, Moore PL, Williamson AL, Rybicki EP. Development of a synthetic nanoparticle vaccine presenting the HIV-1 envelope glycoprotein. NANOTECHNOLOGY 2022; 33:485102. [PMID: 35882111 DOI: 10.1088/1361-6528/ac842c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.
Collapse
Affiliation(s)
- Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michiel T van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jeremy Woodward
- Structural Biology Research Unit, University of Cape Town, South Africa
| | - Penny L Moore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
49
|
Markowitz LE, Drolet M, Lewis RM, Lemieux-Mellouki P, Pérez N, Jit M, Brotherton JM, Ogilvie G, Kreimer AR, Brisson M. Human papillomavirus vaccine effectiveness by number of doses: Updated systematic review of data from national immunization programs. Vaccine 2022; 40:5413-5432. [PMID: 35965239 PMCID: PMC9768820 DOI: 10.1016/j.vaccine.2022.06.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Human papillomavirus (HPV) vaccines were first licensed as a three-dose series. Two doses are now widely recommended in some age groups; there are data suggesting high efficacy with one dose. We updated a systematic literature review of HPV vaccine effectiveness by number of doses in observational studies. METHODS We searched Medline and Embase databases from January 1, 2007, through September 29, 2021. Data were extracted and summarized in a narrative synthesis. We also conducted quality assessments for bias due to selection, information, and confounding. RESULTS Overall, 35 studies were included; all except one were conducted within the context of a recommended three-dose schedule. Evaluations were in countries that used bivalent HPV vaccine (seven), quadrivalent HPV vaccine (27) or both (one). Nine evaluated effectiveness against HPV infection, ten anogenital warts, and 16 cervical abnormalities. All studies were judged to have moderate or serious risk of bias. The biases rated as serious would likely result in lower effectiveness with fewer doses. Investigators attempted to control for or stratify by potentially important variables, such as age at vaccination. Eight studies evaluated impact of buffer periods (lag time) for case counting and 10 evaluated different intervals between doses for two-dose vaccine recipients. Studies that stratified by vaccination age found higher effectiveness with younger age at vaccination, although differences were not all formally tested. Most studies found highest estimates of effectiveness with three doses; significant effectiveness was found among 28/29 studies that evaluated three doses, 19/29 that evaluated two doses, and 18/30 that evaluated one dose. Some studies that adjusted or stratified analyses by age at vaccination found similar effectiveness with three, two and one doses. CONCLUSION Observational studies of HPV vaccine effectiveness have many biases. Studies examining persons vaccinated prior to sexual activity and using methods to reduce sources of bias are needed for valid effectiveness estimates.
Collapse
Affiliation(s)
- Lauri E Markowitz
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Mélanie Drolet
- Centre de recherche du CHU de Québec - Université Laval, Axe santé des populations et pratiques optimales en santé, Québec, Canada
| | - Rayleen M Lewis
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Synergy America, Inc, Duluth, GA, USA
| | - Philippe Lemieux-Mellouki
- Centre de recherche du CHU de Québec - Université Laval, Axe santé des populations et pratiques optimales en santé, Québec, Canada
| | - Norma Pérez
- Centre de recherche du CHU de Québec - Université Laval, Axe santé des populations et pratiques optimales en santé, Québec, Canada
| | - Mark Jit
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Julia M Brotherton
- Population Health, VCS Foundation, East Melbourne, Victoria, Australia; Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Gina Ogilvie
- University of British Columbia, British Columbia, Canada
| | - Aimée R Kreimer
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marc Brisson
- Centre de recherche du CHU de Québec - Université Laval, Axe santé des populations et pratiques optimales en santé, Québec, Canada; Département de médecine sociale et préventive, Université Laval, Québec, Canada; Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| |
Collapse
|
50
|
Prudden HJ, Achilles SL, Schocken C, Broutet N, Canfell K, Akaba H, Basu P, Bhatla N, Chirenje ZM, Delany-Moretlwe S, Denny L, Gamage DG, Herrero R, Hutubessy R, Villa LL, Murillo R, Schiller JT, Stanley M, Temmerman M, Zhao F, Ogilvie G, Kaslow DC, Dull P, Gottlieb SL. Understanding the public health value and defining preferred product characteristics for therapeutic human papillomavirus (HPV) vaccines: World Health Organization consultations, October 2021-March 2022. Vaccine 2022; 40:5843-5855. [PMID: 36008233 DOI: 10.1016/j.vaccine.2022.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
The World Health Organization (WHO) global strategy to eliminate cervical cancer (CxCa) could result in >62 million lives saved by 2120 if strategy targets are reached and maintained: 90% of adolescent girls receiving prophylactic human papillomavirus (HPV) vaccine, 70% of women receiving twice-lifetime cervical cancer screening, and 90% of cervical pre-cancer lesions and invasive CxCa treated. However, the cost and complexity of CxCa screening and treatment approaches has hampered scale-up, particularly in low- and middle-income countries (LMICs), and new approaches are needed. Therapeutic HPV vaccines (TxV), which could clear persistent high-risk HPV infection and/or cause regression of pre-cancerous lesions, are in early clinical development and might offer one such approach. During October 2021 to March 2022, WHO, in collaboration with the Bill and Melinda Gates Foundation, convened a series of global expert consultations to lay the groundwork for understanding the potential value of TxV in the context of current CxCa prevention efforts and for defining WHO preferred product characteristics (PPCs) for TxV. WHO PPCs describe preferences for vaccine attributes that would help optimize vaccine value and use in meeting the global public health need. This paper reports on the main discussion points and findings from the expert consultations. Experts identified several ways in which TxV might address challenges in current CxCa prevention programmes, but emphasized that the potential value of TxV will depend on their degree of efficacy and how quickly they can be developed and implemented relative to ongoing scale-up of existing interventions. Consultation participants also discussed potential use-cases for TxV, important PPC considerations (e.g., vaccine indications, target populations, and delivery strategies), and critical modelling needs for predicting TxV impact and cost-effectiveness.
Collapse
Affiliation(s)
| | | | | | | | - Karen Canfell
- The Daffodil Centre, The University of Sydney, Cancer Council NSW, Australia
| | | | - Partha Basu
- International Agency for Research on Cancer, France
| | - Neerja Bhatla
- All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Lynette Denny
- University of Cape Town, SA MRC Gynaecology Cancer Research, South Africa
| | | | | | | | | | | | | | | | | | - Fanghui Zhao
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Gina Ogilvie
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Canada
| | | | | | | | | |
Collapse
|