1
|
Zhuang W, Mun SY, Park M, Jeong J, Kim HR, Na S, Lee SJ, Park H, Park WS. Inhibition of voltage-dependent K + channels in rabbit coronary arterial smooth muscle cells by the atypical antipsychotic agent sertindole. J Appl Toxicol 2024; 44:391-399. [PMID: 37786982 DOI: 10.1002/jat.4549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
The regulation of membrane potential and the contractility of vascular smooth muscle cells (VSMCs) by voltage-dependent K+ (Kv) potassium channels are well-established. In this study, native VSMCs from rabbit coronary arteries were used to investigate the inhibitory effect of sertindole, an atypical antipsychotic agent, on Kv channels. Sertindole induced dose-dependent inhibition of Kv channels, with an IC50 of 3.13 ± 0.72 μM. Although sertindole did not cause a change in the steady-state activation curve, it did lead to a negative shift in the steady-state inactivation curve. The application of 1- or 2-Hz train pulses failed to alter the sertindole-induced inhibition of Kv channels, suggesting use-independent effects of the drug. The inhibitory response to sertindole was significantly diminished by pretreatment with a Kv1.5 inhibitor but not by Kv2.1 and Kv7 subtype inhibitors. These findings demonstrate the sertindole dose-dependent and use-independent inhibition of vascular Kv channels (mainly the Kv1.5 subtype) through a mechanism that involves altering steady-state inactivation curves. Therefore, the use of sertindole as an antipsychotic drug may have adverse effects on the cardiovascular system.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seo-Yeong Mun
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Minju Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Junsu Jeong
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hye Ryung Kim
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sunghun Na
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Se Jin Lee
- Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Hongzoo Park
- Institute of Medical Sciences, Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, South Korea
| |
Collapse
|
2
|
Dokuchaev A, Kursanov A, Balakina-Vikulova NA, Katsnelson LB, Solovyova O. The importance of mechanical conditions in the testing of excitation abnormalities in a population of electro-mechanical models of human ventricular cardiomyocytes. Front Physiol 2023; 14:1187956. [PMID: 37362439 PMCID: PMC10285544 DOI: 10.3389/fphys.2023.1187956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Populations of in silico electrophysiological models of human cardiomyocytes represent natural variability in cell activity and are thoroughly calibrated and validated using experimental data from the human heart. The models have been shown to predict the effects of drugs and their pro-arrhythmic risks. However, excitation and contraction are known to be tightly coupled in the myocardium, with mechanical loads and stretching affecting both mechanics and excitation through mechanisms of mechano-calcium-electrical feedback. However, these couplings are not currently a focus of populations of cell models. Aim: We investigated the role of cardiomyocyte mechanical activity under different mechanical conditions in the generation, calibration, and validation of a population of electro-mechanical models of human cardiomyocytes. Methods: To generate a population, we assumed 11 input parameters of ionic currents and calcium dynamics in our recently developed TP + M model as varying within a wide range. A History matching algorithm was used to generate a non-implausible parameter space by calibrating the action potential and calcium transient biomarkers against experimental data and rejecting models with excitation abnormalities. The population was further calibrated using experimental data on human myocardial force characteristics and mechanical tests involving variations in preload and afterload. Models that passed the mechanical tests were validated with additional experimental data, including the effects of drugs with high or low pro-arrhythmic risk. Results: More than 10% of the models calibrated on electrophysiological data failed mechanical tests and were rejected from the population due to excitation abnormalities at reduced preload or afterload for cell contraction. The final population of accepted models yielded action potential, calcium transient, and force/shortening outputs consistent with experimental data. In agreement with experimental and clinical data, the models demonstrated a high frequency of excitation abnormalities in simulations of Dofetilide action on the ionic currents, in contrast to Verapamil. However, Verapamil showed a high frequency of failed contractions at high concentrations. Conclusion: Our results highlight the importance of considering mechanoelectric coupling in silico cardiomyocyte models. Mechanical tests allow a more thorough assessment of the effects of interventions on cardiac function, including drug testing.
Collapse
Affiliation(s)
- Arsenii Dokuchaev
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alexander Kursanov
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Nathalie A. Balakina-Vikulova
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Leonid B. Katsnelson
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| | - Olga Solovyova
- Laboratory of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
- Laboratory of Mathematical Modeling in Physiology and Medicine Based on Supercomputers, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
3
|
Lu HR, Kreir M, Karel VA, Tekle F, Geyskens D, Teisman A, Gallacher DJ. Identifying Acute Cardiac Hazard in Early Drug Discovery Using a Calcium Transient High-Throughput Assay in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2022; 13:838435. [PMID: 35547580 PMCID: PMC9083324 DOI: 10.3389/fphys.2022.838435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.
Collapse
Affiliation(s)
- Hua Rong Lu
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Mohamed Kreir
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Van Ammel Karel
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Fetene Tekle
- Discovery and Nonclinical Safety Statistics, Statistics and Decision Sciences, Quantitative Sciences, Janssen R&D, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Danny Geyskens
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| |
Collapse
|
4
|
Tan C, Yang SJ, Zhao DH, Li J, Yin LQ. Antihypertensive activity of indole and indazole analogues: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Paci M, Koivumäki JT, Lu HR, Gallacher DJ, Passini E, Rodriguez B. Comparison of the Simulated Response of Three in Silico Human Stem Cell-Derived Cardiomyocytes Models and in Vitro Data Under 15 Drug Actions. Front Pharmacol 2021; 12:604713. [PMID: 33841140 PMCID: PMC8033762 DOI: 10.3389/fphar.2021.604713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hua Rong Lu
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Juhola M, Penttinen K, Joutsijoki H, Aalto-Setälä K. Analysis of Drug Effects on iPSC Cardiomyocytes with Machine Learning. Ann Biomed Eng 2020; 49:129-138. [PMID: 32367466 PMCID: PMC7773623 DOI: 10.1007/s10439-020-02521-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/24/2020] [Indexed: 01/16/2023]
Abstract
Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer an attractive experimental platform to investigate cardiac diseases and therapeutic outcome. In this study, iPSC-CMs were utilized to study their calcium transient signals and drug effects by means of machine learning, a central part of artificial intelligence. Drug effects were assessed in six iPSC-lines carrying different mutations causing catecholaminergic polymorphic ventricular tachycardia (CPVT), a highly malignant inherited arrhythmogenic disorder. The antiarrhythmic effect of dantrolene, an inhibitor of sarcoplasmic calcium release, was studied in iPSC-CMs after adrenaline, an adrenergic agonist, stimulation by machine learning analysis of calcium transient signals. First, beats of transient signals were identified with our peak recognition algorithm previously developed. Then 12 peak variables were computed for every identified peak of a signal and by means of this data signals were classified into different classes corresponding to those affected by adrenaline or, thereafter, affected by a drug, dantrolene. The best classification accuracy was approximately 79% indicating that machine learning methods can be utilized in analysis of iPSC-CM drug effects. In the future, data analysis of iPSC-CM drug effects together with machine learning methods can create a very valuable and efficient platform to individualize medication in addition to drug screening and cardiotoxicity studies.
Collapse
Affiliation(s)
- Martti Juhola
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland.
| | - Kirsi Penttinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henry Joutsijoki
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Heart Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Van de Sande DV, Kopljar I, Teisman A, Gallacher DJ, Snyders DJ, Lu HR, Labro AJ. Pharmacological Profile of the Sodium Current in Human Stem Cell-Derived Cardiomyocytes Compares to Heterologous Nav1.5+β1 Model. Front Pharmacol 2019; 10:1374. [PMID: 31920633 PMCID: PMC6917651 DOI: 10.3389/fphar.2019.01374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
The cardiac Nav1.5 mediated sodium current (INa) generates the upstroke of the action potential in atrial and ventricular myocytes. Drugs that modulate this current can therefore be antiarrhythmic or proarrhythmic, which requires preclinical evaluation of their potential drug-induced inhibition or modulation of Nav1.5. Since Nav1.5 assembles with, and is modulated by, the auxiliary β1-subunit, this subunit can also affect the channel’s pharmacological response. To investigate this, the effect of known Nav1.5 inhibitors was compared between COS-7 cells expressing Nav1.5 or Nav1.5+β1 using whole-cell voltage clamp experiments. For the open state class Ia blockers ajmaline and quinidine, and class Ic drug flecainide, the affinity did not differ between both models. For class Ib drugs phenytoin and lidocaine, which are inactivated state blockers, the affinity decreased more than a twofold when β1 was present. Thus, β1 did not influence the affinity for the class Ia and Ic compounds but it did so for the class Ib drugs. Human stem cell-derived cardiomyocytes (hSC-CMs) are a promising translational cell source for in vitro models that express a representative repertoire of channels and auxiliary proteins, including β1. Therefore, we subsequently evaluated the same drugs for their response on the INa in hSC-CMs. Consequently, it was expected and confirmed that the drug response of INa in hSC-CMs compares best to INa expressed by Nav1.5+β1.
Collapse
Affiliation(s)
- Dieter V Van de Sande
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Ivan Kopljar
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium.,Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Dirk J Snyders
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| | - Hua Rong Lu
- Global Safety Pharmacology, Non-Clinical Safety, Janssen R&D, Beerse, Belgium
| | - Alain J Labro
- Laboratory of Molecular, Cellular, and Network Excitability, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Takasuna K, Kazusa K, Hayakawa T. Comprehensive Cardiac Safety Assessment using hiPS-cardiomyocytes (Consortium for Safety Assessment using Human iPS Cells: CSAHi). Curr Pharm Biotechnol 2019; 21:829-841. [PMID: 31749424 DOI: 10.2174/1389201020666191024172425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/22/2022]
Abstract
Current cardiac safety assessment platforms (in vitro hERG-centric, APD, and/or in vivo animal QT assays) are not fully predictive of drug-induced Torsades de Pointes (TdP) and do not address other mechanism-based arrhythmia, including ventricular tachycardia or ventricular fibrillation, or cardiac safety liabilities such as contractile and structural cardiotoxicity which are another growing safety concerns. We organized the Consortium for Safety Assessment using Human iPS cells (CSAHi; http://csahi.org/en/) in 2013, based on the Japan Pharmaceutical Manufacturers Association (JPMA), to verify the application of human iPS/ES cell-derived cardiomyocytes for drug safety evaluation. The CSAHi HEART team focused on comprehensive screening strategies to predict a diverse range of cardiotoxicities using recently introduced platforms such as the Multi-Electrode Array (MEA), cellular impedance, Motion Field Imaging (MFI), and optical imaging of Ca transient to identify strengths and weaknesses of each platform. Our study showed that hiPS-CMs used in these platforms could detect pharmacological responses that were more relevant to humans compared to existing hERG, APD, or Langendorff (MAPD/contraction) assays. Further, MEA and other methods such as impedance, MFI, and Ca transient assays provided paradigm changes of platforms for predicting drug-induced QT risk and/or arrhythmia or contractile dysfunctions. In contrast, since discordances such as overestimation (false positive) of arrhythmogenicity, oversight, or opposite conclusions in positive inotropic and negative chronotropic activities to some compounds were also confirmed, possibly due to their functional immaturity of hiPS-CMs, hiPS-CMs should be used in these platforms for cardiac safety assessment based upon their advantages and disadvantages.
Collapse
Affiliation(s)
- Kiyoshi Takasuna
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Heart Team, Japan
| | - Katsuyuki Kazusa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| | - Tomohiro Hayakawa
- Consortium for Safety Assessment using Human iPS cells (CSAHi), Heart team, Japan
| |
Collapse
|
9
|
Kopljar I, Lu HR, Van Ammel K, Otava M, Tekle F, Teisman A, Gallacher DJ. Development of a Human iPSC Cardiomyocyte-Based Scoring System for Cardiac Hazard Identification in Early Drug Safety De-risking. Stem Cell Reports 2019; 11:1365-1377. [PMID: 30540961 PMCID: PMC6294263 DOI: 10.1016/j.stemcr.2018.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising cardiac safety platform, demonstrated by numerous validation studies using drugs with known cardiac adverse effects in humans. However, the challenge remains to implement hiPSC-CMs into cardiac de-risking of new chemical entities (NCEs) during preclinical drug development. Here, we used the calcium transient screening assay in hiPSC-CMs to develop a hazard score system for cardiac electrical liabilities. Tolerance interval calculations and evaluation of different classes of cardio-active drugs enabled us to develop a weighted scoring matrix. This approach allowed the translation of various pharmacological effects in hiPSC-CMs into a single hazard label (no, low, high, or very high hazard). Evaluation of 587 internal NCEs and good translation to ex vivo and in vivo models for a subset of these NCEs highlight the value of the cardiac hazard scoring in facilitating the selection of compounds during early drug safety screening. Scoring system identifies different degrees of cardiac hazard Can be applied within R&D to cardiac safety screening of NCEs Controls and reference drugs are essential for development of scoring matrix Analysis can be applied to other in vitro drug safety assays
Collapse
Affiliation(s)
- Ivan Kopljar
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Hua Rong Lu
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Karel Van Ammel
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Martin Otava
- Statistics and Decision Sciences, Quantitative Sciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Quantitative Sciences, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Non-Clinical Safety, Janssen Research & Development, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
10
|
HiPSC-CMs from different sex and ethnic origin donors exhibit qualitatively different responses to several classes of pharmacological challenges. J Pharmacol Toxicol Methods 2019; 99:106598. [DOI: 10.1016/j.vascn.2019.106598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022]
|
11
|
Lu HR, Zeng H, Kettenhofen R, Guo L, Kopljar I, van Ammel K, Tekle F, Teisman A, Zhai J, Clouse H, Pierson J, Furniss M, Lagrutta A, Sannajust F, Gallacher DJ. Assessing Drug-Induced Long QT and Proarrhythmic Risk Using Human Stem-Cell-Derived Cardiomyocytes in a Ca2+ Imaging Assay: Evaluation of 28 CiPA Compounds at Three Test Sites. Toxicol Sci 2019; 170:345-356. [PMID: 31020317 PMCID: PMC6657578 DOI: 10.1093/toxsci/kfz102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The goal of this research consortium including Janssen, MSD, Ncardia, FNCR/LBR, and Health and Environmental Sciences Institute (HESI) was to evaluate the utility of an additional in vitro assay technology to detect potential drug-induced long QT and torsade de pointes (TdP) risk by monitoring cytosolic free Ca2+ transients in human stem-cell-derived cardiomyocytes (hSC-CMs). The potential proarrhythmic risks of the 28 comprehensive in vitro proarrhythmia assay (CiPA) drugs linked to low, intermediate, and high clinical TdP risk were evaluated in a blinded manner using Ca2+-sensitive fluorescent dye assay recorded from a kinetic plate reader system (Hamamatsu FDSS/µCell and FDSS7000) in 2D cultures of 2 commercially available hSC-CM lines (Cor.4U and CDI iCell Cardiomyocytes) at 3 different test sites. The Ca2+ transient assay, performed at the 3 sites using the 2 different hSC-CMs lines, correctly detected potential drug-induced QT prolongation among the 28 CiPA drugs and detected cellular arrhythmias-like/early afterdepolarization in 7 of 8 high TdP-risk drugs (87.5%), 6 of 11 intermediate TdP-risk drugs (54.5%), and 0 of 9 low/no TdP-risk drugs (0%). The results were comparable among the 3 sites and from 2 hSC-CM cell lines. The Ca2+ transient assay can serve as a user-friendly and higher throughput alternative to complement the microelectrode array and voltage-sensing optical action potential recording assays used in the HESI-CiPA study for in vitro assessment of drug-induced long QT and TdP risk.
Collapse
Affiliation(s)
- Hua Rong Lu
- Janssen Pharmaceutica NV (J&J), 2340 Beerse, Belgium
| | - Haoyu Zeng
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | | | - Liang Guo
- Frederick National Laboratory for Cancer Research (FNLCR)/Leidos Biomedical Research (LBR), Inc., Frederick, Maryland 21702
| | - Ivan Kopljar
- Janssen Pharmaceutica NV (J&J), 2340 Beerse, Belgium
| | | | - Fetene Tekle
- Janssen Pharmaceutica NV (J&J), 2340 Beerse, Belgium
| | - Ard Teisman
- Janssen Pharmaceutica NV (J&J), 2340 Beerse, Belgium
| | - Jin Zhai
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | - Holly Clouse
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | - Jennifer Pierson
- HESI, Cardiac Safety Technical Committee, Washington, District of Columbia 20005
| | - Michael Furniss
- Frederick National Laboratory for Cancer Research (FNLCR)/Leidos Biomedical Research (LBR), Inc., Frederick, Maryland 21702
| | - Armando Lagrutta
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | - Frederick Sannajust
- Safety and Exploratory Pharmacology, Merck Sharp & Dohme Corp. (MSD), West Point, Pennsylvania
| | | |
Collapse
|
12
|
Pfeiffer-Kaushik ER, Smith GL, Cai B, Dempsey GT, Hortigon-Vinagre MP, Zamora V, Feng S, Ingermanson R, Zhu R, Hariharan V, Nguyen C, Pierson J, Gintant GA, Tung L. Electrophysiological characterization of drug response in hSC-derived cardiomyocytes using voltage-sensitive optical platforms. J Pharmacol Toxicol Methods 2019; 99:106612. [PMID: 31319140 DOI: 10.1016/j.vascn.2019.106612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Voltage-sensitive optical (VSO) sensors offer a minimally invasive method to study the time course of repolarization of the cardiac action potential (AP). This Comprehensive in vitro Proarrhythmia Assay (CiPA) cross-platform study investigates protocol design and measurement variability of VSO sensors for preclinical cardiac electrophysiology assays. METHODS Three commercial and one academic laboratory completed a limited study of the effects of 8 blinded compounds on the electrophysiology of 2 commercial lines of human induced pluripotent stem-cell derived cardiomyocytes (hSC-CMs). Acquisition technologies included CMOS camera and photometry; fluorescent voltage sensors included di-4-ANEPPS, FluoVolt and genetically encoded QuasAr2. The experimental protocol was standardized with respect to cell lines, plating and maintenance media, blinded compounds, and action potential parameters measured. Serum-free media was used to study the action of drugs, but the exact composition and the protocols for cell preparation and drug additions varied among sites. RESULTS Baseline AP waveforms differed across platforms and between cell types. Despite these differences, the relative responses to four selective ion channel blockers (E-4031, nifedipine, mexiletine, and JNJ 303 blocking IKr, ICaL, INa, and IKs, respectively) were similar across all platforms and cell lines although the absolute changes differed. Similarly, four mixed ion channel blockers (flecainide, moxifloxacin, quinidine, and ranolazine) had comparable effects in all platforms. Differences in repolarisation time course and response to drugs could be attributed to cell type and experimental method differences such as composition of the assay media, stimulated versus spontaneous activity, and single versus cumulative compound addition. DISCUSSION In conclusion, VSOs represent a powerful and appropriate method to assess the electrophysiological effects of drugs on iPSC-CMs for the evaluation of proarrhythmic risk. Protocol considerations and recommendations are provided toward standardizing conditions to reduce variability of baseline AP waveform characteristics and drug responses.
Collapse
Affiliation(s)
| | - Godfrey L Smith
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Beibei Cai
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Graham T Dempsey
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Maria P Hortigon-Vinagre
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Shuyun Feng
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Randall Ingermanson
- Vala Sciences Inc., 6370 Nancy Ridge Drive, Suite 106, San Diego, CA 92121, USA
| | - Renjun Zhu
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Venkatesh Hariharan
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Cuong Nguyen
- Q-State Biosciences Inc., 179 Sidney Street, Cambridge, MA 02139, USA
| | - Jennifer Pierson
- Health and Environmental Sciences Institute, Washington, D.C. 20009, USA.
| | - Gary A Gintant
- AbbVie, 1 North Waukegan Road, Department ZR-13, Building AP-9A, North Chicago, IL 60064-6119, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Zuppinger C. 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Front Cardiovasc Med 2019; 6:87. [PMID: 31294032 PMCID: PMC6606697 DOI: 10.3389/fcvm.2019.00087] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) cell culture is often mentioned in the context of regenerative medicine, for example, for the replacement of ischemic myocardium with tissue-engineered muscle constructs. Additionally, 3D cell culture is used, although less commonly, in basic research, toxicology, and drug development. These applications have recently benefited from innovations in stem cell technologies allowing the mass-production of hiPSC-derived cardiomyocytes or other cardiovascular cells, and from new culturing methods including organ-on-chip and bioprinting technologies. On the analysis side, improved sensors, computer-assisted image analysis, and data collection techniques have lowered the bar for switching to 3D cell culture models. Nevertheless, 3D cell culture is not as widespread or standardized as traditional cell culture methods using monolayers of cells on flat surfaces. The many possibilities of 3D cell culture, but also its limitations, drawbacks and methodological pitfalls, are less well-known. This article reviews currently used cardiovascular 3D cell culture production methods and analysis techniques for the investigation of cardiotoxicity, in drug development and for disease modeling.
Collapse
Affiliation(s)
- Christian Zuppinger
- Cardiology, Department of Biomedical Research, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
14
|
Mann SA, Heide J, Knott T, Airini R, Epureanu FB, Deftu AF, Deftu AT, Radu BM, Amuzescu B. Recording of multiple ion current components and action potentials in human induced pluripotent stem cell-derived cardiomyocytes via automated patch-clamp. J Pharmacol Toxicol Methods 2019; 100:106599. [PMID: 31228558 DOI: 10.1016/j.vascn.2019.106599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative proposes a three-step approach to evaluate proarrhythmogenic liability of drug candidates: effects on individual ion channels in heterologous expression systems, integrating these data into in-silico models of the electrical activity of human cardiomyocytes, and comparison with experiments on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Here we introduce patch-clamp electrophysiology techniques on hiPSC-CM to combine two of the CiPA steps in one assay. METHODS We performed automated patch-clamp experiments on hiPSC-CM (Cor.4U®, Ncardia) using the CytoPatch™2 platform in ruptured whole-cell and β-escin-perforated-patch configurations. A combination of three voltage-clamp protocols allowed recording of five distinct ion current components (voltage-gated Na+ current, L-type Ca2+ current, transient outward K+ current, delayed rectifier K+ current, and "funny" hyperpolarization-activated current) from the same cell. We proved their molecular identity by either Na+ replacement with choline or by applying specific blockers: nifedipine, cisapride, chromanol 293B, phrixotoxin-1, ZD7288. We developed a C++ script for automated analysis of voltage-clamp recordings and computation of ion current/conductance surface density for these five cardiac ion currents. RESULTS The distributions from n = 54 hiPSC-CM in "ruptured" patch-clamp vs. n = 35 hiPSC-CM in β-escin-perforated patch-clamp were similar for membrane capacitance, access resistance, and ion current/conductance surface densities. The β-escin-perforated configuration resulted in improved stability of action potential (AP) shape and duration over a 10-min interval, with APD90 decay rate 0.7 ± 1.6%/min (mean ± SD, n = 4) vs. 4.6 ± 1.1%/min. (n = 3) for "ruptured" approach (p = 0.0286, one-tailed Mann-Whitney test). DISCUSSION The improved stability obtained here will allow development of CiPA-compliant automated patch-clamp assays on hiPSC-CM. Future applications include the study of multi ion-channel blocking properties of drugs using dynamic-clamp protocols, adding a valuable new tool to the arsenal of safety-pharmacology.
Collapse
Affiliation(s)
- Stefan A Mann
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Juliane Heide
- Cytocentrics Bioscience GmbH, Nattermannallee 1, 50829 Cologne, Germany
| | - Thomas Knott
- CytoBioScience Inc., 3463 Magic Drive, San Antonio, TX 78229, USA
| | - Razvan Airini
- Dept. Biophysics & Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Florin Bogdan Epureanu
- Dept. Biophysics & Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Alexandru-Florian Deftu
- Dept. Biophysics & Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Antonia-Teona Deftu
- Dept. Biophysics & Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Beatrice Mihaela Radu
- Dept. Biophysics & Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Bogdan Amuzescu
- Dept. Biophysics & Physiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| |
Collapse
|
15
|
Zeng H, Wang J, Clouse H, Lagrutta A, Sannajust F. Human-induced pluripotent stem cell-derived cardiomyocytes have limited I Ks for repolarization reserve as revealed by specific KCNQ1/KCNE1 blocker. JRSM Cardiovasc Dis 2019; 8:2048004019854919. [PMID: 31217965 PMCID: PMC6558757 DOI: 10.1177/2048004019854919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 01/18/2023] Open
Abstract
Objective We investigated if there is IKs, and if there is repolarization
reserve by IKs in human-induced pluripotent stem cell-derived
cardiomyocytes (hiPSC-CMs). Design We used a specific KCNQ1/KCNE1 channel blocker, L-000768673, with an
IC50 of 9 nM, and four hERG-specific blockers, astemizole,
cisapride, dofetilide, and E-4031 to investigate the issue. Results L-000768673 concentration-dependently prolonged feature point duration
(FPD)―a surrogate signal of action potential duration―from 1 to 30 nM
without pacing or paced at 1.2 Hz, resulting from IKs blockade in
hiPSC-CMs. At higher concentrations, the effect of L-000768673 on
IKs was mitigated by its effect on ICa-L,
resulting in shortened FPD, reduced impedance amplitude, and increased
beating rate at 1 µM and above, recapitulating the self-limiting properties
of L-000768673 on action potentials. All four hERG-specific blockers
prolonged FPD as expected. Co-application of L-000768673 at sub-threshold
(0.1 and 0.3 nM) and threshold (1 nM) concentrations failed to
synergistically enhance the effects of hERG blockers on FPD prolongation,
rather it showed additive effects, inconsistent with the repolarization
reserve role of IKs in mature human myocytes that enhanced
IKr response, implying a difference between hiPSC-CMs used in
this study and mature human cardiomyocytes. Conclusion There was IKs current in hiPSC-CMs, and blockade of IKs
current caused prolongation of action potential of hiPSC-CMs. However, we
could not demonstrate any synergistic effects on action potential duration
prolongation of hiPSC-CMs by blocking hERG current and IKs
current simultaneously, implying little or no repolarization reserve by
IKs current in hiPSC-CMs used in this study.
Collapse
Affiliation(s)
- Haoyu Zeng
- Merck & Co., Inc., Safety and Exploratory Pharmacology, West Point, PA, USA
| | - Jixin Wang
- Merck & Co., Inc., Safety and Exploratory Pharmacology, West Point, PA, USA
| | - Holly Clouse
- Merck & Co., Inc., Safety and Exploratory Pharmacology, West Point, PA, USA
| | - Armando Lagrutta
- Merck & Co., Inc., Safety and Exploratory Pharmacology, West Point, PA, USA
| | | |
Collapse
|
16
|
Yu Y, Zhang M, Chen R, Liu F, Zhou P, Bu L, Xu Y, Zheng L. Action potential response of human induced-pluripotent stem cell derived cardiomyocytes to the 28 CiPA compounds: A non-core site data report of the CiPA study. J Pharmacol Toxicol Methods 2019; 98:106577. [PMID: 31022455 DOI: 10.1016/j.vascn.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/16/2019] [Accepted: 04/20/2019] [Indexed: 11/15/2022]
Abstract
We used the whole-cell current clamp technique to examine the response of our in-house hiPSC-CMs to the 28 CiPA-selected compounds, aiming to compare field potential via MEA from core-sites and action potential via current clamp measurement. Our blinded study showed that all seven high-risk test compounds, including bepridil, caused early afterdepolarizations (EADs) at mid-high and/or high concentration(s). All hERG channel blockers in the mid-risk category prolonged APD30 and APD90 at mid-high, and then led to EADs at their respective high concentrations; while chlorpromazine, clarithromycin and risperidone showed little effects. In addition, ranolazine was the only low-risk test compound to prolong APD30 and APD90 at mid-high, and then produce EADs at high concentration. In conclusion, our results generally agreed with data from all core-sites of the CiPA consortium using the MEA method. Moreover, our assay can successfully detect pro-arrhythmic risk of drug candidates such as bepridil with superior sensitivity.
Collapse
Affiliation(s)
- Yankun Yu
- Guangdong iPSyte Biosciences Co., Ltd., Guangzhou, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Mengrong Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Ren Chen
- Department of Infectious Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Feng Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Pengfei Zhou
- Guangdong iPSyte Biosciences Co., Ltd., Guangzhou, China
| | - Lei Bu
- Department of Medicine, Leon H. Charney Division of Cardiology, Department of Cell Biology, The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, New York University, School of Medicine, United States of America.
| | - Ying Xu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China..
| | - Lei Zheng
- Guangdong iPSyte Biosciences Co., Ltd., Guangzhou, China.
| |
Collapse
|
17
|
Balasubramanian B, Belak V, Verma I, Prysiazhniuk Y, Sannajust F, Trepakova ES. Cell culture conditions affect the ability of high content imaging assay to detect drug-induced changes in cellular parameters in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Toxicol Rep 2019; 6:305-320. [PMID: 31011540 PMCID: PMC6460330 DOI: 10.1016/j.toxrep.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/30/2019] [Accepted: 02/22/2019] [Indexed: 01/17/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for drug safety and efficacy testing with various techniques, including high content imaging (HCI). Upon drug treatment, a significant number of hiPSC-CMs grown in regular 96-well plates coated with fibronectin detached from the bottom of the plate, complicating data acquisition. Several cell culture configurations were tested to improve cell adherence, and the effects of these configurations on total cell number, separation of feature values between the negative (DMSO 0.1%) and positive (antimycin, staurosporine) controls, scale of feature value differences, and data variability were statistically calculated. hiPSC-CMs were plated on fibronectin- (in “blanket” configuration) or MaxGel- (in “sandwich” configuration) coated plates and covered with a layer of either HydroMatrix or MaxGel 2, 7, or 11d after plating. After a total of 14d in culture, cells were treated with compounds, labeled with four fluorescent dyes (Hoechst, TMRM, NucView, and RedDot), and imaged with GE INCell2000. Based on the statistical parameters calculated, the MaxGel 25% 7d “sandwich” was superior to all other tested conditions when the cells were treated with 0.3 μM antimycin for 2 h and test compounds 10 μM crizotinib and 30 μM amiodarone for 48 h. For staurosporine treatment, the best culturing condition varied between MaxGel “sandwich” systems, depending on which parameters were under consideration. Thus, cell culturing conditions can significantly affect the ability of high content imaging to detect changes in cellular features during compound treatment and should be thoroughly evaluated before committing to compound testing.
Collapse
Affiliation(s)
- Bharathi Balasubramanian
- Department of Safety and Exploratory Pharmacology, Safety Assessment and Laboratory Animal Resources, MRL, Merck & Co., Inc, West Point, PA, USA
| | - Vaclav Belak
- Deparment of Data Science, MSD Global IT Innovation Center, Prague, Czech Republic
| | - Isha Verma
- Department of Data Development, Informatics & Analytics, Palo Alto, CA, USA
| | - Yeva Prysiazhniuk
- Deparment of Data Science, MSD Global IT Innovation Center, Prague, Czech Republic
| | - Frederick Sannajust
- Department of Safety and Exploratory Pharmacology, Safety Assessment and Laboratory Animal Resources, MRL, Merck & Co., Inc, West Point, PA, USA
| | - Elena S Trepakova
- Department of Safety and Exploratory Pharmacology, Safety Assessment and Laboratory Animal Resources, MRL, Merck & Co., Inc, West Point, PA, USA
| |
Collapse
|
18
|
Zeng H, Wang J, Clouse H, Lagrutta A, Sannajust F. Resolving the Reversed Rate Effect of Calcium Channel Blockers on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes and the Impact on In Vitro Cardiac Safety Evaluation. Toxicol Sci 2018; 167:573-580. [PMID: 30365015 DOI: 10.1093/toxsci/kfy264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Haoyu Zeng
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Jixin Wang
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Holly Clouse
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Armando Lagrutta
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| | - Frederick Sannajust
- Safety and Exploratory Pharmacology, Merck & Co., Inc., West Point, Pennsylvania 19486-0004
| |
Collapse
|
19
|
Rosa GM, Baccino D, Valbusa A, Scala C, Barra F, Brunelli C, Ferrero S. Cardiovascular effects of antimuscarinic agents and beta3-adrenergic receptor agonist for the treatment of overactive bladder. Expert Opin Drug Saf 2018. [PMID: 29542337 DOI: 10.1080/14740338.2018.1453496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Overactive bladder (OAB) syndrome is common in the general population, particularly in elderly patients. Antimuscarinic drugs (AMs) are considered the mainstay pharmaceutical treatment of OAB whereas β3-adrenoceptor agonists, such as mirabegron, represent a good alternative. Owing to the important role of muscarinic and β3 receptors in cardiovascular (CV) tissue and to the fact that OAB patients often have CV comorbidities, the safety-profile of these drugs constitute an important challenge. AREAS COVERED The aim of this review is to evaluate the CV effects of AMs and mirabegron in OAB. A systematic literature search from inception until December 2017 was performed on PubMed and Medline. EXPERT OPINION AMs are generally considered to have good CV safety profile but, however, they may cause undesirable adverse events, such as dry mouth, constipation. CV AEs are rare but noteworthy, the most common CV consequences related to the use of these drugs are constituted by an increase in HR and QT interval. Mirabegron has similar efficacy and tolerability to AMs but causes less adverse events, with either modest hypertension and modest increase in HR (<5 bpm) being the most commonly reported.
Collapse
Affiliation(s)
- Gian Marco Rosa
- a Department of Internal Medicine, Cardiology , Ospedale Policlinico San Martino , Genoa , Italy
| | - Danilo Baccino
- a Department of Internal Medicine, Cardiology , Ospedale Policlinico San Martino , Genoa , Italy
| | - Alberto Valbusa
- a Department of Internal Medicine, Cardiology , Ospedale Policlinico San Martino , Genoa , Italy
| | - Carolina Scala
- b Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,c Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| | - Fabio Barra
- b Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,c Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| | - Claudio Brunelli
- a Department of Internal Medicine, Cardiology , Ospedale Policlinico San Martino , Genoa , Italy
| | - Simone Ferrero
- b Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,c Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| |
Collapse
|
20
|
Kopljar I, Hermans AN, Teisman A, Gallacher DJ, Lu HR. Impact of calcium-sensitive dyes on the beating properties and pharmacological responses of human iPS-derived cardiomyocytes using the calcium transient assay. J Pharmacol Toxicol Methods 2018; 91:80-86. [PMID: 29421525 DOI: 10.1016/j.vascn.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. METHODS We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/μCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. RESULTS We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). DISCUSSION In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool.
Collapse
Affiliation(s)
- Ivan Kopljar
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - An N Hermans
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Hua Rong Lu
- Global Safety Pharmacology, Preclinical Safety & Development, Discovery Sciences, Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
21
|
Zeng H, Balasubramanian B, Lagrutta A, Sannajust F. Response of human induced pluripotent stem cell-derived cardiomyocytes to several pharmacological agents when intrinsic syncytial pacing is overcome by acute external stimulation. J Pharmacol Toxicol Methods 2018; 91:18-26. [PMID: 29330131 DOI: 10.1016/j.vascn.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023]
Abstract
We challenged human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) syncytia, mainly, CDI iCells with several classes of well-characterized pharmacological agents (including hERG blocker, Nav1.5 blocker, Cav1.2 blocker and opener, β-adrenergic agonist, and If blocker) under pacing conditions, utilizing the Cardio-ECR instrument, a non-invasive platform featuring simultaneous and continuous measurement of synchronized beating rate and contractility (both signals were acquired simultaneously and well aligned). We found that: 1) with increasing acute stimulation rates (no pacing; 1, 1.5, and 2Hz), beat interval was gradually shortened mainly in the relaxation phase of each beat cycle; 2) typical responses of iCells hiPSC-CMs to all tested pharmacological agents were either attenuated or even eliminated by pacing, in a concentration- and stimulation rate-dependent manner; and 3) when iCells were influenced by pharmacological agents and cannot follow pacing rates, they still beat regularly at exactly 1/2 or 1/3 of pacing rates. We concluded that when intrinsic syncytial pacing was overcome by faster, external stimulations, beat intervals of hiPSC-CMs were mainly shortened in the relaxation phase, instead of proportionally in each beat cycle, with increasing pacing rates. In addition, in response to pharmacological agents upon pacing, hiPSC-CMs exhibited distinct patterns of refractoriness, manifested by skipped beats in pacing-rate dependent manner, and attenuation (or even abolition) of the typical response evoked under spontaneous beating.
Collapse
Affiliation(s)
- Haoyu Zeng
- Merck & Co., Inc., Safety & Exploratory Pharmacology Department, West Point, PA, USA.
| | | | - Armando Lagrutta
- Merck & Co., Inc., Safety & Exploratory Pharmacology Department, West Point, PA, USA
| | - Frederick Sannajust
- Merck & Co., Inc., Safety & Exploratory Pharmacology Department, West Point, PA, USA
| |
Collapse
|
22
|
McKeithan WL, Savchenko A, Yu MS, Cerignoli F, Bruyneel AAN, Price JH, Colas AR, Miller EW, Cashman JR, Mercola M. An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 2017; 8:766. [PMID: 29075196 PMCID: PMC5641590 DOI: 10.3389/fphys.2017.00766] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
The ability to produce unlimited numbers of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) harboring disease and patient-specific gene variants creates a new paradigm for modeling congenital heart diseases (CHDs) and predicting proarrhythmic liabilities of drug candidates. However, a major roadblock to implementing hiPSC-CM technology in drug discovery is that conventional methods for monitoring action potential (AP) kinetics and arrhythmia phenotypes in vitro have been too costly or technically challenging to execute in high throughput. Herein, we describe the first large-scale, fully automated and statistically robust analysis of AP kinetics and drug-induced proarrhythmia in hiPSC-CMs. The platform combines the optical recording of a small molecule fluorescent voltage sensing probe (VoltageFluor2.1.Cl), an automated high throughput microscope and automated image analysis to rapidly generate physiological measurements of cardiomyocytes (CMs). The technique can be readily adapted on any high content imager to study hiPSC-CM physiology and predict the proarrhythmic effects of drug candidates.
Collapse
Affiliation(s)
- Wesley L McKeithan
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alex Savchenko
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Michael S Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | | | - Arne A N Bruyneel
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | | | - Alexandre R Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Evan W Miller
- Departments of Chemistry, Molecular and Cell Biology, Helen Wills Neuroscience, University of California, Berkeley, Berkeley, CA, United States
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, CA, United States
| | - Mark Mercola
- Department of Medicine, Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
23
|
Watanabe H, Honda Y, Deguchi J, Yamada T, Bando K. Usefulness of cardiotoxicity assessment using calcium transient in human induced pluripotent stem cell-derived cardiomyocytes. J Toxicol Sci 2017; 42:519-527. [PMID: 28717111 DOI: 10.2131/jts.42.519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Monitoring dramatic changes in intracellular calcium ion levels during cardiac contraction and relaxation, known as calcium transient, in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be an attractive strategy for assessing compounds on cardiac contractility. In addition, as arrhythmogenic compounds are known to induce characteristic waveform changes in hiPSC-CMs, it is expected that calcium transient would allow evaluation of not only compound-induced effects on cardiac contractility, but also compound arrhythmogenic potential. Using a combination of calcium transient in hiPSC-CMs and a fast kinetic fluorescence imaging detection system, we examined in this study changes in calcium transient waveforms induced by a series of 17 compounds that include positive/negative inotropic agents as well as cardiac ion channel activators/inhibitors. We found that all positive inotropic compounds induced an increase in peak frequency and/or peak amplitude. The effects of a negative inotropic compound could clearly be detected in the presence of a β-adrenergic receptor agonist. Furthermore, most arrhythmogenic compounds raised the ratio of peak decay time to peak rise time (D/R ratio) in calcium transient waveforms. Compound concentrations at which these parameters exceeded cutoff values correlated well with systemic exposure levels at which arrhythmias were reported to be evoked. In conclusion, we believe that peak analysis of calcium transient and determination of D/R ratio are reliable methods for assessing compounds' cardiac contractility and arrhythmogenic potential, respectively. Using these approaches would allow selection of compounds with low cardiotoxic potential at the early stage of drug discovery.
Collapse
Affiliation(s)
- Hitoshi Watanabe
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Yayoi Honda
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Jiro Deguchi
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Toru Yamada
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| | - Kiyoko Bando
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd
| |
Collapse
|
24
|
Passini E, Britton OJ, Lu HR, Rohrbacher J, Hermans AN, Gallacher DJ, Greig RJH, Bueno-Orovio A, Rodriguez B. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity. Front Physiol 2017; 8:668. [PMID: 28955244 PMCID: PMC5601077 DOI: 10.3389/fphys.2017.00668] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.
Collapse
Affiliation(s)
- Elisa Passini
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Oliver J Britton
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Hua Rong Lu
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - Jutta Rohrbacher
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - An N Hermans
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | - David J Gallacher
- Global Safety, Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NVBeerse, Belgium
| | | | - Alfonso Bueno-Orovio
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| | - Blanca Rodriguez
- Computational Cardiovascular Science Group, Department of Computer Science, University of OxfordOxford, United Kingdom
| |
Collapse
|
25
|
Daily NJ, Du ZW, Wakatsuki T. High-Throughput Phenotyping of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons Using Electric Field Stimulation and High-Speed Fluorescence Imaging. Assay Drug Dev Technol 2017; 15:178-188. [PMID: 28525289 DOI: 10.1089/adt.2017.781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments.
Collapse
|
26
|
Bray JJH, Hancox JC. Solifenacin linked QT interval prolongation and torsades de pointes. Ther Adv Drug Saf 2017; 8:245-247. [PMID: 28845232 DOI: 10.1177/2042098617702616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/11/2017] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jonathan J H Bray
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, UK
| | - Jules C Hancox
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD. UK
| |
Collapse
|
27
|
Daily NJ, Santos R, Vecchi J, Kemanli P, Wakatsuki T. Calcium Transient Assays for Compound Screening with Human iPSC-derived Cardiomyocytes: Evaluating New Tools. JOURNAL OF EVOLVING STEM CELL RESEARCH 2017; 1:1-11. [PMID: 28966998 PMCID: PMC5621642 DOI: 10.14302/issn.2574-4372.jesr-16-1395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium (Ca2+) plays a central role in regulating many biological processes in the cell from muscle contraction to neurotransmitter release. The need for reliable fluorescent calcium indicator dyes is of vast importance for studying many aspects of cell biology as well as screening compounds using phenotypic high throughput assays. We have assessed two of the latest generation of calcium indicator dyes, FLIPR Calcium 6 and Cal-520 AM for studying calcium transients (CaTs) in induced pluripotent stem cell (iPSC) -derived human cardiomyocytes. FLIPR Calcium 6 and Cal-520 dyes both displayed robust CaTs with a high signal-to-noise ratio (SNR) and were non-toxic to the cells. The analysis showed that CaT amplitudes were stable between measurements, but CaT duration was more variable and tended to increase between reads. Two methods were compared for drug-screening hit-selection; difference in average (unstandardized) and standardized difference. The unstandardized difference was better for assessing CaT amplitude, whereas standardized difference was equal to or better for assessing CaT duration. In summary, FLIPR Calcium 6 and Cal-520 are suitable dyes for drug-screening using iPSC-derived human cardiomyocytes.
Collapse
Affiliation(s)
| | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | | | | | | |
Collapse
|
28
|
Pugsley MK, Authier S, Hayes ES, Hamlin RL, Accardi MV, Curtis MJ. Recalibration of nonclinical safety pharmacology assessment to anticipate evolving regulatory expectations. J Pharmacol Toxicol Methods 2016; 81:1-8. [PMID: 27343819 DOI: 10.1016/j.vascn.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Safety pharmacology (SP) has evolved in terms of architecture and content since the inception of the SP Society (SPS). SP was initially focused on the issue of drug-induced QT prolongation, but has now become a broad spectrum discipline with expanding expectations for evaluation of drug adverse effect liability in all organ systems, not merely the narrow consideration of torsades de pointes (TdP) liability testing. An important part of the evolution of SP has been the elaboration of architecture for interrogation of non-clinical models in terms of model development, model validation and model implementation. While SP has been defined by mandatory cardiovascular, central nervous system (CNS) and respiratory system studies ever since the core battery was elaborated, it also involves evaluation of drug effects on other physiological systems. The current state of SP evolution is the incorporation of emerging new technologies in a wide range of non-clinical drug safety testing models. This will refine the SP process, while potentially expanding the core battery. The continued refinement of automated technologies (e.g., automated patch clamp systems) is enhancing the scope for detection of adverse effect liability (i.e., for more than just IKr blockade), while introducing a potential for speed and accuracy in cardiovascular and CNS SP by providing rapid, high throughput ion channel screening methods for implementation in early drug development. A variety of CNS liability assays, which exploit isolated brain tissue, and in vitro electrophysiological techniques, have provided an additional level of complimentary preclinical safety screens aimed at establishing the seizurogenic potential and risk for memory dysfunction of new chemical entities (NCEs). As with previous editorials that preface the annual themed issue on SP methods published in the Journal of Pharmacological and Toxicological Methods (JPTM), we highlight here the content derived from the most recent (2015) SPS meeting held in Prague, Czech Republic. This issue of JPTM continues the tradition of providing a publication summary of articles primarily presented at the SPS meeting with direct bearing on the discipline of SP. Novel method development and refinement in all areas of the discipline are reflected in the content.
Collapse
Affiliation(s)
- Michael K Pugsley
- Department of Toxicology & PKDM, Purdue Pharma LP., 6 Cedar Brook Dr., Cranbury, NJ 08512, U.S.A..
| | - Simon Authier
- CiToxLAB Research Inc., 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | | | | | - Michael V Accardi
- CiToxLAB Research Inc., 445 Armand Frappier, Laval, QC H7V 4B3, Canada
| | - Michael J Curtis
- Cardiovascular Division, Rayne Institute, St Thomas' Hospital, London, SE17EH, UK
| |
Collapse
|