1
|
Zhu S, Nie Z, Che Y, Shu J, Wu S, He Y, Wu Y, Qian H, Feng H, Zhang Q. The Chinese Hamster Ovary Cell-Based H9 HA Subunit Avian Influenza Vaccine Provides Complete Protection against the H9N2 Virus Challenge in Chickens. Viruses 2024; 16:163. [PMID: 38275973 PMCID: PMC10821000 DOI: 10.3390/v16010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Avian influenza has attracted widespread attention because of its severe effect on the poultry industry and potential threat to human health. The H9N2 subtype of avian influenza viruses was the most prevalent in chickens, and there are several commercial vaccines available for the prevention of the H9N2 subtype of avian influenza viruses. However, due to the prompt antigenic drift and antigenic shift of influenza viruses, outbreaks of H9N2 viruses still continuously occur, so surveillance and vaccine updates for H9N2 subtype avian influenza viruses are particularly important. (2) Methods: In this study, we constructed a stable Chinese hamster ovary cell line (CHO) to express the H9 hemagglutinin (HA) protein of the major prevalent H9N2 strain A/chicken/Daye/DY0602/2017 with genetic engineering technology, and then a subunit H9 avian influenza vaccine was prepared using the purified HA protein with a water-in-oil adjuvant. (3) Results: The results showed that the HI antibodies significantly increased after vaccination with the H9 subunit vaccine in specific-pathogen-free (SPF) chickens with a dose-dependent potency of the immunized HA protein, and the 50 μg or more per dose HA protein could provide complete protection against the H9N2 virus challenge. (4) Conclusions: These results indicate that the CHO expression system could be a platform used to develop the subunit vaccine against H9 influenza viruses in chickens.
Collapse
Affiliation(s)
- Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Ying Che
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Sufang Wu
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Youqiang Wu
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| | - Hong Qian
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (S.Z.); (Z.N.); (J.S.); (Y.H.)
| | - Qiang Zhang
- Zhejiang Novo Biotech Co., Ltd., Shaoxing 312366, China; (Y.C.); (S.W.); (Y.W.); (H.Q.)
| |
Collapse
|
2
|
Zhu M, Zeng H, He J, Zhu Y, Wang P, Guo J, Guo J, Zhou H, Qin Y, Ouyang K, Wei Z, Huang W, Chen Y. Reassortant H9N2 canine influenza viruses containing the pandemic H1N1/2009 ribonucleoprotein complex circulating in pigs acquired enhanced virulence in mice. Virology 2024; 589:109927. [PMID: 37951087 DOI: 10.1016/j.virol.2023.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
The reassortment between avian H9N2 and Eurasian avian-like (EA) H1N1 viruses may have potentially changed from avian-to-mammals adaptation. This study generated 20 reassortant viruses with the introduction of H1N1/2009 internal genes from EA H1N1 virus into H9N2 virus. 12 of these recovered the replication capability both in the lungs and turbinate samples. 10 of 12 obtained PA gene segments from the ribonucleoprotein (RNP) complexes of the EA H1N1 virus, and 3 exhibited extreme virulence. Specially, the combination of PB2, PA and NP genes could overcome the species-specific restriction in human cells. Analysis of the polymerase activities found that introduction of the PA gene resulted in increased polymerase activity. These findings indicated that RNP complexes from EA H1N1 virus could confer an adaptation advantage and high compatibility to avian H9N2 virus. This raises new concerns for public health due to the possible coexistence of H9N2 and EA H1N1 viruses in dogs.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Hao Zeng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Jianqiao He
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Yaohui Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Pingping Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Jianing Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Jinfan Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China
| | - Huabo Zhou
- Huabo Pet Hospital, Nanning, 530004, PR China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, PR China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, PR China; Guangxi Key Laboratory of Animal Breeding, Disease Prevention and Control, Nanning, 530004, PR China; Guangxi College and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, PR China.
| |
Collapse
|
3
|
Detection and Characterization of an H9N2 Influenza A Virus in the Egyptian Rousette Bat in Limpopo, South Africa. Viruses 2023; 15:v15020498. [PMID: 36851712 PMCID: PMC9958621 DOI: 10.3390/v15020498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, bats have been shown to host various novel bat-specific influenza viruses, including H17N10 and H18N11 in the Americas and the H9N2 subtype from Africa. Rousettus aegyptiacus (Egyptian Rousette bat) is recognized as a host species for diverse viral agents. This study focused on the molecular surveillance of a maternal colony in Limpopo, South Africa, between 2017-2018. A pan-influenza hemi-nested RT-PCR assay targeting the PB1 gene was established, and influenza A virus RNA was identified from one fecal sample out of 860 samples. Genome segments were recovered using segment-specific amplification combined with standard Sanger sequencing and Illumina unbiased sequencing. The identified influenza A virus was closely related to the H9N2 bat-influenza virus, confirming the circulation of this subtype among Egyptian fruit bat populations in Southern Africa. This bat H9N2 subtype contained amino acid residues associated with transmission and virulence in either mammalian or avian hosts, though it will likely require additional adaptations before spillover.
Collapse
|
4
|
Saito T, Sakuma S, Mine J, Uchida Y, Hangalapura BN. Genetic Diversity of the Hemagglutinin Genes of Influenza a Virus in Asian Swine Populations. Viruses 2022; 14:747. [PMID: 35458477 PMCID: PMC9032595 DOI: 10.3390/v14040747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
Swine influenza (SI) is a major respiratory disease of swine; SI is due to the influenza A virus of swine (IAV-S), a highly contagious virus with zoonotic potential. The intensity of IAV-S surveillance varies among countries because it is not a reportable disease and causes limited mortality in swine. Although Asia accounts for half of all pig production worldwide, SI is not well managed in those countries. Rigorously managing SI on pig farms could markedly reduce the economic losses, the likelihood of novel reassortants among IAV-S, and the zoonotic IAV-S infections in humans. Vaccination of pigs is a key control measure for SI, but its efficacy relies on the optimal antigenic matching of vaccine strains with the viral strains circulating in the field. Here, we phylogenetically reviewed the genetic diversity of the hemagglutinin gene among IAVs-S that have circulated in Asia during the last decade. This analysis revealed the existence of country-specific clades in both the H1 and H3 subtypes and cross-border transmission of IAVs-S. Our findings underscore the importance of choosing vaccine antigens for each geographic region according to both genetic and antigenic analyses of the circulating IAV-S to effectively manage SI in Asia.
Collapse
Affiliation(s)
- Takehiko Saito
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Saki Sakuma
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Junki Mine
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | - Yuko Uchida
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba 305-0856, Japan; (S.S.); (J.M.); (Y.U.)
| | | |
Collapse
|
5
|
Abstract
Globally swine influenza is one of the most important diseases of the pig industry, with various subtypes of swine influenza virus co-circulating in the field. Swine influenza can not only cause large economic losses for the pig industry but can also lead to epidemics or pandemics in the human population. We provide an overview of the pathogenic characteristics of the disease, diagnosis, risk factors for the occurrence on pig farms, impact on pigs and humans and methods to control it. This review is designed to promote understanding of the epidemiology of swine influenza which will benefit the control of the disease in both pigs and humans.
Collapse
Affiliation(s)
- Yin Li
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,Commonwealth Scientific and Industrial Research Organisation, St. Lucia, QLD Australia
| | - Ian Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA Australia.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
6
|
Zhao B, Li H, Cao S, Zhong W, Li B, Jia W, Ning Z. Negative Regulators of Inflammation Response to the Dynamic Expression of Cytokines in DF-1 and MDCK Cells Infected by Avian Influenza Viruses. Inflammation 2021; 45:573-589. [PMID: 34581936 DOI: 10.1007/s10753-021-01568-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
The H5N1 and H9N2 avian influenza viruses (AIVs) seriously endanger the poultry industry and threaten human health. Characteristic inflammatory responses caused by H5N1 and H9N2 AIVs in birds and mammals result in unique clinical manifestations. The role of anti-inflammatory regulators, PTX3, Del-1, and GDF-15, in H5N1 and H9N2-AIV-mediated inflammation in birds and mammals has not yet been verified. Here, the expression of PTX3, Del-1, and GDF-15 in DF-1 and MDCK cells infected with H5N1 and H9N2 AIVs and their effect on inflammatory cytokines were analyzed. Infection with both AIVs increased PTX3, Del-1, and GDF-15 expression in DF-1 and MDCK cells. Infection with H9N2 or H5N1 AIV in DF-1 and MDCK cells with overexpression of all three factors, either alone or in combination, inhibited the expression of tested inflammatory cytokines. Furthermore, co-expression of PTX3, Del-1, and GDF-15 enhanced the inhibition, irrespective of the cell line. The findings from this study offer insight into the pathogenic differences between H5N1 and H9N2 AIVs in varied hosts. Moreover, our findings can be used to help screen for host-specific anti-inflammatory agents.
Collapse
Affiliation(s)
- Bingqian Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Suilan Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
7
|
Ma W. Swine influenza virus: Current status and challenge. Virus Res 2020; 288:198118. [PMID: 32798539 PMCID: PMC7587018 DOI: 10.1016/j.virusres.2020.198118] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Since swine influenza virus was first isolated in 1930, it has become endemic in pigs worldwide. Although large amount of swine influenza vaccines has been used in swine industry, swine influenza still cannot be efficiently controlled and has been an important economic disease for swine industry. The high diversity and varied distribution of different subtypes and genotypes of swine influenza viruses circulating in pigs globally is a major challenge to produce broadly effective vaccines and control disease. Importantly, swine influenza virus is able to cross species barrier to infect humans and even caused influenza pandemic in 2009. Herein, current status and challenge of swine influenza viruses is reviewed and discussed.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
8
|
Immunization of turkeys with a DNA vaccine expressing the haemagglutinin gene of low pathogenic avian influenza virus subtype H9N2. J Virol Methods 2020; 284:113938. [PMID: 32663531 DOI: 10.1016/j.jviromet.2020.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 01/25/2023]
Abstract
Low pathogenic avian influenza H9N2 is still circulating in the Middle East causing respiratory manifestations and severe economic losses in poultry. In the present study, an H9 plasmid-based DNA vaccine targeting the HA gene of H9N2 A/CK/Egypt/SCU8/2014 was developed and evaluated in turkeys. The full length of HA was cloned into vector plasmids under the control of a cytomegalovirus promoter. The in-vitro expression of the recombinant HA was demonstrated in HeLa cells transfected with the plasmids pVAX1-H9 or pCR-H9 using western blot and Immunofluorescent assay (IFA). The efficacy of pVAX-H9 and pCR- H9, naked or saponin-adjuvanted, was evaluated in turkey poults at 3 weeks and challenged with A/CK/Egypt/SCU8/2014 (106 EID50/bird at 3 weeks post-vaccination. The efficacy was assesses based on virus shedding, oropharyngeal and cloacal, as well as seroconversion using haemagglutination inhibition (HI) test. All immunized birds showed high HI antibody titers (7-8 log2) at 3 weeks post-vaccination. None of the birds vaccinated with naked or saponin-adjuvanted pVAX-H9 or pCR-H9 showed any clinical signs. The pVAX-H9 and pCR-H9 alone did not prevent cloacal and oropharyngeal virus shedding, however, saponin-adjuvanted pVAX1-H9 and pCR-H9 prevented cloacal and oropharyngeal virus shedding at 3 and 5 days post challenge, respectively. In conclusion, DNA vaccination with pVAX1-H9 and pCR-H9 could protect turkey from the H9N2 virus, but vaccination regimes need to be improved.
Collapse
|
9
|
Abstract
Influenza A viruses (IAVs) of the H9 subtype are enzootic in Asia, the Middle East, and parts of North and Central Africa, where they cause significant economic losses to the poultry industry. Of note, some strains of H9N2 viruses have been linked to zoonotic episodes of mild respiratory diseases. Because of the threat posed by H9N2 viruses to poultry and human health, these viruses are considered of pandemic concern by the World Health Organization (WHO). H9N2 IAVs continue to diversify into multiple antigenically and phylogenetically distinct lineages that can further promote the emergence of strains with pandemic potential. Somewhat neglected compared with the H5 and H7 subtypes, there are numerous indicators that H9N2 viruses could be involved directly or indirectly in the emergence of the next influenza pandemic. The goal of this work is to discuss the state of knowledge on H9N2 IAVs and to provide an update on the contemporary global situation.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
10
|
Adaptation of H9N2 Influenza Viruses to Mammalian Hosts: A Review of Molecular Markers. Viruses 2020; 12:v12050541. [PMID: 32423002 PMCID: PMC7290818 DOI: 10.3390/v12050541] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/18/2022] Open
Abstract
As the number of human infections with avian and swine influenza viruses continues to rise, the pandemic risk posed by zoonotic influenza viruses cannot be underestimated. Implementation of global pandemic preparedness efforts has largely focused on H5 and H7 avian influenza viruses; however, the pandemic threat posed by other subtypes of avian influenza viruses, especially the H9 subtype, should not be overlooked. In this review, we summarize the literature pertaining to the emergence, prevalence and risk assessment of H9N2 viruses, and add new molecular analyses of key mammalian adaptation markers in the hemagglutinin and polymerase proteins. Available evidence has demonstrated that H9N2 viruses within the Eurasian lineage continue to evolve, leading to the emergence of viruses with an enhanced receptor binding preference for human-like receptors and heightened polymerase activity in mammalian cells. Furthermore, the increased prevalence of certain mammalian adaptation markers and the enhanced transmissibility of selected viruses in mammalian animal models add to the pandemic risk posed by this virus subtype. Continued surveillance of zoonotic H9N2 influenza viruses, inclusive of close genetic monitoring and phenotypic characterization in animal models, should be included in our pandemic preparedness efforts.
Collapse
|
11
|
Adaptive amino acid substitutions enable transmission of an H9N2 avian influenza virus in guinea pigs. Sci Rep 2019; 9:19734. [PMID: 31875046 PMCID: PMC6930279 DOI: 10.1038/s41598-019-56122-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/06/2019] [Indexed: 11/30/2022] Open
Abstract
H9N2 is the most prevalent low pathogenic avian influenza virus (LPAIV) in domestic poultry in the world. Two distinct H9N2 poultry lineages, G1-like (A/quail/Hong Kong/G1/97) and Y280-like (A/Duck/Hong Kong/Y280/1997) viruses, are usually associated with binding affinity for both α 2,3 and α 2,6 sialic acid receptors (avian and human receptors), raising concern whether these viruses possess pandemic potential. To explore the impact of mouse adaptation on the transmissibility of a Y280-like virus A/Chicken/Hubei/214/2017(H9N2) (abbreviated as WT), we performed serial lung-to-lung passages of the WT virus in mice. The mouse-adapted variant (MA) exhibited enhanced pathogenicity and advantaged transmissibility after passaging in mice. Sequence analysis of the complete genomes of the MA virus revealed a total of 16 amino acid substitutions. These mutations distributed across 7 segments including PB2, PB1, PA, NP, HA, NA and NS1 genes. Furthermore, we generated a panel of recombinant or mutant H9N2 viruses using reverse genetics technology and confirmed that the PB2 gene governing the increased pathogenicity and transmissibility. The combinations of 340 K and 588 V in PB2 were important in determining the altered features. Our findings elucidate the specific mutations in PB2 contribute to the phenotype differences and emphasize the importance of monitoring the identified amino acid substitutions due to their potential threat to human health.
Collapse
|
12
|
Ma MJ, Wang GL, Anderson BD, Bi ZQ, Lu B, Wang XJ, Wang CX, Chen SH, Qian YH, Song SX, Li M, Lednicky JA, Zhao T, Wu MN, Cao WC, Gray GC. Evidence for Cross-species Influenza A Virus Transmission Within Swine Farms, China: A One Health, Prospective Cohort Study. Clin Infect Dis 2019; 66:533-540. [PMID: 29401271 DOI: 10.1093/cid/cix823] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/14/2017] [Indexed: 01/07/2023] Open
Abstract
Background Our understanding of influenza A virus transmission between humans and pigs is limited. Methods Beginning in 2015, we used a One Health approach and serial sampling to prospectively study 299 swine workers and 100 controls, their 9000 pigs, and 6 pig farm environments in China for influenza A viruses (IAVs) using molecular, culture, and immunological techniques. Study participants were closely monitored for influenza-like illness (ILI) events. Results Upon enrollment, swine workers had higher serum neutralizing antibody titers against swine H1N1 and higher nasal wash total immunoglobulin A (IgA) and specific IgA titers against swine H1N1 and H3N2 viruses. Over a period of 12 months, IAVs were detected by quantitative reverse-transcription polymerase chain reaction in 46 of 396 (11.6%) environmental swabs, 235 of 3300 (7.1%) pig oral secretion, 23 of 396 (5.8%) water, 20 of 396 (5.1%) aerosol, and 19 of 396 (4.8%) fecal-slurry specimens. Five of 32 (15.6%) participants with ILI events had nasopharyngeal swab specimens that were positive for IAV, and 17 (53.1%) demonstrated 4-fold rises in neutralization titers against a swine virus. Reassorted Eurasian avian-lineage H1N1, A(H1N1)pdm09-like, and swine-lineage H3N2 viruses were identified in pig farms. The A(H1N1)pdm09-like H1N1 viruses identified in swine were nearly genetically identical to the human H1N1 viruses isolated from the participants with ILI. Conclusions There was considerable evidence of A(H1N1)pdm09-like, swine-lineage H1N1, and swine-lineage H3N2 viruses circulating, likely reassorting, and likely crossing species within the pig farms. These data suggest that stronger surveillance for novel influenza virus emergence within swine farms is imperative.
Collapse
Affiliation(s)
- Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Guo-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Benjamin D Anderson
- Global Health Institute, Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina
| | - Zhen-Qiang Bi
- Shandong Provincial Center for Disease Control and Prevention.,Shandong Provincial Key Laboratory of Disease Control and Prevention, Jinan
| | - Bing Lu
- Wuxi Center for Disease Control and Prevention, Wuxi
| | - Xian-Jun Wang
- Shandong Provincial Center for Disease Control and Prevention.,Shandong Provincial Key Laboratory of Disease Control and Prevention, Jinan
| | - Chuang-Xin Wang
- Licheng District Center for Disease Control and Prevention, Jinan, China
| | - Shan-Hui Chen
- Wuxi Center for Disease Control and Prevention, Wuxi
| | - Yan-Hua Qian
- Wuxi Center for Disease Control and Prevention, Wuxi
| | - Shao-Xia Song
- Shandong Provincial Center for Disease Control and Prevention.,Shandong Provincial Key Laboratory of Disease Control and Prevention, Jinan
| | - Min Li
- Licheng District Center for Disease Control and Prevention, Jinan, China
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Meng-Na Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, China
| | - Gregory C Gray
- Global Health Institute, Division of Infectious Diseases, School of Medicine, Duke University, Durham, North Carolina.,Global Health Research Center, Duke Kunshan University, Kunshan, China.,Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| |
Collapse
|
13
|
Li Y, Edwards J, Wang Y, Zhang G, Cai C, Zhao M, Huang B, Robertson ID. Prevalence, distribution and risk factors of farmer reported swine influenza infection in Guangdong Province, China. Prev Vet Med 2019; 167:1-8. [PMID: 31027710 DOI: 10.1016/j.prevetmed.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 01/27/2023]
Abstract
A cross-sectional study was undertaken to better understand the husbandry, management and biosecurity practices of pig farms in Guangdong Province (GD), China to identify risk factors for farmer reported swine influenza (SI) on their farms. Questionnaires were administered to 153 owners/managers of piggeries (average of 7 from each of the 21 prefectures in GD). Univariable and multivariable logistic regression analyses were used to identify risk factors for farmer reported SI in piggeries during the six months preceding the questionnaire administration. The ability of wild birds to enter piggeries (OR 2.50, 95% CI: 1.01-6.16), the presence of poultry on a pig-farm (OR 3.24, 95% CI: 1.52-6.94) and no biosecurity measures applied to workers before entry to the piggery (OR 2.65, 95% CI: 1.04-6.78) were found to increase the likelihood of SI being reported by farmers in a multivariable logistic regression model. The findings of this study highlight the importance of understanding the local pig industry and the practices adopted when developing control measures to reduce the risk of SI to pig farms.
Collapse
Affiliation(s)
- Y Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China; School of Veterinary Medicine, Murdoch University, Perth, WA, Australia.
| | - J Edwards
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China; School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Y Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China
| | - G Zhang
- South China Agriculture University, Guangzhou, Guangdong, PR China
| | - C Cai
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - M Zhao
- Department of Agriculture of Guangdong Province, Guangzhou, Guangdong, PR China
| | - B Huang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, PR China
| | - I D Robertson
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
14
|
Ming F, Cheng Y, Ren C, Suolang S, Zhou H. Development of a DAS-ELISA for detection of H9N2 avian influenza virus. J Virol Methods 2018; 263:38-43. [PMID: 30355516 DOI: 10.1016/j.jviromet.2018.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022]
Abstract
H9N2 avian influenza virus is threatening animals and public health systems. Effective diagnosis is imperative to control the disease. Thus, we developed a panel of monoclonal antibodies (Mabs) against the H9N2 avian influenza virus (AIV) and implemented a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) to detect the H9 viral antigen. Hybridomas 4D10 and 5G2 were screened to secrete immunoglobulin G (IgG) and IgA, respectively. Antibody 4D10 was used as the capture antibodies and HRP labeled 5G2 as the detector antibody. The specificity of the optimized DAS-ELISA was evaluated by using AIV subtypes H1, H3, H5, H9 and H10. Specimens containing AIV H9 subtype yielded a specific and strong signal above the background, whereas specimens containing all other subtypes yielded background signals. The detection limit of the DAS-ELISA is 10-2.3 TCID50 (50% Tissue culture infective doses). Negative-positive threshold was 0.211 (OD630). In comparison with virus isolation the sensitivity and specificity of DAS-ELISA were found to be 98.9% and 98.1% respectively. Taken together, the newly developed Mab-based DAS-ELISA offers an attractive alternative to other diagnostic approaches for the specific detection of H9 subtype AIV.
Collapse
Affiliation(s)
- Fan Ming
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Yanqing Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Chenwei Ren
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, PR China
| | - Sizhu Suolang
- Department of Animal Science, Tibet Agricultural and Animal Husbandry College, Linzhi, PR China.
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
15
|
Pusch EA, Suarez DL. The Multifaceted Zoonotic Risk of H9N2 Avian Influenza. Vet Sci 2018; 5:E82. [PMID: 30248906 PMCID: PMC6313933 DOI: 10.3390/vetsci5040082] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
Poultry-adapted H9N2 avian influenza viruses (AIVs) are commonly found in many countries in Asia, the Middle East, Africa, and Europe, and although classified as low pathogenic viruses, they are an economically important disease. Besides the importance of the disease in the poultry industry, some H9N2 AIVs are also known to be zoonotic. The disease in humans appears to cause primarily a mild upper respiratory disease, and doesn't cause or only rarely causes the severe pneumonia often seen with other zoonotic AIVs like H5N1 or H7N9. Serologic studies in humans, particularly in occupationally exposed workers, show a large number of people with antibodies to H9N2, suggesting infection is commonly occurring. Of the four defined H9N2 poultry lineages, only two lineages, the G1 and the Y280 lineages, are associated with human infections. Almost all of the viruses from humans have a leucine at position 226 (H3 numbering) of the hemagglutinin associated with a higher affinity of binding with α2,6 sialic acid, the host cell receptor most commonly found on glycoproteins in the human upper respiratory tract. For unknown reasons there has also been a shift in recent years of poultry viruses in the G1 and Y280 lineages to also having leucine instead of glutamine, the amino acid found in most avian viruses, at position 226. The G1 and Y280 poultry lineages because of their known ability to infect humans, the high prevalence of the virus in poultry in endemic countries, the lack of antibody in most humans, and the shift of poultry viruses to more human-like receptor binding makes these viruses a human pandemic threat. Increased efforts for control of the virus, including through effective vaccine use in poultry, is warranted for both poultry and public health goals.
Collapse
Affiliation(s)
- Elizabeth A Pusch
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | - David L Suarez
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
16
|
Parvin R, Begum JA, Nooruzzaman M, Chowdhury EH, Islam MR, Vahlenkamp TW. Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiol Infect 2018; 146:1259-1266. [PMID: 29781424 PMCID: PMC9134290 DOI: 10.1017/s0950268818001292] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
Almost the full range of 16 haemagglutinin (HA) and nine neuraminidase subtypes of avian influenza viruses (AIVs) has been detected either in waterfowl, land-based poultry or in the environment in Bangladesh. AIV infections in Bangladesh affected a wide range of host species of terrestrial poultry. The highly pathogenic avian influenza (AI) H5N1 and low pathogenic AI H9N2 were found to co-circulate and be well entrenched in the poultry population, which has caused serious damage to the poultry industry since 2007. By reviewing the available scientific literature, the overall situation of AIVs in Bangladesh is discussed. All Bangladeshi (BD) H5N1 and H9N2 AIV sequences available at GenBank were downloaded along with other representative sequences to analyse the genetic diversity among the circulating AIVs in Bangladesh and to compare with the global situation. Three different H5N1 clades, 2.2.2, 2.3.2.1 and 2.3.4.2, have been detected in Bangladesh. Only 2.3.2.1a is still present. The BD LP H9N2 viruses mostly belonged to the H9 G1 lineage but segregated into many branches, and some of these shared internal genes with HP viruses of subtypes H7N3 and H5N1. However, these reassortment events might have taken place before introduction to Bangladesh. Currently, H9N2 viruses continue to evolve their HA cleavage, receptor binding and glycosylation sites. Multiple mutations in the HA gene associated with adaptation to mammalian hosts were also observed. Strict biosecurity at farms and gradual phasing out of live-bird markets could be the key measures to better control AIVs, whereas stamping out is not a practicable option in Bangladesh. Vaccination also could be an additional tool, which however, requires careful planning. Continuous monitoring of AIVs through systematic surveillance and genetic characterisation of the viruses remains a hallmark of AI control.
Collapse
Affiliation(s)
- Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Faculty of Veterinary Medicine, Center of Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Mohammed Nooruzzaman
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Thomas W. Vahlenkamp
- Faculty of Veterinary Medicine, Center of Infectious Diseases, Institute of Virology, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Feng B, Zhang Q, Wang J, Dong H, Mu X, Hu G, Zhang T. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells. Mol Cells 2018; 41:271-281. [PMID: 29629559 PMCID: PMC5935096 DOI: 10.14348/molcells.2018.2091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/09/2017] [Accepted: 01/07/2018] [Indexed: 12/25/2022] Open
Abstract
IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.
Collapse
Affiliation(s)
- Bo Feng
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Qian Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jianfang Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Xiang Mu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ge Hu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| |
Collapse
|
18
|
Genetic characterization of H9N2 avian influenza viruses isolated from poultry in Poland during 2013/2014. Virus Genes 2017; 54:67-76. [PMID: 29052126 PMCID: PMC5847159 DOI: 10.1007/s11262-017-1513-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022]
Abstract
The study presents molecular characterization of H9N2 avian influenza (AI) isolates from field outbreaks in turkeys that occurred in Poland in 2013–2014. Sequences of all gene segments of one isolate from 2013 (A/turkey/Poland/14/2013(H9N2)) and two isolates from 2014 (A/turkey/Poland/08/2014(H9N2), A/turkey/Poland/09/2014(H9N2)) were obtained and analyzed in search of the phylogenetic relationship and molecular markers of zoonotic potential or increased pathogenicity. All gene segments were shown to originate from the wild bird reservoir and the close relationship of the analyzed isolates proved the link between the outbreaks in 2013 and 2014. However, remarkable molecular differences between isolates from 2013 to 2014 were identified, including mutation in the HA cleavage site (CS) leading to conversion from the PAASNR*GLF to the PAASKR*GLF motif and truncation of the PB1-F2 protein. Additionally, T97I substitution in the PA protein in A/turkey/Poland/08/2014 was detected which can be responsible for enhanced activity of viral polymerase in mammalian cells. However, experimental infection of mice with both isolates from 2014 showed their low pathogenicity, and no statistically significant differences in virus replication were observed between the viruses. Nevertheless, these findings indicate the dynamic evolution of H9N2 in the field emphasizing the need for monitoring of the situation in terms of H9N2 AI in Europe.
Collapse
|
19
|
More S, Bicout D, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Thulke HH, Velarde A, Willeberg P, Winckler C, Breed A, Brouwer A, Guillemain M, Harder T, Monne I, Roberts H, Baldinelli F, Barrucci F, Fabris C, Martino L, Mosbach-Schulz O, Verdonck F, Morgado J, Stegeman JA. Avian influenza. EFSA J 2017; 15:e04991. [PMID: 32625288 PMCID: PMC7009867 DOI: 10.2903/j.efsa.2017.4991] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous introductions of highly pathogenic avian influenza virus (HPAIV) to the EU were most likely via migratory wild birds. A mathematical model has been developed which indicated that virus amplification and spread may take place when wild bird populations of sufficient size within EU become infected. Low pathogenic avian influenza virus (LPAIV) may reach similar maximum prevalence levels in wild bird populations to HPAIV but the risk of LPAIV infection of a poultry holding was estimated to be lower than that of HPAIV. Only few non-wild bird pathways were identified having a non-negligible risk of AI introduction. The transmission rate between animals within a flock is assessed to be higher for HPAIV than LPAIV. In very few cases, it could be proven that HPAI outbreaks were caused by intrinsic mutation of LPAIV to HPAIV but current knowledge does not allow a prediction as to if, and when this could occur. In gallinaceous poultry, passive surveillance through notification of suspicious clinical signs/mortality was identified as the most effective method for early detection of HPAI outbreaks. For effective surveillance in anseriform poultry, passive surveillance through notification of suspicious clinical signs/mortality needs to be accompanied by serological surveillance and/or a virological surveillance programme of birds found dead (bucket sampling). Serosurveillance is unfit for early warning of LPAI outbreaks at the individual holding level but could be effective in tracing clusters of LPAIV-infected holdings. In wild birds, passive surveillance is an appropriate method for HPAIV surveillance if the HPAIV infections are associated with mortality whereas active wild bird surveillance has a very low efficiency for detecting HPAIV. Experts estimated and emphasised the effect of implementing specific biosecurity measures on reducing the probability of AIV entering into a poultry holding. Human diligence is pivotal to select, implement and maintain specific, effective biosecurity measures.
Collapse
|
20
|
Gu M, Xu L, Wang X, Liu X. Current situation of H9N2 subtype avian influenza in China. Vet Res 2017; 48:49. [PMID: 28915920 PMCID: PMC5603032 DOI: 10.1186/s13567-017-0453-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022] Open
Abstract
In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.
Collapse
Affiliation(s)
- Min Gu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lijun Xu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Yangzhou Entry-Exit Inspection and Quarantine Bureau, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
21
|
Replication of H9 influenza viruses in the human ex vivo respiratory tract, and the influence of neuraminidase on virus release. Sci Rep 2017; 7:6208. [PMID: 28740108 PMCID: PMC5524967 DOI: 10.1038/s41598-017-05853-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/07/2017] [Indexed: 01/10/2023] Open
Abstract
H9N2 viruses are the most widespread influenza viruses in poultry in Asia. We evaluated the infection and tropism of human and avian H9 influenza virus in the human respiratory tract using ex vivo respiratory organ culture. H9 viruses infected the upper and lower respiratory tract and the majority of H9 viruses had a decreased ability to release virus from the bronchus rather than the lung. This may be attributed to a weak neuraminidase (NA) cleavage of carbon-6-linked sialic acid (Sia) rather than carbon-3-linked Sia. The modified cleavage of N-acetlylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) by NA in H9 virus replication was observed by reverse genetics, and recombinant H9N2 viruses with amino acids (38KQ) deleted in the NA stalk, and changing the amino acid at position 431 from Proline-to-Lysine. Using recombinant H9 viruses previously evaluated in the ferret, we found that viruses which replicated well in the ferret did not replicate to the same extent in the human ex vivo cultures. The existing risk assessment models for H9N2 viruses in ferrets may not always have a strong correlation with the replication in the human upper respiratory tract. The inclusion of the human ex vivo cultures would further strengthen the future risk-assessment strategies.
Collapse
|
22
|
Mancera Gracia JC, Van den Hoecke S, Saelens X, Van Reeth K. Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine. PLoS One 2017; 12:e0175267. [PMID: 28384328 PMCID: PMC5383288 DOI: 10.1371/journal.pone.0175267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1) virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs likely requires an extensive set of mutations.
Collapse
Affiliation(s)
- Jose Carlos Mancera Gracia
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Silvie Van den Hoecke
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
23
|
Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy. J Virol 2017; 91:JVI.01693-16. [PMID: 28077631 DOI: 10.1128/jvi.01693-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5 avian influenza viruses.IMPORTANCE Current influenza virus killed vaccines predominantly induce antihemagglutinin (anti-HA) antibodies that are commonly strain specific in that the antibodies have potent neutralizing activity against homologous strains but do not cross-react with HAs of other influenza virus subtypes. In contrast, the HA2 stalk domain is relatively well conserved among subtypes, and recently, broadly neutralizing antibodies against this domain have been isolated. Therefore, in light of the need for a vaccine strain that applies the DIVA strategy utilizing an HI assay and induces broad cross-protection against H5N1 and H9N2 viruses, we generated a novel chimeric H9/H5N1 virus that expresses the entire HA1 portion from the H9N2 virus and the HA2 region of the heterosubtypic H5N8 virus. The chimeric H9/H5N2 recombinant vaccine protected immunized hosts against lethal challenge with H9N2 and HPAI H5N1 viruses with significantly attenuated virus shedding in immunized hosts. Therefore, this chimeric vaccine is suitable as a DIVA vaccine against H5 avian influenza viruses.
Collapse
|
24
|
Liu Q, Liu Y, Yang J, Huang X, Han K, Zhao D, Bi K, Li Y. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice. Front Microbiol 2016; 7:1737. [PMID: 27867373 PMCID: PMC5096341 DOI: 10.3389/fmicb.2016.01737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022] Open
Abstract
H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06) virus was highly pathogenic for mice, with a 50% mouse lethal dose (MLD50) of 102.83 50% egg infectious dose (EID50), whereas the A/duck/Nanjing/01/1999 (NJ01) virus was low pathogenic for mice, with a MLD50 of >106.81 EID50. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only 12 different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N) were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future.
Collapse
Affiliation(s)
- Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Keran Bi
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
25
|
Kim SM, Kim YI, Pascua PNQ, Choi YK. Avian Influenza A Viruses: Evolution and Zoonotic Infection. Semin Respir Crit Care Med 2016; 37:501-11. [PMID: 27486732 PMCID: PMC7171714 DOI: 10.1055/s-0036-1584953] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics.
Collapse
Affiliation(s)
- Se Mi Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Philippe Noriel Q Pascua
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
26
|
Munoz O, De Nardi M, van der Meulen K, van Reeth K, Koopmans M, Harris K, von Dobschuetz S, Freidl G, Meijer A, Breed A, Hill A, Kosmider R, Banks J, Stärk KDC, Wieland B, Stevens K, van der Werf S, Enouf V, Dauphin G, Dundon W, Cattoli G, Capua I. Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review. ECOHEALTH 2016; 13:171-198. [PMID: 25630935 DOI: 10.1007/s10393-014-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
Collapse
Affiliation(s)
- Olga Munoz
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy.
| | - Marco De Nardi
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
- SAFOSO AG, Bern, Switzerland
| | - Karen van der Meulen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Kristien van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Marion Koopmans
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kate Harris
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Sophie von Dobschuetz
- Royal Veterinary College (RVC), London, UK
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - Gudrun Freidl
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam Meijer
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andrew Breed
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Andrew Hill
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | - Jill Banks
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | | | | | - Sylvie van der Werf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Vincent Enouf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Gwenaelle Dauphin
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - William Dundon
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Giovanni Cattoli
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Ilaria Capua
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| |
Collapse
|
27
|
Wang J, Wu M, Hong W, Fan X, Chen R, Zheng Z, Zeng Y, Huang R, Zhang Y, Lam TTY, Smith DK, Zhu H, Guan Y. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs. J Virol 2016; 90:3506-14. [PMID: 26764002 PMCID: PMC4794674 DOI: 10.1128/jvi.02605-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/10/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which suggests that adaptation of the H9N2 viruses in terrestrial poultry might have increased the infectivity of the virus to mammals. Therefore, monitoring the prevalence and evolution of H9 viruses prevalent in terrestrial birds and conducting risk assessment of their threat to mammals are critical for evaluating the pandemic potential of this virus.
Collapse
Affiliation(s)
- Jia Wang
- Joint Influenza Research Center, Shantou University Medical College, Shantou, China State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Maocai Wu
- Joint Influenza Research Center, Shantou University Medical College, Shantou, China
| | - Wenshan Hong
- Joint Influenza Research Center, Shantou University Medical College, Shantou, China
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, Nanning, China
| | - Rirong Chen
- Joint Influenza Research Center, Shantou University Medical College, Shantou, China
| | - Zuoyi Zheng
- Joint Influenza Research Center, Shantou University Medical College, Shantou, China
| | - Yu Zeng
- Joint Influenza Research Center, Shantou University Medical College, Shantou, China
| | - Ren Huang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yu Zhang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Tommy Tsan-Yuk Lam
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - David K Smith
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Huachen Zhu
- Joint Influenza Research Center, Shantou University Medical College, Shantou, China State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Yi Guan
- Joint Influenza Research Center, Shantou University Medical College, Shantou, China State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China Department of Microbiology, Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Sun YF, Wang XH, Li XL, Zhang L, Li HH, Lu C, Yang CL, Feng J, Han W, Ren WK, Tian XX, Tong GZ, Wen F, Li ZJ, Gong XQ, Liu XM, Ruan BY, Yan MH, Yu H. Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China. Vet Microbiol 2015; 183:85-91. [PMID: 26790939 DOI: 10.1016/j.vetmic.2015.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 12/09/2022]
Abstract
Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance.
Collapse
Affiliation(s)
- Ying-Feng Sun
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Xiu-Hui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiu-Li Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Li Zhang
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Hai-Hua Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Chao Lu
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Chun-Lei Yang
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Jing Feng
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Wei Han
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Wei-Ke Ren
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Xiang-Xue Tian
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Feng Wen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ze-Jun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Qian Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiao-Min Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Bao-Yang Ruan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ming-Hua Yan
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin 300381,China.
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
29
|
Gao R, Bai T, Li X, Xiong Y, Huang Y, Pan M, Zhang Y, Bo H, Zou S, Shu Y. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features. Virology 2015; 488:149-55. [PMID: 26638019 DOI: 10.1016/j.virol.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 01/06/2023]
Abstract
H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets.
Collapse
Affiliation(s)
- Rongbao Gao
- National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Tian Bai
- National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Xiaodan Li
- National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Ying Xiong
- Jiangxi Provincial Disease Control and Prevention, Nanchang 330029, China
| | - Yiwei Huang
- Hunan Provincial Disease Control and Prevention, Changsha, China
| | - Ming Pan
- Sichuan Provincial Disease Control and Prevention, Chengdu 610041, China
| | - Ye Zhang
- National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Hong Bo
- National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China.
| |
Collapse
|
30
|
Sediri H, Thiele S, Schwalm F, Gabriel G, Klenk HD. PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor. J Gen Virol 2015; 97:39-48. [PMID: 26560088 DOI: 10.1099/jgv.0.000333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian influenza viruses of subtype H9N2 that are found worldwide are occasionally transmitted to humans and pigs. Furthermore, by co-circulating with other influenza subtypes, they can generate new viruses with the potential to also cause zoonotic infections, as observed in 1997 with H5N1 or more recently with H7N9 and H10N8 viruses. Comparative analysis of the adaptive mutations in polymerases of different viruses indicates that their impact on the phylogenetically related H9N2 and H7N9 polymerases is higher than on the non-related H7N7 and H1N1pdm09 polymerases. Analysis of polymerase reassortants composed of subunits of different viruses demonstrated that the efficient enhancement of polymerase activity by H9N2-PB2 does not depend on PA and PB1. These observations suggest that the PB2 subunit of the H9N2 polymerase has a high adaptive potential and may therefore be an important pandemic risk factor.
Collapse
Affiliation(s)
- Hanna Sediri
- Institute of Virology, Philipps University, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Swantje Thiele
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Folker Schwalm
- Institute of Virology, Philipps University, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Hans-Dieter Klenk
- Institute of Virology, Philipps University, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| |
Collapse
|
31
|
Lee JH, Pascua PNQ, Decano AG, Kim SM, Park SJ, Kwon HI, Kim EH, Kim YI, Kim H, Kim SY, Song MS, Jang HK, Park BK, Choi YK. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources. INFECTION GENETICS AND EVOLUTION 2015; 34:378-93. [DOI: 10.1016/j.meegid.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/09/2022]
|
32
|
Obadan AO, Kimble BJ, Rajao D, Lager K, Santos JJS, Vincent A, Perez DR. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail. J Gen Virol 2015; 96:2511-2521. [PMID: 25986634 DOI: 10.1099/vir.0.000190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza.
Collapse
Affiliation(s)
- Adebimpe O Obadan
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Brian J Kimble
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Daniela Rajao
- Virus and Prion Diseases Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Kelly Lager
- Virus and Prion Diseases Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Jefferson J S Santos
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Amy Vincent
- Virus and Prion Diseases Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Daniel R Perez
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| |
Collapse
|
33
|
Huang Y, Li X, Zhang H, Chen B, Jiang Y, Yang L, Zhu W, Hu S, Zhou S, Tang Y, Xiang X, Li F, Li W, Gao L. Human infection with an avian influenza A (H9N2) virus in the middle region of China. J Med Virol 2015; 87:1641-8. [PMID: 25965534 DOI: 10.1002/jmv.24231] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/06/2015] [Accepted: 04/08/2015] [Indexed: 12/18/2022]
Abstract
During the epidemic period of the novel H7N9 viruses, an influenza A (H9N2) virus was isolated from a 7-year-old boy with influenza-like illness in Yongzhou city of Hunan province in November 2013. To identify the possible source of infection, environmental specimens collected from local live poultry markets epidemiologically linked to the human case in Yongzhou city were tested for influenza type A and its subtypes H5, H7, and H9 using real-time RT-PCR methods as well as virus isolation, and four other H9N2 viruses were isolated. The real-time RT-PCR results showed that the environment was highly contaminated with avian influenza H9 subtype viruses (18.0%). Sequencing analyses revealed that the virus isolated from the patient, which was highly similar (98.5-99.8%) to one of isolates from environment in complete genome sequences, was of avian origin. Based on phylogenetic and antigenic analyses, it belonged to genotype S and Y280 lineage. In addition, the virus exhibited high homology (95.7-99.5%) of all six internal gene lineages with the novel H7N9 and H10N8 viruses which caused epidemic and endemic in China. Meanwhile, it carried several mammalian adapted molecular residues including Q226L in HA protein, L13P in PB1 protein, K356R, S409N in PA protein, V15I in M1 protein, I28V, L55F in M2 protein, and E227K in NS protein. These findings reinforce the significance of continuous surveillance of H9N2 influenza viruses.
Collapse
Affiliation(s)
- Yiwei Huang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Xiaodan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Bozhong Chen
- Yongzhou City Center for Disease Control and Prevention, Yongzhou, China
| | - Yonglin Jiang
- Yongzhou City Center for Disease Control and Prevention, Yongzhou, China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shixiong Hu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Siyu Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Yunli Tang
- Yongzhou City Center for Disease Control and Prevention, Yongzhou, China
| | - Xingyu Xiang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Fangcai Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Wenchao Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| |
Collapse
|
34
|
Shehata AA, Parvin R, Sultan H, Halami MY, Talaat S, Abd Elrazek A, Ibrahim M, Heenemann K, Vahlenkamp T. Isolation and full genome characterization of avian influenza subtype H9N2 from poultry respiratory disease outbreak in Egypt. Virus Genes 2015; 50:389-400. [PMID: 25782728 DOI: 10.1007/s11262-015-1188-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/04/2015] [Indexed: 11/25/2022]
Abstract
Low pathogenic avian influenza virus of subtype H9N2 is panzootic in multiple avian species causing respiratory manifestations and severe economic losses. H9N2 co-circulate simultaneously with high pathogenic avian influenza virus subtype H5N1 in Egyptian chicken farms suggesting the possibility of reassortment. The aim of the present study was to isolate and characterize H9N2 from the recent outbreaks in chicken farms. Also the diversity of amantadine-resistant mutants among these isolates was tested by in situ ELISA and sequence analysis. Three influenza H9N2 viruses, designated A/chicken/Egypt/SCU8/2014, A/chicken/Egypt/SCU9/2014 and A/chicken/Egypt/SCU20/2014 were isolated from commercial broiler and broiler breeder chickens in specific pathogen free embryonated chicken eggs. The eight gene segments were amplified by RT-PCR, cloned, and subjected to full length sequencing. Phylogenetic analysis of these viruses revealed a close relationship between Egyptian, Middle Eastern and Israel isolates with an average of 96-99 % nucleotide homology and identified an ancestor relationship to low pathogenic H9N2 Quail/HK/G1/1997 prototype. The internal segments of the currently isolated viruses were derived from the same sub-lineage with no new evidence of reassortment. The three isolates were sensitive to amantadine as suggested by absence of mutations of M2 and confirmed by a phenotypic assay. In conclusion, avian influenza H9N2 virus is circulating in Egyptian chicken farms causing respiratory manifestations. Continuous monitoring of the molecular epidemiology and its impact on the virulence as well as emergence of new strains are necessary.
Collapse
Affiliation(s)
- Awad A Shehata
- Institute of Virology, Center for Infectious Diseases, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 29, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nelson MI, Vincent AL. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface. Trends Microbiol 2015; 23:142-53. [PMID: 25564096 DOI: 10.1016/j.tim.2014.12.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/09/2023]
Abstract
The origins of the 2009 influenza A (H1N1) pandemic in swine are unknown, highlighting gaps in our understanding of influenza A virus (IAV) ecology and evolution. We review how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity. The scale of global human-to-swine transmission represents the largest 'reverse zoonosis' of a pathogen documented to date. Overcoming the bias towards perceiving swine as sources of human viruses, rather than recipients, is key to understanding how the bidirectional nature of the human-animal interface produces influenza threats to both hosts.
Collapse
Affiliation(s)
- Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, US Department of Agriculture (USDA) Agricultural Research Service (ARS), Ames, IA 50010, USA
| |
Collapse
|
36
|
Yu M, Zhang K, Qi W, Huang Z, Ye J, Ma Y, Liao M, Ning Z. Expression pattern of NLRP3 and its related cytokines in the lung and brain of avian influenza virus H9N2 infected BALB/c mice. Virol J 2014; 11:229. [PMID: 25547136 PMCID: PMC4296676 DOI: 10.1186/s12985-014-0229-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/16/2014] [Indexed: 11/17/2022] Open
Abstract
Background H9N2 avian influenza virus (AIV) becomes the focus for its ability of transmission to mammals and as a donor to provide internal genes to form the new epidemic lethal influenza viruses. Residue 627 in PB2 has been proven the virulence factor of H9N2 avian influenza virus in mice, but the detailed data for inflammation difference between H9N2 virus strains with site 627 mutation is still unclear. The inflammasome NLRP3 is recently reported as the cellular machinery responsible for activation of inflammatory processes and plays an important role during the development of inflammation caused by influenza virus infection. Methods In this study, we investigated the expression pattern of NLRP3 and its related cytokines of IL-1β and TNF-α in BALB/c mice infected by H9N2 AIV strains with only a site 627 difference at both mRNA and protein levels at different time points. Results The results showed that the expression level of NLRP3, IL-1β and TNF-α changed in the lung and brain of BALB/c mice after infection by VK627 and rVK627E. The immunohistological results showed that the positive cells of NLRP3, IL-1β and TNF-α altered the positive levels of original cells in tissues and infiltrated inflammatory cells which caused by H9N2 infection. Conclusions Our results provided the basic data at differences in expression pattern of NLRP3 and its related cytokines in BALB/c mice infected by H9N2 influenza viruses with only a site 627 difference. This implied that NLRP3 inflammasome plays a role in host response to influenza virus infection and determines the outcome of clinical manifestation and pathological injury. This will explain the variable of pathological presentation in tissues and enhance research on inflammation process of the AIV H9N2 infection.
Collapse
Affiliation(s)
- Meng Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Zhiqiang Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Jinhui Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
37
|
Ma MJ, Yang XX, Qian YH, Zhao SY, Hua S, Wang TC, Chen SH, Ma GY, Sang XY, Liu LN, Wu AP, Jiang TJ, Gao YW, Gray GC, Zhao T, Ling X, Wang JL, Lu B, Qian J, Cao WC. Characterization of a novel reassortant influenza A virus (H2N2) from a domestic duck in Eastern China. Sci Rep 2014; 4:7588. [PMID: 25533850 PMCID: PMC4274511 DOI: 10.1038/srep07588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/28/2014] [Indexed: 11/21/2022] Open
Abstract
While H2N2 viruses have been sporadically isolated from wild and domestic birds, H2N2 viruses have not been detected among human populations since 1968. Should H2N2 viruses adapt to domestic poultry they may pose a risk of infection to people, as most anyone born after 1968 would likely be susceptible to their infection. We report the isolation of a novel influenza A virus (H2N2) cultured in 2013 from a healthy domestic duck at a live poultry market in Wuxi City, China. Sequence data revealed that the novel H2N2 virus was similar to Eurasian avian lineage avian influenza viruses, the virus had been circulating for ≥ two years among poultry, had an increase in α2,6 binding affinity, and was not highly pathogenic. Approximately 9% of 100 healthy chickens sampled from the same area had elevated antibodies against the H2 antigen. Fortunately, there was sparse serological evidence that the virus was infecting poultry workers or had adapted to infect other mammals. These findings suggest that a novel H2N2 virus has been circulating among domestic poultry in Wuxi City, China and has some has increased human receptor affinity. It seems wise to conduct better surveillance for novel influenza viruses at Chinese live bird markets.
Collapse
Affiliation(s)
- Mai-Juan Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Xiao-Xian Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- School of Public Health, Central South University, Changsha, Hunan, 410000 P. R. China
| | - Yan-Hua Qian
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Si-Yan Zhao
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Sha Hua
- Key Laboratory of Protein and Peptide Pharmaceutical, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tie-Cheng Wang
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Shan-Hui Chen
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Guang-Yuan Ma
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Xiao-Yu Sang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150001, China
| | - Lin-Na Liu
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Ai-Ping Wu
- Key Laboratory of Protein and Peptide Pharmaceutical, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Tai-Jiao Jiang
- Key Laboratory of Protein and Peptide Pharmaceutical, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yu-Wei Gao
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Gregory C. Gray
- Duke Infectious Disease & Duke Health Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Xia Ling
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Jing-Lin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Bing Lu
- Wuxi Center for Disease Control and Prevention, Wuxi, 214023, P. R. China
| | - Jun Qian
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun, 130122, P. R. China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
- School of Public Health, Central South University, Changsha, Hunan, 410000 P. R. China
| |
Collapse
|
38
|
Amorim AR, Fornells LAMG, Reis FDC, Rezende DJ, Mendes GDS, Couceiro JNDSS, Santos NSDO. Influenza A virus infection of healthy piglets in an abattoir in Brazil: animal-human interface and risk for interspecies transmission. Mem Inst Oswaldo Cruz 2014; 108:548-53. [PMID: 23903968 PMCID: PMC3970599 DOI: 10.1590/0074-0276108052013003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/30/2013] [Indexed: 02/02/2023] Open
Abstract
Asymptomatic influenza virus infections in pigs are frequent and the
lack of measures for controlling viral spread facilitates the circulation of
different virus strains between pigs. The goal of this study was to demonstrate
the circulation of influenza A virus strains among asymptomatic piglets in an
abattoir in Brazil and discuss the potential public health impacts. Tracheal
samples (n = 330) were collected from asymptomatic animals by a veterinarian
that also performed visual lung tissue examinations. No slaughtered animals
presented with any noticeable macroscopic signs of influenza infection following
examination of lung tissues. Samples were then analysed by reverse
transcription-polymerase chain reaction that resulted in the identification of
30 (9%) influenza A positive samples. The presence of asymptomatic pig
infections suggested that these animals could facilitate virus dissemination and
act as a source of infection for the herd, thereby enabling the emergence of
influenza outbreaks associated with significant economic losses. Furthermore,
the continuous exposure of the farm and abattoir workers to the virus increases
the risk for interspecies transmission. Monitoring measures of swine influenza
virus infections and vaccination and monitoring of employees for influenza
infection should also be considered. In addition regulatory agencies should
consider the public health ramifications regarding the potential zoonotic viral
transmission between humans and pigs.
Collapse
Affiliation(s)
- Ariane Ribeiro Amorim
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The environmental drivers of influenza outbreaks are largely unknown. Despite more than 50 years of research, there are conflicting lines of evidence on the role of the environment in influenza A virus (IAV) survival, stability, and transmissibility. With the increasing and looming threat of pandemic influenza, it is important to understand these factors for early intervention and long-term control strategies. The factors that dictate the severity and spread of influenza would include the virus, natural and acquired hosts, virus-host interactions, environmental persistence, virus stability and transmissibility, and anthropogenic interventions. Virus persistence in different environments is subject to minor variations in temperature, humidity, pH, salinity, air pollution, and solar radiations. Seasonality of influenza is largely dictated by temperature and humidity, with cool-dry conditions enhancing IAV survival and transmissibility in temperate climates in high latitudes, whereas humid-rainy conditions favor outbreaks in low latitudes, as seen in tropical and subtropical zones. In mid-latitudes, semiannual outbreaks result from alternating cool-dry and humid-rainy conditions. The mechanism of virus survival in the cool-dry or humid-rainy conditions is largely determined by the presence of salts and proteins in the respiratory droplets. Social determinants of heath, including health equity, vaccine acceptance, and age-related illness, may play a role in influenza occurrence and spread.
Collapse
Affiliation(s)
- Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061;
| | | |
Collapse
|
40
|
Dalby AR, Iqbal M. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin. PeerJ 2014; 2:e655. [PMID: 25374791 PMCID: PMC4217197 DOI: 10.7717/peerj.655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/15/2014] [Indexed: 01/18/2023] Open
Abstract
A complete phylogenetic analysis of all of the H9N2 hemagglutinin sequences that were collected between 1966 and 2012 was carried out in order to build a picture of the geographical and host specific evolution of the hemagglutinin protein. To improve the quality and applicability of the output data the sequences were divided into subsets based upon location and host species. The phylogenetic analysis of hemagglutinin reveals that the protein has distinct lineages between China and the Middle East, and that wild birds in both regions retain a distinct form of the H9 molecule, from the same lineage as the ancestral hemagglutinin. The results add further evidence to the hypothesis that the current predominant H9N2 hemagglutinin lineage might have originated in Southern China. The study also shows that there are sampling problems that affect the reliability of this and any similar analysis. This raises questions about the surveillance of H9N2 and the need for wider sampling of the virus in the environment. The results of this analysis are also consistent with a model where hemagglutinin has predominantly evolved by neutral drift punctuated by occasional selection events. These selective events have produced the current pattern of distinct lineages in the Middle East, Korea and China. This interpretation is in agreement with existing studies that have shown that there is widespread intra-country sequence evolution.
Collapse
Affiliation(s)
- Andrew R Dalby
- Faculty of Science and Technology, University of Westminster , Westminster , UK
| | - Munir Iqbal
- Avian Viral Diseases Programme, The Pirbright Institute, Compton Laboratory , Newbury, Berkshire , UK
| |
Collapse
|
41
|
Abstract
The molecular bases of adaptation and pathogenicity of H9N2 influenza virus in mammals are largely unknown. Here, we show that a mouse-adapted PB2 gene with a phenylalanine-to-leucine mutation (F404L) mainly contributes to enhanced polymerase activity, replication, and pathogenicity of H9N2 in mice and also increases the virulence of the H5N1 and 2009 pandemic H1N1 influenza viruses. Therefore, we defined a novel pathogenic determinant, providing further insights into the pathogenesis of influenza viruses in mammals.
Collapse
|
42
|
Gu M, Chen H, Li Q, Huang J, Zhao M, Gu X, Jiang K, Wang X, Peng D, Liu X. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China. Vet Microbiol 2014; 174:309-315. [PMID: 25457363 DOI: 10.1016/j.vetmic.2014.09.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/09/2022]
Abstract
Avian influenza viruses of subtype H9N2 are widely prevalent in poultry in many Asian countries, and the segmented nature of the viral genome results in multiple distinct genotypes via reassortment. In this study, genetic evolution of H9N2 viruses circulating in eastern China during 2007-2013 was analyzed. The results showed that the diversity of the gene constellations generated six distinct genotypes, in which a novel genotype (S) bearing the backbone of A/chicken/Shanghai/F/98-like viruses by acquiring A/quail/Hong Kong/G1/97-like polymerase basic subunit 2 and matrix genes has gradually established its ecological niche and been consistently prevalent in chicken flocks in eastern China since its first detection in 2007. Furthermore, genotype S possessed the peculiarity to donate most of its gene segments to other emerging influenza A viruses in China, including the novel reassortant highly pathogenic avian influenza H5N2, the 2013 novel H7N7, H7N9 and the latest reassortant H10N8 viruses, with potential threat to poultry industry and human health.
Collapse
Affiliation(s)
- Min Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Hongzhi Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qunhui Li
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Junqing Huang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mingjun Zhao
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaobing Gu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kaijun Jiang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
43
|
Yu M, Qi W, Huang Z, Zhang K, Ye J, Liu R, Wang H, Ma Y, Liao M, Ning Z. Expression profile and histological distribution of IFITM1 and IFITM3 during H9N2 avian influenza virus infection in BALB/c mice. Med Microbiol Immunol 2014; 204:505-14. [PMID: 25265877 PMCID: PMC7087031 DOI: 10.1007/s00430-014-0361-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/24/2014] [Indexed: 02/07/2023]
Abstract
The H9N2 avian influenza virus is a pandemic threat which has repeatedly caused infection in humans and shows enhanced replication and transmission in mice. Previous reports showed that host factors, the interferon-inducible transmembrane (IFITM) protein, can block the replication of pathogens and affect their pathogenesis. BALB/c mice are routine laboratory animals used in influenza virus research, but the effects of H9N2 influenza virus on tissue distribution and expression pattern of IFITM in these mice are unknown. Here, we investigated the expression patterns and tissue distribution of IFITM1 and IFITM3 in BALB/c mice by infection with H9N2 AIV strains with only a PB2 residue 627 difference. The results showed that the expression patterns of ITITM1 and IFITM3 differ in various tissues of BALB/c mice at different time points after infection. IFITM1 and IFITM3 showed cell- and tissue-specific distribution in the lung, heart, liver, spleen, kidney and brain. Notably, the epithelial and neuronal cells all expressed the proteins of IFITM1 and IFITM3. Our results provide the first look at differences in IFITM1 and IFITM3 expression patterns in BALB/c mice infected by H9N2 influenza viruses. This will enhance research on the interaction between AIV and host and further will elucidate the pathogenesis of influenza virus infection based on the interferon-inducible transmembrane (IFITM) protein.
Collapse
Affiliation(s)
- Meng Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pascua PNQ, Choi YK. Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match". Clin Exp Vaccine Res 2014; 3:140-8. [PMID: 25003087 PMCID: PMC4083066 DOI: 10.7774/cevr.2014.3.2.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 11/15/2022] Open
Abstract
Various direct avian-to-human transmissions of influenza A virus subtypes upon exposure to infected poultry have been previously observed in the past decades. Although some of these strains caused lethal infections, the lack of sustained person-to-person transmission has been the major factor that prevented these viruses from causing new pandemics. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) yet again breached the animal-human host species barrier in Asia. Notably, roughly 20% of the A/H7N9-infected patients succumbed to the zoonotic infection whereas two of three A/H10N8 human infections were also lethal. Thus, these events revived the concerns of potential pandemic threats by AIVs in the horizon. This article reviews the various human incursions with AIV variants and provides insight on how continued circulation of these viruses poses perpetual challenge to global public health. As the world anticipates for the next human pandemic, constant vigilance for newly emerging viruses in nature is highly encouraged. With the various numbers of AIVs demonstrating their capacity to breach the animal-human host interface and apparent limitations of current antivirals, there is a need to broaden the selection of pre-pandemic vaccine candidate viruses and development of novel alternative therapeutic strategies.
Collapse
Affiliation(s)
- Philippe Noriel Q Pascua
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
45
|
Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. J Virol 2014; 88:9568-78. [PMID: 24920791 DOI: 10.1128/jvi.00943-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED H9N2 avian influenza virus has been prevalent in poultry in many parts of the world since the 1990s and occasionally crosses the host barrier, transmitting to mammals, including humans. In recent years, these viruses have contributed genes to H5N1 and H7N9 influenza viruses, threatening public health. To explore the molecular mechanism for the airborne transmission of H9N2 virus, we compared two genetically close strains isolated from chickens in 2001, A/chicken/Shanghai/7/2001(SH7) and A/chicken/Shanghai/14/2001 (SH14). SH7 is airborne transmissible between chickens, whereas SH14 is not. We used reverse genetics and gene swapping to derive recombinant SH7 (rSH7), rSH14, and a panel of reassortant viruses. Among the reassortant viruses, we identified segments HA and PA as governing the airborne transmission among chickens. In addition, the NP and NS genes also contributed to a lesser extent. Furthermore, the mutational analyses showed the transmissibility phenotype predominantly mapped to the HA and PA genes, with HA-K363 and PA-L672 being important for airborne transmissibility among chickens. In addition, the viral infectivity and acid stability are related to the airborne transmissibility. Importantly, airborne transmission studies of 18 arbitrarily chosen H9N2 viruses from our collections confirmed the importance of both 363K in HA and 672L in PA in determining their levels of transmissibility. Our finding elucidates the genetic contributions to H9N2 transmissibility in chickens and highlights the importance of their prevalence in poultry. IMPORTANCE Our study investigates the airborne transmissibility of H9N2 viruses in chickens and the subsequent epidemic. H9N2 virus is the donor for several prevalent reassortant influenza viruses, such as H7N9/2013 and the H5N1 viruses. Poultry as the reservoir hosts of influenza virus is closely associated with human society. Airborne transmission is an efficient pathway for influenza virus transmission among flocks and individuals. Exploring the mechanism of the airborne transmission of the H9N2 virus in chickens could provide essential data regarding prevention and control of influenza endemics and pandemics.
Collapse
|
46
|
Abstract
Influenza is an acute respiratory disease in mammals and domestic poultry that emerges from zoonotic reservoirs in aquatic birds and bats. Although influenza viruses are among the most intensively studied pathogens, existing control options require further improvement. Influenza vaccines must be regularly updated because of continuous antigenic drift and sporadic antigenic shifts in the viral surface glycoproteins. Currently, influenza therapeutics are limited to neuraminidase inhibitors; novel drugs and vaccine approaches are therefore urgently needed. Advances in vaccinology and structural analysis have revealed common antigenic epitopes on hemagglutinins across all influenza viruses and suggest that a universal influenza vaccine is possible. In addition, various immunomodulatory agents and signaling pathway inhibitors are undergoing preclinical development. Continuing challenges in influenza include the emergence of pandemic H1N1 influenza in 2009, human infections with avian H7N9 influenza in 2013, and sporadic human cases of highly pathogenic avian H5N1 influenza. Here, we review the challenges facing influenza scientists and veterinary and human public health officials; we also discuss the exciting possibility of achieving the ultimate goal of controlling influenza's ability to change its antigenicity.
Collapse
Affiliation(s)
- Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
47
|
Romero-Tejeda A, Capua I. Virus-specific factors associated with zoonotic and pandemic potential. Influenza Other Respir Viruses 2014; 7 Suppl 2:4-14. [PMID: 24034478 DOI: 10.1111/irv.12075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Influenza A is a highly contagious respiratory virus in constant evolution and represents a threat to both veterinary and human public health. IA viruses (IAVs) originate in avian reservoirs but may adapt to humans, either directly or through the spillover to another mammalian species, to the point of becoming pandemic. IAVs must successfully be able to (i) transmit from animal to human, (ii) interact with host cells, and (iii) transmit from human to human. The mechanisms by which viruses evolve, cause zoonotic infections, and adapt to a new host species are indeed complex and appear to be a heterogeneous collection of viral evolutionary events rather than a single phenomenon. Progress has been made in identifying some of the genetic markers mainly associated with virulence and transmission; this achievement has improved our knowledge of how to manage a pandemic event and of how to identify IAVs with pandemic potential. Early evidence of emerging viruses and surveillance of animal IAVs is made possible only by strengthening the collaboration between the public and veterinary health sectors.
Collapse
Affiliation(s)
- Aurora Romero-Tejeda
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | |
Collapse
|
48
|
Identification of amino acid changes that may have been critical for the genesis of A(H7N9) influenza viruses. J Virol 2014; 88:4877-96. [PMID: 24522919 DOI: 10.1128/jvi.00107-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection.
Collapse
|
49
|
Parvin R, Heenemann K, Halami MY, Chowdhury EH, Islam MR, Vahlenkamp TW. Full-genome analysis of avian influenza virus H9N2 from Bangladesh reveals internal gene reassortments with two distinct highly pathogenic avian influenza viruses. Arch Virol 2014; 159:1651-61. [DOI: 10.1007/s00705-014-1976-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/31/2013] [Indexed: 10/25/2022]
|
50
|
Zhou P, Zhu W, Gu H, Fu X, Wang L, Zheng Y, He S, Ke C, Wang H, Yuan Z, Ning Z, Qi W, Li S, Zhang G. Avian influenza H9N2 seroprevalence among swine farm residents in China. J Med Virol 2014; 86:597-600. [DOI: 10.1002/jmv.23869] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Pei Zhou
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Wanjun Zhu
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Honglang Gu
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Xinliang Fu
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Lifang Wang
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Yun Zheng
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Shuyi He
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Changwen Ke
- Guangdong Center for Disease Control and Prevention; Guangzhou Guangdong Province China
| | - Heng Wang
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Ziguo Yuan
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Zhangyong Ning
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Wenbao Qi
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Shoujun Li
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Guihong Zhang
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| |
Collapse
|