1
|
Wang Y, Xu S, Chen X, Dou Y, Yang X, Hu Z, Wu S, Wang X, Hu J, Liu X. Single dose of recombinant baculovirus vaccine expressing sigma B and sigma C genes provides good protection against novel duck reovirus challenge in ducks. Poult Sci 2025; 104:104565. [PMID: 39631275 PMCID: PMC11652866 DOI: 10.1016/j.psj.2024.104565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
The novel duck reovirus (NDRV) disease causes high economic losses, resulting in substantial economic losses in waterfowl industry. However, currently, no commercial vaccines are available to alleviate NDRV infection throughout the world. Here, we developed two subunit vaccine candidates for NDRV based on the insect cell-baculovirus expression system (IC-BEVS). Two recombinant viruses, namely rBac-σB and rBac-σC, were successfully generated based on the consensus sequence of NDRV. Then, the σB and σC subunit vaccine candidates were prepared by directly inactivating the recombinant virus infected-Sf9 cell suspension. The double antibody-sandwich ELISA was used for quantitative of σB or σC protein in the inactivated crude antigen. Protective efficacy results revealed that, compared with the whole virus inactivated vaccine, a single dose of 160 ng σB or σC protein showed advantages in inducing serum antibodies, elevating weight, alleviating liver and spleen injury, restraining viral shedding and viral replication in ducklings. To be noted, the subunit σC or the combination of subunit σB and σC vaccine candidates had better protective efficacies, especially the combined σB and σC vaccine group. Therefore, our study provides useful information for developing effective vaccine against NDRV infection.
Collapse
Affiliation(s)
- Yufei Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Siyi Xu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xia Chen
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yunlong Dou
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingzhu Yang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shuang Wu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Developmen, Ministry of Agriculture and Rural Affairs, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
2
|
Wang C, Liu H, Cheng J, Pan S, Yang W, Wei X, Cheng Y, Xu T, Si H. One-Step Multiplex Real-Time Fluorescent Quantitative Reverse Transcription PCR for Simultaneous Detection of Four Waterfowl Viruses. Microorganisms 2024; 12:2423. [PMID: 39770626 PMCID: PMC11679685 DOI: 10.3390/microorganisms12122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Duck Tembusu virus (DTMUV), duck hepatitis virus (DHV), Muscovy duck reovirus (MDRV), and Muscovy duck parvovirus (MDPV) represent four emergent infectious diseases impacting waterfowl, which can be challenging to differentiate due to overlapping clinical signs. In response to this, we have developed a one-step multiplex real-time fluorescence quantitative reverse transcription PCR (qRT-PCR) assay, capable of simultaneously detecting DTMUV, DHV, MDRV, and MDPV. This method exhibits high specificity, avoiding cross-reactivity with other viruses such as Fowl adenoviruses (FADV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), Haemophilus paragallinarum (Hpg), duck circovirus (DUCV), goose astrovirus (GoAstV), and mycoplasma gallisepticum (MG). The limit of detection (LOD) established for DTMUV, DHV, MDRV, and MDPV was determined to be 27 copies/μL. In the repeatability test, the intra-assay and inter-assay coefficients of variation (CVs) of the recombinant plasmid standard were less than 2%. Utilizing this method, we analyzed 326 clinical specimens sourced from Guangxi over the period spanning October 2021 through December 2023, yielding promising and precise outcomes. The qRT-PCR method established herein exhibits commendable specificity, sensitivity, and repeatability. Furthermore, it boasts a high clinical detection rate, making it a highly effective tool for diagnosing these pathogenic agents in waterfowl.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongbin Si
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi Grass Station, Guangxi University, Nanning 530004, China; (C.W.); (H.L.); (J.C.); (S.P.); (W.Y.); (X.W.); (Y.C.); (T.X.)
| |
Collapse
|
3
|
Yun T, Hua J, Ye W, Chen L, Ni Z, Zhu Y, Zheng C, Zhang C. Single-cell transcriptional profiling reveals cell type-specific responses to duck reovirus infection in the Bursa of Fabricius of Cairna moschata. Int J Biol Macromol 2024; 281:136391. [PMID: 39414202 DOI: 10.1016/j.ijbiomac.2024.136391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Duck reovirus (DRV) is a universal waterfowl virus that causes significant economic losses in the duck industry. However, the role of the host innate immune response of the Bursa of Fabricius to DRV infection is largely unknown. In the present study, we constructed a single-cell resolution transcriptomic atlas of the Bursa of Fabricius of Cairna moschata after infection with HN10 (a novel DRV). Ten cell-type marker genes were used to annotate the cell type, indicating a high degree of cell heterogeneity in the Bursa of Fabricius. Most of the innate and adaptive immune system-related genes were highly expressed in T cells, B cells, neutrophils, macrophages, and DCs. In the Bursa of Fabricius, the proportions of DCs and macrophages were largely increased by HN10 infection at 14 d, suggesting that DCs and macrophages play important roles in the long-term viral response. Notably, a number of innate and adaptive immune system-related genes were highly expressed at 24 h after HN10 infection, indicating that the Bursa of Fabricius has a very strong immune function even in the early developmental stage. In the immune system, the NOD-like receptor signaling pathway and RIG-I-like receptor signaling pathway were significantly activated at the early stage of HN10 infection, while the Toll-like receptor signaling pathway was significantly activated at the late stage. Enrichment analysis suggested that different immune signaling pathways play roles in specific developmental stages. Our data provide an opportunity to reveal the immune response to DRV infection at the single-cell level.
Collapse
Affiliation(s)
- Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases University of Calgary, Calgary, Alberta, Canada.
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Li Y, Yang H, Lu Y, Yin Z, Xu H, Mei K, Huang S. Isolation and identification of a novel goose-origin reovirus GD218 and its pathogenicity experiments. Front Vet Sci 2024; 11:1423122. [PMID: 39525643 PMCID: PMC11544629 DOI: 10.3389/fvets.2024.1423122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Since 2020, a novel goose-derived reovirus, characterized by goose hemorrhagic hepatitis, has emerged in the goose breeding industry of Guangdong province, China, leading to significant economic losses in the poultry sector. To study the genetic variation of novel goose reovirus (NGRV) in Guangdong province, this experiment utilized goose embryonic fibroblast cells for virus isolation. RT-PCR was conducted to identify, amplify, clone, and sequence the complete genome of the NGRV isolated from Zhaoqing. The genomic sequences were compared with reference strains to construct a phylogenetic tree. Moreover, animal pathogenicity, excretion patterns, and pathological sections were examined. The results showed that liver and spleen samples from geese suspected of NGRV infection were used for isolation, resulting in the identification of a reovirus presumed to originate from geese, designated as GD218. In terms of genomic structure and sequence homology, GD218 closely resembles the novel duck reovirus, differing significantly from earlier isolated NDRV strains (J18, NP03, SD12, etc.) in genetic composition (nt: 80.6-97.9%, aa: 94.3-98.9%). However, it is similar to strains isolated after 2018, such as XT18, SY, QR, YL, LY20, etc. (nt: 95.3-98.9%, aa: 98.6-99.7%). Therefore, based on phylogenetic analysis, GD218 is hypothesized to be a novel type of goose-origin reovirus homologous to the novel duck reovirus.
Collapse
Affiliation(s)
- Yuze Li
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Huihu Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongkun Lu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Zhenghao Yin
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Hang Xu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Kun Mei
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Shujian Huang
- School of Animal Science and Technology, Foshan University, Foshan, China
| |
Collapse
|
5
|
Zhu D, Sun R, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. First isolation and genomic characterization of avian reovirus from black swans (Cygnus atratus) in China. Poult Sci 2023; 102:102947. [PMID: 37598551 PMCID: PMC10458333 DOI: 10.1016/j.psj.2023.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Identification and analysis of the avian reovirus from black swan. Isolation of the strain through the chorioallantoic membrane route of duck embryos, identified through transmission electron microscopy and RT-PCR based on the ARV S2 gene. The complete genome of the ARV strain was obtained using next-generation sequencing technology. The isolated strain of ARV was named CD200801 and was identified through transmission electron microscopy and RT-PCR based on the ARV S2 gene. Experimental infection with CD200801 resulted in the death of ducklings with serious spleen and liver focal necrosis. BLAST analysis of CD200801 sequences showed a 35.5 to 98.6% similarity to a novel duck reovirus that was isolated in recent years. Phylogenetic analysis revealed that CD200801 was closely related to ARV isolates YL, GX-Y7, and XT-18. We report the first avian reovirus infection in the black swan. This study provides important new insights into the evolutionary relationships among different ARV strains and highlights the need for continued surveillance and monitoring of these viruses in both domestic and wild bird flocks. These findings have significant implications for the development of effective strategies for disease prevention and control in the poultry industry.
Collapse
Affiliation(s)
- Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Rong Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Kong J, Shao G, Zhang Y, Wang J, Xie Z, Feng K, Zhang X, Xie Q. Molecular characterization, complete genome sequencing, and pathogenicity of Novel Duck Reovirus from South Coastal Area in China. Poult Sci 2023; 102:102776. [PMID: 37302330 PMCID: PMC10276289 DOI: 10.1016/j.psj.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Novel Duck Reovirus (NDRV) that has been found throughout the world in waterfowl, and it has been extensively described. Here, we report the complete genome sequence of a NDRV strain isolated in China called NDRV YF10. This strain was collected from 87 samples with infected ducks in South Coastal Area. The NDRV genome consists of 23,419 bp. With the assistance of computer analysis, the promoter and terminator of each gene segment and 10 viral genes segments were identified, which encode polypeptides ranging from 98 to 1,294 amino acids. All gene fragments of this virus strain were determined and compared to previously reported strains, revealing genetic variation with similarity rates ranging from 96 to 99% for each gene segment. Each gene segment formed 2 host-associated groups, the waterfowl-derived reovirus and the avian-derived reovirus, except for the S1 gene segment, which was closely related to ARV evolution and formed a host-independent subcluster. This difference may be due to Avian Reovirus (ARV) evolving in a host-dependent manner. In order to evaluate the pathogenicity of YF10, a novel isolated strain of NDRV was tested in 2 types of ducks. It was observed that the YF10 isolated strain exhibits varying degrees of virulence, highlighting the potential risk posed to different types of ducks. In conclusion, our findings emphasize the importance of epidemiology studies, molecular characterization, and prevention of NDRV in waterfowl.
Collapse
Affiliation(s)
- Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Guanming Shao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yukun Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jinfeng Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, PR China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
7
|
Peng Z, Zhang H, Zhang X, Wang H, Liu Z, Qiao H, Lv Y, Bian C. Identification and molecular characterization of novel duck reoviruses in Henan Province, China. Front Vet Sci 2023; 10:1137967. [PMID: 37065255 PMCID: PMC10098080 DOI: 10.3389/fvets.2023.1137967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Novel Duck reovirus (NDRV) is an ongoing non-enveloped virus with ten double-stranded RNA genome segments that belong to the genus Orthoreovirus, in the family Reoviridae. NDRV-associated spleen swelling, and necrosis disease have caused considerable economic losses to the waterfowl industry worldwide. Since 2017, a significant number of NDRV outbreaks have emerged in China. Herein, we described two cases of duck spleen necrosis disease among ducklings on duck farms in Henan province, central China. Other potential causative agent, including Muscovy duck reovirus (MDRV), Duck hepatitis A virus type 1 (DHAV-1), Duck hepatitis A virus type 3 (DHAV-3), Newcastle disease virus (NDV), and Duck tembusu virus (DTMUV), were excluded by reverse transcription-polymerase chain reaction (RT-PCR), and two NDRV strains, HeNXX-1/2021 and HNJZ-2/2021, were isolated. Sequencing and phylogenetic analysis of the σC genes revealed that both newly identified NDRV isolates were closely related to DRV/SDHZ17/Shandong/2017. The results further showed that Chinese NDRVs had formed two distinct clades, with late 2017 as the turning point, suggesting that Chinese NDRVs have been evolving in different directions. This study identified and genetic characteristics of two NDRV strains in Henan province, China, indicating NDRVs have evolved in different directions in China. This study provides an insight into the ongoing emerged duck spleen necrosis disease and enriches our understanding of the genetic diversity and evolution of NDRVs.
Collapse
Affiliation(s)
- Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Han Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Haiyan Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zihan Liu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yujin Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- *Correspondence: Chuanzhou Bian
| |
Collapse
|
8
|
Yang H, Zhang W, Wang M, Yuan S, Zhang X, Wen F, Guo J, Mei K, Huang S, Li Z. Characterization and pathogenicity evaluation of recombinant novel duck reovirus isolated from Southeast China. Front Vet Sci 2023; 10:1124999. [PMID: 36998638 PMCID: PMC10043381 DOI: 10.3389/fvets.2023.1124999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
The novel duck reovirus (NDRV) emerged in southeast China in 2005. The virus causes severe liver and spleen hemorrhage and necrosis in various duck species, bringing serious harm to waterfowl farming. In this study, three strains of NDRV designated as NDRV-ZSS-FJ20, NDRV-LRS-GD20, and NDRV-FJ19 were isolated from diseased Muscovy ducks in Guangdong and Fujian provinces. Pairwise sequence comparisons revealed that the three strains were closely related to NDRV, with nucleotide sequence identities for 10 genomic fragments ranging between 84.8 and 99.8%. In contrast, the nucleotide sequences of the three strains were only 38.9–80.9% similar to the chicken-origin reovirus and only 37.6–98.9% similar to the classical waterfowl-origin reovirus. Similarly, phylogenetic analysis revealed that the three strains clustered together with NDRV and were significantly different from classical waterfowl-origin reovirus and chicken-origin reovirus. In addition, the analyses showed that the L1 segment of the NDRV-FJ19 strain was a recombinant of 03G and J18 strains. Experimental reproduction of the disease showed that the NDRV-FJ19 strain was pathogenic to both ducks and chickens and could lead to symptoms of hemorrhage and necrosis in the liver and spleen. This was somewhat different from previous reports that NDRV is less pathogenic to chickens. In conclusion, we speculated that the NDRV-FJ19 causing duck liver and spleen necrosis is a new variant of a duck orthoreovirus that is significantly different in pathogenicity from any previously reported waterfowl-origin orthoreovirus.
Collapse
Affiliation(s)
- Huihu Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Wandi Zhang
- Nanyang Vocational College of Agriculture, Nanyang, China
| | - Meihong Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Xuelian Zhang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Kun Mei
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- *Correspondence: Shujian Huang
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Zhili Li
| |
Collapse
|
9
|
Yun T, Hua J, Ni Z, Ye W, Chen L, Zhu Y, Zhang C. Distinct Whole Transcriptomic Profiles of the Bursa of Fabricius in Muscovy Ducklings Infected by Novel Duck Reovirus with Different Virulence. Viruses 2022; 15:111. [PMID: 36680150 PMCID: PMC9866435 DOI: 10.3390/v15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Novel duck reovirus (NDRV) is a newly identified reovirus that brings about more severe damage on multiple organs and mortality in various species of waterfowl. We previously characterized the transcriptomic profiles responding to NDRV in the bursa of Fabricius of Muscovy ducklings, which is a major immunological organ against virus infection. However, the molecular mechanisms of variant cell responses in the bursa of Fabricius to NDRV with different virulence is unclear. Here, we conducted a whole transcriptomic analysis to study the effects of two strains, HN10 (virulent NDRV) and JDm10 (artificially attenuated NDRV), on the bursa of Fabricius of Muscovy ducklings. We harvested a large number of differentially expressed genes (DEGs) of the bursa of Fabricius specially induced by HN10 and JDm10, and we found that HN10 induced DEGs enriched in differentiation and development in multiple organs beyond JDm10. Moreover, the ceRNA regulatory network also indicated the different connections among mRNA, lncRNA and miRNA. Interestingly, we further noticed that a population of differential expressed miRNA could particularly target to transcripts of HN10 and JDm10. We took miR-24 as an example and observed that miR-24 could reduce the transcription of GLI family zinc finger 3 (Gli3) and membrane-associated guanylate kinase, WW and PDZ domain containing 1 (Magi1) via recognition 3' UTR of these two genes by a dual luciferase reporter gene assay in vitro. However, this effect could be compromised by HN10 infection or the ectopic over-expression of the putative miR-24 targeting regions in L1 and L3 fragments of HN10. Taken together, we examined and proposed a novel regulatory competitive mechanism between transcripts of NDRV and Muscovy ducklings for miRNA. These findings may advance the understanding of the molecular pathogenesis of NDRV in Muscovy ducklings, and help provide the potential targets for vaccine and drug development against NDRV.
Collapse
Affiliation(s)
- Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
10
|
Yun T, Hua J, Ye W, Chen L, Ni Z, Zhu Y, Zhang C. Development and Evaluation of a Monoclonal Antibody-Based Blocking Enzyme-Linked Immunosorbent Assay for the Detection of Antibodies against Novel Duck Reovirus in Waterfowl Species. Microbiol Spectr 2022; 10:e0258122. [PMID: 36445088 PMCID: PMC9769907 DOI: 10.1128/spectrum.02581-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
The novel duck reovirus (NDRV) is an emerging pathogen that causes disease in various waterfowl species. Since the outbreak, it has caused huge economic losses to the duck industry in China. A rapid, reliable, and high-throughput method is required for epidemiological investigation and evaluation of vaccine immunogenicity. A good first step would be establishing an enzyme-linked immunosorbent assay (ELISA) that could detect NDRV antibodies in different breeds of ducks and geese from the serum and egg yolk. This study used a recombinant NDRV σB protein and a corresponding horseradish peroxidase (HRP)-labeled monoclonal antibody to develop a blocking ELISA (B-ELISA). The cutoff value of the B-ELISA was 37.01%. A total of 212 serum samples were tested by the B-ELISA, and the virus neutralization test (VNT) was the gold standard test. The sensitivity and specificity of the B-ELISA were 92.17% (106/115) and 97.94% (95/97), respectively. The agreement rates between the B-ELISA and VNT were 94.81% (kappa value, 0.896). The B-ELISA could specifically recognize anti-NDRV sera without cross-reacting with other positive serums for other major diseases in ducks and geese. The inter- and intra-assay coefficients of variation (CVs) of the B-ELISA and VNT assays were acceptable. In conclusion, the novel B-ELISA could be a rapid, simple, safe, and economically attractive alternative to the VNT in assessing duck flocks' immunity status and in epidemiological surveillance in multiple waterfowl species. IMPORTANCE NDRV disease is a new epidemic disease in waterfowl that first appeared in China. Compared with the classical DRV (CDRV), NDRV is associated with more severe symptoms, a higher mortality rate, and a broader host range. NDRV has become the prevalent genotype in China. At present, there are no commercially available diagnostic products for the NDRV disease. VNT, as the gold standard serologic test, is not only time-consuming and laborious, but also has high requirements for facilities and equipment, which is not suitable for clinical application. Conventional ELISA requires specific antispecies conjugates that are not currently available. B-ELISA not only has the advantage of higher analysis specificity, but also can be used to test specific antibodies against different waterfowl species, because no species-specific conjugates are required in such detection. Therefore, it is necessary to establish a B-ELISA for the detection of antibodies against NDRV in waterfowl species.
Collapse
Affiliation(s)
- Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhu Y, Zhang C. Intergrated Transcriptomic and Proteomic Analysis Revealed the Differential Responses to Novel Duck Reovirus Infection in the Bursa of Fabricius of Cairna moschata. Viruses 2022; 14:v14081615. [PMID: 35893682 PMCID: PMC9332436 DOI: 10.3390/v14081615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
The bursa of Fabricius is an immunologically organ against the invasion of duck reovirus (DRV), which is a fatal bird virus belonging to the Reoviridae family. However, responses of the bursa of Fabricius of Cairna moschata to novel DRV (NDRV) infection are largely unknown. Transcriptomes and proteomes of the samples from control and two NDRV strain (HN10 and JDm10) with different virulence were analyzed. Differentially expressed genes and differential accumulated proteins were enriched in the serine protease system and innate immune response clusters. Most of the immune-related genes were up-regulated under both JDm10/HN10 infections. However, the immune-related proteins were only accumulated under HN10 infection. For the serine protease system, coagulation factor IX, three chains of fibrinogen, and complements C8, C5, and C2s were significantly up-regulated by the HN10 infection, suggesting that the serine protease-mediated immune system might be involved in the resistance to NDRV infection. For the innate and adaptive immune system, RIG-I, MDA5, MAPK20, and IRF3 were significantly up-regulated, indicating their important roles against invaded virus. TLR-3 and IKBKB were only up-regulated in the liver cells, MAPK20 was only up-regulated in the bursa of Fabricius cells, and IRAK2 was only up-regulated in the spleen samples. Coagulation factor IX was increased in the bursa of Fabricius, not in the liver and spleen samples. The data provides a detailed resource for studying the proteins participating in the resistances of the bursa of Fabricius of duck to NDRV infections.
Collapse
Affiliation(s)
- Tao Yun
- Correspondence: (T.Y.); (C.Z.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Yang Y, Li L, Liu X, Jiang M, Zhao J, Li X, Zhao C, Yi H, Liu S, Li N. Quantitative Proteomic Analysis of Duck Embryo Fibroblasts Infected With Novel Duck Reovirus. Front Vet Sci 2020; 7:577370. [PMID: 33344524 PMCID: PMC7738351 DOI: 10.3389/fvets.2020.577370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
The novel duck reovirus (NDRV) can cause hemorrhage and necrosis on the spleen of Pekin ducks; this disease has resulted in great economic losses to the duck industry. However, the molecular pathogenesis of NDRV remains poorly understood. In the current study, the quantitative proteomic analysis of NDRV-infected duck embryo fibroblasts was performed to explore the cellular protein changes in response to viral infection through iTRAQ coupled with the liquid chromatography (LC)-tandem mass spectrometry (MS/MS) method. A total of 6,137 proteins were obtained in cell samples at 24 h post-infection. Of these, 179 differentially expressed proteins (DEPs) were identified (cutoff set to 1.5-fold change), including 89 upregulated and 90 downregulated proteins. Bioinformatics analysis showed that DEPs can be divided into the cellular component, molecular function, and biological process; they were mainly involved in signal transduction, infectious diseases, cell growth and death, and the immune system. The subcellular localization of most proteins was in the cytoplasm. Importantly, the expressions of signal transducer and activator of transcription 1 (STAT1) and various interferon-stimulated genes (ISGs) were upregulated after NDRV infection. The mRNA transcripts of some ISGs were consistent with proteomic data, showing an increased trend. Results of our study suggested that NDRV infection can elicit strong expression changes of cellular proteins and activate the expression of ISGs from the point of quantitative proteomic analysis. The study provides a new insight into the understanding of NDRV pathogenesis.
Collapse
Affiliation(s)
- Yudong Yang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Lin Li
- Taian City Central Hospital, Taian, China
| | - Xingpo Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | | | - Jun Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cui Zhao
- Taian City Animal Husbandry and Veterinary Service Center, Taian, China
| | - Hui Yi
- Taian City Animal Husbandry and Veterinary Service Center, Taian, China
| | - Sidang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
13
|
Yun T, Hua J, Ye W, Ni Z, Chen L, Zhang C. The phosphoproteomic responses of duck (Cairna moschata) to classical/novel duck reovirus infections in the spleen tissue. Sci Rep 2020; 10:15315. [PMID: 32943705 PMCID: PMC7499213 DOI: 10.1038/s41598-020-72311-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Duck reovirus (DRV) is a fatal member of the genus Orthoreovirus in the family Reoviridae. The disease caused by DRV leads to huge economic losses to the duck industry. Post-translational modification is an efficient strategy to enhance the immune responses to virus infection. However, the roles of protein phosphorylation in the responses of ducklings to Classic/Novel DRV (C/NDRV) infections are largely unknown. Using a high-resolution LC–MS/MS integrated to highly sensitive immune-affinity antibody method, phosphoproteomes of Cairna moschata spleen tissues under the C/NDRV infections were analyzed, producing a total of 8,504 phosphorylation sites on 2,853 proteins. After normalization with proteomic data, 392 sites on 288 proteins and 484 sites on 342 proteins were significantly changed under the C/NDRV infections, respectively. To characterize the differentially phosphorylated proteins (DPPs), a systematic bioinformatics analyses including Gene Ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation were performed. Two important serine protease system-related proteins, coagulation factor X and fibrinogen α-chain, were identified as phosphorylated proteins, suggesting an involvement of blood coagulation under the C/NDRV infections. Furthermore, 16 proteins involving the intracellular signaling pathways of pattern-recognition receptors were identified as phosphorylated proteins. Changes in the phosphorylation levels of MyD88, NF-κB, RIP1, MDA5 and IRF7 suggested a crucial role of protein phosphorylation in host immune responses of C. moschata. Our study provides new insights into the responses of ducklings to the C/NDRV infections at PTM level.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
14
|
Zhang S, Li W, Liu X, Li X, Gao B, Diao Y, Tang Y. A TaqMan-based real-time PCR assay for specific detection of novel duck reovirus in China. BMC Vet Res 2020; 16:306. [PMID: 32843030 PMCID: PMC7445919 DOI: 10.1186/s12917-020-02523-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In China, Newly emerging duck reovirus (NDRV) variants have been causing major disease problems in cherry valley ducks. NDRV has the potential to cause high morbidity and 5-50% mortality rates. Severe hemorrhagic-necrosis in the liver and spleen were commonly seen in NDRV affected ducks. The availability of upgraded methods for rapid diagnosis of newly emerging DRV variants is crucial for successful DRV infection control and prevention. RESULTS In this study, we present a TaqMan-based real-time PCR assay (RT-qPCR) for the detection of NDRV infection. Using the conserved regions within the NDRV genome, we designed the specific primers and probe. The lower limit of detection for NDRV infection was 10 copies/μL (Ct values: 38.3) after the optimization of the RT-qPCR conditions. By cross-checking with other duck viral pathogens, no cross-reactivity was observed confirming the assay was highly specific for the detection of NDRV. Reproducibility of the RT-qPCR was confirmed by intra- and inter-assay variability was less than 2.91%(Intra-assay variability of Ct values: 0.07-1.48%; Interassay variability of Ct values: 0.49-2.91%). This RT-qPCR and conventional PCR (cPCR) detected one hundred and twenty samples of NDRV infection from different regions. The result shows that the positive rates were 94.17 and 84.17% respectively. The detection rate of RT-qPCR rapid detection assay was 10% higher than that of the cPCR method. CONCLUSION This research developed a highly sensitive, specific, reproducible and versatile of RT-qPCR for quantitatively detecting NDRV. It can be used to study the pathogenesis and epidemiology investigation of NDRV.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Weihua Li
- College of Animal medical, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Xiaodong Liu
- Qingdao Yibang Bioengineering Co. Ltd., Qingdao, 266000, Shandong, China
| | - Xudong Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Bin Gao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong, China. .,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong, China.
| |
Collapse
|
15
|
Yang Y, Gaspard G, McMullen N, Duncan R. Polycistronic Genome Segment Evolution and Gain and Loss of FAST Protein Function during Fusogenic Orthoreovirus Speciation. Viruses 2020; 12:v12070702. [PMID: 32610593 PMCID: PMC7412057 DOI: 10.3390/v12070702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
The Reoviridae family is the only non-enveloped virus family with members that use syncytium formation to promote cell–cell virus transmission. Syncytiogenesis is mediated by a fusion-associated small transmembrane (FAST) protein, a novel family of viral membrane fusion proteins. Previous evidence suggested the fusogenic reoviruses arose from an ancestral non-fusogenic virus, with the preponderance of fusogenic species suggesting positive evolutionary pressure to acquire and maintain the fusion phenotype. New phylogenetic analyses that included the atypical waterfowl subgroup of avian reoviruses and recently identified new orthoreovirus species indicate a more complex relationship between reovirus speciation and fusogenic capacity, with numerous predicted internal indels and 5’-terminal extensions driving the evolution of the orthoreovirus’ polycistronic genome segments and their encoded FAST and fiber proteins. These inferred recombination events generated bi- and tricistronic genome segments with diverse gene constellations, they occurred pre- and post-orthoreovirus speciation, and they directly contributed to the evolution of the four extant orthoreovirus FAST proteins by driving both the gain and loss of fusion capability. We further show that two distinct post-speciation genetic events led to the loss of fusion in the waterfowl isolates of avian reovirus, a recombination event that replaced the p10 FAST protein with a heterologous, non-fusogenic protein and point substitutions in a conserved motif that destroyed the p10 assembly into multimeric fusion platforms.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Gerard Gaspard
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Nichole McMullen
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (Y.Y.); (G.G.); (N.M.)
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
16
|
Wang S, Lin F, Cheng X, Wang J, Zhu X, Xiao S, Zheng M, Huang M, Chen S, Chen S. The genomic constellation of a novel duck reovirus strain associated with hemorrhagic necrotizing hepatitis and splenitis in Muscovy ducklings in Fujian, China. Mol Cell Probes 2020; 53:101604. [PMID: 32502523 DOI: 10.1016/j.mcp.2020.101604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Abstract
The complete sequence of a reovirus, strain NP03 associated with necrotic focus formation in the liver and spleen of Muscovy ducklings in Fujian Province, China in 2009, was determined and compared with sequences of other waterfowl and chicken-origin avian reoviruses (ARVs). Sequencing of the complete genomes of strain NP03 showed that they consisted of 23,418 bp and were divided into 10 segments, ranging from 1191 bp (S4) to 3959 bp (L1) in length, and all segments contained conserved sequences in the 5' non-coding region (GCUUUU) and 3' non-coding region (UCAUC). Pairwise sequence comparisons demonstrated that NP03 strain showed the highest similarity with novel waterfowl origin reoviruses (WRVs). The genome analysis revealed that the S1 segment of novel WRV is a tricistronic gene, encoding the overlapping open reading frames (ORFs) for p10, p18, and σC, similar to the ARV S1 gene, but distinct from classical WRV S4 genome segment, which contained two overlapping ORFs encoding p10 and σC. Phylogenetic analyses of the nucleotide sequences of all 10 segments revealed that NP03 strain was clustered together with other novel WRVs and were distinct from classical WRVs and chicken-origin ARVs. The analyses also showed possible intra-segmental reassortment events in the segments encoding λA, λB, μB, μNS, σA, and σNS between novel and classical WRVs. Potential recombination events detection in segment L1 suggests that NP03 strain may be recombinants of novel WRVs. Based on our genetic analyses, multiple reassortment events, intra-segmental recombination, and accumulation of point mutations have possibly contributed to the emergence of this novel genotype of WRV, identified in China.
Collapse
Affiliation(s)
- Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Jinxiang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| |
Collapse
|
17
|
Zheng M, Chen X, Wang S, Wang J, Huang M, Xiao S, Cheng X, Chen S, Chen X, Lin F, Chen S. A TaqMan-MGB real-time RT-PCR assay with an internal amplification control for rapid detection of Muscovy duck reovirus. Mol Cell Probes 2020; 52:101575. [PMID: 32305339 DOI: 10.1016/j.mcp.2020.101575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 10/24/2022]
Abstract
A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for the detection of Muscovy duck reovirus (MDRV) RNA in clinical samples is described. The assay is based on TaqMan-MGB technology, consisting of two primers and one probe labeled with the reporter dye 6-carboxyfluorescein that binds selectively to the sigma B-protein gene of MDRV. This technique also includes an Internal Positive Control (IPC). The real-time RT-PCR assay was able to detect MDRVs, whereas other common waterfowl-origin viral pathogens were not recognised by the established oligonucleotide set, thus showing that the test was specific for MDRV. The sensitivity of the assay was 2.83 × 101 copies/μL and was 100 times higher than that of the conventional RT-PCR. The variation coefficients of intra-assay and inter-assay were less than 1.5% which verified sufficient repeatability of this assay. The use of β-actin mRNA as an IPC in order not to reduce the efficiency of the assay was adopted. The detection for 100 clinical samples showed that the positive rate of the established TaqMan-MGB real-time RT-PCR method was 87% (87/100), while the positive rate of the conventional RT-PCR was 83% (83/100), with the coincidence rate was 97.14%. Sensitivity and positive rate for clinical samples of TaqMan fluorescent quantitative RT-PCR were higher than conventional RT-PCR. The high specificity, sensitivity, and rapidity TaqMan-MGB real-time RT-PCR assay with the use of IPC to monitor for false negative results can make this method suitable for the pathogenic surveillance and epidemiological investigation of MDRV infection.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Jingxiang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China
| | - Xiaoli Chen
- Agricultural and Rural Bureau, Sanming, 365000, China
| | - Fengqianq Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| |
Collapse
|
18
|
Characterization of Monoclonal Antibodies against σA Protein and Cross-Reactive Epitope Identification and Application for Detection of Duck and Chicken Reovirus Infections. Pathogens 2019; 8:pathogens8030140. [PMID: 31500272 PMCID: PMC6789564 DOI: 10.3390/pathogens8030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022] Open
Abstract
Although σA is an important major core protein of duck reovirus (DRV), the B-cell epitopes of this protein remain unknown to reseacrhers. Six monoclonal antibodies (MAbs) (1A7, 3F4, 5D2, 4E2, 3C7, and 2B7) were developed by using prokaryotic-expressed recombinant His-σA protein. Five of six MAbs (1A7, 3F4, 4E2, 3C7, and 2B7) reacted with His-σA protein in a conformation-independent manner, while 5D2 reacted with σA in a conformation-dependent manner. Immunofluorescence assays showed that the MAbs could specifically bind to DRV infected BHK-21 cells. The MAbs were delineated as three groups by a competitive binding assay. By using 12-mer peptide phage display and mutagenesis, MAb 4E2 was identified to recognize minimal epitope 56EAPYPG61 and MAb 1A7 recognize 341WVV/MAGLI/V347, residues 341V/M and 347I/V are replaceable. Dot blotting and sequence analysis confirmed that EAPYPG and WVV/MAGLI/V are cross-reactive epitopes in both DRV and avian reovirus (ARV). An enzyme-linked immunosorbent assay (ELISA) based on two expressed EAPYPG and WVVAGLI as antigen demonstrated its diagnostic potential by specific reacting with serum samples from DRV- or ARV-infected birds. Based on these observations, an epitope-based ELISA could be potentially used for DRV or ARV surveillance. These findings provide insights into the organization of epitopes on σA protein that might be valuable for the development of epitope-based serological diagnostic tests for DRV and ARV infection.
Collapse
|
19
|
Abstract
With no limiting membrane surrounding virions, nonenveloped viruses have no need for membrane fusion to gain access to intracellular replication compartments. Consequently, nonenveloped viruses do not encode membrane fusion proteins. The only exception to this dogma is the fusogenic reoviruses that encode fusion-associated small transmembrane (FAST) proteins that induce syncytium formation. FAST proteins are the smallest viral membrane fusion proteins and, unlike their enveloped virus counterparts, are nonstructural proteins that evolved specifically to induce cell-to-cell, not virus-cell, membrane fusion. This distinct evolutionary imperative is reflected in structural and functional features that distinguish this singular family of viral fusogens from all other protein fusogens. These rudimentary fusogens comprise specific combinations of different membrane effector motifs assembled into small, modular membrane fusogens. FAST proteins offer a minimalist model to better understand the ubiquitous process of protein-mediated membrane fusion and to reveal novel mechanisms of nonenveloped virus dissemination that contribute to virulence.
Collapse
Affiliation(s)
- Roy Duncan
- Department of Microbiology & Immunology, Department of Biochemistry & Molecular Biology, and Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4R2;
| |
Collapse
|
20
|
Wang Q, Huang WR, Chih WY, Chuang KP, Chang CD, Wu Y, Huang Y, Liu HJ. Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis. Vet Microbiol 2019; 235:151-163. [PMID: 31282373 DOI: 10.1016/j.vetmic.2019.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 01/22/2023]
Abstract
This study demonstrates that the Muscovy duck reovirus (MDRV) p10.8 protein is one of many viral non-structural proteins that induces both cell cycle arrest and apoptosis. The p10.8 but not σC is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm. Our results reveal that p10.8-induced apoptosis in cultured cells occurs by the nucleoporin Tpr/p53-dependent and Fas/caspase 8-mediated pathways. Furthermore, a compelling finding from this study is that the p10.8 and σC proteins of MDRV facilitate CDK2 and CDK4 degradation via the ubiquitin-proteasome pathway. We found that depletion of Cdc20 reversed the p10.8- and σC- mediated CDK4 degradation and p10.8-induced apoptosis, suggesting that Cdc20 plays a critical role in modulating p10.8-mediated cell cycle and apoptosis. Furthermore, we found that depletion of chaperonin-containing tailless complex polypeptide 1 (CCT) 2 and CCT5 reduced the level of Cdc20 and reversed the p10.8- and σC-mediated CDK4 degradation and p10.8-induced apoptosis, indicating that molecular chaperone CCT2 and CCT5 are required for stabilization of Ccd20 for mediating both cell cycle arrest and apoptosis. This study provides mechanistic insights into how p10.8 induces both cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wan-Yi Chih
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Ching-Dong Chang
- Department of Veterinary medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ph. D Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
21
|
Cao Y, Sun M, Wang J, Hu X, He W, Su J. Phenotypic and genetic characterisation of an emerging reovirus from Pekin ducks in China. Sci Rep 2019; 9:7784. [PMID: 31123280 PMCID: PMC6533297 DOI: 10.1038/s41598-019-44178-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/10/2019] [Indexed: 11/09/2022] Open
Abstract
In June 2016, a disease characterised by intestinal haemorrhage with a mortality rate of approximately 5% was observed in a duck farm in Shandong province, China. Here, we report the isolation and characterisation of a reovirus from duck tissue samples by inoculating duck embryos and duck embryo fibroblasts (DEF). The isolate replicated in DEF and Vero cells and formed syncytia. Sequence analysis revealed that the viral genome was 23,434 nt in length with typical structure organization, consisting of 10 dsRNA segments ranging from 3998 nt (L1) to 1190 nt (S4) in size, and was genetically distinct from previous Chinese duck-origin reoviruses. Phylogenetic analyses showed that the isolate was most closely related to the recently reported duck reovirus D2533/6/1-10 isolated in Germany, forming a monophyletic branch different from known reference avian reoviruses. Experimental infection results indicated that the isolate replicated transiently in ducklings and was shed via faeces. Infection with the isolate caused epithelial cell damage and lymphocyte apoptotic death in the bursa of Fabricius, which may result in immunosuppression in infected ducklings. The role of the isolate in current duck haemorrhage enteritis remains to be determined, but its damage to the bursa warrants further investigation of the duck immune response.
Collapse
Affiliation(s)
- Yanxin Cao
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Mengxu Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Weiyong He
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis, the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Zhang XL, Shao JW, Li XW, Mei MM, Guo JY, Li WF, Huang WJ, Chi SH, Yuan S, Li ZL, Huang SJ. Molecular characterization of two novel reoviruses isolated from Muscovy ducklings in Guangdong, China. BMC Vet Res 2019; 15:143. [PMID: 31077188 PMCID: PMC6511161 DOI: 10.1186/s12917-019-1877-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/22/2019] [Indexed: 11/15/2022] Open
Abstract
Background Novel Muscovy duck reovirus (N-MDRV), emerged in southeast China in 2002, which can infect a wide range of waterfowl and induces clinical signs and cytopathic effects that are distinct from those of classical MDRV, and continues to cause high morbidity and 5–50% mortality in ducklings. The present study aimed to investigate the characteristics of two novel reoviruses isolated from Muscovy ducklings in Guangdong, China. Results Two novel MDRV strains, designated as MDRV-SH12 and MDRV-DH13, were isolated from two diseased Muscovy ducklings in Guangdong province, China in June 2012 and September 2013, respectively. Sequencing of the complete genomes of these two viruses showed that they consisted of 23,418 bp and were divided into 10 segments, ranging from 1191 bp (S4) to 3959 bp (L1) in length, and all segments contained conserved sequences in the 5′ non-coding region (GCUUUU) and 3′ non-coding region (UCAUC). Pairwise sequence comparisons demonstrated that MDRV-SH12 and MDRV-DH13 showed the highest similarity with novel MDRVs. Phylogenetic analyses of the nucleotide sequences of all 10 segments revealed that MDRV-SH12 and MDRV-DH13 were clustered together with other novel waterfowl-origin reoviruses and were distinct from classical waterfowl-origin and chicken-origin reoviruses. The analyses also showed possible genetic re-assortment events in segment M2 between waterfowl-origin and chicken-origin reoviruses and the segments encoding λA, μA, μNS, σA, and σNS between classical and novel waterfowl-origin reoviruses. Potential recombination events detection in segment S2 suggests that MDRV-SH12 and MDRV-DH13 may be recombinants of classical and novel WRVs. Conclusions The results presented in this study, the full genomic data for two novel MDRV strains, will improve our understanding of the evolutionary relationships among the waterfowl-origin reoviruses circulating in China, and may aid in the development of more effective vaccines against various waterfowl-origin reoviruses. Electronic supplementary material The online version of this article (10.1186/s12917-019-1877-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Lian Zhang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jian-Wei Shao
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.,Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiao-Wen Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Min-Min Mei
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jin-Yue Guo
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China.,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Wen-Feng Li
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Wen-Jing Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shi-Hong Chi
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhi-Li Li
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China. .,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Shu-Jian Huang
- Key Laboratory for Preventive Research of Emerging Animal Diseases, Foshan University, Foshan, 528231, Guangdong, China. .,College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| |
Collapse
|
23
|
Yun T, Hua J, Ye W, Yu B, Ni Z, Chen L, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in the spleen tissue of Cairna moschata. J Proteomics 2018; 193:162-172. [PMID: 30339941 DOI: 10.1016/j.jprot.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Duck reovirus (DRV), a member of the genus Orthoreovirus in the family Reoviridae, was first isolated from Muscovy ducks. The disease associated with DRV causes great economic losses to the duck industry. However, the responses of duck (Cairna moschata) to the classical/novel DRV (C/NDRV) infections are largely unknown. To reveal the relationship of pathogenesis and immune response, the proteomes of duck spleen cells under the control and C/NDRV infections were compared. In total, 5986 proteins were identified, of which 5389 proteins were quantified. The different accumulated proteins (DAPs) under the C/NDRV infections showed displayed various biological functions and diverse subcellular localizations. The proteins related to the serine protease system were siginificantly changed, suggesting that the activated serine protease system may play an important role under the C/NDRV infections. Furthermore, the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues were compared. Only a small number of common DAPs were identified in both liver and spleen tissues, suggesting diversified pattern involved in the responses to the C/NRDV infections. However, the changes in the proteins involved in the serine protease systems were similar in both liver and spleen cells. Our data may give a comprehensive resource for investigating the responses to C/NDRV infections in ducks. SIGNIFICANCE: A newly developed MS/MS-based method involving isotopomer labels and 'tandem mass' has been applied to protein accurate quantification in current years. However, no studies on the responses of duck (Cairna moschata) spleen tissue to the classical/novel DRV (C/NDRV) infections have been performed. As a continued study of our previous report on the responses of duck liver tissue to the C/NDRV infections, the current study further compared the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues. Our results will provide an opportunity to reveal the relationship of pathogenesis and immune response and basic information on the pathogenicity of C/NDRV in ducks.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
24
|
Complete genome sequence of a novel avian orthoreovirus isolated from gosling, China. Arch Virol 2018; 163:3463-3466. [PMID: 30209584 DOI: 10.1007/s00705-018-4035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/02/2018] [Indexed: 01/25/2023]
Abstract
Avian orthoreovirus (ARV) has been considered as a significant pathogen causing great infectious diseases to the avian, like broiler and waterfowl. The genome of this novel ARV(Reo/SDPY/Goose) was completely sequenced by next-generation sequencing. The complete genome was found to be 23517 bp in length with 10 segments. Although the Reo/SDPY/Goose was isolated from the gosling, it shares great similarity, no matter which segment within the genome, with those published as avian-origin reovirus. Genomic analysis revealed that this virus was distinct from published ARV strains and met criteria to become a novel ARV strain.
Collapse
|
25
|
Yun T, Hua J, Ye W, Yu B, Chen L, Ni Z, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in Cairna moschata. Sci Rep 2018; 8:10079. [PMID: 29973707 PMCID: PMC6031628 DOI: 10.1038/s41598-018-28499-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Duck reovirus (DRV) is an typical aquatic bird pathogen belonging to the Orthoreovirus genus of the Reoviridae family. Reovirus causes huge economic losses to the duck industry. Although DRV has been identified and isolated long ago, the responses of Cairna moschata to classical/novel duck reovirus (CDRV/NDRV) infections are largely unknown. To investigate the relationship of pathogenesis and immune response, proteomes of C. moschata liver cells under the C/NDRV infections were analyzed, respectively. In total, 5571 proteins were identified, among which 5015 proteins were quantified. The differential expressed proteins (DEPs) between the control and infected liver cells displayed diverse biological functions and subcellular localizations. Among the DEPs, most of the metabolism-related proteins were down-regulated, suggesting a decrease in the basal metabolisms under C/NDRV infections. Several important factors in the complement, coagulation and fibrinolytic systems were significantly up-regulated by the C/NDRV infections, indicating that the serine protease-mediated innate immune system might play roles in the responses to the C/NDRV infections. Moreover, a number of molecular chaperones were identified, and no significantly changes in their abundances were observed in the liver cells. Our data may give a comprehensive resource for investigating the regulation mechanism involved in the responses of C. moschata to the C/NDRV infections.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
26
|
Wu Q, Ding M, Li C, Liu G, Chen Z. Construction and characterization of an infectious molecular clone of novel duck reovirus. J Gen Virol 2018; 99:449-456. [PMID: 29485029 DOI: 10.1099/jgv.0.001036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Novel duck reovirus (NDRV), the prototype strain of the species Avian orthoreovirus (ARV), is currently an infectious agent for ducks. Studies on NDRV replication and pathogenesis have been hampered by the lack of an available reverse-genetics system. In this study, a plasmid-based reverse-genetics system that is free of helper viruses has been developed. In this system, 10 full-length gene segments of wild-type NDRV TH11 strain are transfected into BSR-T7/5 cells that express bacteriophage T7 RNA polymerase. Production of infectious virus was shown by the inoculation of cell lysate derived from transfected cells into 10-day-old duck embryos. The in vivo growth kinetics and infectivity of the recombinant strains were identical to those of the wild-type strain. These viruses grew well and were genetically stable both in vitro and in vivo. Altogether, these results show the successful production of an infectious clone for NDRV. The infectious clone reported will be further used to elucidate the mechanisms of host tropism, viral replication and pathogenesis, as well as immunological changes induced by NDRV.
Collapse
Affiliation(s)
- Qiaomei Wu
- National Engineering Research Center for Poultry, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai 200241, PR China
| | - Mingyang Ding
- National Engineering Research Center for Poultry, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai 200241, PR China
| | - Chuanfeng Li
- National Engineering Research Center for Poultry, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai 200241, PR China
| | - Guangqing Liu
- National Engineering Research Center for Poultry, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai 200241, PR China
| | - Zongyan Chen
- National Engineering Research Center for Poultry, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai 200241, PR China
| |
Collapse
|
27
|
Noh JY, Lee DH, Lim TH, Lee JH, Day JM, Song CS. Isolation and genomic characterization of a novel avian orthoreovirus strain in Korea, 2014. Arch Virol 2018; 163:1307-1316. [PMID: 29392490 DOI: 10.1007/s00705-017-3667-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/28/2022]
Abstract
In this study, we isolated a novel avian reovirus (ARV) strain, K738/14, from a broiler chicken with viral arthritis in South Korea. Genome sequence comparisons showed relatively low nucleotide identity with previously identified ARV strains. Phylogenetic analyses suggested multiple reassortment events between reovirus strain S1133 and reoviruses of Hungarian, Chinese, and US origin had occurred. In addition, recombination analyses showed evidence of intra-segmental recombination in the M2 and S2 genes. Based on our genetic analyses, multiple reassortment events, intra-segmental recombination, and accumulation of point mutations have possibly contributed to the emergence of this novel genotype of ARV, identified in Korea.
Collapse
Affiliation(s)
- Jin-Yong Noh
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong-Hun Lee
- US National Poultry Research Center, US Department of Agriculture, Athens, GA, 30605, USA
| | - Tae-Hyun Lim
- Cherrybro Inc., 1555 Jungbu-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungbuk, 28127, Republic of Korea
| | - Ji-Ho Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - J Michael Day
- US National Poultry Research Center, US Department of Agriculture, Athens, GA, 30605, USA
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
28
|
Wang Q, Liu M, Yuan X, Li C, Chen S, Zhuang Y, Wu Y, Huang Y, Wu B. Transcriptomic analysis reveals the molecular mechanism of apoptosis induced by Muscovy duck reovirus. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0567-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Wu Y, Cui L, Zhu E, Zhou W, Wang Q, Wu X, Wu B, Huang Y, Liu HJ. Muscovy duck reovirus σNS protein triggers autophagy enhancing virus replication. Virol J 2017; 14:53. [PMID: 28288679 PMCID: PMC5348909 DOI: 10.1186/s12985-017-0722-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/06/2017] [Indexed: 01/20/2023] Open
Abstract
Background Muscovy duck reovirus (MDRV) causes high morbidity and mortality in Muscovy ducklings at 10 days old and can persist in an infected flock until the ducklings of 6 weeks old. It shares common physicochemical properties with avian reovirus (ARV) and differs in coding assignment and pathogenicity. The ARV p17 protein has been shown to trigger autophagy via activation multiple signaling pathways, which benefits virus replication. Since MDRV lacks the p17 protein, whether and how MDRV induces autophagy remains unknown. The aim of this study was to explore whether MDRV induces autophagy and which viral proteins are involved in MDRV-induced autophagy. Methods The autophagosome-like structures in MDRV-infected cells was observed under transmission electron microscopy. MDRV-induced autophagy was examined by analyzing the LC3-II level and phosphorylated form of mammalian target of rapamycin (mTOR) by Western blot assays. The effects of 3-methyladenine, rapamycin, chloroquine on viral yields were measured with quantitative(q) real-time reverse transcription (RT)-polymerase chain reaction (PCR) and 50% tissue culture infective dose (TCID50) assays, respectively. Additionally, to determine which viral protein is responsible for MDRV-induced autophagy, both p10.8- and σNS-encoding genes of MDRV were cloned into the pCI-neo-flag vector and transfected into DF-1 cells for detection of LC3-II. Results The typical double-membrane vesicles containing cytoplasmic inclusions were visible in MDRV-infected immortalized chicken embryo fibroblast (DF-1) cells under transmission electron microscopy. Both primary Muscovy duck embryo fibroblasts (MDEF) and DF-1 cells infected with MDRV exhibited a significant increased levels of LC3-II accompanied with downregulation of phosphorylated form of mTOR, further confirming that MDRV is capable of inducing autophagy. Autophagy could be suppressed by 3-methylademine and induced by rapamycin and chloroquine. Furthermore, we found that σNS induces an increased levels of LC3-II, suggesting that the MDRV σNS protein is one of viral proteins involved in induction of autophagy. Both qRT-PCR and TCID50 assays showed that virus yield was increased in rapamycin treated DF-1 cells following MDRV infection. Conversely, when infected cells were pretreated with chloroquine, virus yield was decreased. Conclusions The MDRV σNS nonstructural protein is responsible for MDRV-induced autophagy and benefits virus replication.
Collapse
Affiliation(s)
- Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Longping Cui
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Erpeng Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Wuduo Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Xiaoping Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Baocheng Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health (Fujian Agricultural and Forestry University), Fuzhou, 350002, People's Republic of China
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan. .,Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
30
|
Bi Z, Zhu Y, Chen Z, Li C, Wang Y, Wang G, Liu G. Induction of a robust immunity response against novel duck reovirus in ducklings using a subunit vaccine of sigma C protein. Sci Rep 2016; 6:39092. [PMID: 27974824 PMCID: PMC5156932 DOI: 10.1038/srep39092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Novel duck reovirus (NDRV) disease emerged in China in 2011 and continues to cause high morbidity and about 5.0 to 50% mortality in ducklings. Currently there are no approved vaccines for the virus. This study aimed to assess the efficacy of a new vaccine created from the baculovirus and sigma C gene against NDRV. In this study, a recombinant baculovirus containing the sigma C gene was constructed, and the purified protein was used as a vaccine candidate in ducklings. The efficacy of sigma C vaccine was estimated according to humoral immune responses, cellular immune response and protection against NDRV challenge. The results showed that sigma C was highly expressed in Sf9 cells. Robust humoral and cellular immune responses were induced in all ducklings immunized with the recombinant sigma C protein. Moreover, 100% protection against lethal challenge with NDRV TH11 strain was observed. Summary, the recombinant sigma C protein could be utilized as a good candidate against NDRV infection.
Collapse
Affiliation(s)
- Zhuangli Bi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingqi Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongyan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chuanfeng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
31
|
A duck reovirus variant with a unique deletion in the sigma C gene exhibiting high pathogenicity in Pekin ducklings. Virus Res 2016; 215:37-41. [DOI: 10.1016/j.virusres.2016.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/19/2022]
|
32
|
Kugler R, Dandár E, Fehér E, Jakab F, Mató T, Palya V, Bányai K, Farkas SL. Phylogenetic analysis of a novel reassortant orthoreovirus strain detected in partridge (Perdix perdix). Virus Res 2015; 215:99-103. [PMID: 26597720 DOI: 10.1016/j.virusres.2015.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022]
Abstract
Avian orthoreoviruses cause various diseases in wild birds and domesticated poultry. In this study we report the detection and genomic characterization of a partridge (Perdix perdix) origin reovirus strain, D1007/2008. The virus was isolated on cell culture from acute pneumonia and infra-orbital sinusitis. The 23,497 nucleotide long genome sequence was obtained by combined use of semiconductor and capillary sequencing. Sequence and phylogenetic analyses showed that the partridge reovirus strain was related to orthoreoviruses of gallinaceous birds. In fact, five (λB, λC, μB, σC, σNS) and one (σB) out of 10 genes clustered definitely with turkey or chicken origin orthoreoviruses, respectively, whereas in the λA, μA, μNS and σA phylogenies a more distant genetic relationship was observed. Our data indicate that the identified reovirus strain is composed of a mixture of chicken and turkey orthoreovirus related alleles. This finding implies that partridges may serve as natural reservoirs for orthoreoviruses of domesticated poultry.
Collapse
Affiliation(s)
- Renáta Kugler
- Institute for Veterinary Medical Research, Centre of Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Eszter Dandár
- United Szent István és Szent László Hospital-Clinic, Nagyvárad tér 1, Budapest 1097, Hungary
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre of Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| | - Ferenc Jakab
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, Pécs 7642, Hungary
| | - Tamás Mató
- Ceva-Phylaxia Veterinary Biologicals Co. LTD, Szállás u. 5, Budapest 1107, Hungary
| | - Vilmos Palya
- Ceva-Phylaxia Veterinary Biologicals Co. LTD, Szállás u. 5, Budapest 1107, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre of Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary.
| | - Szilvia L Farkas
- Institute for Veterinary Medical Research, Centre of Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest 1143, Hungary
| |
Collapse
|
33
|
Yun T, Chen H, Yu B, Zhang C, Chen L, Ni Z, Hua J, Ye W. Development and application of an indirect ELISA for the detection of antibodies to novel duck reovirus. J Virol Methods 2015; 220:55-9. [PMID: 25907470 DOI: 10.1016/j.jviromet.2015.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 11/19/2022]
Abstract
A novel duck reovirus (N-DRV) disease emerged in China in 2000 and it has become an epidemic genotype. A test for detection of virus-specific antibodies in serum samples would be useful for epidemiological investigations. Currently, Currently, serological assays for N-DRV diagnosis are not available. A test for detection of virus-specific antibodies in serum samples would be useful for epidemiological investigations. In this study, a highly sensitive and specific indirect enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to N-DRV was developed. The outer capsid (σC) of N-DRV was cloned and expressed in Escherichia coli as a coating antigen. The antigen concentration and serum dilution were optimized using a checkerboard titration. Furthermore, the specificity of σC-ELISA assay was confirmed by cross checking with other duck viral pathogens. In comparison with the western blot, the sensitivity and specificity of the σC-ELISA was 92.6% and 88.9%, respectively, and agreement of two tests was excellent with κ value of 0.786 (p < 0.05). A serological survey was performed using the assay on serum samples from different age and species of duck flocks in the Zhejiang and Jiangsu Province, China. The seropositive rate of the 1209 serum samples was 57.7%. In conclusion, the developed σC-ELISA assay is a very specific and sensitive test that will be useful for large-scale serological survey in N-DRV infection and monitoring antibodies titers against N-DRV.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haipeng Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
34
|
Woźniakowski G, Niczyporuk JS, Samorek-Salamonowicz E, Gaweł A. The development and evaluation of cross-priming amplification for the detection of avian reovirus. J Appl Microbiol 2014; 118:528-36. [PMID: 25425151 DOI: 10.1111/jam.12705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 01/16/2023]
Abstract
AIMS The aim of this study was to develop and evaluate cross-priming amplification (CPA) for the detection of avian reovirus (ARV). METHODS AND RESULTS Five specific primers were designed, on the basis of the σNS sequence of the S1133 ARV strain. Incubation temperature and primer concentrations were determined. The optimal incubation conditions in a water bath were 61.3°C for 45 min. No reverse transcription stage was required. The results were recorded under UV light illumination as a bright, greenish fluorescence in positive samples, and through the lack of this in negative controls and samples. Additionally, the gel electrophoresis performed during analysis showed the presence of ladder-like patterns, formed by hairpin-like CPA products. The developed CPA method was compared to reverse-transcription polymerase chain reaction (RT-PCR) and real-time RT-PCR. Sensitivity of CPA was estimated using seven dilutions of standard S1133 strain and reached 0.05 log10 TCID50 ml(-1). RT-PCR sensitivity reached 2.5 log10 TCID50 ml(-1) and was 1000 times lower than for CPA, whereas real-time RT-PCR sensitivity reached 1.5 log10 TCID50 ml(-1). Analysis of 32 RNAs extracted from field specimens showed the presence of an ARVσNS fragment in 4 (12.5%) samples. Interestingly, the positive samples originated from flocks affected by Marek's disease (MD) or fowl adenovirus (FadV). RT-PCR was unable to detect ARV, due to its lower sensitivity. However, the real-time RT-PCR that was conducted confirmed the CPA study. CONCLUSIONS CPA is a very sensitive and rapid method, which allows ARV detection using simple laboratory equipment. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report on the application of the CPA method for detection of ARV, using simple laboratory equipment.
Collapse
Affiliation(s)
- G Woźniakowski
- Department of Poultry Viral Diseases, National Veterinary Research Institute, Puławy, Poland
| | | | | | | |
Collapse
|
35
|
Detection of shared genes among Asian and European waterfowl reoviruses in the whole genome constellations. INFECTION GENETICS AND EVOLUTION 2014; 28:55-7. [DOI: 10.1016/j.meegid.2014.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/18/2014] [Accepted: 08/29/2014] [Indexed: 11/23/2022]
|
36
|
Molecular characterization of a novel reovirus isolated from Pekin ducklings in China. Arch Virol 2014; 160:365-9. [PMID: 25287130 DOI: 10.1007/s00705-014-2241-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
The complete genome sequence of a novel duck orthoreovirus, designated DRV strain TH11(DRV-TH11), was determined and characterized. The DRV-TH11 genome is comprised of 23,417 bp and its genome organization is more similar to that of avian orthoreoviruses (ARVs) of chicken origin than other reoviruses. The results of comparative sequence analysis and dendrograms based on the µB- and σC-encoding genes indicated that TH11 may be derived from the reassortment of ARVs and classic Muscovy duck reovirus (MDRV). A possible recombinant event was identified using the SimPlot program, and it occurred in the M2 segment. The results indicated that reassortment and mutation play a role in the evolution of duck reovirus.
Collapse
|
37
|
Molecular characterization of L class genome segments of a newly isolated turkey arthritis reovirus. INFECTION GENETICS AND EVOLUTION 2014; 27:193-201. [DOI: 10.1016/j.meegid.2014.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/13/2014] [Indexed: 11/20/2022]
|