1
|
Lu Y, Zeng Y, Luo H, Qiao B, Meng Q, Dai Z, Chen N, Zhao L, Meng X, Zhang H, Xia J, Ping J. Molecular characteristic, evolution, and pathogenicity analysis of avian infectious bronchitis virus isolates associated with QX type in China. Poult Sci 2024; 103:104256. [PMID: 39288718 PMCID: PMC11421327 DOI: 10.1016/j.psj.2024.104256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Infectious bronchitis virus (IBV) is one of the major avian pathogens plaguing the global poultry industry. Although vaccination is the primary preventive measure for IBV infection, the emergence of virus variants with mutations and recombination has resulted in IBV circulating globally, presenting a challenge for IB control. Here, we isolated 3 IBV strains (CZ200515, CZ210840, and CZ211063) from suspected sick chickens vaccinated with IBV live attenuated vaccines (H120, 4/91, or QXL87). Phylogenetic analysis of the S1 gene sequence of the spike (S) revealed that the 3 isolates belonged to the QX-type (GI-19 lineage). Whole genome sequencing and recombination analysis indicated that CZ200515 and CZ210840 contained genetic material from 4/91 and Scyz3 (QX-type), possibly due to recombination between the circulating strain and the 4/91 vaccine strain, while no evidence of recombination was found in CZ211063. Pathogenicity analysis in 1-day-old specific pathogen-free (SPF) chickens demonstrated that all 3 isolates caused severe tissue damage and varying degrees of mortality. Virus cross-neutralization assay revealed decreased antigen relatedness between the isolates and the QX-type vaccine strain (QXL87). Amino acid sequence homology analysis of S1 revealed 5%-6.5% variances between the isolates and QXL87. Analysis of the S1 subunit structure revealed that mutations of amino acid residues in the hypervariable region (HVR) and the neutralizing epitope region resulted in antigenic variation in isolates by changing the antigen conformation. Our data indicate antigenicity variances between QX isolates and QXL87 vaccine strains, potentially resulting in immune evasion occurrences. Overall, these results offer crucial insights into the epidemiology and pathogenicity of QX-type IBV, facilitating improved selection and formulation of vaccines for disease management.
Collapse
Affiliation(s)
- Yuanlu Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiran Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haowei Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingchen Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zijian Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianchen Meng
- Lihua Nanjing Industrial Research Institute Co. Ltd. Nanjing, 213168, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009 China
| | - Haitao Zhang
- Lihua Nanjing Industrial Research Institute Co. Ltd. Nanjing, 213168, China
| | - Jun Xia
- Key Laboratory for Prevention and Control of Herbivorous Animal Diseases of the Ministry of Agriculture and Rural Affairs & Xinjiang Animal Disease Research Key Laboratory, Xinjiang Academy of Animal Sciences Institute of Veterinary Medicine, 830000, China.
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Brimer SK, Fischer EAJ, Beckstead R, White J, Cazaban C, Tatár-Kis T, Velkers FC, Elattrache J, Stegeman A. A vaccine programme comprising GA08 (GI-27) and Mass (GI-1) strains prevents DMV1639 (GI-17) infectious bronchitis virus transmission among broiler chickens. Avian Pathol 2024:1-13. [PMID: 39045705 DOI: 10.1080/03079457.2024.2383765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Effective control of infectious bronchitis is a challenge in commercial poultry operations due to the high transmissibility of the virus. Although multiple IBV lineages are circulating in the United States, the DMV1639-type IBV strain (GI-17) is currently the major circulating variant, creating production losses in the poultry industry. This study aimed to test whether the combination of a GA08 (GI-27) and a Mass-type (GI-1) IB vaccines could significantly reduce the transmission of a DMV1639-type (GI-17) field IBV strain in 4-week-old commercial broilers. Half of the birds were directly challenged, whereas the other half of the groupmates were put in contact 24 hours later. Two replicates of the same study setup, including 10 directly challenged and 10 contact birds per group, were run. Transmission of the challenge virus was significantly reduced in vaccinates (R = 0.0), whereas all unvaccinated birds became infected (R = 9.6). Reduced transmission of the DMV1639 IB challenge virus by the combined vaccination programme in broiler chickens was also accompanied by clinical protection. These data are important because prevention of IBV transmission by vaccination will result in overall reduced viral replication and consequently in reduced likelihood of genetic changes that can lead to new variants. This is the first published evidence of the successful transmission control of a DMV1639 IBV strain in chickens.
Collapse
Affiliation(s)
- Sean K Brimer
- Scientific Support and Investigation Unit, Ceva Animal Health, Lenexa, KS, USA
| | - Egil A J Fischer
- Department Population Health Sciences, Utrecht University, CL, Utrecht, The Netherlands
| | - Robert Beckstead
- Scientific Support and Investigation Unit, Ceva Animal Health, Lenexa, KS, USA
| | - James White
- Scientific Support and Investigation Unit, Ceva Animal Health, Lenexa, KS, USA
| | - Christophe Cazaban
- Science and Investigation Department, Ceva Animal Health, Libourne, France
| | - Timea Tatár-Kis
- Scientific Support and Investigation Unit, Ceva Animal Health, Budapest, Hungary
| | - Francisca C Velkers
- Department Population Health Sciences, Utrecht University, CL, Utrecht, The Netherlands
| | - John Elattrache
- Science and Investigation Department, Ceva Animal Health, Libourne, France
| | - Arjan Stegeman
- Department Population Health Sciences, Utrecht University, CL, Utrecht, The Netherlands
| |
Collapse
|
3
|
Wu Q, Xu M, Wei D, Zhang X, Li D, Mei M. Pathogenicity and molecular characterization of a GI-19 infectious bronchitis virus isolated from East China. Front Vet Sci 2024; 11:1431172. [PMID: 39170640 PMCID: PMC11335494 DOI: 10.3389/fvets.2024.1431172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Infectious bronchitis virus (IBV) is responsible for avian infectious bronchitis, a disease prevalent in countries with intensive poultry farming practices. Given the presence of multiple genotypic strains in China, identifying the regionally dominant genotypes is crucial for the implementation of effective prevention and control measures. This study focuses on the IBV strain CK/CH/WJ/215, isolated from a diseased commercial chicken flock in China in 2021. The CK/CH/WJ/215 isolate was genetically characterized through complete S1 sequence analysis. Phylogenetic comparisons were made with prevalent vaccine strains (H120, LDT3-A, and 4/91). Glycosylation patterns in the S1 protein were also analyzed. Pathogenicity was assessed in 7-day-old specific-pathogen-free chicks, monitoring morbidity, mortality, and tissue tropisms. Phylogenetic analysis clustered the CK/CH/WJ/215 isolate within the GI-19 lineage. Identity with the vaccination strains H120, LDT3-A, and 4/91 was low (75.7%, 78.6%, and 77.5% respectively). Novel glycosylation sites at positions 138 and 530 were identified compared to H120 and LDT-A. The isolate demonstrated nephropathogenic characteristics, causing 100% morbidity and 73.3% mortality in SPF chicks, with broader tropisms in tissues including trachea, lungs, kidneys, and bursa of Fabricius. Comprehensive genetic and pathological investigations revealed significant differences between the CK/CH/WJ/215 isolate and common vaccine strains, including novel glycosylation sites and a strong multiorgan infective capability. These findings are crucial for understanding the evolutionary dynamics of IBV and developing more effective prevention and control strategies.
Collapse
Affiliation(s)
- Qi Wu
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Mengcheng Xu
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dengle Wei
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuehua Zhang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Ding Li
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Mei Mei
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory of Food and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
4
|
Huang Q, Yang X, Zhao X, Han X, Sun S, Xu C, Cui N, Lu M. Co-infection of H9N2 subtype avian influenza virus and QX genotype live attenuated infectious bronchitis virus increase the pathogenicity in SPF chickens. Vet Microbiol 2024; 295:110163. [PMID: 38959807 DOI: 10.1016/j.vetmic.2024.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Avian influenza virus (AIV) infection and vaccination against live attenuated infectious bronchitis virus (aIBV) are frequent in poultry worldwide. Here, we evaluated the clinical effect of H9N2 subtype AIV and QX genotype aIBV co-infection in specific-pathogen-free (SPF) white leghorn chickens and explored the potential mechanisms underlying the observed effects using by 4D-FastDIA-based proteomics. The results showed that co-infection of H9N2 AIV and QX aIBV increased mortality and suppressed the growth of SPF chickens. In particular, severe lesions in the kidneys and slight respiratory signs similar to the symptoms of virulent QX IBV infection were observed in some co-infected chickens, with no such clinical signs observed in single-infected chickens. The replication of H9N2 AIV was significantly enhanced in both the trachea and kidneys, whereas there was only a slight effect on the replication of the QX aIBV. Proteomics analysis showed that the IL-17 signaling pathway was one of the unique pathways enriched in co-infected chickens compared to single infected-chickens. A series of metabolism and immune response-related pathways linked with co-infection were also significantly enriched. Moreover, co-infection of the two pathogens resulted in the enrichment of the negative regulation of telomerase activity. Collectively, our study supports the synergistic effect of the two pathogens, and pointed out that aIBV vaccines might increased IBV-associated lesions due to pathogenic co-infections. Exacerbation of the pathogenicity and mortality in H9N2 AIV and QX aIBV co-infected chickens possibly occurred because of an increase in H9N2 AIV replication, the regulation of telomerase activity, and the disturbance of cell metabolism and the immune system.
Collapse
Affiliation(s)
- Qinghua Huang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Xiao Yang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Xiaoran Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Xiaoxia Han
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China; College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Shouli Sun
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Chuantian Xu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Ning Cui
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China; Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| | - Mei Lu
- Weifang Engineering Vocational College, Qingzhou, China.
| |
Collapse
|
5
|
Mellouk A, Michel V, Lemâle O, Goossens T, Consuegra J. Glycerides of lauric acid supplementation in the chicken diet enhances the humoral and cellular immune response to infectious bronchitis virus. Vet Immunol Immunopathol 2024; 274:110802. [PMID: 38924873 DOI: 10.1016/j.vetimm.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Controlling pathogenic infections while reducing antibiotic usage is an important challenge during poultry production. In addition to vaccination strategies, several solutions to enhance the immune response against pathogens are evaluated. In this study, we aim to determine the effects of the glycerides of lauric acid (GLA) supplementation in chickens' diets on humoral and cellular immune response pathogenic infections, using an in vivo model of infectious bronchitis virus (IBV). One-day-old Ross 308 broilers were vaccinated with live attenuated IBV and fed diets supplemented with or without GLA at 3 kg/ton. The levels of early (day 7) specific anti-IBV in sera were significantly increased in broilers fed GLA, compared to the control groups (P<0.05), showing a stronger primary humoral response. The secretion levels of main cytokines remained similar in spleens of all the experimental groups. However, the splenocytes from broilers fed GLA showed higher activation and effector abilities when measured by IFN-γ ELISpot in presence of N-261-280 IBV peptide or Concanavalin A (Con A), a pan T lymphocytes mitogen. In response to N-261-280 peptide, GLA group showed a 2-fold increase of spot numbers (P < 0.05) and 3-fold increase of spot surfaces (P < 0.01) compared to the control groups. Similarly, Con A stimulation showed a 2-fold increases in spot surfaces and numbers in the GLA supplemented group compared to the control group (P < 0.01). In summary, GLA supplementation in chicken feed enhances the primary humoral immune response and strengthen the T lymphocytes mediated cellular immune response. These findings demonstrate how GLA can improve chicken resilience against pathogenic challenges by enhancing their immune responses.
Collapse
Affiliation(s)
- Amine Mellouk
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Virginie Michel
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Olga Lemâle
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Tim Goossens
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Jessika Consuegra
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France.
| |
Collapse
|
6
|
Houta MH, Hassan KE, Kilany WH, Shany SAS, El-Sawah AA, ElKady MF, Abdel-Moneim AS, Ali A. Evaluation of different heterologous-homologous vaccine regimens against challenge with GI-23 lineage infectious bronchitis virus. Virology 2024; 598:110193. [PMID: 39096773 DOI: 10.1016/j.virol.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
This study assesses different IBV vaccination regimens in broiler chickens using commercially available live attenuated GI-23 (Egyptian-VAR2) and GI-1 (H120) vaccines. Vaccines were administered at 1, 14 days of age, or both. The ciliostasis test, following wild-type VAR2 challenge at 28 days of age, indicated that classic H120+VAR2 at one day old followed by the VAR2 vaccine at 14 days of age provided the highest level of protection (89.58%). Similarly, administering VAR2 at 1 day of age and classic H120 at 14 days of age demonstrated substantial protection (85.42%). Conversely, administering only classic H120 and VAR2 at one day old resulted in the lowest protection level (54.17%). Tracheal virus shedding quantification and assessment of trachea and kidney degenerative changes were significantly lower in vaccinated groups compared to the unvaccinated-challenged group. In conclusion, a carefully planned vaccination regimen based on homologous vaccination offers the most effective clinical protection in broiler chickens.
Collapse
Affiliation(s)
- Mohamed H Houta
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Kareem E Hassan
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Walid H Kilany
- Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute, Dokki, P.O. Box 264, Giza, 12618, Egypt.
| | - Salama A S Shany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Azza A El-Sawah
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Magdy F ElKady
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Ahmed S Abdel-Moneim
- Microbiology Department, College of Medicine, Taif University, Al-Taif, 21974, Saudi Arabia.
| | - Ahmed Ali
- Poultry Diseases Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
7
|
Bilotti K, Keep S, Sikkema AP, Pryor JM, Kirk J, Foldes K, Doyle N, Wu G, Freimanis G, Dowgier G, Adeyemi O, Tabatabaei SK, Lohman GJS, Bickerton E. One-pot Golden Gate Assembly of an avian infectious bronchitis virus reverse genetics system. PLoS One 2024; 19:e0307655. [PMID: 39052682 PMCID: PMC11271894 DOI: 10.1371/journal.pone.0307655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Avian infectious bronchitis is an acute respiratory disease of poultry of particular concern for global food security. Investigation of infectious bronchitis virus (IBV), the causative agent of avian infectious bronchitis, via reverse genetics enables deeper understanding of virus biology and a rapid response to emerging variants. Classic methods of reverse genetics for IBV can be time consuming, rely on recombination for the introduction of mutations, and, depending on the system, can be subject to genome instability and unreliable success rates. In this study, we have applied data-optimized Golden Gate Assembly design to create a rapidly executable, flexible, and faithful reverse genetics system for IBV. The IBV genome was divided into 12 fragments at high-fidelity fusion site breakpoints. All fragments were synthetically produced and propagated in E. coli plasmids, amenable to standard molecular biology techniques for DNA manipulation. The assembly can be carried out in a single reaction, with the products used directly in subsequent viral rescue steps. We demonstrate the use of this system for generation of point mutants and gene replacements. This Golden Gate Assembly-based reverse genetics system will enable rapid response to emerging variants of IBV, particularly important to vaccine development for controlling spread within poultry populations.
Collapse
Affiliation(s)
- Katharina Bilotti
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Sarah Keep
- The Pirbright Institute, Woking, United Kingdom
| | - Andrew P. Sikkema
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - John M. Pryor
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - James Kirk
- The Pirbright Institute, Woking, United Kingdom
| | | | | | - Ge Wu
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Hassan MSH, Farooq M, Ali A, Rahimi R, Ranaweera HA, Isham IM, Abdul-Careem MF. Heterologous maternal antibodies derived from infectious bronchitis vaccines prevent the development of lesions associated with false layer syndrome. Vet Immunol Immunopathol 2024; 273:110791. [PMID: 38824909 DOI: 10.1016/j.vetimm.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Infectious bronchitis virus (IBV) strains of the Delmarva (DMV)/1639 genotype have been causing false layer syndrome (FLS) in the Eastern Canadian layer operations since the end of 2015. FLS is characterized by the development of cystic oviducts in layer pullets infected at an early age. Currently, there are no homologous vaccines for the control of this IBV genotype. Our previous research showed that a heterologous vaccination regimen incorporating Massachusetts (Mass) and Connecticut (Conn) IBV types protects layers against DMV/1639 genotype IBV. The aim of this study was to investigate the role of maternal antibodies conferred by breeders received the same vaccination regimen in the protection against the development of DMV/1639-induced FLS in pullets. Maternal antibody-positive (MA+) and maternal antibody-negative (MA-) female progeny chicks were challenged at 1 day of age and kept under observation for 16 weeks. Oviductal cystic formations were observed in 3 of 14 birds (21.4 %) in the MA- pullets, while the lesions were notably absent in the MA+ pullets. Milder histopathological lesions were observed in the examined tissues of the MA+ pullets. However, the maternal derived immunity failed to demonstrate protection against the damage to the tracheal ciliary activity, viral shedding, and viral tissue distribution. Overall, this study underscores the limitations of maternal derived immunity in preventing certain aspects of viral pathogenesis, emphasizing the need for comprehensive strategies to address different aspects of IBV infection.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Muhammad Farooq
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | - Ryan Rahimi
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Hiruni A Ranaweera
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ishara M Isham
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
9
|
Han X, Huang Y, Hao J. Avian Coronavirus Infectious Bronchitis Virus Activates Mitochondria-Mediated Apoptosis Pathway and Affects Viral Replication by Inducing Reactive Oxygen Species Production in Chicken HD11 Cells. BIOLOGY 2024; 13:491. [PMID: 39056685 PMCID: PMC11273894 DOI: 10.3390/biology13070491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
Infectious bronchitis virus (IBV), a coronavirus that causes severe respiratory and gastrointestinal illness in poultry, leads to substantial economic losses. According to earlier research, IBV infection causes chicken macrophage HD11 cells to undergo cell apoptosis. Reactive oxygen species (ROS) and the IBV-activated intrinsic apoptotic signaling pathway were examined in this work. The findings demonstrate that IBV infection causes ROS to accumulate. Moreover, IBV infection decreased the mitochondrial transmembrane potential in HD11 cells, which could be blocked by ROS antioxidants (PDTC and NAC). The two antioxidants significantly affected the expression of Bcl-2 and Bax and further inhibited the activation of caspase-3 and apoptosis in HD11 cells. Additionally, IBV replication was decreased by blocking ROS accumulation. Pretreating HD11 cells with ammonium chloride (NH4Cl) prevented IBV from entering the cells and reduced the oxidative stress which IBV causes. The ability to accumulate ROS was also lost in UV-inactivated IBV. The IBV N protein induces cell apoptosis through the activation of ROS. These findings provide an explanation for the processes of IBV infection in immune cells by indicating that IBV-induced ROS generation triggers cell apoptosis in HD11 cells.
Collapse
Affiliation(s)
- Xiaoxiao Han
- School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, China; (Y.H.); (J.H.)
| | | | | |
Collapse
|
10
|
Wang M, Bo Z, Zhang C, Guo M, Wu Y, Zhang X. Deciphering the Genetic Variation: A Comparative Analysis of Parental and Attenuated Strains of the QXL87 Vaccine for Infectious Bronchitis. Animals (Basel) 2024; 14:1784. [PMID: 38929403 PMCID: PMC11200882 DOI: 10.3390/ani14121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The QXL87 live attenuated vaccine strain for infectious bronchitis represents the first approved QX type (GI-19 lineage) vaccine in China. This strain was derived from the parental strain CK/CH/JS/2010/12 through continuous passage in SPF chicken embryos. To elucidate the molecular mechanism behind its attenuation, whole-genome sequencing was conducted on both the parental and attenuated strains. Analysis revealed 145 nucleotide mutations in the attenuated strain, leading to 48 amino acid mutations in various proteins, including Nsp2 (26), Nsp3 (14), Nsp4 (1), S (4), 3a (1), E (1), and N (1). Additionally, a frameshift mutation caused by a single base insertion in the ORFX resulted in a six-amino-acid extension. Subsequent comparison of post-translational modification sites, protein structure, and protein-protein binding sites between the parental and attenuated strains identified three potential virulence genes: Nsp2, Nsp3, and S. The amino acid mutations in these proteins not only altered their conformation but also affected the distribution of post-translational modification sites and protein-protein interaction sites. Furthermore, three potential functional mutation sites-P106S, A352T, and L472F, all located in the Nsp2 protein-were identified through PROVEAN, PolyPhen, and I-Mutant. Overall, our findings suggest that Nsp2, Nsp3, and S proteins may play a role in modulating IBV pathogenicity, with a particular focus on the significance of the Nsp2 protein. This study contributes to our understanding of the molecular mechanisms underlying IBV attenuation and holds promise for the development of safer live attenuated IBV vaccines using reverse genetic approaches.
Collapse
Affiliation(s)
- Mengmeng Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| | - Yantao Wu
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (M.W.); (Z.B.); (C.Z.); (M.G.)
| |
Collapse
|
11
|
Kanci Condello A, Wawegama NK, Ekanayake D, Zhu L, Tivendale KA, Shil PK, Daly J, Mohotti S, Todhunter P, Underwood GJ, Noormohammadi AH, Markham PF, Browning GF. Evaluation of the safety and efficacy of the novel Mycoplasma gallisepticum vaccine, Vaxsafe MG304, after spray-vaccination of 1-day-old specific pathogen-free chicks. Vet Microbiol 2024; 293:110093. [PMID: 38692193 DOI: 10.1016/j.vetmic.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Mycoplasma gallisepticum causes chronic respiratory disease in poultry. A novel vaccine, Vaxsafe MG304 (the ts-304 strain), has greater protective efficacy in chickens than the Vaxsafe MG (strain ts-11) vaccine when delivered by eye drop at 3 weeks of age. Applying this vaccine in the hatchery to 1-day-old birds, using mass administration methods, would improve animal welfare and reduce labour costs associated with handling individual birds. This study assessed the protection provided by vaccination with Vaxsafe MG304 after administration to 1-day-old chicks. Chicks were administered a single dose of the vaccine to assess the efficacy of either a high dose (107.0 colour changing units, CCU) or a low dose (105.7 CCU) after eye drop or spray (in water or gel) administration against experimental challenge with virulent M. gallisepticum strain Ap3AS at 7 weeks of age. The vaccine was able to colonise the palatine cleft of chicks after vaccination by eye drop (at both doses) or by spray (in water or gel) (at the high dose). The high dose of vaccine, when delivered by eye drop or spray, was shown to be safe and induced a serological response and protective immunity (as measured by tracheal mucosal thickness and air sac lesion scores) against challenge. Vaccination of 1-day-old chicks with Vaxsafe MG304 by eye drop induced protective immunity equivalent to vaccination at 3 weeks of age. Vaxsafe MG304 was also protective when applied by both coarse- and gel spray methods at the higher dose and is therefore a suitable live attenuated vaccine for use in 1-day-old chicks.
Collapse
Affiliation(s)
- Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dilhani Ekanayake
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ling Zhu
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Kelly A Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pollob K Shil
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria 3030, Australia
| | - June Daly
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Sameera Mohotti
- Bioproperties Proprietary Limited Research & Diagnostic Laboratory (RDL), RMIT University, Bundoora, Victoria 3083, Australia
| | - Philip Todhunter
- Bioproperties Proprietary Limited, 36 Charter Street, Ringwood, Victoria 3134, Australia
| | - Gregory J Underwood
- Bioproperties Proprietary Limited, 36 Charter Street, Ringwood, Victoria 3134, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria 3030, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Campler MR, Cheng TY, Lee CW, Hofacre CL, Lossie G, Silva GS, El-Gazzar MM, Arruda AG. Investigating the uses of machine learning algorithms to inform risk factor analyses: The example of avian infectious bronchitis virus (IBV) in broiler chickens. Res Vet Sci 2024; 171:105201. [PMID: 38442531 DOI: 10.1016/j.rvsc.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/16/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Infectious bronchitis virus (IBV) is a contagious coronavirus causing respiratory and urogenital disease in chickens and is responsible for significant economic losses for both the broiler and table egg layer industries. Despite IBV being regularly monitored using standard epidemiologic surveillance practices, knowledge and evidence of risk factors associated with IBV transmission remain limited. The study objective was to compare risk factor modeling outcomes between a traditional stepwise variable selection approach and a machine learning-based random forest Boruta algorithm using routinely collected IBV antibody titer data from broiler flocks. IBV antibody sampling events (n = 1111) from 166 broiler sites between 2016 and 2021 were accessed. Ninety-two geospatial-related and poultry-density variables were obtained using a geographic information system and data sets from publicly available sources. Seventeen and 27 candidate variables were screened to potentially have an association with elevated IBV antibody titers according to the manual selection and machine learning algorithm, respectively. Selected variables from both methods were further investigated by construction of multivariable generalized mixed logistic regression models. Six variables were shortlisted by both screening methods, which included year, distance to urban areas, main roads, landcover, density of layer sites and year, however, final models for both approaches only shared year as an important predictor. Despite limited significance of clinical outcomes, this work showcases the potential of a novel explorative modeling approach in combination with often unutilized resources such as publicly available geospatial data, surveillance health data and machine learning as potential supplementary tools to investigate risk factors related to infectious diseases.
Collapse
Affiliation(s)
- Magnus R Campler
- Department of Veterinary Preventive Medicine, The Ohio State University, OH 43210, USA
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, The Ohio State University, OH 43210, USA
| | - Chang-Won Lee
- Exotic and Emerging Avian Diseases, Southeast Poultry Research Laboratory, National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | | | - Geoffrey Lossie
- Department of Comparative Pathobiology and Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Purdue University, IN 47907, USA
| | - Gustavo S Silva
- Department of Comparative Pathobiology and Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Purdue University, IN 47907, USA
| | - Mohamed M El-Gazzar
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, IA 50011, USA
| | - Andréia G Arruda
- Department of Veterinary Preventive Medicine, The Ohio State University, OH 43210, USA.
| |
Collapse
|
13
|
O’Dowd K, Isham IM, Vatandour S, Boulianne M, Dozois CM, Gagnon CA, Barjesteh N, Abdul-Careem MF. Host Immune Response Modulation in Avian Coronavirus Infection: Tracheal Transcriptome Profiling In Vitro and In Vivo. Viruses 2024; 16:605. [PMID: 38675946 PMCID: PMC11053446 DOI: 10.3390/v16040605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.
Collapse
Affiliation(s)
- Kelsey O’Dowd
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| | - Ishara M. Isham
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| | - Safieh Vatandour
- Department of Animal and Poultry Science, Islamic Azad University, Qaemshahr Branch, Qaem Shahr 4765161964, Iran;
| | - Martine Boulianne
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Carl A. Gagnon
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
- Molecular Diagnostic and Virology Laboratories, Centre de Diagnostic Vétérinaire de l’Université de Montréal (CDVUM), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Neda Barjesteh
- Swine and Poultry Infectious Diseases Research Centre–Fonds de Recherche du Québec (CRIPA-FRQ), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (M.B.); (C.M.D.); (C.A.G.); (N.B.)
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Centre, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (K.O.); (I.M.I.)
| |
Collapse
|
14
|
Yang Q, Gong H, Liu S, Huang S, Yan W, Wang K, Li H, Lei CW, Wang HN, Yang X. Differential analysis of IBV-infected primary chicken embryonic fibroblasts and immortalized DF-1. Microbiol Spectr 2024; 12:e0240223. [PMID: 38299864 PMCID: PMC10913733 DOI: 10.1128/spectrum.02402-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024] Open
Abstract
Infectious bronchitis virus (IBV), the causative agent of infectious bronchitis, is responsible for major economic losses in the poultry industry worldwide. While IBVs can usually be passaged in primary chicken embryonic fibroblasts (CEFs), most of the wild ones cannot adapt to passaged cell lines. In this study, the wild strain CK/CH/MY/2020 was used to infect primary CEF and immortalize DF-1 CEF cells. Results indicated that IBV was able to cause lesions and pass onto CEF, but not DF-1. Indeed, the virus could enter DF-1 cells and synthesize the associated structural gene but could not assemble into complete viral particles for release. Furthermore, transcriptome sequencing analysis showed significant differences in gene expression between CEF and DF-1 cells after viral infection, although the corresponding antiviral responses could be activated in both cell types. The biggest difference was in terms of the amino acid biosynthesis pathway and the cytokine receptor interaction pathway, which were significantly and specifically activated in CEF. This could actually explain why intact viruses can be assembled but not in DF-1. In addition, SLBP and P2RX7 affect the replication of IBV's structural genes to some extent. Overall, IBV can enter CEF and DF-1 cells, but the complex intracellular cytokine interactions affect the assembly and release of viral particles. The insight will be useful for the study of IBV through in vitro transmission and pathogenesis. IMPORTANCE Infectious bronchitis virus (IBV) is responsible for high morbidity and mortality as well as substantial economic losses worldwide. Transcriptome sequencing of IBV-infected chicken embryonic fibroblast and DF-1 cells revealed that the virus elicits antiviral immunity in cells after viral infection, but IBV cannot activate DF-1 cells to produce sufficient amounts of viral structures to assemble into complete virions, which may be caused by the interactions between cytokines. The study of IBV cellular adaptations is important for vaccine development and investigation of the pathogenesis of IBV.
Collapse
Affiliation(s)
- Qingcheng Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Huiling Gong
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Song Liu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Siyu Huang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Wenjun Yan
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Kailu Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Hao Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Chang-Wei Lei
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Hong-Ning Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xin Yang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Xu G, Deng Y, Li Y, Zuo Z, Li D, Ma S. S2 subunit plays a critical role in pathogenesis of TW-like avian coronavirus infectious bronchitis virus. Vet Microbiol 2024; 290:110010. [PMID: 38306768 DOI: 10.1016/j.vetmic.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/04/2024]
Abstract
To investigate the critical role of the S gene in determining pathogenesis of TW-like avian infectious bronchitis virus (IBV), we generated two recombinant IBVs (rGDaGD-S1 and rGDaGD-S2) by replacing either the S1 or S2 region of GD strain with the corresponding regions from an attenuated vaccine candidate aGD strain. The virulence and pathogenicity of these recombinant viruses was assessed both in vitro and in vivo. Our results indicated the mutations in the S2 region led to decreased virulence, as evidenced by reduced virus replication in embryonated chicken eggs and chicken embryonic kidney cells as well as observed clinical symptoms, gross lesions, microscopic lesions, tracheal ciliary activity, and viral distribution in SPF chickens challenged with recombinant IBVs. These findings highlight that the S2 subunit is a key determinant of TW-like IBV pathogenicity. Our study established a foundation for future investigations into the molecular mechanisms underlying IBV virulence.
Collapse
Affiliation(s)
- Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Yuping Deng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Yang Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuhui Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
16
|
Jude R, da Silva AP, Slay AM, Luciano RL, Jordan B, Gallardo RA. Mitigation of False Layer Syndrome Through Maternal Antibodies Against Infectious Bronchitis Virus. Avian Dis 2024; 68:10-17. [PMID: 38687102 DOI: 10.1637/aviandiseases-d-23-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/15/2023] [Indexed: 05/02/2024]
Abstract
The relationship between passive immunity and the development of false layer syndrome (FLS) and its associated lesions was investigated in this study by comparing the long-term reproductive effects of an infectious bronchitis virus (IBV) DMV/1639 wild-type strain and the GA08 vaccine in birds with and without maternal antibodies. There was a clear protective effect provided by maternal antibodies against both the early vaccination and challenge. It was also observed that vaccination at an early age, in the absence of maternal antibodies, can induce reproductive issues, such as reduced egg production and FLS-associated lesions (e.g., cystic oviduct and egg yolk coelomitis). This might indicate that maternal antibodies and the timing of IBV infection are more important in the generation of FLS than the IBV strain type.
Collapse
Affiliation(s)
- Rachel Jude
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Ana P da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Adrea Mueller Slay
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602
| | - Renato Luis Luciano
- Instituto Biologico, Centro Avançado de Pesquisa e Desenvolvimento em Sanidade Avicola, Descalvado, Sao Paulo, 13690-000, Brazil
| | - Brian Jordan
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602
| | - Rodrigo A Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616,
| |
Collapse
|
17
|
Abd-Elsalam RM, Najimudeen SM, Mahmoud ME, Hassan MSH, Gallardo RA, Abdul-Careem MF. Differential Impact of Massachusetts, Canadian 4/91, and California (Cal) 1737 Genotypes of Infectious Bronchitis Virus Infection on Lymphoid Organs of Chickens. Viruses 2024; 16:326. [PMID: 38543692 PMCID: PMC10974418 DOI: 10.3390/v16030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Infectious bronchitis virus (IBV) induces severe economic losses in chicken farms due to the emergence of new variants leading to vaccine breaks. The studied IBV strains belong to Massachusetts (Mass), Canadian 4/91, and California (Cal) 1737 genotypes that are prevalent globally. This study was designed to compare the impact of these three IBV genotypes on primary and secondary lymphoid organs. For this purpose, one-week-old specific pathogen-free chickens were inoculated with Mass, Canadian 4/91, or Cal 1737 IBV variants, keeping a mock-infected control. We examined the IBV replication in primary and secondary lymphoid organs. The molecular, histopathological, and immunohistochemical examinations revealed significant differences in lesion scores and viral distribution in these immune organs. In addition, we observed B-cell depletion in the bursa of Fabricius and the spleen with a significant elevation of T cells in these organs. Further studies are required to determine the functional consequences of IBV replication in lymphoid organs.
Collapse
Affiliation(s)
- Reham M. Abd-Elsalam
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (R.M.A.-E.); (S.M.N.); (M.E.M.); (M.S.H.H.)
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Shahnas M. Najimudeen
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (R.M.A.-E.); (S.M.N.); (M.E.M.); (M.S.H.H.)
| | - Motamed E. Mahmoud
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (R.M.A.-E.); (S.M.N.); (M.E.M.); (M.S.H.H.)
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Mohamed S. H. Hassan
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (R.M.A.-E.); (S.M.N.); (M.E.M.); (M.S.H.H.)
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Rodrigo A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616, USA;
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (R.M.A.-E.); (S.M.N.); (M.E.M.); (M.S.H.H.)
| |
Collapse
|
18
|
Alsakini KAMH, Çöven FO, Nalbantsoy A. Adjuvant effects of novel water/oil emulsion formulations on immune responses against infectious bronchitis (IB) vaccine in mice. Biologicals 2024; 85:101736. [PMID: 38101004 DOI: 10.1016/j.biologicals.2023.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Vaccines have long made use of adjuvants to boost the immune response of the body and reduce the amount of vaccine needed as well as the expense of producing the vaccine. Many vaccine adjuvants are in development, but their application in veterinary vaccinations is restricted due to their lack of efficacy or undesirable side effects. For this reason, it is essential to develop novel adjuvants. To address the issue that the currently available infectious bronchitis (IB) vaccine often fails to produce sufficient immune responses, Coral Biotechnology tested two of their newly developed water-in-oil (W/O) type emulsion adjuvants (Coralvac RZ 528 and Coralvac RZ 506) in the IB vaccine. These adjuvants were tested in a mouse model to determine whether it worked with an inactive IBV H120 vaccine. Vaccine formulations were prepared by combining a virus concentration of 1 × 106 EID50/0.1 ml with an emulsion of the W/O type in a specific ratio. Once the formulations were ready, it was injected intramuscularly as a single dosage, and the mice were monitored for 21 days afterwards. The results showed that anti-IB antibody titer (IgG and IgG1), CD3+ CD8+ T cell responses as well as IFN- γ cytokine production, and splenocyte proliferation were all considerably higher in the IBV H120 with Coralvac RZ 528 and IBV H120 with Coralvac RZ 506 formulation groups than in the viral control group. According to our findings, the humoral and cellular immune responses of mice were significantly enhanced by these novel vaccine adjuvants. Thus, our results provide evidence that the W/O type emulsion adjuvants developed by Coral Biotechnology may be a useful adjuvant in IBV vaccines.
Collapse
Affiliation(s)
| | - Furkan Ozan Çöven
- Department of Bioengineering, Natural and Applied Sciences Institute, Ege University, 35100, İzmir, Turkey.
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
19
|
Rajkhowa TK, Zodinpuii D, Jayappa K, Hauhnar L. Molecular characterization of a novel variant of infectious bronchitis virus from field outbreaks in backyard chicken population of North East India. Virus Genes 2024; 60:44-52. [PMID: 38185717 DOI: 10.1007/s11262-023-02045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
Infectious bronchitis virus (IBV) causes considerable economic impacts on global poultry production. Since its emergence in early 1930, IBV continues to evolve and now exists in a wide range of antigenically and genetically distinct variants, that makes the prevention and the control of the disease both complex and challenging. Although IBV has been reported regularly from different corner of India, information about the molecular epidemiology of circulating strain in relation to clinical form of the disease is not available. We have studied the clinico-pathology and confirmed eight distinct field outbreaks of the disease from poultry population of Mizoram, India. The clinical disease in affected birds resulted sever pathological lesions involving respiratory, gastrointestinal, and urinary system together. The complete S1 nucleotide sequences and protein analyses have revealed a distinct variant of genotype I-IBV (GI), designated as GI-24 circulating in India. The S1 protein of the field strains displayed unique additional eighteen amino acids at C terminal end when compared with M41strain. Comparison of the S1 protein among all the 27 lineages of GI revealed five mutations that are exclusive to only the Indian strains. All the field strains have also possessed the amino acid mutations at highly variable region 2 (HVR2) of S1 receptor-binding domain (RBD) that are considered characteristic of nephropathogenic strains. The circulating GI-24 strains displayed potency for a wide range of tropism from respiratory epithelium to GIT and urinary system. This study provides insight on recently emerging IBV outbreaks in NER, India, which might be causing huge economic losses to the poultry farmers in the region.
Collapse
Affiliation(s)
- Tridib Kumar Rajkhowa
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, 796014, India.
| | - Doris Zodinpuii
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, 796014, India
| | - Kiran Jayappa
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, 796014, India
| | - Lalthapuii Hauhnar
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, 796014, India
| |
Collapse
|
20
|
Xia T, Xu S, Li X, Ruan W. Avian coronavirus infectious bronchitis virus Beaudette strain NSP9 interacts with STAT1 and inhibits its phosphorylation to facilitate viral replication. Virology 2024; 590:109944. [PMID: 38141500 DOI: 10.1016/j.virol.2023.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/25/2023]
Abstract
Avian coronavirus, known as infectious bronchitis virus (IBV), is the causative agent of infectious bronchitis (IB). Viral nonstructural proteins play important roles in viral replication and immune modulation. IBV NSP9 is a component of the RNA replication complex for viral replication. In this study, we uncovered a function of NSP9 in immune regulation. First, the host proteins that interacted with NSP9 were screened. The immune-related protein signal transducer and activator of transcription 1 (STAT1) was identified and the interaction between NSP9 and STAT1 was further confirmed. Furthermore, IBV replication was inhibited in STAT1-overexpressing cells but inversely affected in STAT1 knock-down cells. Importantly, NSP9 inhibited STAT1 phosphorylation. Finally, the expression of JAK/STAT pathway downstream genes IRF7 and ISG20 was significantly decreased in NSP9-overexpressing cells. These results showed the important role of IBV NSP9 in immunosuppression.
Collapse
Affiliation(s)
- Ting Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xueyan Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenke Ruan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
21
|
Keep S, Stevenson-Leggett P, Webb I, Fones A, Kirk J, Britton P, Bickerton E. The spike protein of the apathogenic Beaudette strain of avian coronavirus can elicit a protective immune response against a virulent M41 challenge. PLoS One 2024; 19:e0297516. [PMID: 38265985 PMCID: PMC10807761 DOI: 10.1371/journal.pone.0297516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024] Open
Abstract
The avian Gammacoronavirus infectious bronchitis virus (IBV) causes major economic losses in the poultry industry as the aetiological agent of infectious bronchitis, a highly contagious respiratory disease in chickens. IBV causes major economic losses to poultry industries across the globe and is a concern for global food security. IBV vaccines are currently produced by serial passage, typically 80 to 100 times in chicken embryonated eggs (CEE) to achieve attenuation by unknown molecular mechanisms. Vaccines produced in this manner present a risk of reversion as often few consensus level changes are acquired. The process of serial passage is cumbersome, time consuming, solely dependent on the supply of CEE and does not allow for rapid vaccine development in response to newly emerging IBV strains. Both alternative rational attenuation and cell culture-based propagation methods would therefore be highly beneficial. The majority of IBV strains are however unable to be propagated in cell culture proving a significant barrier to the development of cell-based vaccines. In this study we demonstrate the incorporation of a heterologous Spike (S) gene derived from the apathogenic Beaudette strain of IBV into a pathogenic M41 genomic backbone generated a recombinant IBV denoted M41K-Beau(S) that exhibits Beaudette's unique ability to replicate in Vero cells, a cell line licenced for vaccine production. The rIBV M41K-Beau(S) additionally exhibited an attenuated in vivo phenotype which was not the consequence of the presence of a large heterologous gene demonstrating that the Beaudette S not only offers a method for virus propagation in cell culture but also a mechanism for rational attenuation. Although historical research suggested that Beaudette, and by extension the Beaudette S protein was poorly immunogenic, vaccination of chickens with M41K-Beau(S) induced a complete cross protective immune response in terms of clinical disease and tracheal ciliary activity against challenge with a virulent IBV, M41-CK, belonging to the same serogroup as Beaudette. This implies that the amino acid sequence differences between the Beaudette and M41 S proteins have not distorted important protective epitopes. The Beaudette S protein therefore offers a significant avenue for vaccine development, with the advantage of a propagation platform less reliant on CEE.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Surrey, United Kingdom
| | | | - Isobel Webb
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, The University of Bristol, Bristol, United Kingdom
| | | | - James Kirk
- The Pirbright Institute, Surrey, United Kingdom
| | | | | |
Collapse
|
22
|
Farooq M, Abd-Elsalam RM, Ratcliff N, Hassan MSH, Najimudeen SM, Cork SC, Checkley S, Niu YD, Abdul-Careem MF. Comparative pathogenicity of infectious bronchitis virus Massachusetts and Delmarva (DMV/1639) genotypes in laying hens. Front Vet Sci 2024; 10:1329430. [PMID: 38313768 PMCID: PMC10834656 DOI: 10.3389/fvets.2023.1329430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024] Open
Abstract
Infectious bronchitis (IB) is a highly contagious and acute viral disease of chicken caused by the infectious bronchitis virus (IBV) of the family Coronaviridae. Even with extensive vaccination against IB by the poultry industry, the occurrence of new IBV genotypes is a continuous challenge encountered by the global poultry industry. This experiment was designed to compare the pathogenicity of two IBV strains belonging to Massachusetts (Mass) and Delmarva DMV/1639 genotypes. Specific pathogen-free laying hens were challenged during the peak of production (30 weeks), keeping a mock-infected control group. During 21 days of observation following infection, a significant drop in egg production with miss-shaped and soft shells was observed in the DMV/1639 IBV-infected hens only. The DMV/1639 IBV infected group showed prolonged and higher cloacal viral shedding compared with the Mass IBV-infected group. At the end of the study (21 days post-infection), the viral genome loads in the respiratory, urogenital, and immune tissues were significantly higher in the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Macroscopic lesions such as distorted ova leading to egg peritonitis were observed only in the DMV/1639 IBV-infected group. Moreover, microscopic lesion scores were significantly higher in the lung, kidney, cecal tonsils, and oviduct of the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Finally, the apoptosis index in the kidney, ovary, magnum, isthmus, and shell gland was significantly higher in the DMV/1639 IBV-infected group compared with the control and Mass-infected groups. This study examined the pathogenicity of two IBV genotypes that are impacting the layer industry in North America.
Collapse
Affiliation(s)
- Muhammad Farooq
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Reham M Abd-Elsalam
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Natalya Ratcliff
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohamed S H Hassan
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Shahnas M Najimudeen
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan C Cork
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Sylvia Checkley
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Yan Dong Niu
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Center, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Hassan MSH, Ali A, Mahmoud ME, Altakrouni D, Najimudeen SM, Abdul-Careem MF. Protection of laying chickens against the Canadian DMV/1639 infectious bronchitis virus infection through priming with heterologous live vaccine and boosting with heterologous or homologous inactivated vaccine. Virus Res 2024; 339:199281. [PMID: 37995965 PMCID: PMC10751723 DOI: 10.1016/j.virusres.2023.199281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
The emergence of the Canadian Delmarva (DMV)/1639 infectious bronchitis virus (IBV) type strains was associated with egg production disorders in Eastern Canadian layer operations. While developing vaccines for novel IBV variants is not typically a reasonable approach, the consideration of an autogenous vaccine becomes more appealing, particularly when the new variant presents significant economic challenges. The current study aimed to compare the efficacies of two vaccination programs that included heterologous live priming by Massachusetts (Mass) and Connecticut (Conn) type vaccines followed by either a commercial inactivated Mass type vaccine or a locally prepared autogenous inactivated DMV/1639 type vaccine against DMV/1639 IBV challenge. The protection parameters evaluated were egg production, viral shedding, dissemination of the virus in tissues, gross and microscopic lesions, and immunological responses. The challenge with the DMV/1639 caused severe consequences in the non-vaccinated laying hens including significant drop in egg production, production of low-quality eggs, serious damage to the reproductive organs, and yolk peritonitis. The two vaccination programs protected the layers from the poor egg-laying performance and the pathology. The vaccination program incorporating the autogenous inactivated DMV/1639 type vaccine was more effective in reducing vial loads in renal and reproductive tissues. This was associated with a higher virus neutralization titer compared to the group that received the commercial inactivated Mass type vaccine. Additionally, the autogenous vaccine boost led to a significant reduction in the viral shedding compared to the non-vaccinated laying hens. However, both vaccination programs induced significant level of protection considering all parameters examined. Overall, the findings from this study underscore the significance of IBV vaccination for protecting laying hens.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | - Motamed Elsayed Mahmoud
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag 84524, Egypt
| | - Danah Altakrouni
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Shahnas M Najimudeen
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | |
Collapse
|
24
|
Huang M, Zheng X, Zhang Y, Wang R, Wei X. Comparative proteomics analysis of kidney in chicken infected by infectious bronchitis virus. Poult Sci 2024; 103:103259. [PMID: 37992619 PMCID: PMC10700468 DOI: 10.1016/j.psj.2023.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023] Open
Abstract
The gamma coronavirus infectious bronchitis virus (IBV) is known to cause an acute and highly contagious infectious disease in poultry. Here, this study aimed to investigate the impact of virulent or avirulent IBV infection on the avian host by conducting proteomics with data-independent acquisition mass spectrometry (DIA-MS) in the kidneys of IBV-infected chickens. The results revealed 267, 489, and 510 differentially expressed proteins (DEPs) in the chicken kidneys at 3, 5, and 7 days postinfection (dpi), respectively, when infected with the GD17/04 strain, which is a highly nephrogenic strain and belongs to the 4/91 genotype. In contrast, the attenuated 4/91 vaccine resulted in the identification of 144, 175, and 258 DEPs at 3, 5, and 7 dpi, respectively. Functional enrichment analyses indicated distinct expression profiles between the 2 IBV strains. Upon GD17/04 infection, metabolic pathways respond initially in the early stage (3 dpi) and immune-related signaling pathways respond in the middle and late stages (5 and 7 dpi). The 4/91 vaccine elicited a completely opposite response compared to the GD17/04 infection. Among all DEPs, 62 immune-related DEPs were focused on and found to be mainly enriched in the type I interferon (IFN-I) signaling pathway and involved in humoral and cellular immunity. Notably, key molecules in the IFN-I signaling pathway including MDA5, LGP2, and TBK1 may serve as regulatory targets of IBV. Overall, this study highlights similarities and discrepancies in the patterns of protein expression at different stages of infection with virulent and avirulent IBV strains, with the IFN-I signaling pathway emerging as a critical response to IBV infection.
Collapse
Affiliation(s)
- Mengjiao Huang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Xuewei Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yunjing Zhang
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Ruohan Wang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaona Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
25
|
Xu J, Yin P, Liu X, Hou X. Forsythoside A inhibits apoptosis and autophagy induced by infectious bronchitis virus through regulation of the PI3K/Akt/NF-κB pathway. Microbiol Spectr 2023; 11:e0192123. [PMID: 37971265 PMCID: PMC10715169 DOI: 10.1128/spectrum.01921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Infectious bronchitis virus (IBV) is an acute and highly infectious viral disease that seriously endangered the development of the chicken industry. However, due to the limited effectiveness of commercial vaccines, there is an urgent need to develop safe and effective anti-IBV drugs. Forsythoside A (FTA) is a natural ingredient with wide pharmacological and biological activities, and it has been shown to have antiviral effects against IBV. However, the antiviral mechanism of FTA is still unclear. In this study, we demonstrated that FTA can inhibit cell apoptosis and autophagy induced by IBV infection by regulating the PI3K/AKT/NF-κB signaling pathway. This finding is important for exploring the role and mechanism of FTA in anti-IBV infection, indicating that FTA can be further studied as an anti-IBV drug.
Collapse
Affiliation(s)
- Jun Xu
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Peng Yin
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | - Xuewei Liu
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
26
|
Tian G, Huang C, Li Z, Lu Z, Feng C, Zhuang Y, Li G, Liu P, Hu G, Gao X, Guo X. Baicalin mitigates nephropathogenic infectious bronchitis virus infection-induced spleen injury via modulation of mitophagy and macrophage polarization in Hy-Line chick. Vet Microbiol 2023; 286:109891. [PMID: 37866328 DOI: 10.1016/j.vetmic.2023.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Nephropathogenic infectious bronchitis virus (NIBV) infections continue to pose a significant hazard in the poultry industry. Baicalin is a natural flavonoid that has been reported to have antiviral activity, but its function in NIBV infection largely remains unclear. In this study, the antiviral mechanism of baicalin in the spleen of NIBV-infected chicks was mainly elucidated in mitophagy and macrophage polarization. 28-day-old Hy-Line brown chicks were randomly divided into four groups: the group of chicks was treated intranasally (in) with normal saline (0.2 mL) and subsequently divided into two groups: the Con group (basic diet), the Con+BA group (basic diet+10 mg/kg Baicalin); another group of chicks was intranasally infected with SX9 (10-5/0.2 mL) and subsequently divided into two groups: the Dis group (basic diet), the Dis+BA group (basic diet+10 mg/kg Baicalin). Spleen tissues were collected at 3, 7, and 11 days post infection (dpi). NIBV copy number was strikingly decreased in the spleens under BA treatment with infectious time. Histopathological examination showed enlarged and hemorrhagic white pulp and no clearly defined boundary between white pulp and red pulp in the Dis group, which could be improved by BA treatment. Meanwhile, the loss of cristae structure and vacuolization in mitochondria caused by NIBV infection was repaired in the Dis+BA group by ultrastructure observation. In addition, BA treatment inhibited the induction of mitophagy by NIBV infection. BA treatment also promoted innate immunity by enhancing type I IFN levels. Moreover, BA treatment up-regulated M1-related cytokines (iNOS, TNF-α, IL-1β, IL-6) and inhibited M2-related cytokines (ARG2, IL-4, IL-10, Pparg) at the mRNA and protein levels. However, the results from the splenic tissues at 11 dpi are opposite results from 3 and 7 dpi. Immunofluorescence analysis for M1 macrophage marker iNOS and M2 macrophage marker CD163 further validated this result. Collectively, BA inhibited mitophagy and triggered IFN activation, and M1 polarization, which contributed to the inhibition of NIBV infection.
Collapse
Affiliation(s)
- Guanming Tian
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhengqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, PR China.
| |
Collapse
|
27
|
Lee R, Yoon BI, Hunter CA, Kwon HM, Sung HW, Park J. Short chain fatty acids facilitate protective immunity by macrophages and T cells during acute fowl adenovirus-4 infection. Sci Rep 2023; 13:17999. [PMID: 37865711 PMCID: PMC10590440 DOI: 10.1038/s41598-023-45340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Short chain fatty acids (SCFAs) are major gut metabolites that are involved in the regulation of dysfunction in immune responses, such as autoimmunity and cytokine storm. Numerous studies have reported a protective action of SCFAs against infectious diseases. This study investigated whether SCFAs have protective effect for immunity during fowl adenovirus-4 (FAdV-4) infection. We examined whether SCFA mixture (acetate, propionate, and butyrate) administration could protect against intramuscular challenge of a virulent viral strain. SCFA treatment promoted MHCII-expressing monocytes, the active form of T cells, and effector molecules in both peripheral and lymphoid tissues. It also boosted the production of immune molecules involved in pathogen elimination by intraepithelial lymphocytes and changed the intestinal microbial composition. We suggest that gut metabolites influence the gut microbial environment, and these changes stimulate macrophages and T cells to fight against the intramuscular challenge of FAdV-4.
Collapse
Affiliation(s)
- Rangyeon Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung-Il Yoon
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | | | - Hyuk Moo Kwon
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeongho Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea.
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
28
|
Zhang P, Yang T, Sun Y, Qiao H, Hu N, Li X, Wang W, Zhang L, Cong Y. Development and Immunoprotection of Bacterium-like Particle Vaccine against Infectious Bronchitis in Chickens. Vaccines (Basel) 2023; 11:1292. [PMID: 37631859 PMCID: PMC10457988 DOI: 10.3390/vaccines11081292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Infectious bronchitis (IB) is a major threat to the global poultry industry. Despite the availability of commercial vaccines, the IB epidemic has not been effectively controlled. The exploration of novel IBV vaccines may provide a new way to prevent and control IB. In this study, BLP-S1, a bacterium-like particle displaying the S1 subunit of infectious bronchitis virus (IBV), was constructed using the GEM-PA surface display system. The immunoprotective efficacy results showed that BLP-S1 can effectively induce specific IgG and sIgA immune responses, providing a protection rate of 90% against IBV infection in 14-day-old commercial chickens. These results suggest that BLP-S1 has potential for the development of novel vaccines with good immunogenicity and immunoprotection.
Collapse
Affiliation(s)
- Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Tiantian Yang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yixue Sun
- Department of Policies and Regulations, Changchun University, Changchun 130022, China
| | - Haiying Qiao
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Nianzhi Hu
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Xintao Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Weixia Wang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Lichun Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (P.Z.)
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
29
|
Hassan MSH, Abd-Elsalam RM, Ratcliff N, Herath-Mudiyanselage H, Abdul-Careem MF. The impact of the experimental route of challenge on the host responses and pathogenesis of the Canadian Delmarva (DMV/1639) infectious bronchitis virus infection in laying chickens. Vet Immunol Immunopathol 2023; 261:110623. [PMID: 37364440 DOI: 10.1016/j.vetimm.2023.110623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Infectious bronchitis virus (IBV) infection can be associated with respiratory, renal, and/or reproductive diseases in chickens. Under natural conditions, conjunctiva, mucosa of upper respiratory tract, and cloaca are the main routes of IBV entry. Experimentally, the study of IBV infection involved various routes of inoculation. This study investigated the impact of adding the trachea as a potential route of viral entry to the oculo-nasal infection on the host responses, pathogenicity, and tissue tropism of the Canadian IBV Delmarva (DMV/1639) strain in laying chickens. Specific-pathogen-free laying chickens were divided into three experimental groups: control group (Con group), oculo-nasal challenged group (ON group), and oculo-nasal/intratracheal challenged group (ON/IT group); all groups were observed for 12 days post-infection (dpi). The clinical signs and reduction in egg production in the ON/IT group started slightly earlier compared to the ON group. At 12 dpi, the gross lesions in the ON/IT group were confined to the ovary, while the ON group showed regressed ovary and atrophied oviduct. Only the ON group showed significantly higher microscopic lesion scores in the lung, kidney, magnum, and uterus compared to the control group at 12 dpi. The oviduct tissues of the ON group showed a significant increase in B cells infiltration compared to ON/IT and control groups. The viral shedding (detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR)), tissue tropism (detected either by qRT-PCR or immunohistochemistry (IHC)), T/natural killer cells infiltration in reproductive tract (detected by IHC), and antibody-mediated immune responses (measured by enzyme-linked immunosorbent assay) showed similar patterns in the ON and ON/IT groups.
Collapse
Affiliation(s)
- Mohamed S H Hassan
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Poultry Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut, 71515, Egypt
| | - Reham M Abd-Elsalam
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Natalya Ratcliff
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
30
|
Al-Rasheed M, Ball C, Parthiban S, Ganapathy K. Evaluation of protection and immunity induced by infectious bronchitis vaccines administered by oculonasal, spray or gel routes in commercial broiler chicks. Vaccine 2023:S0264-410X(23)00642-4. [PMID: 37316407 DOI: 10.1016/j.vaccine.2023.05.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Broiler chicks' responses following combined IBV live attenuated Massachusetts and 793B strains through gel, spray or oculonasal (ON) vaccination routes were cross-compared. Subsequently, the responses following IBV M41 challenge of the unvaccinated and vaccinated groups were also assessed. Post-vaccination humoral and mucosal immune responses, alongside viral load kinetics in swabs and tissues, were determined using commercial ELISA assays, monoclonal antibody-based IgG and IgA ELISA assays and qRT-PCR respectively. After challenged with IBV-M41 strain, humoral and mucosal immune responses, ciliary protection, viral load kinetics, and immune gene mRNA transcriptions between the three vaccination methods were examined and compared. Findings showed that post-vaccinal humoral and mucosal immune responses were similar in all three vaccination methods. Post vaccinal viral load kinetics is influenced by method of administration. The viral load peaked in the ON group within the tissues and the OP/CL swabs in the first and third weeks respectively. Following M41 challenge, ciliary protection and mucosal immune responses were not influenced by vaccination methods as all three methods offered equal ciliary protection. Immune gene mRNA transcriptions varied by vaccination methods. Significant up-regulation of MDA5, TLR3, IL-6, IFN-α and IFN-β genes were recorded for ON method. For both spray and gel methods, significant up-regulation of only MDA5 and IL-6 genes were noted. The spray and gel-based vaccination methods gave equivalent levels of ciliary protection and mucosal immunity to M41 virulent challenge comparable to those provided by the ON vaccination. Analysis of viral load and patterns of immune gene transcription of the vaccinated-challenged groups revealed high similarity between turbinate and choanal cleft tissues compared to HG and trachea. With regards to immune gene mRNA transcription, for all the vaccinated-challenged groups, similar results were found except for IFN-α, IFN-β and TLR3, which were up-regulated only in ON compared to gel and spray vaccination methods.
Collapse
Affiliation(s)
- Mohammed Al-Rasheed
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK; College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia; Avian Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christopher Ball
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK
| | - Sivamurthy Parthiban
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK; Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Kannan Ganapathy
- Institute of Infection and Global Health, University of Liverpool, Cheshire, UK.
| |
Collapse
|
31
|
Zhao J, Zhao Y, Zhang G. Key Aspects of Coronavirus Avian Infectious Bronchitis Virus. Pathogens 2023; 12:pathogens12050698. [PMID: 37242368 DOI: 10.3390/pathogens12050698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Infectious bronchitis virus (IBV) is an enveloped and positive-sense single-stranded RNA virus. IBV was the first coronavirus to be discovered and predominantly causes respiratory disease in commercial poultry worldwide. This review summarizes several important aspects of IBV, including epidemiology, genetic diversity, antigenic diversity, and multiple system disease caused by IBV as well as vaccination and antiviral strategies. Understanding these areas will provide insight into the mechanism of pathogenicity and immunoprotection of IBV and may improve prevention and control strategies for the disease.
Collapse
Affiliation(s)
- Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Li H, Liu G, Zhou Q, Yang H, Zhou C, Kong W, Su J, Li G, Si H, Ou C. Which strain of the avian coronavirus vaccine will become the prevalent one in China next? Front Vet Sci 2023; 10:1139089. [PMID: 37215473 PMCID: PMC10196085 DOI: 10.3389/fvets.2023.1139089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Infectious bronchitis virus (IBV) is a vital pathogen in poultry farms, which can induce respiratory, nephropathogenic, oviduct, proventriculus, and intestinal diseases. Based on the phylogenetic classification of the full-length S1 gene, IBV isolates have been categorized into nine genotypes comprising 38 lineages. GI (GI-1, GI-2, GI-3, GI-4, GI-5, GI-6, GI-7, GI-13, GI-16, GI-18, GI-19, GI-22, GI-28, and GI-29), GVI-1 and GVII-1 have been reported in China in the past 60 years. In this review, a brief history of IBV in China is described, and the current epidemic strains and licensed IBV vaccine strains, as well as IBV prevention and control strategies, are highlighted. In addition, this article presents unique viewpoints and recommendations for a more effective management of IBV. The recombinant Newcastle Disease virus (NDV) vector vaccine expressed S gene of IBV QX-like and 4/91 strains may be the dominant vaccine strains against NDV and IBV.
Collapse
Affiliation(s)
- Haizhu Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Gengsong Liu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiaoyan Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hongchun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Congcong Zhou
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weili Kong
- Gladstone Institute of Virology, University of California, San Francisco, San Francisco, CA, United States
| | - Jieyu Su
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| |
Collapse
|
33
|
Wu Y, Li Y, Zhao J, Wu Y, Lu D, Jia J, Chen T, He M, Lin J, Yang Q. IBV QX affects the antigen presentation function of BMDCs through nonstructural protein16. Poult Sci 2023; 102:102620. [PMID: 36972672 PMCID: PMC9981267 DOI: 10.1016/j.psj.2023.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The gamma-coronavirus infectious bronchitis virus (IBV) has a high mutation rate and mainly invades the respiratory mucosa, making it difficult to prevent and causing great economic losses. Nonstructural protein 16 (NSP16) of IBV QX also not only plays an indispensable role in virus invading but also might hugely influence the antigen's recognition and presentation ability of host BMDCs. Hence, our study tries to illustrate the underline mechanism of how NSP16 influences the immune function of BMDCs. Initially, we found that NSP16 of the QX strain significantly inhibited the antigen presentation ability and immune response of mouse BMDCs, which was stimulated by Poly (I:C) or AIV RNA. Besides mouse BMDCs, we also found that NSP16 of the QX strain also significantly stimulated the chicken BMDCs to activate the interferon signaling pathway. Furthermore, we preliminarily demonstrated that IBV QX NSP16 inhibits the antiviral system by affecting the antigen-presenting function of BMDCs.
Collapse
Affiliation(s)
- Yaotang Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Yuchen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jinhao Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yang Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Danqing Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Junpeng Jia
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tianxin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingzhe He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jian Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
34
|
Jia S, McWhorter AR, Khan S, Andrews DM, Underwood GJ, Chousalkar KK. Investigation of a gel-based delivery method for the administration of a live, attenuated Salmonella Typhimurium vaccine. Vet Microbiol 2023; 280:109721. [PMID: 36948084 DOI: 10.1016/j.vetmic.2023.109721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Poultry vaccines are often administered using water as a suspension media and applied using an oral or coarse spray method. Gel-based vaccine diluents have been developed as an alternative vaccine delivery method. Gels are more viscous, and droplets adhere more effectively to feathers giving the vaccine a longer time to be ingested (through preening). Application of gel diluents with live bacterial vaccines, however, is limited. The present study tested a gel diluent prepared in various media, using a live, attenuated Salmonella Typhimurium vaccine, Vaxsafe ST. Reconstitution in gel diluent did not negatively affect vaccine viability or motility. The invasive capacity of vaccine suspended in gel diluent into cultured intestinal epithelial cells was also tested. Results demonstrated that vaccine suspended in gel diluent retained invasiveness. Day old chicks were orally administered with Vaxsafe ST suspended in gel diluent to characterize in vivo colonization capacity of the vaccine. The results revealed that the VaxSafe ST suspended in gel diluent could efficiently colonize the caeca of chicks, which is needed for the development of effective immunity.
Collapse
Affiliation(s)
- Siyuan Jia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | - Andrea R McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | - Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia
| | | | | | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy SA 5371, Australia.
| |
Collapse
|
35
|
Icochea E, González R, Castro-Sanguinetti G, Maturrano L, Alzamora L, Sesti L, Chacón J, More-Bayona J. Genetic Analysis of Infectious Bronchitis Virus S1 Gene Reveals Novel Amino Acid Changes in the GI-16 Lineage in Peru. Microorganisms 2023; 11:microorganisms11030691. [PMID: 36985264 PMCID: PMC10051523 DOI: 10.3390/microorganisms11030691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 03/30/2023] Open
Abstract
Infectious bronchitis is a highly contagious viral disease that represents an economic threat for poultry despite the wide use of vaccination. To characterize the virus circulating in Peru, we analyzed 200 samples, including nasopharyngeal swabs and multiple tissues collected from animals suspected of being infected with infectious bronchitis virus (IBV) between January and August in 2015. All animals had at least one positive sample for IBV by RT-PCR. Out of these positive samples, eighteen (18) were selected for viral isolation and a partial S1 sequencing. Phylogenetic analysis showed that sixteen isolates clustered with members of GI-16 lineage, also known as Q1, with nucleotide homology ranging from 93% to 98%. The two remaining isolates grouped with members of the GI-1 lineage. Our study reveals circulation of GI-16 lineage during this period in poultry systems in Peru, along with GI-1 lineage (vaccine-derived). Moreover, those IBV GI-16 isolates showed unique nucleotide and amino acid changes compared to their closest relatives. Altogether, these findings reveal the circulation of GI-16 lineage while describing changes at key regions of the S protein that might be of relevance for vaccine evasion. These results highlight the importance of genetic surveillance for improving vaccination strategies against infectious bronchitis.
Collapse
Affiliation(s)
- Eliana Icochea
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 2800, Lima 15081, Peru
| | - Rosa González
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 2800, Lima 15081, Peru
| | - Gina Castro-Sanguinetti
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 2800, Lima 15081, Peru
| | - Lenin Maturrano
- Laboratory of Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 2800, Lima 15081, Peru
| | - Luis Alzamora
- CEVA Animal Health, 3461 Av. República de Panamá Dpto. 1102, San Isidro, Lima 15047, Peru
| | - Luiz Sesti
- CEVA Animal Health, 3461 Av. República de Panamá Dpto. 1102, San Isidro, Lima 15047, Peru
| | - Jorge Chacón
- CEVA Animal Health, 3461 Av. República de Panamá Dpto. 1102, San Isidro, Lima 15047, Peru
| | - Juan More-Bayona
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 2800, Lima 15081, Peru
- Laboratory of Virology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 2800, Lima 15081, Peru
| |
Collapse
|
36
|
Efficacy of Two Vaccination Strategies against Infectious Bronchitis in Laying Hens. Vaccines (Basel) 2023; 11:vaccines11020338. [PMID: 36851216 PMCID: PMC9967544 DOI: 10.3390/vaccines11020338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccination remains the leading control method against infectious bronchitis (IB) in poultry despite the frequently observed IB outbreaks in vaccinated flocks. Here, two vaccination regimes were evaluated against challenge with the Massachusetts (Mass) infectious bronchitis virus (IBV) strain that was linked to egg production defects in Western Canada. One vaccination strategy included live attenuated IB vaccines only, and the other used both inactivated and live attenuated IB vaccines. The two immunization programs involved priming with a monovalent live attenuated IB vaccine (Mass serotype) at day-old, followed by intervals of bivalent live attenuated IB vaccines containing the Mass and Connecticut (Conn) serotypes given to the pullets at 2-, 5-, 9-, and 14-week-old. Inactivated IB vaccine (Mass serotype) was administrated to only one group of the vaccinated birds at 14-week-old. At the peak of lay, the hens were challenged with the Mass IBV isolate (15AB-01) via the oculo-nasal route. The efficacy of the vaccines was assessed following the challenge by observing clinical signs, egg production, egg quality parameters, seroconversion, and systemic T-cell subsets (CD4+ and CD8+ cells). Moreover, the viral genome loads in the oropharyngeal (OP) and cloacal (CL) swabs were quantified at predetermined time points. At 14 days post-infection (dpi), all the hens were euthanized, and different tissues were collected for genome load quantification and histopathological examination. Post-challenge, both vaccination regimes showed protection against clinical signs and exhibited significantly higher albumen parameters, higher anti-IBV serum antibodies, and significantly lower levels of IBV genome loads in OP swabs (at 3 and 7 dpi) and trachea and cecal tonsils compared to the mock-vaccinated challenged group. However, only the birds that received live attenuated plus inactivated IB vaccines had significantly lower IBV genome loads in CL swabs at 7 dpi, as well as decreased histopathological lesion scores and IBV genome loads in magnum compared to the mock-vaccinated challenged group, suggesting a slightly better performance for using live attenuated and inactivated IB vaccines in combination. Overall, the present findings show no significant difference in protection between the two vaccination regimes against the Mass IBV challenge in laying hens.
Collapse
|
37
|
A DNA Prime and MVA Boost Strategy Provides a Robust Immunity against Infectious Bronchitis Virus in Chickens. Vaccines (Basel) 2023; 11:vaccines11020302. [PMID: 36851180 PMCID: PMC9962218 DOI: 10.3390/vaccines11020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/28/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Infectious bronchitis (IB) is an acute respiratory disease of chickens caused by the avian coronavirus Infectious Bronchitis Virus (IBV). Modified Live Virus (MLV) vaccines used commercially can revert to virulence in the field, recombine with circulating serotypes, and cause tissue damage in vaccinated birds. Previously, we showed that a mucosal adjuvant system, QuilA-loaded Chitosan (QAC) nanoparticles encapsulating plasmid vaccine encoding for IBV nucleocapsid (N), is protective against IBV. Herein, we report a heterologous vaccination strategy against IBV, where QAC-encapsulated plasmid immunization is followed by Modified Vaccinia Ankara (MVA) immunization, both expressing the same IBV-N antigen. This strategy led to the initiation of robust T-cell responses. Birds immunized with the heterologous vaccine strategy had reduced clinical severity and >two-fold reduction in viral burden in lachrymal fluid and tracheal swabs post-challenge compared to priming and boosting with the MVA-vectored vaccine alone. The outcomes of this study indicate that the heterologous vaccine platform is more immunogenic and protective than a homologous MVA prime/boost vaccination strategy.
Collapse
|
38
|
Yang CY, Peng P, Liu X, Cao Y, Zhang Y. Effect of monovalent and bivalent live attenuated vaccines against QX-like IBV infection in young chickens. Poult Sci 2023; 102:102501. [PMID: 36736138 PMCID: PMC9898446 DOI: 10.1016/j.psj.2023.102501] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Since 1999, QX-like (GI-19) avian infectious bronchitis viruses have been the predominant strains in China till now. Vaccination is the most effective way to control the disease, while live attenuated vaccine is widely used. In the current research, we evaluated the effect of several monovalent and bivalent live IBV vaccines in young chickens against the QX-like (GI-19) IBV infection. The results showed that monovalent 4/91 and bivalent Ma5+LDT3 vaccines could provide efficient protection in day-old chickens that reduced morbidity and mortality, ameliorated histopathology lesions, and reduced viral loads were observed. These data suggest that vaccination through nasal route with monovalent 4/91 or bivalent Ma5+LDT3 in day-old chickens could serve a safe and effective vaccination strategy for controlling QX-like (GI-19) infectious bronchitis virus.
Collapse
Affiliation(s)
- Chen-Yu Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xing Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yun Zhang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,Corresponding author:
| |
Collapse
|
39
|
Cheng X, Ning Z. Research progress on bird eggshell quality defects: a review. Poult Sci 2023; 102:102283. [PMID: 36399932 PMCID: PMC9673113 DOI: 10.1016/j.psj.2022.102283] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The eggshell quality declined with extending of chicken laying cycles. Eggshell quality is a crucial feature that not only affects consumer preference, but also influences producers' economic profitability. The eggshell ultrastructure consists of mammillary, palisade, and vertical crystal layers. Any defect in shell structure results in a reduction in eggshell quality. Speckled, translucent, pimpled, and soft eggshells are common defects that cause significant financial losses for farmers and food security concerns for consumers. Therefore, reducing the faulty eggshells is critical for poultry production. Defective eggshell quality has been attributed to hereditary factors and external environmental stimuli. As such, improvements can be carried out through selective breeding and environmental control of components such as temperature, moisture, and diet formula balance. In this review, the molecular mechanisms of the main eggshell quality defects (speckled, translucent, pimpled, broken, and soft-shell eggs) and the relevant improvement methods are detailed. We hope this review will serve as a useful resource for poultry production management and effectively increasing eggshell quality.
Collapse
Affiliation(s)
- Xue Cheng
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Marchenko V, Danilenko A, Kolosova N, Bragina M, Molchanova M, Bulanovich Y, Gorodov V, Leonov S, Gudymo A, Onkhonova G, Svyatchenko S, Ryzhikov A. Diversity of gammacoronaviruses and deltacoronaviruses in wild birds and poultry in Russia. Sci Rep 2022; 12:19412. [PMID: 36371465 PMCID: PMC9653423 DOI: 10.1038/s41598-022-23925-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022] Open
Abstract
Coronaviruses of the genera Gammacoronavirus and Deltacoronavirus are globally widespread and circulate primarily in wild and domestic birds. Prior studies have established frequently occurring crossover events from avian to mammalian reservoirs. However, there is limited understanding of the diversity and geographical distribution of coronaviruses among birds. In this study, the surveillance of coronaviruses in birds in Russia during 2020 revealed the presence of coronaviruses in 12% of samples from birds. Targeted NGS approach was used for the evaluation of genetic diversity based on RdRp gene. While gammacoronviruses were found in both wild birds and poultry, deltacoronaviruses were found in wild birds only and represent the first detections for Russia. A number of cases with the simultaneous detection of gamma- and deltacoronaviruses in one bird was reported. The results of this study highlight the importance of further research concerning the spread and diversity of coronaviruses among birds within and migrating throughout the territory of Russia across the globe.
Collapse
Affiliation(s)
- Vasily Marchenko
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexey Danilenko
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Natalia Kolosova
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Maria Bragina
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Marina Molchanova
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Yuliya Bulanovich
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Vladimir Gorodov
- Siberian Federal Scientific Centre of Agro-BioTechnologies, RAS, Novosibirsk, Russia
| | - Sergey Leonov
- Siberian Federal Scientific Centre of Agro-BioTechnologies, RAS, Novosibirsk, Russia
| | - Andrey Gudymo
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Galina Onkhonova
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Svetlana Svyatchenko
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- grid.419755.bState Research Center of Virology and Biotechnology Vector Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
41
|
Park RF, Boshoff WHP, Cabral AL, Chong J, Martinelli JA, McMullen MS, Fetch JWM, Paczos-Grzęda E, Prats E, Roake J, Sowa S, Ziems L, Singh D. Breeding oat for resistance to the crown rust pathogen Puccinia coronata f. sp. avenae: achievements and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3709-3734. [PMID: 35665827 PMCID: PMC9729147 DOI: 10.1007/s00122-022-04121-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/01/2022] [Indexed: 05/05/2023]
Abstract
Crown rust, caused by Puccinia coronata f. sp. avenae (Pca), is a significant impediment to global oat production. Some 98 alleles at 92 loci conferring resistance to Pca in Avena have been designated; however, allelic relationships and chromosomal locations of many of these are unknown. Long-term monitoring of Pca in Australia, North America and elsewhere has shown that it is highly variable even in the absence of sexual recombination, likely due to large pathogen populations that cycle between wild oat communities and oat crops. Efforts to develop cultivars with genetic resistance to Pca began in the 1950s. Based almost solely on all all-stage resistance, this has had temporary benefits but very limited success. The inability to eradicate wild oats, and their common occurrence in many oat growing regions, means that future strategies to control Pca must be based on the assumption of a large and variable prevailing pathogen population with high evolutionary potential, even if cultivars with durable resistance are deployed and grown widely. The presence of minor gene, additive APR to Pca in hexaploid oat germplasm opens the possibility of pyramiding several such genes to give high levels of resistance. The recent availability of reference genomes for diploid and hexaploid oat will undoubtedly accelerate efforts to discover, characterise and develop high throughput diagnostic markers to introgress and pyramid resistance to Pca in high yielding adapted oat germplasm.
Collapse
Affiliation(s)
- R F Park
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia.
| | - W H P Boshoff
- Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - A L Cabral
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - J Chong
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - J A Martinelli
- Department of Crop Science, Agronomy School, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 7712, Porto Alegre, RS, 91501-970, Brazil
| | - M S McMullen
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58105-5051, USA
| | - J W Mitchell Fetch
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, Canada
| | - E Paczos-Grzęda
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - E Prats
- CSIC-Institute for Sustainable Agriculture, Avda. Menéndez Pidal s/n. , 14004, Córdoba, Spain
| | - J Roake
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - S Sowa
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - L Ziems
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | - D Singh
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Legnardi M, Cecchinato M, Homonnay Z, Dauphin G, Koutoulis KC, Tucciarone CM, Franzo G. Viral subpopulation variability in different batches of Infectious bronchitis virus (IBV) vaccines based on GI-23 lineage: Implications for the field. Virus Res 2022; 319:198877. [PMID: 35872282 DOI: 10.1016/j.virusres.2022.198877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
The control of infectious bronchitis (IB) is largely based on routine vaccine administration, often using live-attenuated vaccines. However, their capability to replicate and be transmitted among animals and farms implies significant risks. The detection of strains genetically related to vaccines complicates the diagnostic process and understanding of the viral molecular epidemiology. Moreover, reversion to virulence and associated clinical outbreaks can occur although the underlying mechanism are often unknown. In the present study, three vaccine vials, based on IBV GI-23 lineage (also known as Variant2) were deep sequenced through Next Generation Sequencing (NGS) to investigate the presence and features of viral subpopulations. To elucidate the consequences in the field and identify potential markers suitable for a DIVA strategy, the S1 sequences of strains originating from farms in different countries were sequenced and classified based on the knowledge of their vaccination history and similarity with the applied vaccine. Although all considered vaccine batches shared the same consensus sequence, different subpopulations were identified suggesting independent and poorly constrained evolutionary processes. When compared with strains sampled from farms, the vaccine consensus sequences and the respective subpopulations clustered with vaccine strains and no genetic features were consistently shared with field strains. Therefore, if vaccine-induced outbreaks occur, they are more likely to originate from in vivo evolution rather than selection of already present subpopulations. Although some amino acid residues were most commonly detected in field or vaccine strains, no consistent marker could be identified. The occurrence of subpopulations within IBV GI-23-based vaccines and variability featuring different production batches was demonstrated. Being such a phenomenon apparently driven by random genetic drift rather than directional selection, the differentiation between field and vaccine-derived strains appears extremely challenging based on sequence analysis alone. The knowledge of farm management and vaccination history should thus be considered for a proper epidemiological investigation.
Collapse
Affiliation(s)
- Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy
| | | | - Gwenaelle Dauphin
- Ceva Santé animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| | - Konstantinos C Koutoulis
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece
| | | | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, PD, Italy.
| |
Collapse
|
43
|
Evaluation of UVC Excimer Lamp (222 nm) Efficacy for Coronavirus Inactivation in an Animal Model. Viruses 2022; 14:v14092038. [PMID: 36146846 PMCID: PMC9503014 DOI: 10.3390/v14092038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The current pandemic caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has encouraged the evaluation of novel instruments for disinfection and lowering infectious pressure. Ultraviolet subtype C (UVC) excimer lamps with 222 nm wavelength have been tested on airborne pathogens on surfaces and the exposure to this wavelength has been considered safer than conventional UVC. To test the efficacy of UVC excimer lamps on coronaviruses, an animal model mimicking the infection dynamics was implemented. An attenuated vaccine based on infectious bronchitis virus (IBV) was nebulized and irradiated by 222 nm UVC rays before the exposure of a group of day-old chicks to evaluate the virus inactivation. A control group of chicks was exposed to the nebulized vaccine produced in the same conditions but not irradiated by the lamps. The animals of both groups were sampled daily and individually by choanal cleft swabs and tested usign a strain specific real time RT-PCR to evaluate the vaccine replication. Only the birds in the control group were positive, showing an active replication of the vaccine, revealing the efficacy of the lamps in inactivating the vaccine below the infectious dose in the other group.
Collapse
|
44
|
A Temperature-Sensitive Recombinant of Avian Coronavirus Infectious Bronchitis Virus Provides Complete Protection against Homologous Challenge. J Virol 2022; 96:e0110022. [PMID: 35972294 PMCID: PMC9472628 DOI: 10.1128/jvi.01100-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Avian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity. The exact molecular mechanism of attenuation is unknown, and vaccines produced in this manner present a risk of reversion to virulence as few consensus level changes are acquired. Our previous research resulted in the generation of a recombinant IBV (rIBV) known as M41-R, based on a pathogenic strain M41-CK. M41-R was attenuated in vivo by two amino acid changes, Nsp10-Pro85Leu and Nsp14-Val393Leu; however, the mechanism of attenuation was not determined. Pro85 and Val393 were found to be conserved among not only IBV strains but members of the wider coronavirus family. This study demonstrates that the same changes are associated with a temperature-sensitive (ts) replication phenotype at 41°C in vitro, suggesting that the two phenotypes may be linked. Vaccination of specific-pathogen-free chickens with M41-R induced 100% protection against clinical disease, tracheal ciliary damage, and challenge virus replication following homologous challenge with virulent M41-CK. Temperature sensitivity has been used to rationally attenuate other viral pathogens, including influenza, and the identification of amino acid changes that impart both a ts and an attenuated phenotype may therefore offer an avenue for future coronavirus vaccine development. IMPORTANCE Infectious bronchitis virus is a pathogen of economic and welfare concern for the global poultry industry. Live-attenuated vaccines against are generated by serial passage of a virulent isolate in embryonated eggs until attenuation is achieved. The exact mechanisms of attenuation are unknown, and vaccines produced have a risk of reversion to virulence. Reverse genetics provides a method to generate vaccines that are rationally attenuated and are more stable with respect to back selection due to their clonal origin. Genetic populations resulting from molecular clones are more homogeneous and lack the presence of parental pathogenic viruses, which generation by multiple passage does not. In this study, we identified two amino acids that impart a temperature-sensitive replication phenotype. Immunogenicity is retained and vaccination results in 100% protection against homologous challenge. Temperature sensitivity, used for the development of vaccines against other viruses, presents a method for the development of coronavirus vaccines.
Collapse
|
45
|
Abstract
Following the initiation of the unprecedented global vaccination campaign against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), attention has now turned to the potential impact of this large-scale intervention on the evolution of the virus. In this Essay, we summarize what is currently known about pathogen evolution in the context of immune priming (including vaccination) from research on other pathogen species, with an eye towards the future evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Troy Day
- Department of Mathematics and Statistics, Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - David A. Kennedy
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Andrew F. Read
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
46
|
Hassan MSH, Buharideen SM, Ali A, Najimudeen SM, Goldsmith D, Coffin CS, Cork SC, van der Meer F, Abdul-Careem MF. Efficacy of Commercial Infectious Bronchitis Vaccines against Canadian Delmarva (DMV/1639) Infectious Bronchitis Virus Infection in Layers. Vaccines (Basel) 2022; 10:vaccines10081194. [PMID: 36016082 PMCID: PMC9416550 DOI: 10.3390/vaccines10081194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Vaccination is the most important way to control infectious bronchitis (IB) in chickens. Since the end of 2015, the Delmarva (DMV)/1639 strain of infectious bronchitis virus (IBV) has caused significant damage to the layer flocks in Eastern Canada. The efficacy of a combination of existing IB vaccines licensed in Canada was assessed against experimental challenge with this IBV strain. The layer pullets were vaccinated during the rearing phase with live attenuated IB vaccines of Massachusetts (Mass) + Connecticut (Conn) types followed by an inactivated IB vaccine of Mass + Arkansas (Ark) types and then challenged with the Canadian IBV DMV/1639 strain at 30 weeks of age. Protection was evaluated based on the egg laying performance, immune responses, viral shedding, and viral genome loads and lesions in IBV target organs. The vaccinated challenged hens were protected from the drop in egg production observed in the non-vaccinated challenged hens. Early (5 dpi) anamnestic serum antibody response was measured in the vaccinated challenged hens as well as a significant level of antibodies was detected in the oviduct washes (14 dpi). In contrast, hens in the non-vaccinated challenged group showed delayed (12 dpi) and significantly lower serum antibody response. Viral RNA loads were reduced in the respiratory, alimentary, and reproductive tissues of the vaccinated challenged hens compared to the non-vaccinated challenged hens. Compared to the control groups, the vaccinated challenged hens had less marked microscopic lesions in the trachea, kidney, magnum, and uterus. Our experimental model demonstrated inconclusive results for cell-mediated immune responses and viral shedding. Overall, the vaccination program used in this study minimized viral replication and histopathological changes in most IBV target organs and protected challenged hens against drop in egg production.
Collapse
Affiliation(s)
- Mohamed S. H. Hassan
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (M.S.H.H.); (S.M.B.); (A.A.); (S.M.N.); (D.G.); (S.C.C.); (F.v.d.M.)
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Sabrina M. Buharideen
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (M.S.H.H.); (S.M.B.); (A.A.); (S.M.N.); (D.G.); (S.C.C.); (F.v.d.M.)
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (M.S.H.H.); (S.M.B.); (A.A.); (S.M.N.); (D.G.); (S.C.C.); (F.v.d.M.)
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62521, Egypt
| | - Shahnas M. Najimudeen
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (M.S.H.H.); (S.M.B.); (A.A.); (S.M.N.); (D.G.); (S.C.C.); (F.v.d.M.)
| | - Dayna Goldsmith
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (M.S.H.H.); (S.M.B.); (A.A.); (S.M.N.); (D.G.); (S.C.C.); (F.v.d.M.)
| | - Carla S. Coffin
- Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada;
| | - Susan C. Cork
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (M.S.H.H.); (S.M.B.); (A.A.); (S.M.N.); (D.G.); (S.C.C.); (F.v.d.M.)
| | - Frank van der Meer
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (M.S.H.H.); (S.M.B.); (A.A.); (S.M.N.); (D.G.); (S.C.C.); (F.v.d.M.)
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (M.S.H.H.); (S.M.B.); (A.A.); (S.M.N.); (D.G.); (S.C.C.); (F.v.d.M.)
- Correspondence: ; Tel.: +1-403-220-4462; Fax: +1-403-210-9740
| |
Collapse
|
47
|
Ting X, Xiang C, Liu DX, Chen R. Establishment and Cross-Protection Efficacy of a Recombinant Avian Gammacoronavirus Infectious Bronchitis Virus Harboring a Chimeric S1 Subunit. Front Microbiol 2022; 13:897560. [PMID: 35935229 PMCID: PMC9354458 DOI: 10.3389/fmicb.2022.897560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a gammacoronavirus that causes a highly contagious disease in chickens and seriously endangers the poultry industry. A diversity of serotypes and genotypes of IBV have been identified worldwide, and the currently available vaccines do not cross-protect. In the present study, an efficient reverse genetics technology based on Beaudette-p65 has been used to construct a recombinant IBV, rIBV-Beaudette-KC(S1), by replacing the nucleotides 21,704–22,411 with the corresponding sequence from an isolate of QX-like genotype KC strain. Continuous passage of this recombinant virus in chicken embryos resulted in the accumulation of two point mutations (G21556C and C22077T) in the S1 region. Further studies showed that the T248S (G21556C) substitution may be essential for the adaptation of the recombinant virus to cell culture. Immunization of chicks with the recombinant IBV elicited strong antibody responses and showed high cross-protection against challenges with virulent M41 and a QX-like genotype IBV. This study reveals the potential of developing rIBV-Beau-KC(S1) as a cell-based vaccine with a broad protective immunity against two different genotypes of IBV.
Collapse
Affiliation(s)
- Xiong Ting
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chengwei Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Ding Xiang Liu ;
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Zhaoqing Branch of Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
- *Correspondence: Ruiai Chen
| |
Collapse
|
48
|
Jung JS, Lee R, Yoon SI, Lee GS, Sung HW, Kwon HM, Park J. Genetic and immunological characterization of commercial infectious bronchitis virus vaccines used in Korea. Arch Virol 2022; 167:2123-2132. [PMID: 35816229 PMCID: PMC9272870 DOI: 10.1007/s00705-022-05519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
The aim of the study was to investigate the genetic and immunogenic features of commercial vaccines against infectious bronchitis virus (IBV), which is a major contagious pathogen of poultry. Although numerous vaccines have been developed based on the genetic characteristics of field strains, the continual emergence of variants decreases vaccine efficacy and cross-protection. To address this issue, we compared the S1 gene sequences of three IBV vaccines commercially available in Korea with those of various field isolates. Phylogenetic analysis showed that the vaccine strains clustered into two different lineages. Comparison of commercial vaccines with their parental viruses showed that most of the genetic variability occurred around hypervariable regions (HVRs). Conversely, antigenic stimulation with commercial vaccines and regional IBV variants was not sufficient to alter major immune cell phenotypes. Our study suggests that vaccines should be selected carefully based on their genetic background because genetic variability can affect the antigenicity of vaccines and host immune responses.
Collapse
Affiliation(s)
- Ji Seung Jung
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Rangyeon Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Sung-Il Yoon
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Haan Woo Sung
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyuk Moo Kwon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jeongho Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
49
|
A Novel Nanobody-Horseradish Peroxidase Fusion Based-Competitive ELISA to Rapidly Detect Avian Corona-Virus-Infectious Bronchitis Virus Antibody in Chicken Serum. Int J Mol Sci 2022; 23:ijms23147589. [PMID: 35886935 PMCID: PMC9321063 DOI: 10.3390/ijms23147589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Avian coronavirus-infectious bronchitis virus (AvCoV-IBV) is the causative agent of infectious bronchitis (IB) that has brought great threat and economic losses to the global poultry industry. Rapid and accurate diagnostic methods are very necessary for effective disease monitoring. At the present study, we screened a novel nanobody against IBV-N protein for development of a rapid, simple, sensitive, and specific competitive ELISA for IBV antibody detection in order to enable the assessment of inoculation effect and early warning of disease infection. Using the phage display technology and bio-panning, we obtained 7 specific nanobodies fused with horseradish peroxidase (HRP) which were expressed in culture supernatant of HEK293T cells. Out of which, the nanobody of IBV-N-Nb66-vHRP has highly binding with IBV-N protein and was easily blocked by the IBV positive serums, which was finally employed as an immunoprobe for development of the competitive ELISA (cELISA). In the newly developed cELISA, we reduce the use of enzyme-conjugated secondary antibody, and the time of whole operation process is approximately 1 h. Moreover, the IBV positive serums diluted at 1:1000 can still be detected by the developed cELISA, and it has no cross reactivity with others chicken disease serums including Newcastle disease virus, Fowl adenovirus, Avian Influenza Virus, Infectious bursal disease virus and Hepatitis E virus. The cut-off value of the established cELISA was 36%, and the coefficient of variation of intra- and inter-assay were 0.55–1.65% and 2.58–6.03%, respectively. Compared with the commercial ELISA (IDEXX kit), the agreement rate of two methods was defined as 98% and the kappa value was 0.96, indicating the developed cELISA has high consistency with the commercial ELISA. Taken together, the novel cELISA for IBV antibody detection is a simple, rapid, sensitive, and specific immunoassay, which has the potential to rapidly test IBV antibody contributing to the surveillance and control of the disease.
Collapse
|
50
|
Weng W, Liu Q, Xue W, Wang H, Fang S, Sun Y, Tan L, Song C, Qiu X, Liu W, Ding C, Liao Y. Characterization of the Protective Efficacy Against QX Strain of a Recombinant Infectious Bronchitis Virus With H120 Backbone and QX Spike Gene. Front Microbiol 2022; 13:883642. [PMID: 35783402 PMCID: PMC9247577 DOI: 10.3389/fmicb.2022.883642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Infectious bronchitis virus (IBV) has been prevalent in chicken farms for many years, and its control relies on extensive vaccine administration. The continuous emergence of new variants and the low cross-protection efficiency prompt the development of new vaccines. In this study, we develop a reverse genetics technique based on the classical vaccine strain H120 genome, via in vitro ligation method. Using the H120 genome as the backbone, we constructed the recombinant virus rH120-QX(S) by replacing the H120 S gene with the QX S gene, a prevalent strain in China. Biological characteristics of the rH120-QX(S) virus, such as 50% egg lethal dose (ELD50), 50% egg infectious dose (EID50), dwarf embryo, growth curve, and genetic stability, are measured, which are comparable to the parental virus H120. There are no clinical symptoms and tissue lesions in the trachea and kidney in the rH120-QX(S)-infected specific-pathogen-free (SPF) chickens, demonstrating that this recombinant virus does not confer pathogenicity. Furthermore, protection studies show that there is 100% homologous protection of rH120-QX(S) to the virulent QX strain, as shown by the absence of clinical signs and no lethality. Taken together, our results demonstrate that swapping the S gene onto the H120 genetic backbone is a precise and effective way to produce genetically defined IBV vaccine candidates.
Collapse
Affiliation(s)
- Wenlian Weng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qingyan Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Agriculture, College of Animal Sciences, Yangtze University, Jingzhou, China
| | - Wenxiang Xue
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shouguo Fang
- College of Agriculture, College of Animal Sciences, Yangtze University, Jingzhou, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Ying Liao
| |
Collapse
|