1
|
Schulz D, Aebischer A, Wernike K, Beer M. No evidence of spread of Linda pestivirus in the wild boar population in Southern Germany. Virol J 2024; 21:205. [PMID: 39215313 PMCID: PMC11365151 DOI: 10.1186/s12985-024-02476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Lateral-shaking inducing neuro-degenerative agent virus (LindaV) is a novel member of the highly diverse genus Pestivirus within the family Flaviviridae. LindaV was first detected in Austria in 2015 and was associated with congenital tremor in piglets. Since then, the virus or specific antibodies have been found in a few further pig farms in Austria. However, the actual spatial distribution and the existence of reservoir hosts is largely unknown. Since other pestiviruses of pigs such as classical swine fever virus or atypical porcine pestivirus can also infect wild boar, the question arises whether LindaV is likewise present in the wild boar population. Therefore, we investigated the presence of neutralizing antibodies against LindaV in 200 wild boar samples collected in Southern Germany, which borders Austria. To establish a serological test system, we made use of the interchangeability of the surface glycoproteins and created a chimeric pestivirus using Bungowannah virus (species Pestivirus australiaense) as synthetic backbone. The E1 and E2 glycoproteins were replaced by the heterologous E1 and E2 of LindaV resulting in the chimera BV_E1E2_LV. Viable virus could be rescued and was subsequently applied in a neutralization test. A specific positive control serum generated against the E2 protein of LindaV gave a strong positive result, thereby confirming the functionality of the test system. All wild boar samples, however, tested negative. Hence, there is no evidence that LindaV has become highly prevalent in the wild boar population in Southern Germany.
Collapse
Affiliation(s)
- Doreen Schulz
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Andrea Aebischer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
2
|
Huynh LT, Sohn EJ, Park Y, Kim J, Shimoda T, Hiono T, Isoda N, Hong SH, Lee HN, Sakoda Y. Development of a dual immunochromatographic test strip to detect E2 and E rns antibodies against classical swine fever. Front Microbiol 2024; 15:1383976. [PMID: 38666258 PMCID: PMC11043574 DOI: 10.3389/fmicb.2024.1383976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Background It is essential to consider a practical antibody test to successfully implement marker vaccines and validate vaccination efficacy against classical swine fever virus (CSFV). The test should include a serological antibody assay, combined with a tool for differentiating infected from vaccinated animals (DIVA). The immunochromatographic test strip (ICS) has been exclusively designed for detecting CSFV E2 antibodies while lacking in detecting Erns antibodies, which can be employed and satisfy DIVA strategy. This study developed a novel ICS for detecting CSFV E2/Erns dual-antibody. The effectiveness of ICS in evaluating the DIVA capability of two novel chimeric pestivirus vaccine candidates was assessed. Methods Recombinant E2 or Erns protein was transiently expressed in the plant benthamiana using Agrobacterium tumefaciens. ICS was subsequently assembled, and goat anti-rabbit IgG and recombinant CSFV E2 or Erns protein were plated onto the nitrocellulose membrane as control and test lines, respectively. The sensitivity and specificity of ICS were evaluated using sera with different neutralizing antibody titers or positive for antibodies against CSFV and other pestiviruses. The coincidence rates for detecting E2 and Erns antibodies between ICS and commercial enzyme-linked immunosorbent assay (ELISA) kits were also computed. ICS performance for DIVA capability was evaluated using sera from pigs vaccinated with conventional vaccine or chimeric vaccine candidates. Results E2 and Erns proteins were successfully expressed in N. benthamiana-produced recombinant proteins. ICS demonstrated high sensitivity in identifying CSFV E2 and Erns antibodies, even at the low neutralizing antibody titers. No cross-reactivity with antibodies from other pestiviruses was confirmed using ICS. There were high agreement rates of 93.0 and 96.5% between ICS and two commercial ELISA kits for E2 antibody testing. ICS also achieved strong coincidence rates of 92.9 and 89.3% with two ELISA kits for Erns antibody detection. ICS confirmed the absence of CSFV Erns-specific antibodies in sera from pigs vaccinated with chimeric vaccine candidates. Conclusion E2 and Erns proteins derived from the plant showed great potential and can be used to engineer a CSFV E2/Erns dual-antibody ICS. The ICS was also highly sensitive and specific for detecting CSFV E2 and Erns antibodies. Significantly, ICS can fulfill the DIVA concept by incorporating chimeric vaccine candidates.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Eun-Ju Sohn
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Youngmin Park
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | - Juhun Kim
- BioApplications, Inc., Pohang, Gyeongsangbuk, Republic of Korea
| | | | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sung-Hee Hong
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Ha-Na Lee
- Celltrix Co., Ltd., Seongnam, Gyeonggi, Republic of Korea
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Hansen MS, Nielsen J, Uttenthal Å, Jensen GØ, Lohse L. Intranasal Inoculation with Classical Swine Fever Virus Provided a More Consistent Experimental Disease Model Compared to Oral Inoculation. Vet Sci 2024; 11:56. [PMID: 38393074 PMCID: PMC10892780 DOI: 10.3390/vetsci11020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The severity of disease resulting from classical swine fever virus (CSFV) infection is determined by several factors, including virus strain and host factors. The different outcomes of experimental studies in pigs with the same strain of CSFV emphasize the need to elucidate the influence of individual factors within experimental protocols. In this study, we investigated the outcome of disease after oral and intranasal inoculation with a moderately virulent CSFV strain in young pigs. To compare the two routes of inoculation, various infection parameters were examined during a period of two weeks. While all intranasally inoculated pigs (n = 5) were directly infected, this was only the case for two out of five pigs after oral inoculation. In addition, the intranasally inoculated pigs developed a more pronounced clinical disease and pathological lesions, as well as markedly more change in hematological and immunological parameters than the orally inoculated pigs. The wide variation among the orally inoculated pigs implied that statistical evaluation was markedly impaired, leaving this route of application less suitable for comparative studies on classical swine fever. Furthermore, our study provides additional details about the immunomodulatory effects of CSFV on the kinetics of CRP, TNF-α, and leukocyte sub-populations in pigs after infection with the CSFV strain Paderborn.
Collapse
|
4
|
Panyasing Y, Gimenez-Lirola L, Thanawongnuwech R, Prakobsuk P, Kawilaphan Y, Kittawornrat A, Cheng TY, Zimmerman J. Performance of a Differentiation of Infected from Vaccinated Animals (DIVA) Classical Swine Fever Virus (CSFV) Serum and Oral Fluid Erns Antibody AlphaLISA Assay. Animals (Basel) 2023; 13:3802. [PMID: 38136839 PMCID: PMC10740410 DOI: 10.3390/ani13243802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Classical swine fever virus (CSFV) is an OIE-listed disease that requires effective surveillance tools for its detection and control. The aim of this study was to develop and evaluate the diagnostic performance of a novel CSFV Erns IgG AlphaLISA for both serum and oral fluid specimens that would likewise be compatible with the use of CSFV E2 DIVA vaccines. Test performance was evaluated using a panel of well-characterized serum (n = 760) and individual (n = 528) or pen-based (n = 30) oral fluid samples from four groups of animals: (1) negative controls (n = 60 pigs); (2) inoculated with ALD strain wild-type CSFV (n = 30 pigs); (3) vaccinated with LOM strain live CSFV vaccine (n = 30 pigs); and (4) vaccinated with live CSFV marker vaccine on commercial farms (n = 120 pigs). At a cutoff of S/P ≥ 0.7, the aggregate estimated diagnostic sensitivities and specificities of the assay were, respectively, 97.4% (95% CI 95.9%, 98.3%) and 100% for serum and 95.4% (95% CI 92.9%, 97.0%) and 100% for oral fluid. The Erns IgG antibody AlphaLISA combined DIVA capability with solid diagnostic performance, rapid turnaround, ease of use, and compatibility with both serum and oral fluid specimens.
Collapse
Affiliation(s)
- Yaowalak Panyasing
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luis Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (L.G.-L.); (J.Z.)
| | - Roongroje Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Phakawan Prakobsuk
- CPF (Thailand) Public Company Limited, Bangkok 10120, Thailand; (P.P.); (Y.K.); (A.K.)
| | - Yanee Kawilaphan
- CPF (Thailand) Public Company Limited, Bangkok 10120, Thailand; (P.P.); (Y.K.); (A.K.)
| | - Apisit Kittawornrat
- CPF (Thailand) Public Company Limited, Bangkok 10120, Thailand; (P.P.); (Y.K.); (A.K.)
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (L.G.-L.); (J.Z.)
| |
Collapse
|
5
|
Choe S, Park GN, Kim KS, Shin J, Lim SI, An BH, Hyun BH, An DJ. Efficacy of an orally administered classical swine fever live marker vaccine (Flc-LOM-BE rns strain) in pigs. Vaccine 2023; 41:7377-7386. [PMID: 37973511 DOI: 10.1016/j.vaccine.2023.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In several countries, classical swine fever (CSF) has not been detected in domestic pigs, but has been detected in wild boars, making the disease difficult to control. To overcome this problem, we inoculated pigs with a CSF live marker vaccine (Flc-LOM-BErns strain), which has "distinguish infection from vaccinated animals (DIVA)" function, to determine whether it is suitable as an oral vaccine specifically for wild boars. Pigs inoculated intramuscularly or orally with the Flc-LOM-BErns vaccine were challenged 2 or 4 weeks later, respectively, with virulent CSFV. Pigs administered the oral Flc-LOM-BErns strain (105.0 and 6.0 TCID50/dose), and those vaccinated intramuscularly (103.0 TCID50/dose), had normal numbers of leukocytes and normal body temperature. Also, they generated protective neutralizing antibodies and anti-BVDV Erns antibodies. In addition, all pigs in these groups survived, with no CSFV RNA detected in feces, spleen, or other organs. Thus, the Flc-LOM-BErns vaccine shows excellent safety and efficacy, while having DIVA function and suitability for oral inoculation.
Collapse
Affiliation(s)
- SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Byung-Hyun An
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongbuk-do 39660, Republic of Korea.
| |
Collapse
|
6
|
Silva E, Medina-Ramirez E, Pavulraj S, Gladue DP, Borca M, Chowdhury SI. A Triple Gene-Deleted Pseudorabies Virus-Vectored Subunit PCV2b and CSFV Vaccine Protect Pigs against a Virulent CSFV Challenge. Viruses 2023; 15:2143. [PMID: 38005821 PMCID: PMC10674279 DOI: 10.3390/v15112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Classical swine fever (CSF) remains one of the most economically significant viral diseases affecting domestic pigs and wild boars worldwide. To develop a safe and effective vaccine against CSF, we have constructed a triple gene-deleted pseudorabies virus (PRVtmv)-vectored bivalent subunit vaccine against porcine circovirus type 2b (PCV2b) and CSFV (PRVtmv+). In this study, we determined the protective efficacy of the PRVtmv+ against virulent CSFV challenge in pigs. The results revealed that the sham-vaccinated control group pigs developed severe CSFV-specific clinical signs characterized by pyrexia and diarrhea, and became moribund on or before the seventh day post challenge (dpc). However, the PRVtmv+-vaccinated pigs survived until the day of euthanasia at 21 dpc. A few vaccinated pigs showed transient diarrhea but recovered within a day or two. One pig had a low-grade fever for a day but recovered. The sham-vaccinated control group pigs had a high level of viremia, severe lymphocytopenia, and thrombocytopenia. In contrast, the vaccinated pigs had a low-moderate degree of lymphocytopenia and thrombocytopenia on four dpc, but recovered by seven dpc. Based on the gross pathology, none of the vaccinated pigs had any CSFV-specific lesions. Therefore, our results demonstrated that the PRVtmv+ vaccinated pigs are protected against virulent CSFV challenge.
Collapse
Affiliation(s)
- Ediane Silva
- US Department of Agricultural, ARS, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.S.); (E.M.-R.); (D.P.G.); (M.B.)
| | - Elizabeth Medina-Ramirez
- US Department of Agricultural, ARS, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.S.); (E.M.-R.); (D.P.G.); (M.B.)
| | - Selvaraj Pavulraj
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Douglas P. Gladue
- US Department of Agricultural, ARS, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.S.); (E.M.-R.); (D.P.G.); (M.B.)
| | - Manuel Borca
- US Department of Agricultural, ARS, Plum Island Animal Disease Center, Orient, NY 11957, USA; (E.S.); (E.M.-R.); (D.P.G.); (M.B.)
| | - Shafiqul I. Chowdhury
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| |
Collapse
|
7
|
Park GN, Shin J, Choe S, Kim KS, Kim JJ, Lim SI, An BH, Hyun BH, An DJ. Safety and Immunogenicity of Chimeric Pestivirus KD26_E2LOM in Piglets and Calves. Vaccines (Basel) 2023; 11:1622. [PMID: 37897024 PMCID: PMC10610696 DOI: 10.3390/vaccines11101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
A chimeric pestivirus (KD26_E2LOM) was prepared by inserting the E2 gene of the classical swine fever virus (CSFV) LOM strain into the backbone of the bovine viral diarrhea virus (BVDV) KD26 strain. KD26_E2LOM was obtained by transfecting the cDNA pACKD26_E2LOM into PK-15 cells. KD26_E2LOM chimeric pestivirus proliferated to titers of 106.5 TCID50/mL and 108.0 TCID50/mL at 96 h post-inoculation into PK-15 cells or MDBK cells, respectively. It also reacted with antibodies specific for CSFV E2 and BVDV Erns, but not with an anti-BVDV E2 antibody. Piglets (55-60 days old) inoculated with a high dose (107.0 TCID50/mL) of KD26_E2LOM produced high levels of CSFV E2 antibodies. In addition, no co-habiting pigs were infected with KD26_E2LOM; however, some inoculated pigs excreted the virus, and the virus was detected in some organs. When pregnant sows were inoculated during the first trimester (55-60 days) with a high dose (107.0 TCID50/mL) of KD26_E2LOM, anti-CSFV E2 antibodies were produced at high levels; chimeric pestivirus was detected in one fetus and in the ileum of one sow. When 5-day-old calves that did not consume colostrum received a high dose (107.0 TCID50/mL) of KD26_E2LOM, one calf secreted the virus in both feces and nasal fluid on Day 2. A high dose of KD26_E2LOM does not induce specific clinical signs in most animals, does not spread from animal to animal, and generates CSFV E2 antibodies with DVIA functions. Therefore, chimeric pestivirus KD26_E2LOM is a potential CSFV live marker vaccine.
Collapse
Affiliation(s)
- Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Jae-Jo Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Byung-Hyun An
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea;
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; (G.-N.P.); (J.S.); (S.C.); (K.-S.K.); (J.-J.K.); (S.-I.L.); (B.-H.H.)
| |
Collapse
|
8
|
Ma Z, Zhao Y, Lv J, Pan L. Development and application of classical swine fever virus monoclonal antibodies derived from single B cells. Vet Res 2023; 54:90. [PMID: 37845739 PMCID: PMC10580647 DOI: 10.1186/s13567-023-01229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/14/2023] [Indexed: 10/18/2023] Open
Abstract
Vaccination with E2 subunit vaccines is currently the main measure to control classical swine fever virus (CSFV), which is an endemic disease, and detection of antibodies against CSFV E2 is the most effective way to evaluate herd immunity. In the present study, the E2 protein was expressed by a baculovirus expression system, and two monoclonal antibodies (mAbs), namely, 3A9 and 4F7, were successfully produced using techniques for the isolation of single B cells from splenocytes from mice immunized with the E2 protein. Moreover, two linear B-cell epitopes, 25GLTTTWKEYSHDLQL39 and 259GNTTVKVHASDERGP273, reactive to 3A9 and 4F7, respectively, were identified using epitope mapping of the E2 protein. In addition, the diagnostic performance of the two mAbs was evaluated using blocking enzyme-linked immunosorbent assay (bELISA), and the results showed that the two mAbs had high diagnostic specificity (96.08%, 94.38%) and diagnostic sensitivity (97.49%, 95.97%). Together, these findings identify two ideal candidate peptides and matching mAbs for a new method of CSFV diagnosis, which will contribute to the control and eradication of classical swine fever.
Collapse
Affiliation(s)
- Zhongyuan Ma
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yongcong Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jianliang Lv
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
9
|
Huang YL, Meyer D, Postel A, Tsai KJ, Liu HM, Yang CH, Huang YC, Chang HW, Deng MC, Wang FI, Becher P, Crooke H, Chang CY. Identification of neutralizing epitopes on the D/A domain of the E2 glycoprotein of classical swine fever virus. Virus Res 2023; 336:199209. [PMID: 37633596 PMCID: PMC10485151 DOI: 10.1016/j.virusres.2023.199209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Classical swine fever virus (CSFV) shares high antigenic homology with other members of the genus Pestivirus. Because several pestivirus species can also infect swine, eliciting cross-reactive antibodies, it is important to define CSFV-specific epitopes for the differential diagnosis of classical swine fever (CSF) by serology. For this purpose, epitope mapping of seven monoclonal antibodies (mAbs), recognizing sites on the D/A domain of glycoprotein E2, was performed using recombinant expressed antigenic domains and mutants of E2, as well as an overlapping peptide library. Three CSFV-specific epitopes, i.e., 780-IEEMGDDFGFGLCPF-794, 810-NGSAFYLVCPIGWTG-824, and 846-REKPF-850, were identified within the D/A domain of E2. Site-directed mutagenesis further confirmed that residues 783-MGD-785, 789-FGLCPF-794, 813-AFYLVCPIGWTG-824, and 846-REK-848 were critical residues in these regions. In addition, a F789S difference within the epitope 780-IEEMGDDFGFGLCPF-794 was responsible for the absence of binding of two mAbs to the E2 protein of the live attenuated CSFV vaccine strain Riems. Structural modeling revealed that, the three epitopes are located near each other, suggesting that they may form a more complex conformational epitope on the D/A domain in vivo. Six of the mAbs neutralized viruses of diverse genotypes, indicating that the target epitopes are involved in virus interaction with cells. The binding of CSFV to cells was significantly reduced after pre-incubation with either truncated E2 proteins comprising the D/A domain or with the CSFV-specific mAbs targeting the domain D/A. These epitopes identified on the D/A domain are important targets for virus neutralization that might be involved in the early steps of CSFV infection. These findings reveal potential candidates for improving the differential diagnosis of pestiviruses by serology.
Collapse
Affiliation(s)
- Yu-Liang Huang
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Denise Meyer
- WOAH Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alexander Postel
- WOAH Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kuo-Jung Tsai
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Hsin-Meng Liu
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Chia-Huei Yang
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Yu-Chun Huang
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ming-Chung Deng
- WOAH Reference Laboratory for Classical Swine Fever, Veterinary Research Institute, Ministry of Agriculture, 376 Chung-Cheng Road, Tamsui, New Taipei City 25158, Taiwan
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Paul Becher
- WOAH Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Helen Crooke
- WOAH Reference Laboratory for Classical Swine Fever, Animal and Plant Health Agency, New Haw, Surrey, KT15 3NB, UK.
| | - Chia-Yi Chang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
10
|
Huynh LT, Isoda N, Hew LY, Ogino S, Mimura Y, Kobayashi M, Kim T, Nishi T, Fukai K, Hiono T, Sakoda Y. Generation and Efficacy of Two Chimeric Viruses Derived from GPE - Vaccine Strain as Classical Swine Fever Vaccine Candidates. Viruses 2023; 15:1587. [PMID: 37515273 PMCID: PMC10384557 DOI: 10.3390/v15071587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
A previous study proved that vGPE- mainly maintains the properties of classical swine fever (CSF) virus, which is comparable to the GPE- vaccine seed and is a potentially valuable backbone for developing a CSF marker vaccine. Chimeric viruses were constructed based on an infectious cDNA clone derived from the live attenuated GPE- vaccine strain as novel CSF vaccine candidates that potentially meet the concept of differentiating infected from vaccinated animals (DIVA) by substituting the glycoprotein Erns of the GPE- vaccine strain with the corresponding region of non-CSF pestiviruses, either pronghorn antelope pestivirus (PAPeV) or Phocoena pestivirus (PhoPeV). High viral growth and genetic stability after serial passages of the chimeric viruses, namely vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns, were confirmed in vitro. In vivo investigation revealed that two chimeric viruses had comparable immunogenicity and safety profiles to the vGPE- vaccine strain. Vaccination at a dose of 104.0 TCID50 with either vGPE-/PAPeV Erns or vGPE-/PhoPeV Erns conferred complete protection for pigs against the CSF virus challenge in the early stage of immunization. In conclusion, the characteristics of vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns affirmed their properties, as the vGPE- vaccine strain, positioning them as ideal candidates for future development of a CSF marker vaccine.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Lim Yik Hew
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Saho Ogino
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Yume Mimura
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Taksoo Kim
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Tatsuya Nishi
- Kodaira Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira 187-0022, Tokyo, Japan
| | - Katsuhiko Fukai
- Kodaira Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira 187-0022, Tokyo, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| |
Collapse
|
11
|
Yi W, Wang H, Qin H, Wang Q, Guo R, Wen G, Pan Z. Construction and efficacy of a new live chimeric C-strain vaccine with DIVA characteristics against classical swine fever. Vaccine 2023; 41:2003-2012. [PMID: 36803898 DOI: 10.1016/j.vaccine.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
To develop the new classical swine fever (CSF) vaccine candidate with differentiating infected vaccinated animals (DIVA) characteristics, a chimeric CSF virus (CSFV) was constructed based on an infectious cDNA clone of the CSF vaccine C-strain. The 5'- and 3'-untranslated regions (UTRs) and partial E2 region (residues 690-860) of the C-strain were substituted with the corresponding regions of bovine viral diarrhoea virus (BVDV) to construct the chimeric cDNA clone pC/bUTRs-tE2. The chimeric virus rC/bUTRs-tE2 was generated by several passages of pC/bUTRs-tE2-transfected PK15 cells. Stable growth and genetic properties of rC/bUTRs-tE2 were obtained after 30 serial passages. Compared to parental rC/bUTRs-tE2 (1st passage), two residue mutations (M834K and M979K) located in E2 in rC/bUTRs-tE2 P30 were observed. Compared to the C-strain, rC/bUTRs-tE2 exhibited unchanged cell tropism and decreased plaque-forming ability. Substituting the C-strain UTRs with the BVDV UTRs resulted in significantly increased viral replication in PK15 cells. Compared to CSFV Erns-positive and BVDV tE2-negative antibody responses induced by the CSF vaccine C-strain, immunization of rabbits and piglets with rC/bUTRs-tE2 resulted in serological profiles of CSFV Erns- and BVDV tE2-positive antibodies, which are used to serologically discriminate pigs that are clinically infected and vaccinated. Vaccination of piglets with rC/bUTRs-tE2 conferred complete protection against lethal CSFV challenge. Our results suggest that rC/bUTRs-tE2 is a promising new CSF marker vaccine candidate.
Collapse
Affiliation(s)
- Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Qin Wang
- World Organisation for Animal Health Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
13
|
Host Cell Receptors Implicated in the Cellular Tropism of BVDV. Viruses 2022; 14:v14102302. [PMID: 36298858 PMCID: PMC9607657 DOI: 10.3390/v14102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most hazardous viruses, which causes huge economic losses in the cattle industry around the world. In recent years, there has been a continuous increase in the diversity of pestivirus worldwide. As a member of the genus Pestivirus in the Flaviviridae family, BVDV has a wide range of host animals including cattle, goat, sheep, pig, camel and other cloven-hoofed animals, and it has multi-tissue tropism as well. The recognition of their permissive cells by viruses via interaction with the cellular receptors is a prerequisite for successful infection. So far, little is known about the cellular receptors essential for BVDV entry and their detailed functions during BVDV infection. Thus, discovery of the cellular receptors involved in the entry of BVDV and other pestiviruses is significant for development of the novel intervention. The viral envelope glycoprotein Erns and E2 are crucial determinants of the cellular tropism of BVDV. The cellular proteins bound with Erns and E2 potentially participate in BVDV entry, and their abundance might determine the cellular tropism of BVDV. Here, we summarize current knowledge regarding the cellular molecules have been described for BVDV entry, such as, complement regulatory protein 46 (CD46), heparan sulfate (HS), the low-density lipoprotein (LDL) receptor, and a disintegrin and metalloproteinase 17 (ADAM17). Furthermore, we focus on their implications of the recently identified cellular receptors for pestiviruses in BVDV life cycle. This knowledge provides a theoretical basis for BVDV prevention and treatment by targeting the cellular receptors essential for BVDV infection.
Collapse
|
14
|
Shueb M, Prasad SK, Suresh KP, Indrabalan UB, Beelagi MS, Shivamallu C, Silina E, Stupin V, Manturova N, Kollur SP, Shome BR, Achar RR, Patil SS. The first study on analysis of the codon usage bias and evolutionary analysis of the glycoprotein envelope E2 gene of seven Pestiviruses. Vet World 2022; 15:1857-1868. [PMID: 36185504 PMCID: PMC9394142 DOI: 10.14202/vetworld.2022.1857-1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: Pestivirus, a genus of the Flaviviridae family, comprises viruses that affect bovines, sheep, and pigs. Symptoms, including hemorrhagic syndromes, abortion, respiratory complications, and deadly mucosal diseases, are produced in infected animals, which cause huge economic losses to the farmers. Bovine viral diarrhea virus-1, bovine viral diarrhea virus-2, classical swine fever virus, border disease virus, Bungowannah, Hobi-like, and atypical porcine pestivirus belonging to the Pestivirus genus were selected for the study. This study aimed to estimate the codon usage bias and the rate of evolution using the glycoprotein E2 gene. Furthermore, codon usage bias analysis was performed using publicly available nucleotide sequences of the E2 gene of all seven Pestiviruses. These nucleotide sequences might elucidate the disease epidemiology and facilitate the development of designing better vaccines. Materials and Methods: Coding sequences of the E2 gene of Pestiviruses A (n = 89), B (n = 60), C (n = 75), D (n = 10), F (n = 07), H (n = 52), and K (n = 85) were included in this study. They were analyzed using different methods to estimate the codon usage bias and evolution. In addition, the maximum likelihood and Bayesian methodologies were employed to analyze a molecular dataset of seven Pestiviruses using a complete E2 gene region. Results: The combined analysis of codon usage bias and evolutionary rate analysis revealed that the Pestiviruses A, B, C, D, F, H, and K have a codon usage bias in which mutation and natural selection have played vital roles. Furthermore, while the effective number of codons values revealed a moderate bias, neutrality plots indicated the natural selection in A, B, F, and HPestiviruses and mutational pressure in C, D, and KPestiviruses. The correspondence analysis revealed that axis-1 significantly contributes to the synonymous codon usage pattern. In this study, the evolutionary rate of PestivirusesB, H, and K was very high. The most recent common ancestors of all Pestivirus lineages are 1997, 1975, 1946, 1990, 2004, 1990, and 1990 for Pestiviruses A, B, C, D, F, H, and K, respectively. This study confirms that both mutational pressure and natural selection have played a significant role in codon usage bias and evolutionary studies. Conclusion: This study provides insight into the codon usage bias and evolutionary lineages of pestiviruses. It is arguably the first report of such kind. The information provided by the study can be further used to elucidate the respective host adaptation strategies of the viruses. In turn, this information helps study the epidemiology and control methods of pestiviruses.
Collapse
Affiliation(s)
- Mohammad Shueb
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | | | - Uma Bharathi Indrabalan
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Mallikarjun S. Beelagi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ekaterina Silina
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Sharanagouda S. Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Yi W, Zheng F, Zhu H, Wu Y, Wei J, Pan Z. Role of the conserved E2 residue G259 in classical swine fever virus production and replication. Virus Res 2022; 313:198747. [DOI: 10.1016/j.virusres.2022.198747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/31/2022]
|
16
|
A Triple Gene-Deleted Pseudorabies Virus-Vectored Subunit PCV2b and CSFV Vaccine Protects Pigs against PCV2b Challenge and Induces Serum Neutralizing Antibody Response against CSFV. Vaccines (Basel) 2022; 10:vaccines10020305. [PMID: 35214763 PMCID: PMC8878206 DOI: 10.3390/vaccines10020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is endemic worldwide. PCV2 causes immunosuppressive infection. Co-infection of pigs with other swine viruses, such as pseudorabies virus (PRV) and classical swine fever virus (CSFV), have fatal outcomes, causing the swine industry significant economic losses in many if not all pig-producing countries. Currently available inactivated/modified-live/vectored vaccines against PCV2/CSFV/PRV have safety and efficacy limitations. To address these shortcomings, we have constructed a triple gene (thymidine kinase, glycoprotein E [gE], and gG)-deleted (PRVtmv) vaccine vector expressing chimeric PCV2b-capsid, CSFV-E2, and chimeric Erns-fused with bovine granulocytic monocyte-colony stimulating factor (Erns-GM-CSF), designated as PRVtmv+, a trivalent vaccine. Here we compared this vaccine’s immunogenicity and protective efficacy in pigs against wild-type PCV2b challenge with that of the inactivated Zoetis Fostera Gold PCV commercial vaccine. The live PRVtmv+ prototype trivalent subunit vaccine is safe and highly attenuated in pigs. Based on PCV2b-specific neutralizing antibody titers, viremia, viral load in lymphoid tissues, fecal-virus shedding, and leukocyte/lymphocyte count, the PRVtmv+ yielded better protection for vaccinated pigs than the commercial vaccine after the PCV2b challenge. Additionally, the PRVtmv+ vaccinated pigs generated low to moderate levels of CSFV-specific neutralizing antibodies.
Collapse
|
17
|
Koethe S, König P, Wernike K, Schulz J, Reimann I, Beer M. Bungowannah Pestivirus Chimeras as Novel Double Marker Vaccine Strategy against Bovine Viral Diarrhea Virus. Vaccines (Basel) 2022; 10:vaccines10010088. [PMID: 35062749 PMCID: PMC8778585 DOI: 10.3390/vaccines10010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Marker or DIVA (differentiation of infected from vaccinated animals) vaccines are beneficial tools for the eradication of animal diseases in regions with a high prevalence of the designated disease. Bovine viral diarrhea virus (BVDV)-1 (syn. Pestivirus A) is a flavivirus that infects predominantly cattle resulting in major economic losses. An increasing number of countries have implemented BVDV eradication programs that focus on the detection and removal of persistently infected cattle. No efficient marker or DIVA vaccine is yet commercially available to drive the eradication success, to prevent fetal infection and to allow serological monitoring of the BVDV status in vaccinated farms. Bungowannah virus (BuPV, species Pestivirus F), a related member of the genus Pestivirus with a restricted prevalence to a single pig farm complex in Australia, was chosen as the genetic backbone for a marker vaccine candidate. The glycoproteins E1 and E2 of BuPV were substituted by the heterologous E1 and E2, which are major immunogens, of the BVDV-1 strain CP7. In addition, the candidate vaccine was further attenuated by the introduction of a deletion within the Npro protein coding sequence, a major type I interferon inhibitor. Immunization of cattle with the chimeric vaccine virus BuPV_ΔNpro_E1E2 CP7 (modified live or inactivated) followed by a subsequent experimental challenge infection confirmed the safety of the prototype strain and provided a high level of clinical protection against BVDV-1. The serological discrimination of vaccinated cattle could be enabled by the combined detection of BVDV-1 E2- in the absence of both BVDV NS3- and BVDV Erns-specific antibodies. The study demonstrates for the first time the generation and application of an efficient BVDV-1 modified double marker vaccine candidate that is based on the genetic background of BuPV accompanied by commercially available serological marker ELISA systems.
Collapse
Affiliation(s)
- Susanne Koethe
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Schulz
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
18
|
Ren X, Qian P, Liu S, Chen H, Li X. Fc-Mediated E2-Dimer Subunit Vaccines of Atypical Porcine Pestivirus Induce Efficient Humoral and Cellular Immune Responses in Piglets. Viruses 2021; 13:v13122443. [PMID: 34960713 PMCID: PMC8703287 DOI: 10.3390/v13122443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Congenital tremor (CT) type A-II in piglets is caused by an emerging atypical porcine pestivirus (APPV), which is prevalent in swine herds and a serious threat to the pig production industry. This study aimed to construct APPV E2 subunit vaccines fused with Fc fragments and evaluate their immunogenicity in piglets. Here, APPV E2Fc and E2ΔFc fusion proteins expressed in Drosophila Schneider 2 (S2) cells were demonstrated to form stable dimers in SDS-PAGE and western blotting assays. Functional analysis revealed that aE2Fc and aE2ΔFc fusion proteins could bind to FcγRI on antigen-presenting cells (APCs), with the affinity of aE2Fc to FcγRI being higher than that of aE2ΔFc. Moreover, subunit vaccines based on aE2, aE2Fc, and aE2ΔFc fusion proteins were prepared, and their immunogenicity was evaluated in piglets. The results showed that the Fc fusion proteins emulsified with the ISA 201VG adjuvant elicited stronger humoral and cellular immune responses than the IMS 1313VG adjuvant. These findings suggest that APPV E2 subunit vaccines fused with Fc fragments may be a promising vaccine candidate against APPV.
Collapse
Affiliation(s)
- Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87282608
| |
Collapse
|
19
|
Xu Q, Guo J, Ma F, Liu L, Wang Y, Zhang S, Niu X, Li X, Jiang M, Wang Y, Wang L, Liu Y, Li Q, Chai S, Wang R, Ma Q, Zhang E, Zhang G. A novel linear epitope at the C-terminal region of the classical swine fever virus E2 protein elicits neutralizing activity. Int J Biol Macromol 2021; 189:837-846. [PMID: 34403672 DOI: 10.1016/j.ijbiomac.2021.08.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
Classical swine fever virus (CSFV) is a member of the genus Pestivirus, which causes serious economic losses. The re-emergence of the disease in Japan in 2018 has increased awareness of CSFV. In this study, Balb/c mice were immunized with plant-derived E2 protein, and four monoclonal antibodies (mAbs) 4B11, 7B3, 11A5 and 6F3 were generated. Two of these mAbs, 4B11 and 7B3, effectively blocked CSFV infection of PK-15 cells. Both mAbs recognized a novel linear epitope, 256CLIGNTTVKVHASDER271. The neutralizing ability of anti-CSFV serum decreased 63%, when pre-incubated with the linear peptide at 200 μg/mL. Structural analysis showed that this linear epitope is present at the border of Domain C and Domain D on the surface of the E2 protein. Alignment of amino acid sequences showed that the epitope was conserved in different subgroups of CSFV but not in other members of the Pestivirus genus. Consistently with the analysis above, this epitope distinguished antibodies against CSFV from those against bovine viral diarrhea virus (BVDV). Our study provides an ideal candidate peptide for new vaccine design and differential diagnosis of CSFV. These findings will contribute to the control and eradication of classical swine fever.
Collapse
Affiliation(s)
- Qianru Xu
- College of Veterinary Medicine, Northwest A& F University, Yangling 712100, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Associated Research Center of National Animal Immunology, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junqing Guo
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fanshu Ma
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Linke Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Associated Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Yanan Wang
- College of Veterinary medicine, Jilin University, Changchun 130062, China
| | - Shenli Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Associated Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Xiangxiang Niu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Associated Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Xueyang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Associated Research Center of National Animal Immunology, Zhengzhou 450046, China
| | - Min Jiang
- College of public health, Zhengzhou University, Zhengzhou 450001, China
| | - Yanwei Wang
- College of public health, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingmei Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shujun Chai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruining Wang
- College of veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, China
| | - Qiang Ma
- Institution of Animal Science & Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Erqin Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Associated Research Center of National Animal Immunology, Zhengzhou 450046, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A& F University, Yangling 712100, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; International Associated Research Center of National Animal Immunology, Zhengzhou 450046, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
20
|
Characteristics of Classical Swine Fever Virus Variants Derived from Live Attenuated GPE - Vaccine Seed. Viruses 2021; 13:v13081672. [PMID: 34452536 PMCID: PMC8402697 DOI: 10.3390/v13081672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
The GPE- strain is a live attenuated vaccine for classical swine fever (CSF) developed in Japan. In the context of increasing attention for the differentiating infected from vaccinated animals (DIVA) concept, the achievement of CSF eradication with the GPE- proposes it as a preferable backbone for a recombinant CSF marker vaccine. While its infectious cDNA clone, vGPE-, is well characterized, 10 amino acid substitutions were recognized in the genome, compared to the original GPE- vaccine seed. To clarify the GPE- seed availability, this study aimed to generate and characterize a clone possessing the identical amino acid sequence to the GPE- seed. The attempt resulted in the loss of the infectious GPE- seed clone production due to the impaired replication by an amino acid substitution in the viral polymerase NS5B. Accordingly, replication-competent GPE- seed variant clones were produced. Although they were mostly restricted to propagate in the tonsils of pigs, similarly to vGPE-, their type I interferon-inducing capacity was significantly lower than that of vGPE-. Taken together, vGPE- mainly retains ideal properties for the CSF vaccine, compared with the seed variants, and is probably useful in the development of a CSF marker vaccine.
Collapse
|
21
|
Huang YL, Meyer D, Postel A, Tsai KJ, Liu HM, Yang CH, Huang YC, Berkley N, Deng MC, Wang FI, Becher P, Crooke H, Chang CY. Identification of a Common Conformational Epitope on the Glycoprotein E2 of Classical Swine Fever Virus and Border Disease Virus. Viruses 2021; 13:v13081655. [PMID: 34452520 PMCID: PMC8402670 DOI: 10.3390/v13081655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Classical swine fever virus (CSFV) shares high structural and antigenic homology with bovine viral diarrhea virus (BVDV) and border disease virus (BDV). Because all three viruses can infect swine and elicit cross-reactive antibodies, it is necessary to differentiate among them with regard to serological diagnosis of classical swine fever. To understand the mechanism of cross-reactivity, it is important to define common or specific epitopes of these viruses. For this purpose, epitope mapping of six monoclonal antibodies (mAbs) was performed using recombinant expressed antigenic domains of CSFV and BDV E2 proteins. One CSFV-specific conformational epitope and one CSFV and BDV common epitope within domain B/C of E2 were identified. Site-directed mutagenesis confirmed that residues G725 and V738/I738 of the CSFV-specific epitope and P709/L709 and E713 of the second epitope are important for mAbs binding. Infection of CSFV in porcine cells was significantly reduced after pre-incubation of the cells with the domain B/C of E2 or after pre-incubation of CSFV with the mAbs detecting domain B/C. 3D structural modeling suggested that both epitopes are exposed on the surface of E2. Based on this, the identified epitopes represent a potential target for virus neutralization and might be involved in the early steps of CSFV infection.
Collapse
Affiliation(s)
- Yu-Liang Huang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Denise Meyer
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Alexander Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Kuo-Jung Tsai
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Hsin-Meng Liu
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Chia-Huei Yang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Yu-Chun Huang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Nicholas Berkley
- OIE Reference Laboratory for Classical Swine Fever, Animal and Plant Health Agency, New Haw KT15 3NB, Surrey, UK;
| | - Ming-Chung Deng
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
| | - Fun-In Wang
- School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan;
| | - Paul Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (D.M.); (A.P.); (P.B.)
| | - Helen Crooke
- OIE Reference Laboratory for Classical Swine Fever, Animal and Plant Health Agency, New Haw KT15 3NB, Surrey, UK;
- Correspondence: (H.C.); (C.-Y.C.); Tel.: +44-0-1932-357331 (H.C.); +886-2-2621-2111 (ext. 343) (C.-Y.C.)
| | - Chia-Yi Chang
- OIE Reference Laboratory for Classical Swine Fever, Animal Health Research Institute, Council of Agriculture, Executive Yuan, 376 Chung-Cheng Road, Tansui, New Taipei City 25158, Taiwan; (Y.-L.H.); (K.-J.T.); (H.-M.L.); (C.-H.Y.); (Y.-C.H.); (M.-C.D.)
- Correspondence: (H.C.); (C.-Y.C.); Tel.: +44-0-1932-357331 (H.C.); +886-2-2621-2111 (ext. 343) (C.-Y.C.)
| |
Collapse
|
22
|
Proline to Threonine Mutation at Position 162 of NS5B of Classical Swine Fever Virus Vaccine C Strain Promoted Genome Replication and Infectious Virus Production by Facilitating Initiation of RNA Synthesis. Viruses 2021; 13:v13081523. [PMID: 34452387 PMCID: PMC8402891 DOI: 10.3390/v13081523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The 3′untranslated region (3′UTR) and NS5B of classical swine fever virus (CSFV) play vital roles in viral genome replication. In this study, two chimeric viruses, vC/SM3′UTR and vC/b3′UTR, with 3′UTR substitution of CSFV Shimen strain or bovine viral diarrhea virus (BVDV) NADL strain, were constructed based on the infectious cDNA clone of CSFV vaccine C strain, respectively. After virus rescue, each recombinant chimeric virus was subjected to continuous passages in PK-15 cells. The representative passaged viruses were characterized and sequenced. Serial passages resulted in generation of mutations and the passaged viruses exhibited significantly increased genomic replication efficiency and infectious virus production compared to parent viruses. A proline to threonine mutation at position 162 of NS5B was identified in both passaged vC/SM3′UTR and vC/b3′UTR. We generated P162T mutants of two chimeras using the reverse genetics system, separately. The single P162T mutation in NS5B of vC/SM3′UTR or vC/b3′UTR played a key role in increased viral genome replication and infectious virus production. The P162T mutation increased vC/SM3′UTRP162T replication in rabbits. From RNA-dependent RNA polymerase (RdRp) assays in vitro, the NS5B containing P162T mutation (NS5BP162T) exhibited enhanced RdRp activity for different RNA templates. We further identified that the enhanced RdRp activity originated from increased initiation efficiency of RNA synthesis. These findings revealed a novel function for the NS5B residue 162 in modulating pestivirus replication.
Collapse
|
23
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Sihvonen LH, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Gubbins S, Stegeman JA, Antoniou S, Aznar I, Broglia A, Lima E, Van der Stede Y, Zancanaro G, Roberts HC. Assessment of the control measures of the category A diseases of Animal Health Law: Classical Swine Fever. EFSA J 2021; 19:e06707. [PMID: 34306220 PMCID: PMC8294054 DOI: 10.2903/j.efsa.2021.6707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EFSA received a mandate from the European Commission to assess the effectiveness of some of the control measures against diseases included in the Category A list according to Regulation (EU) 2016/429 on transmissible animal diseases ('Animal Health Law'). This opinion belongs to a series of opinions where these control measures will be assessed, with this opinion covering the assessment of control measures for Classical swine fever (CSF). In this opinion, EFSA and the AHAW Panel of experts review the effectiveness of: (i) clinical and laboratory sampling procedures, (ii) monitoring period and (iii) the minimum radii of the protection and surveillance zones, and the minimum length of time the measures should be applied in these zones. The general methodology used for this series of opinions has been published elsewhere; nonetheless, details of the model used for answering these questions are presented in this opinion as well as the transmission kernels used for the assessment of the minimum radius of the protection and surveillance zones. Several scenarios for which these control measures had to be assessed were designed and agreed prior to the start of the assessment. Here, several recommendations are given on how to increase the effectiveness of some of the sampling procedures. Based on the average length of the period between virus introduction and the reporting of a CSF suspicion, the monitoring period was assessed as non-effective. In a similar way, it was recommended that the length of the measures in the protection and surveillance zones were increased from 15 to 25 days in the protection zone and from 30 to 40 days in the surveillance zone. Finally, the analysis of existing Kernels for CSF suggested that the radius of the protection and the surveillance zones comprise 99% of the infections from an affected establishment if transmission occurred. Recommendations provided for each of the scenarios assessed aim to support the European Commission in the drafting of further pieces of legislation, as well as for plausible ad hoc requests in relation to CSF.
Collapse
|
24
|
Postel A, Becher P. Genetically distinct pestiviruses pave the way to improved classical swine fever marker vaccine candidates based on the chimeric pestivirus concept. Emerg Microbes Infect 2021; 9:2180-2189. [PMID: 32962557 PMCID: PMC7580611 DOI: 10.1080/22221751.2020.1826893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Classical swine fever (CSF) is one of the most important viral diseases of pigs. In many countries, the use of vaccines is restricted due to limitations of subunit vaccines with regard to efficacy and onset of protection as well as failure of live vaccines to differentiate infected from vaccinated animals (DIVA principle). Chimeric pestiviruses based on CSF virus (CSFV) and the related bovine viral diarrhea virus (BVDV) have been licensed as live marker vaccines in Europe and Asia, but cross-reactive antibodies can cause problems in DIVA application due to close antigenic relationship. To develop marker vaccine candidates with improved DIVA properties, three chimeric viruses were generated by replacing Erns of CSFV Alfort-Tübingen with homologue proteins of only distantly related pestiviruses. The chimeric viruses “Ra”, “Pro”, and “RaPro” contained Erns sequences of Norway rat and Pronghorn pestiviruses or a combination of both, respectively. In porcine cells, the “Pro” chimera replicated to high titers, while replication of the “Ra” chimera was limited. The “RaPro” chimera showed an intermediate phenotype. All vaccine candidates were attenuated in a vaccination/ challenge trial in pigs, but to different extents. Inoculation induced moderate to high levels of neutralizing antibodies that protected against infection with a genetically heterologous, highly virulent CSFV. Importantly, serum samples of vaccinated animals did not show any cross-reactivity in a CSFV Erns antibody ELISA. In conclusion, the Erns antigen from distantly related pestiviruses can provide a robust serological negative marker for a new generation of improved CSFV marker vaccines based on the chimeric pestivirus concept.
Collapse
Affiliation(s)
- Alexander Postel
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
25
|
Jelsma T, Post J, van den Born E, Segers R, Kortekaas J. Assessing the Protective Dose of a Candidate DIVA Vaccine against Classical Swine Fever. Vaccines (Basel) 2021; 9:vaccines9050483. [PMID: 34068610 PMCID: PMC8151196 DOI: 10.3390/vaccines9050483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Classical swine fever is a highly contagious and deadly disease in swine. The disease can be controlled effectively by vaccination with an attenuated virus known as the “Chinese” (C)-strain. A single vaccination with the C-strain provides complete protection against highly virulent isolates within days after vaccination, making it one of the most efficacious veterinary vaccines ever developed. A disadvantage of the C-strain is that vaccinated animals cannot be serologically differentiated from animals that are infected with wild-type Classical swine fever virus. Previously, a C-strain-based vaccine with a stable deletion in the E2 structural glycoprotein was developed, which allows for differentiation between infected and vaccinated animals (DIVA). The resulting vaccine, which we named C-DIVA, is compatible with a commercial E2 ELISA, modified to render it suitable as a DIVA test. In the present work, three groups of eight piglets were vaccinated with escalating doses of the C-DIVA vaccine and challenged two weeks after vaccination. One group of four unvaccinated piglets served as controls. Piglets were monitored for clinical signs until three weeks after challenge and blood samples were collected to monitor viremia, leukocyte and thrombocyte levels, and antibody responses. The presence of challenge virus RNA in oropharyngeal swabs was investigated to first gain insight into the potential of C-DIVA to prevent shedding. The results demonstrate that a single vaccination with 70 infectious virus particles of C-DIVA protects pigs from the highly virulent Brescia strain.
Collapse
Affiliation(s)
- Tinka Jelsma
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
| | - Jacob Post
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
| | | | - Ruud Segers
- MSD Animal Health, 5830 AA Boxmeer, The Netherlands; (E.v.d.B.); (R.S.)
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Correspondence: ; Tel.: +31-6-20919110
| |
Collapse
|
26
|
Aida V, Pliasas VC, Neasham PJ, North JF, McWhorter KL, Glover SR, Kyriakis CS. Novel Vaccine Technologies in Veterinary Medicine: A Herald to Human Medicine Vaccines. Front Vet Sci 2021; 8:654289. [PMID: 33937377 PMCID: PMC8083957 DOI: 10.3389/fvets.2021.654289] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
The success of inactivated and live-attenuated vaccines has enhanced livestock productivity, promoted food security, and attenuated the morbidity and mortality of several human, animal, and zoonotic diseases. However, these traditional vaccine technologies are not without fault. The efficacy of inactivated vaccines can be suboptimal with particular pathogens and safety concerns arise with live-attenuated vaccines. Additionally, the rate of emerging infectious diseases continues to increase and with that the need to quickly deploy new vaccines. Unfortunately, first generation vaccines are not conducive to such urgencies. Within the last three decades, veterinary medicine has spearheaded the advancement in novel vaccine development to circumvent several of the flaws associated with classical vaccines. These third generation vaccines, including DNA, RNA and recombinant viral-vector vaccines, induce both humoral and cellular immune response, are economically manufactured, safe to use, and can be utilized to differentiate infected from vaccinated animals. The present article offers a review of commercially available novel vaccine technologies currently utilized in companion animal, food animal, and wildlife disease control.
Collapse
Affiliation(s)
- Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Kirklin L. McWhorter
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Sheniqua R. Glover
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
27
|
Genotyping and Molecular Characterization of Classical Swine Fever Virus Isolated in China during 2016-2018. Viruses 2021; 13:v13040664. [PMID: 33921513 PMCID: PMC8069065 DOI: 10.3390/v13040664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Classical swine fever (CSF) is a highly contagious disease of swine caused by classical swine fever virus (CSFV). For decades the disease has been controlled in China by a modified live vaccine (C-strain) of genotype 1. The emergent genotype 2 strains have become predominant in China in the past years that are genetically distant from the vaccine strain. Here, we aimed to evaluate the current infectious status of CSF, and for this purpose 24 isolates of CSFV were identified from different areas of China during 2016–2018. Phylogenetic analysis of NS5B, E2 and full genome revealed that the new isolates were clustered into subgenotype 2.1d and 2.1b, while subgenotype 2.1d was predominant. Moreover, E2 and Erns displayed multiple variations in neutralizing epitope regions. Furthermore, the new isolates exhibited capacity to escape C-strain-derived antibody neutralization compared with the Shimen strain (genotype 1). Potential positive selection sites were identified in antigenic regions of E2 and Erns, which are related with antibody binding affinity. Recombination events were predicted in the new isolates with vaccine strains in the E2 gene region. In conclusion, the new isolates showed molecular variations and antigenic alterations, which provide evidence for the emergence of vaccine-escaping mutants and emphasize the need of updated strategies for CSF control.
Collapse
|
28
|
Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021; 13:v13030445. [PMID: 33801868 PMCID: PMC7998128 DOI: 10.3390/v13030445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is one of the most devastating viral epizootic diseases of swine in many countries. To control the disease, highly efficacious and safe live attenuated vaccines have been used for decades. However, the main drawback of these conventional vaccines is the lack of differentiability of infected from vaccinated animals (DIVA concept). Advances in biotechnology and our detailed knowledge of multiple basic science disciplines have facilitated the development of effective and safer DIVA vaccines to control CSF. To date, two types of DIVA vaccines have been developed commercially, including the subunit vaccines based on CSFV envelope glycoprotein E2 and chimeric pestivirus vaccines based on infectious cDNA clones of CSFV or bovine viral diarrhea virus (BVDV). Although inoculation of these vaccines successfully induces solid immunity against CSFV, none of them could ideally meet all demands regarding to safety, efficacy, DIVA potential, and marketability. Due to the limitations of the available choices, researchers are still striving towards the development of more advanced DIVA vaccines against CSF. This review summarizes the present status of candidate CSFV vaccines that have been developed. The strategies and approaches revealed here may also be helpful for the development of new-generation vaccines against other diseases.
Collapse
|
29
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
30
|
Koethe S, König P, Wernike K, Pfaff F, Schulz J, Reimann I, Makoschey B, Beer M. A Synthetic Modified Live Chimeric Marker Vaccine against BVDV-1 and BVDV-2. Vaccines (Basel) 2020; 8:vaccines8040577. [PMID: 33023099 PMCID: PMC7712951 DOI: 10.3390/vaccines8040577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus which exists in the two distinct species BVDV-1 (syn. Pestivirus A) and BVDV-2 (syn. Pestivirus B), is the causative agent of one of the most widespread and economically important virus infections in cattle. For economic as well as for animal health reasons, an increasing number of national BVDV control programs were recently implemented. The main focus lies on the detection and removal of persistently infected cattle. The application of efficient marker or DIVA (differentiation of infected from vaccinated animals) vaccines would be beneficial for the eradication success in regions with a high BVDV prevalence to prevent fetal infection and it would allow serological monitoring of the BVDV status also in vaccinated farms. Therefore, a marker vaccine based on the cytopathic (cp) BVDV-1b strain CP7 was constructed as a synthetic backbone (BVDV-1b_synCP7). For serological discrimination of vaccinated from infected animals, the viral protein Erns was substituted by the heterologous Erns of Bungowannah virus (BuPV, species Pestivirus F). In addition, the vaccines were attenuated by a deletion within the type I interferon inhibitor Npro protein encoding sequence. The BVDV-2 vaccine candidate is based on the genetic sequence of the glycoproteins E1 and E2 of BVDV-2 strain CS8644 (CS), which were introduced into the backbone of BVDV-1b_synCP7_ΔNpro_Erns Bungo in substitution of the homologous glycoproteins. Vaccine virus recovery resulted in infectious cytopathic virus chimera that grew to titers of up to 106 TCID50/mL. Both synthetic chimera BVDV-1b_synCP7_ΔNpro_Erns Bungo and BVDV-1b_synCP7_ΔNpro_Erns Bungo_E1E2 BVDV-2 CS were avirulent in cattle, provided a high level of protection in immunization and challenge experiments against both BVDV species and allowed differentiation of infected from vaccinated cattle. Our study presents the first report on an efficient BVDV-1 and -2 modified live marker vaccine candidate and the accompanying commercially available serological marker ELISA system.
Collapse
Affiliation(s)
- Susanne Koethe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Jana Schulz
- Institute of Epidemiology Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Birgit Makoschey
- Intervet International B.V., MSD Animal Health, 5831 AN Boxmeer, The Netherlands;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
- Correspondence: ; Tel.: +49-38351-71200
| |
Collapse
|
31
|
P108 and T109 on E2 Glycoprotein Domain I Are Critical for the Adaptation of Classical Swine Fever Virus to Rabbits but Not for Virulence in Pigs. J Virol 2020; 94:JVI.01104-20. [PMID: 32581110 PMCID: PMC7431803 DOI: 10.1128/jvi.01104-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
The classical swine fever virus (CSFV) live attenuated vaccine C-strain is adaptive to rabbits and attenuated in pigs, in contrast with the highly virulent CSFV Shimen strain. Previously, we demonstrated that P108 and T109 on the E2 glycoprotein (E2P108-T109) in domain I (E2DomainI) rather than R132, S133, and D191 in domain II (E2DomainII) determine C-strain's adaptation to rabbits (ATR) (Y. Li, L. Xie, L. Zhang, X. Wang, C. Li, et al., Virology 519:197-206, 2018). However, it remains elusive whether these critical amino acids affect the ATR of the Shimen strain and virulence in pigs. In this study, three chimeric viruses harboring E2P108-T109, E2DomainI, or E2DomainII of C-strain based on the non-rabbit-adaptive Shimen mutant vSM-HCLVErns carrying the Erns glycoprotein of C-strain were generated and evaluated. We found that E2P108-T109 or E2DomainI but not E2DomainII of C-strain renders vSM-HCLVErns adaptive to rabbits, suggesting that E2P108-T109 in combination with the Erns glycoprotein (E2P108-T109-Erns) confers ATR on the Shimen strain, creating new rabbit-adaptive CSFVs. Mechanistically, E2P108-T109-Erns of C-strain mediates viral entry during infection in rabbit spleen lymphocytes, which are target cells of C-strain. Notably, pig experiments showed that E2P108-T109-Erns of C-strain does not affect virulence compared with the Shimen strain. Conversely, the substitution of E2DomainII and Erns of C-strain attenuates the Shimen strain in pigs, indicating that the molecular basis of the CSFV ATR and that of virulence in pigs do not overlap. Our findings provide new insights into the mechanism of adaptation of CSFV to rabbits and the molecular basis of CSFV adaptation and attenuation.IMPORTANCE Historically, live attenuated vaccines produced by blind passage usually undergo adaptation in cell cultures or nonsusceptible hosts and attenuation in natural hosts, with a classical example being the classical swine fever virus (CSFV) lapinized vaccine C-strain, which was developed by hundreds of passages in rabbits. However, the mechanism of viral adaptation to nonsusceptible hosts and the molecular basis for viral adaptation and attenuation remain largely unknown. In this study, we demonstrated that P108 and T109 on the E2 glycoprotein together with the Erns glycoprotein of the rabbit-adaptive C-strain confer adaptation to rabbits on the highly virulent CSFV Shimen strain by affecting viral entry during infection but do not attenuate the Shimen strain in pigs. Our results provide vital information on the different molecular bases of CSFV adaptation to rabbits and attenuation in pigs.
Collapse
|
32
|
A CRISPR/Cas9 Generated Bovine CD46-knockout Cell Line-A Tool to Elucidate the Adaptability of Bovine Viral Diarrhea Viruses (BVDV). Viruses 2020; 12:v12080859. [PMID: 32781607 PMCID: PMC7472008 DOI: 10.3390/v12080859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) entry into a host cell is mediated by the interaction of the viral glycoprotein E2 with the cellular transmembrane CD46 receptor. In this study, we generated a stable Madin-Darby Bovine Kidney (MDBK) CD46-knockout cell line to study the ability of different pestivirus A and B species (BVDV-1 and -2) to escape CD46-dependent cell entry. Four different BVDV-1/2 isolates showed a clearly reduced infection rate after inoculation of the knockout cells. However, after further passaging starting from the remaining virus foci on the knockout cell line, all tested virus isolates were able to escape CD46-dependency and grew despite the lack of the entry receptor. Whole-genome sequencing of the escape-isolates suggests that the genetic basis for the observed shift in infectivity is an amino acid substitution of an uncharged (glycine/asparagine) for a charged amino acid (arginine/lysine) at position 479 in the ERNS in three of the four isolates tested. In the fourth isolate, the exchange of a cysteine at position 441 in the ERNS resulted in a loss of ERNS dimerization that is likely to influence viral cell-to-cell spread. In general, the CD46-knockout cell line is a useful tool to analyze the role of CD46 for pestivirus replication and the virus-receptor interaction.
Collapse
|
33
|
Protection of Piglets with Maternally Derived Antibodies from Sows Inoculated with an Attenuated Live Marker Classical Swine Fever Vaccine (Flc-LOM-BE rns). Pathogens 2020; 9:pathogens9080608. [PMID: 32726906 PMCID: PMC7459659 DOI: 10.3390/pathogens9080608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 11/16/2022] Open
Abstract
Here, we investigated the protective efficacy provided by passive immunity induced by a classical swine fever (Flc-LOM-BErns) vaccine with the newly developed DIVA (Differentiating Infected from Vaccinated Animals) function. Ten pigs (aged 40–60 days) with maternally derived antibodies (MDAs) obtained from sows inoculated with the Flc-LOM-BErns vaccine were challenged with virulent classical swine fever virus (CSFV). Pigs with an MDA titer of 6 log2 induced by the Flc-LOM-BErns vaccine were fully protected against virulent CSFV challenge but not the pigs with an MDA titer under 5 log2. In addition, Flc-LOM-BErns vaccine-derived MDAs successfully differentiated vaccinated pigs by bovine viral diarrhea virus (BVDV) Erns/CSFV Erns antibody detection, functioning as a DIVA.
Collapse
|
34
|
Autonomously Replicating RNAs of Bungowannah Pestivirus: E RNS Is Not Essential for the Generation of Infectious Particles. J Virol 2020; 94:JVI.00436-20. [PMID: 32404522 DOI: 10.1128/jvi.00436-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Autonomously replicating subgenomic Bungowannah virus (BuPV) RNAs (BuPV replicons) with deletions of the genome regions encoding the structural proteins C, ERNS, E1, and E2 were constructed on the basis of an infectious cDNA clone of BuPV. Nanoluciferase (Nluc) insertion was used to compare the replication efficiencies of all constructs after electroporation of in vitro-transcribed RNA from the different clones. Deletion of C, E1, E2, or the complete structural protein genome region (C-ERNS-E1-E2) prevented the production of infectious progeny virus, whereas deletion of ERNS still allowed the generation of infectious particles. However, those ΔERNS viral particles were defective in virus assembly and/or egress and could not be further propagated for more than three additional passages in porcine SK-6 cells. These "defective-in-third-cycle" BuPV ΔERNS mutants were subsequently used to express the classical swine fever virus envelope protein E2, the N-terminal domain of the Schmallenberg virus Gc protein, and the receptor binding domain of the Middle East respiratory syndrome coronavirus spike protein. The constructs could be efficiently complemented and further passaged in SK-6 cells constitutively expressing the BuPV ERNS protein. Importantly, BuPVs are able to infect a wide variety of target cell lines, allowing expression in a very wide host spectrum. Therefore, we suggest that packaged BuPV ΔERNS replicon particles have potential as broad-spectrum viral vectors.IMPORTANCE The proteins NPRO and ERNS are unique for the genus Pestivirus, but only NPRO has been demonstrated to be nonessential for in vitro growth. While this was also speculated for ERNS, it has always been previously shown that pestivirus replicons with deletions of the structural proteins ERNS, E1, or E2 did not produce any infectious progeny virus in susceptible host cells. Here, we demonstrated for the first time that BuPV ERNS is dispensable for the generation of infectious virus particles but still important for efficient passaging. The ERNS-defective BuPV particles showed clearly limited growth in cell culture but were capable of several rounds of infection, expression of foreign genes, and highly efficient trans-complementation to rescue virus replicon particles (VRPs). The noncytopathic characteristics and the absence of preexisting immunity to BuPV in human populations and livestock also provide a significant benefit for a possible use, e.g., as a vector vaccine platform.
Collapse
|
35
|
Li J, Li X, Ma H, Ren X, Hao G, Zhang H, Zhao Z, Fang K, Li X, Rong Z, Sun S, Chen H, Qian P. Efficient mucosal vaccination of a novel classical swine fever virus E2-Fc fusion protein mediated by neonatal Fc receptor. Vaccine 2020; 38:4574-4583. [PMID: 32417139 DOI: 10.1016/j.vaccine.2020.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
Classical swine fever (CSF) remains one of the most important highly contagious and fatal viral disease of swine with high morbidity and mortality. CSF is caused by classical swine fever virus (CSFV), a small, enveloped RNA virus of the genus Pestivirus. The aim of this study was to construct the a novel CSFV Fc-fusion recombinant protein and evaluate the efficacy as a vaccine against CSFV. Here, we obtained a novel subunit vaccine expressing CSFV E2 recombinant fusion protein in CHO-S cells. Functional analysis revealed that CSFV Fc-fusion recombinant protein (CSFV-E2-Fc) could bind to FcγRI on antigen-presenting cells (APCs) and significantly increase IgA levels in serum and feces, inducing stronger mucosal immune response in swine. Additionally, CSFV-E2-Fc immunization enhanced CSFV-specific T cell immune response with a Th1-like pattern of cytokine secretion, remarkably stimulated the Th1-biased cellular immune response and humoral immune response. Further, the protective effects of CSFV-E2-Fc subunit vaccines were confirmed. The data suggest that CSFV E2-Fc recombinant fusion protein may be a promising candidate subunit vaccine to elicit immune response and protect against CSFV.
Collapse
Affiliation(s)
- Jianglong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Hui Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zekai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xinxin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenxiang Rong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shaohua Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
36
|
Tao J, Li B, Shi Y, Chen J, Zhu G, Shen X, Liu H. Attenuated porcine-derived type 2 bovine viral diarrhea virus as vector stably expressing viral gene. J Virol Methods 2020; 279:113842. [PMID: 32135175 DOI: 10.1016/j.jviromet.2020.113842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022]
Abstract
Infectious bovine viral diarrhea virus (BVDV) cDNA clones have been used for the expression of classical swine fever virus (CSFV) genes for immune prevention and control. However, can it be used for the expression of an allogenetic fragment? To answer this question, a BVDV chimeric virus expressing the spike (S) antigen fragment of porcine epidemic diarrhea virus (PEDV) was constructed. Antigen S499-602 was inserted into pig-derived BVDV-2 infectious cDNA clone pASH28 in tandem by overlapping PCR, located between the seventh and eighth amino acids at the N-terminus of the capsid (C) protein of BVDV. Indirect immunofluorescence assay confirmed that the chimeric virus vASH-dS312 containing double S499-602 sequences was successfully assembled, which could react with the monoclonal antibody (MAb) against BVDV E2 and PEDV S proteins. Further western blot analysis confirmed that the exogenous S499-602 double protein could be stably expressed. Next, the chimeric virus vASH-dS312 was administered to BALB/C mice either orally or by intramuscular injection. The immunized mice were healthy and showed no signs of toxicity. IgG against BVDV and PEDV antibodies could be detected in the mice administered vASH-dS312 by intramuscular injection, which had neutralization activity against BVDV and PEDV. Thus, this study reported a new insertion site in the BVDV infectious cDNA clone that could successfully express an allogenetic antigen.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Ying Shi
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Jinghua Chen
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohui Shen
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai, 201106, China; Shanghai Engineering Research Center of Pig Breeding, Shanghai, 201302, China.
| |
Collapse
|
37
|
Selection and Characterization of CSFV-Specific Single-Domain Antibodies and Their Application along with Immunomagnetic Nanobeads and Quantum Dots. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3201630. [PMID: 32090077 PMCID: PMC7013354 DOI: 10.1155/2020/3201630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/11/2019] [Indexed: 11/17/2022]
Abstract
Outbreak of classical swine fever (CSF) results in high mortality and thus causes severe economic losses in the swine industry. Single-domain antibody (sdAb) is the smallest antigen-binding molecule derived from camelid heavy-chain antibodies and has the potential to be used as a molecular probe for detection of CSF virus (CSFV). In this study, two sdAb fragments against the E2 antigen of CSFV were obtained, expressed in vitro. The functional characteristics analysis indicated that the recombinant sdAbE2-1 and sdAbE2-2 have excellent binding activity, specificity, and high affinity with equilibrium constant value of 3.34 × 10−7 and 1.35 × 10−8 M to E2 protein. Then, sdAbE2s were conjugated with quantum dots (QD)/AF488 to synthesize two molecular probes for imaging CSFV distribution in cells. The sdAbE2-1 was also labeled with carboxyl-magnetic beads to construct immunomagnetic nanobeads (IMNBs) able to capture CSFV virions and recombinant E2 protein. QD/AF455-sdAbE2s probes colocalised with CSFV virions in swine testis cells, and IMNBs were used as a detection template and proved to bind specifically with CSFV virions and E2 protein. The selected sdAb fragments and sdAb-based molecular probes may be used for the rapid identification of CSFV during field outbreaks and for research on CSFV and host interactions.
Collapse
|
38
|
Michelitsch A, Dalmann A, Wernike K, Reimann I, Beer M. Seroprevalences of Newly Discovered Porcine Pestiviruses in German Pig Farms. Vet Sci 2019; 6:E86. [PMID: 31717716 PMCID: PMC6958323 DOI: 10.3390/vetsci6040086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023] Open
Abstract
Several novel porcine pestiviruses that are linked to disease outbreaks in commercial pig farms were discovered during recent years. Bungowannah pestivirus (BuPV; new species Pestivirus F) causes sudden death in young pigs, but has only ever been isolated in the Australian region Bungowannah. Atypical porcine pestivirus (APPV; new species Pestivirus K) on the other hand has been found in multiple countries worldwide and is potentially linked to congenital tremor, a disease that causes considerable production problems in pig farms. To assess the seroprevalences of both viruses in German commercial farms during the years 2009/10 and 2018, two approaches were selected. Antibodies against Pestivirus F were detected by a traditional in-house indirect immunofluorescence test against the culture-grown virus isolate, while for the detection of Pestivirus K-specific antibodies, a newly developed test system utilizing a chimeric construct of bovine viral diarrhea virus 1 (BVDV-1; species Pestivirus A) containing the E1 and E2 encoding sequences of APPV was established. A total of 1115 samples originating from 122 farms located in seven German federal states were investigated. Antibodies against Bungowannah virus could not be detected, confirming the absence of this virus in other regions than the initially affected Australian pig farm complex. In contrast, antibodies against APPV were highly prevalent throughout Germany at both investigated time points. The seroprevalence at the state level fluctuated to some degree, but the overall percentage remained stable, as is to be expected for an endemic pestivirus lacking any form of control measures.
Collapse
Affiliation(s)
| | | | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald—Insel Riems, Germany; (A.M.); (A.D.); (I.R.); (M.B.)
| | | | | |
Collapse
|
39
|
Gong W, Li J, Wang Z, Sun J, Mi S, Xu J, Cao J, Hou Y, Wang D, Huo X, Sun Y, Wang P, Yuan K, Gao Y, Zhou X, He S, Tu C. Commercial E2 subunit vaccine provides full protection to pigs against lethal challenge with 4 strains of classical swine fever virus genotype 2. Vet Microbiol 2019; 237:108403. [PMID: 31585656 DOI: 10.1016/j.vetmic.2019.108403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Classical swine fever (CSF) still threatens the swine industry in China, with genotype 2 isolates of CSFV dominating the epizootics. In 2018 the first E2 subunit marker vaccine against CSFV (Tian Wen Jing, TWJ-E2®), containing a baculovirus-expressed E2 glycoprotein of a genotype 1.1 vaccine strain, was officially licensed in China and commercialized. To evaluate the cross-protective efficacy of TWJ-E2 against different virulent genotype 2 Chinese field isolates (2.1b, 2.1c, 2.1 h, and 2.2), 4-week-old pigs were immunized with the TWJ-E2 vaccine according to the manufacturer's instructions and then challenged with genotype 2 strains. A group vaccinated with the conventional C-strain vaccine was included for comparison. TWJ-E2 vaccinated pigs developed higher levels of E2 and neutralizing antibodies than those receiving the commercial C-strain vaccine. All TWJ-E2 and C-strain vaccinated pigs survived challenge without development of fever, clinical signs or pathological lesions. In contrast, all unvaccinated control pigs displayed severe CSF disease with 40-100% mortalities by 24 days post challenge. None of the TWJ-E2 and C-strain vaccinated pigs developed viremia, viral shedding from tonsils, Erns protein in the sera, or viral RNA loads in different tissues after challenge, all of which were detected in the challenged unvaccinated controls. We conclude that vaccination of young pigs with TWJ-E2 provides complete immune protection against genotypically heterologous CSFVs and prevents viral shedding after challenge, with an efficacy at least comparable to that elicited by the conventional C-strain vaccine.
Collapse
Affiliation(s)
- Wenjie Gong
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Junhui Li
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Zunbao Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Jiumeng Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Shijiang Mi
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Jialun Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Jian Cao
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yuzhen Hou
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Danyang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Xinliang Huo
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yanjun Sun
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Pengjiang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Ke Yuan
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yangyi Gao
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Xubin Zhou
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Sun He
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China.
| | - Changchun Tu
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
40
|
Identification of structural glycoprotein E2 domain critical to mediate replication of Classical Swine Fever Virus in SK6 cells. Virology 2018; 526:38-44. [PMID: 30340154 DOI: 10.1016/j.virol.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022]
Abstract
Envelope glycoprotein E2 of Classical Swine Fever Virus (CSFV) is involved in several critical virus functions. To analyze the role of E2 in virus replication, a series of recombinant CSFVs harboring chimeric forms of E2 CSFV and Bovine viral diarrhea virus (BVDV) were created and tested for their ability to infect swine or bovine cell lines. Substitution of native CSFV E2 by BVDV E2 abrogates virus replication in both cell lines. Substitution of individual domains in CSFV Brescia E2 by the homologous from BVDV produces chimeras that efficiently replicate in SK6 cells with the exception of a chimera harboring BVDV E2 residues 93-168. Further mapping revealed a critical area in E2 required for CSFV replication in SK6 cells between protein residues 136-156. This is the first report categorically defining a discrete portion of E2 as essential to pestivirus infection in susceptible cells.
Collapse
|
41
|
Wang J, Sun Y, Meng XY, Li LF, Li Y, Luo Y, Wang W, Yu S, Yin C, Li S, Qiu HJ. Comprehensive evaluation of the host responses to infection with differentially virulent classical swine fever virus strains in pigs. Virus Res 2018; 255:68-76. [PMID: 29953916 DOI: 10.1016/j.virusres.2018.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Classical swine fever virus (CSFV) infection causes most variable clinical syndromes from chronic or latent infection to acute death, and it is generally acknowledged that the course of disease is affected by both virus and host factors. To compare host immune responses to differentially virulent CSFV strains in pigs, fifteen 8-week-old specific-pathogen-free pigs were randomly divided into four groups and inoculated with the CSFV Shimen strain (a highly virulent strain), the HLJZZ2014 strain (a moderately virulent strains), C-strain (an avirulent strain), and DMEM (mock control), respectively. Infection with the Shimen or HLJZZ2014 strain resulted in fever, clinical signs and histopathological lesions, which were not observed in the C-strain-inoculated pigs, though low viral genome copies were detected in the peripheral blood and tissue samples. The data showed that the virulence of the strains affected the outcome of duration and intensity of the disease rather than the tissue tropism of the virus. Furthermore, leukopenia, lymphocytopenia, differentiation of T-cells, and the secretion of cytokines associated with inflammation or apoptosis such as interferon alpha (IFN-α), tumor necrosis factor alpha (TNF-α), interleukin 2 (IL-2), IL-4, IL-6, and IL-10 were induced by the virulent CSFV infection, the differences reflected in onset and extent of the regulation. Taken together, our results revealed that the major differences among the three strains resided in the kinetics of host response to the infection: severe and immediate with the highly virulent strain, while progressive and delayed with the moderately virulent one. This comparative study will help to dissect the pathogenesis of CSFV.
Collapse
Affiliation(s)
- Jinghan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xing-Yu Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjing Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shaoxiong Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Caixia Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; College of Animal Science, Yangtze University, Jingzhou, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
42
|
Li Y, Xie L, Zhang L, Wang X, Li C, Han Y, Hu S, Sun Y, Li S, Luo Y, Liu L, Munir M, Qiu HJ. The E2 glycoprotein is necessary but not sufficient for the adaptation of classical swine fever virus lapinized vaccine C-strain to the rabbit. Virology 2018; 519:197-206. [PMID: 29734043 DOI: 10.1016/j.virol.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/21/2018] [Indexed: 12/26/2022]
Abstract
Classical swine fever virus (CSFV) C-strain was developed through hundreds of passages of a highly virulent CSFV in rabbits. To investigate the molecular basis for the adaptation of C-strain to the rabbit (ACR), a panel of chimeric viruses with the exchange of glycoproteins Erns, E1, and/or E2 between C-strain and the highly virulent Shimen strain and a number of mutant viruses with different amino acid substitutions in E2 protein were generated and evaluated in rabbits. Our results demonstrate that Shimen-based chimeras expressing Erns-E1-E2, Erns-E2 or E1-E2 but not Erns-E1, Erns, E1, or E2 of C-strain can replicate in rabbits, indicating that E2 in combination with either Erns or E1 confers the ACR. Notably, E2 and the amino acids P108 and T109 in Domain I of E2 are critical in ACR. Collectively, our data indicate that E2 is crucial in mediating the ACR, which requires synergistic contribution of Erns or E1.
Collapse
Affiliation(s)
- Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Libao Xie
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lingkai Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiao Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuying Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shouping Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lihong Liu
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, United Kingdom
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
43
|
Expression and characterization of a recombinant porcinized antibody against the E2 protein of classical swine fever virus. Appl Microbiol Biotechnol 2017; 102:961-970. [DOI: 10.1007/s00253-017-8647-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
44
|
Blome S, Wernike K, Reimann I, König P, Moß C, Beer M. A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn ® CSF Marker): a review of vaccine properties. Vet Res 2017; 48:51. [PMID: 28915927 PMCID: PMC5603031 DOI: 10.1186/s13567-017-0457-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/04/2017] [Indexed: 11/29/2022] Open
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. However, until recently, the available live vaccines did not allow a serological marker concept that is essentially important to circumvent long-term trade restrictions. In 2014, a new live attenuated marker vaccine, Suvaxyn® CSF Marker (Zoetis), was licensed by the European Medicines Agency. This vaccine is based on pestivirus chimera “CP7_E2alf” that carries the main immunogen of CSF virus “Alfort/187”, glycoprotein E2, in a bovine viral diarrhea virus type 1 backbone (“CP7”). This review summarizes the available data on design, safety, efficacy, marker diagnostics, and its possible integration into control strategies.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Claudia Moß
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
45
|
Classical Swine Fever-An Updated Review. Viruses 2017; 9:v9040086. [PMID: 28430168 PMCID: PMC5408692 DOI: 10.3390/v9040086] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
Abstract
Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.
Collapse
|
46
|
Meyer D, Fritsche S, Luo Y, Engemann C, Blome S, Beyerbach M, Chang CY, Qiu HJ, Becher P, Postel A. The double-antigen ELISA concept for early detection of E rns -specific classical swine fever virus antibodies and application as an accompanying test for differentiation of infected from marker vaccinated animals. Transbound Emerg Dis 2017; 64:2013-2022. [PMID: 28158921 DOI: 10.1111/tbed.12611] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 11/30/2022]
Abstract
Emergency vaccination with live marker vaccines represents a promising control strategy for future classical swine fever (CSF) outbreaks, and the first live marker vaccine is available in Europe. Successful implementation is dependent on a reliable accompanying diagnostic assay that allows differentiation of infected from vaccinated animals (DIVA). As induction of a protective immune response relies on virus-neutralizing antibodies against E2 protein of CSF virus (CSFV), the most promising DIVA strategy is based on detection of Erns -specific antibodies in infected swine. The aim of this study was to develop and to evaluate a novel Erns -specific prototype ELISA (pigtype CSFV Erns Ab), which may be used for CSF diagnosis including application as an accompanying discriminatory test for CSFV marker vaccines. The concept of a double-antigen ELISA was shown to be a solid strategy to detect Erns -specific antibodies against CSFV isolates of different genotypes (sensitivity: 93.5%; specificity: 99.7%). Furthermore, detection of early seroconversion is advantageous compared with a frequently used CSFV E2 antibody ELISA. Clear differences in reactivity between sera taken from infected animals and animals vaccinated with various marker vaccines were observed. In combination with the marker vaccine CP7_E2alf, the novel ELISA represents a sensitivity of 90.2% and a specificity of 93.8%. However, cross-reactivity with antibodies against ruminant pestiviruses was observed. Interestingly, the majority of samples tested false-positive in other Erns -based antibody ELISAs were identified correctly by the novel prototype Erns ELISA and vice versa. In conclusion, the pigtype CSFV Erns Ab ELISA can contribute to an improvement in routine CSFV antibody screening, particularly for analysis of sera taken at an early time point after infection and is applicable as a DIVA assay. An additional Erns antibody assay is recommended for identification of false-positive results in a pig herd immunized with the licensed CP7_E2alf marker vaccine.
Collapse
Affiliation(s)
- D Meyer
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Y Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute (HVRI), Chinese Academy of Agricultural Sciences, Harbin, China
| | | | - S Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - M Beyerbach
- Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - C-Y Chang
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, Tamsui District, New Taipei City, Taiwan
| | - H-J Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute (HVRI), Chinese Academy of Agricultural Sciences, Harbin, China
| | - P Becher
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A Postel
- EU and OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
47
|
Blome S, Moß C, Reimann I, König P, Beer M. Classical swine fever vaccines-State-of-the-art. Vet Microbiol 2017; 206:10-20. [PMID: 28069290 DOI: 10.1016/j.vetmic.2017.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/24/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
Abstract
Due to its impact on animal health and pig industry, classical swine fever (CSF) is still one of the most important viral diseases of pigs. To control the disease, safe and highly efficacious live attenuated vaccines exist for decades. These vaccines have usually outstanding efficacy and safety but lack differentiability of infected from vaccinated animals (DIVA or marker strategy). In contrast, the first generation of E2 subunit marker vaccines shows constraints in efficacy, application, and production. To overcome these limitations, new generations of marker vaccines are developed. A wide range of approaches have been tried including recombinant vaccines, recombinant inactivated vaccines or subunit vaccines, vector vaccines, and DNA/RNA vaccines. During the last years, especially attenuated deletion vaccines or chimeric constructs have shown potential. At present, especially two new constructs have been intensively tested, the adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine candidate "rAdV-SFV-E2" and the pestivirus chimera "CP7_E2alf". The later was recently licensed by the European Medicines Agency. Under field conditions, all marker vaccines have to be accompanied by a potent test system. Particularly this point shows still weaknesses and it is important to embed vaccination in a well-established vaccination strategy and a suitable diagnostic workflow. In summary, conventional vaccines are a standard in terms of efficacy. However, only vaccines with DIVA will allow improved eradication strategies e.g. also under emergency vaccination conditions in free regions. To answer this demand, new generations of marker vaccines have been developed and add now to the tool box of CSF control.
Collapse
Affiliation(s)
- Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Claudia Moß
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
48
|
Farsang A, Lévai R, Barna T, Fábián K, Blome S, Belák K, Bálint Á, Koenen F, Kulcsár G. Pre-registration efficacy study of a novel marker vaccine against classical swine fever on maternally derived antibody positive (MDA+) target animals. Biologicals 2017; 45:85-92. [DOI: 10.1016/j.biologicals.2016.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 07/13/2016] [Accepted: 09/19/2016] [Indexed: 01/24/2023] Open
|
49
|
Efficacy of the marker vaccine rAdV-SFV-E2 against classical swine fever in the presence of maternally derived antibodies to rAdV-SFV-E2 or C-strain. Vet Microbiol 2016; 196:50-54. [DOI: 10.1016/j.vetmic.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
|
50
|
Kinetics of maternally derived antibodies upon intramuscular vaccination against classical swine fever with Suvaxyn ® CSF Marker (CP7_E2alf). Vet Microbiol 2016; 196:14-17. [DOI: 10.1016/j.vetmic.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/23/2022]
|