1
|
Liu Y, Maya S, Carver S, O’Connell AK, Tseng AE, Gertje HP, Seneca K, Nahass RG, Crossland NA, Ploss A. Development of a dual channel detection system for pan-genotypic simultaneous quantification of hepatitis B and delta viruses. Emerg Microbes Infect 2024; 13:2350167. [PMID: 38687692 PMCID: PMC11095294 DOI: 10.1080/22221751.2024.2350167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem and, in associated co-infection with hepatitis delta virus (HDV), causes the most severe viral hepatitis and accelerated liver disease progression. As a defective satellite RNA virus, HDV can only propagate in the presence of HBV infection, which makes HBV DNA and HDV RNA the standard biomarkers for monitoring the virological response upon antiviral therapy, in co-infected patients. Although assays have been described to quantify these viral nucleic acids in circulation independently, a method for monitoring both viruses simultaneously is not available, thus hampering characterization of their complex dynamic interactions. Here, we describe the development of a dual fluorescence channel detection system for pan-genotypic, simultaneous quantification of HBV DNA and HDV RNA through a one-step quantitative PCR. The sensitivity for both HBV and HDV is about 10 copies per microliter without significant interference between these two detection targets. This assay provides reliable detection for HBV and HDV basic research in vitro and in human liver chimeric mice. Preclinical validation of this system on serum samples from patients on or off antiviral therapy also illustrates a promising application that is rapid and cost-effective in monitoring HBV and HDV viral loads simultaneously.
Collapse
Affiliation(s)
- Yongzhen Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Stephanie Maya
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sebastian Carver
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Aoife K. O’Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Anna E. Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hans P. Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | | | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology, & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Lee CC, Lau YC, Liang YK, Hsian YH, Lin CH, Wu HY, Tan DJY, Yeh YM, Chao M. vHDvDB 2.0: Database and Group Comparison Server for Hepatitis Delta Virus. Viruses 2024; 16:1254. [PMID: 39205227 PMCID: PMC11359145 DOI: 10.3390/v16081254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
The hepatitis delta virus (HDV) is a unique pathogen with significant global health implications, affecting individuals who are coinfected with the hepatitis B virus (HBV). HDV infection has profound clinical consequences, manifesting either as coinfection with HBV, resulting in acute hepatitis and potential liver failure, or as superinfection in chronic HBV cases, substantially increasing the risk of cirrhosis and hepatocellular carcinoma. Given the complex dynamics of HDV infection and the urgent need for advanced research tools, this article introduces vHDvDB 2.0, a comprehensive HDV full-length sequence database. This innovative platform integrates data preprocessing, secondary structure prediction, and epidemiological research tools. The primary goal of vHDvDB 2.0 is to consolidate HDV sequence data into a user-friendly repository, thereby facilitating access for researchers and enhancing the broader scientific understanding of HDV. The significance of this database lies in its potential to streamline HDV research by providing a centralized resource for analyzing viral sequences and exploring genotype-specific characteristics. It will also enable more in-depth research within the HDV sequence domains.
Collapse
Affiliation(s)
- Chi-Ching Lee
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yiu Chung Lau
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - You-Kai Liang
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yun-Hsuan Hsian
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hsiang Lin
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsin-Ying Wu
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Deborah Jing Yi Tan
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Mei Chao
- Department of Microbiology and Immunology and Division of Microbiology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Lee GS, Purdy MA, Choi Y. Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections. Life (Basel) 2023; 13:1527. [PMID: 37511902 PMCID: PMC10381383 DOI: 10.3390/life13071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies.
Collapse
Affiliation(s)
- Grace Sanghee Lee
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Michael A Purdy
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| |
Collapse
|
4
|
Sobajo OA, George UE, Osasona OG, Eromon P, Aborisade OY, Ajayi OD, Folarin OA, Komolafe IOO. Seroprevalence, co-infection and risk of transmission of Hepatitis B and D virus among hospital attendees in two South-western states in Nigeria. J Immunoassay Immunochem 2023; 44:133-146. [PMID: 36369932 DOI: 10.1080/15321819.2022.2141578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Infection with both Hepatitis B (HBV) and D (HDV) virus causes more severe liver damage than HBV alone. Superinfections among chronic HBV infected cohorts often lead to HDV persistence with rapid progression to cirrhosis, necessitating continuous surveillance to determine their prevalence and relative contribution to liver pathology. A cross-sectional study among hospital outpatients in Ekiti and Osunstates was conducted using random sampling technique. Blood samples were collected from 410 participants and tested for HBV serological markers. All samples positive for HBsAg samples were tested for Hepatitis D virus antigen (HDAg), serum anti-HDV IgM, and serum anti-HDV IgG using enzyme-linked immunosorbent assay kits. The prevalence of HBV infection among the 410 samples was 12.4% (CI 9.5-15.9). Past HBV exposure was detected in 120 (29.2%), while 147(35.8%) were susceptible to HBV infection. Among the HBsAg positive individuals, 9.8% were hepatitis D antigen (HDAg) positive, while 3.9% and 1.9% were positive for IgG anti-HDV and IgM anti-HDV, respectively. Risk factors associated with HBV infections in this study were multiple sexual partners and sharing of sharp objects. Our investigation has verified the endemicity of HBV in Nigeria and revealed that HBV- HDV co-infection is highly prevalent in south-west Nigeria.
Collapse
Affiliation(s)
- Oguntope A Sobajo
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria.,Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Uwem E George
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Oluwadamilola G Osasona
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Philomena Eromon
- African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Olamide Y Aborisade
- Haematology and Blood Transfusion Service Department, UNIOSUN Teaching Hospital, Osogbo, Nigeria
| | - Oluwafemi D Ajayi
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Onikepe A Folarin
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Isaac O O Komolafe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
5
|
Tassachew Y, Belyhun Y, Abebe T, Mihret A, Teffera T, Ababi G, Shewaye A, Desalegn H, Aseffa A, Mulu A, Howe R, Liebert UG, Maier M. Magnitude and genotype of hepatitis delta virus among chronic hepatitis B carriers with a spectrum of liver diseases in Ethiopia. Ann Hepatol 2023; 28:100770. [PMID: 36220615 DOI: 10.1016/j.aohep.2022.100770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Chronic hepatitis D infection contributes substantially to the progression of chronic liver disease, especially in most low and middle-income countries, where hepatitis B virus-related chronic liver disease is endemic. Therefore, this study aimed to determine the magnitude and genotype of hepatitis delta virus (HDV) among patients with chronic hepatitis B (CHB)-related liver diseases in Ethiopia. PATIENTS AND METHODS In this cross-sectional study, 323 known HBsAg positive individuals comprising 220 patients with CHB-related liver diseases [121 advanced liver diseases (hepatocellular carcinoma /HCC/ and non-HCC) and 99 chronic hepatitis (CH)], and 103 symptomless blood donors (BD) were enrolled. An ELISA kit was employed to determine HDV infection, and quantitative real-time PCR was used to detect HDV RNA. In addition, a non-coding genomic RNA region was sequenced for genotyping and phylogenetic analysis. RESULTS Irrespective of the stage of liver disease, the overall magnitude of HDV was 7.7% (25/323). The frequency of anti-HDV increases with the severity of liver disease, 1.9%, 4%, 10%, and 21.3% among BD, CH, non-HCC, and HCC patients, respectively. HDV RNA has been detected in 1.54 %(5/323) cases with a mean viral load of 4,010,360 IU/ml. All isolates were found to be HDV genotype 1. CONCLUSIONS The magnitude of HDV infection increased with the severity of liver disease, indicating HDV infection is more common among patients with CHB-related liver diseases in Ethiopia.
Collapse
Affiliation(s)
- Yayehyirad Tassachew
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Institute of Virology, University of Leipzig, 04103 Leipzig, Germany; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia; School of Medicine, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.
| | - Yeshambel Belyhun
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany; School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology, and Parasitology, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Tezazu Teffera
- School of Medicine, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Girma Ababi
- School of Medicine, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia; Yanet Specialized Clinic, Hawassa, Ethiopia
| | - Abate Shewaye
- Department of Internal Medicine, School of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia; Adera Medical Center PLC, Addis Ababa, Ethiopia
| | - Hailemichael Desalegn
- Department of Internal Medicine, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Andargachew Mulu
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany; Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Uwe G Liebert
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Melanie Maier
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Costante F, Stella L, Santopaolo F, Gasbarrini A, Pompili M, Asselah T, Ponziani FR. Molecular and Clinical Features of Hepatocellular Carcinoma in Patients with HBV-HDV Infection. J Hepatocell Carcinoma 2023; 10:713-724. [PMID: 37128594 PMCID: PMC10148646 DOI: 10.2147/jhc.s384751] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Hepatitis D virus (HDV) infection affects more than 10 million people worldwide, with an estimated prevalence of nearly 4.5% among HBsAg-positive individuals. Epidemiological studies have shown a significant increase in the prevalence of hepatocellular carcinoma (HCC) in patients with chronic HDV infection compared to those with chronic hepatitis B virus (HBV) mono-infection. Despite the clinical findings, data on molecular oncogenic mechanisms are limited and fragmentary. Moreover, the role of HDV in promoting the development of HCC has so far been controversial, because it is difficult to weigh the respective contributions of the two viruses. In this review, we focused on the direct oncogenic action of HDV, its role in modifying the tumor microenvironment, and the genetic signature of HDV-related HCC, comparing these features with HBV-related HCC.
Collapse
Affiliation(s)
- Federico Costante
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Leonardo Stella
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
| | - Tarik Asselah
- Service d’Hépatologie, Hôpital Beaujon UMR 1149 Inserm - Université de Paris, Clichy, France
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, 00168, Italy
- Correspondence: Francesca Romana Ponziani; Federico Costante, Internal Medicine and Gastroenterology - Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito 1, Rome, 00168, Italy, Tel +390630156264, Email ;
| |
Collapse
|
7
|
Deng L, Liu D, Li Y, Wang R, Liu J, Zhang J, Liu H. MSPCD: predicting circRNA-disease associations via integrating multi-source data and hierarchical neural network. BMC Bioinformatics 2022; 23:427. [PMID: 36241972 PMCID: PMC9569055 DOI: 10.1186/s12859-022-04976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence shows that circRNA plays an essential regulatory role in diseases through interactions with disease-related miRNAs. Identifying circRNA-disease associations is of great significance to precise diagnosis and treatment of diseases. However, the traditional biological experiment is usually time-consuming and expensive. Hence, it is necessary to develop a computational framework to infer unknown associations between circRNA and disease. RESULTS In this work, we propose an efficient framework called MSPCD to infer unknown circRNA-disease associations. To obtain circRNA similarity and disease similarity accurately, MSPCD first integrates more biological information such as circRNA-miRNA associations, circRNA-gene ontology associations, then extracts circRNA and disease high-order features by the neural network. Finally, MSPCD employs DNN to predict unknown circRNA-disease associations. CONCLUSIONS Experiment results show that MSPCD achieves a significantly more accurate performance compared with previous state-of-the-art methods on the circFunBase dataset. The case study also demonstrates that MSPCD is a promising tool that can effectively infer unknown circRNA-disease associations.
Collapse
Affiliation(s)
- Lei Deng
- School of Computer Science and Engineering, Central South University, Hunan, 410083, China
| | - Dayun Liu
- School of Computer Science and Engineering, Central South University, Hunan, 410083, China
| | - Yizhan Li
- School of Computer Science and Engineering, Central South University, Hunan, 410083, China
| | - Runqi Wang
- School of Computer Science and Engineering, Central South University, Hunan, 410083, China
| | - Junyi Liu
- Viterbi School of Engineering, University of Southern California, Los Angeles, 90089, USA
| | - Jiaxuan Zhang
- Department of Cognitive Science, University of California San Diego, La Jolla, 92093, USA
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
8
|
Zhang H, Itoh Y, Suzuki T, Ihara KI, Tanaka T, Haga S, Enatsu H, Yumiya M, Kimura M, Takada A, Itoh D, Shibazaki Y, Nakao S, Yoshio S, Miyakawa K, Miyamoto Y, Sasaki H, Kajita T, Sugiyama M, Mizokami M, Tachibana T, Ryo A, Moriishi K, Miyoshi E, Kanto T, Okamoto T, Matsuura Y. Establishment of monoclonal antibodies broadly neutralize infection of hepatitis B virus. Microbiol Immunol 2022; 66:179-192. [PMID: 35084739 DOI: 10.1111/1348-0421.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Antibodies against hepatitis B virus S protein can protect against hepatitis B virus (HBV) infection. Therefore, hepatitis B immunoglobulin (HBIG), which contains HBsAb, is used clinically as a therapy for HBV infection. In this study, we obtained a series of monoclonal antibodies that recognize multiple HBV genotypes. All the antibodies recognized conformational epitopes of S protein, but not linear epitopes. Several antibodies neutralized HBV infection and exhibited strong affinities and neutralizing activities. Antigenic epitope analysis demonstrated that they recognized residue Ile152 of S protein, which is localized outside the "a" determinant. Ile152 is highly conserved, and a mutation in this residue resulted in reduced expression of large hepatitis B surface proteins (L protein), suggesting that the amino acid at this position is involved in the expression of L protein. In addition, the antibodies neutralized the infection of hepatitis D virus possessing a Gly145 mutation to Arg in S protein, which is a well-known escape mutation against HBIG treatment. Using mouse monoclonal antibodies, we successfully established a humanized antibody possessing affinities and neutralizing activities similar to those of the original mouse antibody. The antibodies generated in this study may have potential for use in alternative antibody therapies for HBV infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- He Zhang
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kan-Ichiro Ihara
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Saori Haga
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hajime Enatsu
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Maho Yumiya
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mari Kimura
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akira Takada
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daiki Itoh
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuri Shibazaki
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shuto Nakao
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | | | | | | | - Masaya Sugiyama
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Taro Tachibana
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies,Research, Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Laboratory of Viral Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
10
|
Dudareva S, Faber M, Zimmermann R, Bock CT, Offergeld R, Steffen G, Enkelmann J. [Epidemiology of viral hepatitis A to E in Germany]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:149-158. [PMID: 35029725 PMCID: PMC8758919 DOI: 10.1007/s00103-021-03478-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
Viral hepatitis A to E describes various infectious inflammations of the liver parenchyma that are caused by the hepatitis viruses A to E (HAV, HBV, HCV, HDV, and HEV). Although the clinical pictures are similar, the pathogens belong to different virus families and differ in terms of pathogenesis, transmission routes, clinical course, prevention, and therapy options. In Germany, there is mandatory reporting according to the Infection Protection Act (IfSG) for direct or indirect laboratory evidence and for suspicion, illness, and death of viral hepatitis. The data are transmitted to the Robert Koch Institute.In this article, on the basis of published studies and notification data, we describe the epidemiology of hepatitis A to E as well as current challenges and prevention approaches. In particular, the latter contains the improvement of existing vaccination recommendations (hepatitis A and B); improvement of access to prevention, testing, and care including therapy with antiviral drugs (hepatitis B, C, and D) and the detection and prevention of foodborne infections and outbreaks; and improvements in the field of food safety (hepatitis A and E).
Collapse
Affiliation(s)
- Sandra Dudareva
- Abteilung für Infektionsepidemiologie, Robert Koch-Institut, Berlin, Deutschland.
| | - Mirko Faber
- Abteilung für Infektionsepidemiologie, Robert Koch-Institut, Berlin, Deutschland
| | - Ruth Zimmermann
- Abteilung für Infektionsepidemiologie, Robert Koch-Institut, Berlin, Deutschland
| | - C-Thomas Bock
- Abteilung für Infektionskrankheiten, Robert Koch-Institut, Berlin, Deutschland
| | - Ruth Offergeld
- Abteilung für Infektionsepidemiologie, Robert Koch-Institut, Berlin, Deutschland
| | - Gyde Steffen
- Abteilung für Infektionsepidemiologie, Robert Koch-Institut, Berlin, Deutschland
| | - Julia Enkelmann
- Abteilung für Infektionsepidemiologie, Robert Koch-Institut, Berlin, Deutschland
| |
Collapse
|
11
|
Gerber A, Le Gal F, Dziri S, Alloui C, Roulot D, Dény P, Sureau C, Brichler S, Gordien E. Comprehensive Analysis of Hepatitis Delta Virus Assembly Determinants According to Genotypes: Lessons From a Study of 526 Hepatitis Delta Virus Clinical Strains. Front Microbiol 2021; 12:751531. [PMID: 34867871 PMCID: PMC8636853 DOI: 10.3389/fmicb.2021.751531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Human hepatitis Delta virus (HDV) infection is associated to the most severe viral hepatic disease, including severe acute liver decompensation and progression to cirrhosis, and hepatocellular carcinoma. HDV is a satellite of hepatitis B virus (HBV) that requires the HBV envelope proteins for assembly of HDV virions. HDV and HBV exhibit a large genetic diversity that extends, respectively to eight (HDV-1 to -8) and to ten (HBV/A to/J) genotypes. Molecular determinants of HDV virion assembly consist of a C-terminal Proline-rich domain in the large Hepatitis Delta Antigen (HDAg) protein, also known as the Delta packaging domain (DPD) and of a Tryptophan-rich domain, the HDV matrix domain (HMD) in the C-terminal region of the HBV envelope proteins. In this study, we performed a systematic genotyping of HBV and HDV in a cohort 1,590 HDV-RNA-positive serum samples collected between 2001 to 2014, from patients originated from diverse parts of the world, thus reflecting a large genetic diversity. Among these samples, 526 HBV (HBV/A, B, C, D, E, and G) and HDV (HDV-1, 2, 3, and 5 to -8) genotype couples could be obtained. We provide results of a comprehensive analysis of the amino-acid sequence conservation within the HMD and structural and functional features of the DPD that may account for the yet optimal interactions between HDV and its helper HBV.
Collapse
Affiliation(s)
- Athenaïs Gerber
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Frédéric Le Gal
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Samira Dziri
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Chakib Alloui
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Dominique Roulot
- Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France.,Unité d'Hépatologie, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France
| | - Paul Dény
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Inserm, U1052 - UMR CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, Paris, France
| | - Ségolène Brichler
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Emmanuel Gordien
- Laboratoire de Microbiologie Clinique, Université Paris Nord, Sorbonne Paris Cité, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,Centre National de Référence des Hépatites B, C et Delta, Hôpitaux Universitaires de Paris-Seine-Saint-Denis, Bobigny, France.,INSERM U955, Équipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| |
Collapse
|
12
|
Baskiran A, Atay A, Baskiran DY, Akbulut S. Hepatitis B/D-Related Hepatocellular Carcinoma. A Clinical Literature Review. J Gastrointest Cancer 2021; 52:1192-1197. [PMID: 34611832 DOI: 10.1007/s12029-021-00714-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
AIM Given the current literature data, this article aims to shed light on the epidemiological and clinical effects of HBV, as well as its impact on the development of hepatocellular carcinoma (HCC). METHODS A review of the English language literature based on a MEDLINE (PubMed) database was searched. The keywords were cirrhosis, hepatocellular carcinoma, epidemiology, hepatitis delta virus, hepatitis B virus, and co-infection. All references from retrieved papers were reviewed systematically to find additional collection of reports. RESULTS The study has broadly confirmed the contribution of HDV viremia to liver disease and cirrhosis. However, uncertainty over the mechanism of action on HCC development remains. As the recent data has demonstrated, the HCC-HDV has a unique molecular profile which is distinct from that of HBV-HCC. CONCLUSION Owing to the dependence of HDV on HBV, it is not clear whether HCC is a consequence of the cumulative effect of both HBV and HDV, an effect of the underlying cirrhosis, or a direct oncogenic effect of HDV. Many questions concerning the oncogenic role of HDV remain unanswered. To better understand the role of HDV in carcinogenesis, studies at the molecular level that consider genotype differences should be increased. Multicenter, high-volume, and prospective studies that compare HBV/HDV co-infected and HBV-infected individuals will be pivotal in determining the oncogenic role of HDV.
Collapse
Affiliation(s)
- A Baskiran
- Department of General Surgery, Faculty of Medicine, Inonu University Turgut Ozal Medical Center, Institute of Liver Transplantation, Malatya, Turkey
| | - A Atay
- Department of General Surgery, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, Turkey.
| | - D Y Baskiran
- Department of Public Health, Faculty of Medicine, Inonu University Turgut Ozal Medical Center, Malatya, Turkey
| | - S Akbulut
- Department of General Surgery, Faculty of Medicine, Inonu University Turgut Ozal Medical Center, Institute of Liver Transplantation, Malatya, Turkey
| |
Collapse
|
13
|
Xu J, Pan HW, Wang XQ, Chen KP. Status of diagnosis and treatment of esophageal cancer and non-coding RNA correlation research: a narrative review. Transl Cancer Res 2021; 10:4532-4552. [PMID: 35116309 PMCID: PMC8798506 DOI: 10.21037/tcr-21-687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To describe and discuss the progression of the non-coding RNA as biomarkers in early esophageal cancer. BACKGROUND Esophageal cancer without obvious symptoms during early stages is one of the most common cancers, the current clinical treatments offer possibilities of a cure, but the survival rates and the prognoses remain poor, it is a serious threat to human life and health. Most patients are usually diagnosed during terminal stages due to low sensitivity of esophageal cancer's early detection techniques. With the development of molecular biology, an increasing number of non-coding RNAs are found to be associated with the occurrence, development, and prognosis of esophageal cancer. Some of these have begun to be used in clinics and laboratories for diagnosis, treatment, and prognosis, with the goal of reducing mortality. METHODS The information for this paper was collected from a variety of sources, including a search of the keynote's references, a search for texts in college libraries, and discussions with experts in the field of esophageal cancer clinical treatment. CONCLUSIONS Non-coding RNA does play a regulatory role in the development of esophageal cancer, which can predict the occurrence or prognosis of tumors, and become a new class of tumor markers and therapeutic targets in clinical applications. In this review, we survey the recent developments in the incidence, diagnosis, and treatment of esophageal cancer, especially with new research progresses on non-coding RNA biomarkers in detail, and discuss its potential clinical applications.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hui-Wen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xue-Qi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Bhuva M, Moore M, Sen S. ‘Double-hit’ pegylated interferon-alpha successfully treats Hepatitis B and Hepatitis D co-infection. Oxf Med Case Reports 2020; 2020:omaa084. [PMID: 33343908 PMCID: PMC7733525 DOI: 10.1093/omcr/omaa084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Hepatitis delta (HDV) infection is either acquired simultaneously with, or as a superinfection to, existing Hepatitis B (HBV). It leads to a serious form of chronic viral hepatitis and accelerated liver-related morbidity and mortality including hepatocellular carcinoma. Current treatment regimes propose Pegylated interferon-alpha for 48 weeks however sustained virological response (SVR) rates remain low. We report a patient who initially responded to Pegylated interferon treatment for HBV-HDV co-infection. Although initial improvement in viraemia from both virsues was seen, SVR was not achieved with ongoing progression of liver injury biochemically. However, the summative effect of a second course of Pegylated interferon 2 years later led to HDV cure (SVR 12 months post-treatment), very low level HBV carrier status (with persistently undetectable viral load) and ongoing biochemical normalization. This case illustrates a successful treatment strategy for persistent HBV-HDV co-infection where proposed treatment regimes elicit an initial response but SVR is not achieved.
Collapse
Affiliation(s)
| | - Marie Moore
- Hepatology Department, Luton and Dunstable University Hospital, Luton, UK
| | - Sambit Sen
- Hepatology Department, Luton and Dunstable University Hospital, Luton, UK
| |
Collapse
|
15
|
Baskiran A, Akbulut S, Sahin TT, Koc C, Karakas S, Ince V, Yurdaydin C, Yilmaz S. Effect of HBV-HDV co-infection on HBV-HCC co-recurrence in patients undergoing living donor liver transplantation. Hepatol Int 2020; 14:869-880. [PMID: 32895876 DOI: 10.1007/s12072-020-10085-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate the effect of hepatitis D virus (HDV) on hepatitis B virus-hepatocellular carcinoma (HBV-HCC) co-recurrence in patients undergoing living donor liver transplantation (LDLT) for HBV alone or HBV-HDV coinfection. METHODS Between 2002 and 2019, 254 HBV-HCC patients underwent LDLT. The patients were divided into two groups after the application of the exclusion criteria: HBV-HCC (Group B; n = 163) and HBV-HDV-HCC (Group D; n = 31). First, the B and D groups were compared in terms of demographic and clinical parameters. Second, patients with (n = 16) and without (n = 178) post-transplant HBV-HCC co-recurrences were grouped and compared in terms of the same parameters. RESULTS Although the risk of HBV-HCC co-recurrence in group D was 4.99-fold higher than in group B, the risk of HBV recurrence alone in group D was 12.5-fold lower than in group B. The AFP (OR = 4.4), Milan criteria (beyond; OR = 18.8), and HDV (OR = 8.1) were identified as the independent risk factors affecting post-transplant HBV-HCC co-recurrence. The Milan criteria (OR = 2.1) and HBV-HCC co-recurrence (OR = 10.9) were identified as the risk factors affecting post-transplant mortality. HBV-HCC co-recurrence developed in 26.5% of patients in Group B and 100% in Group D (OR = 40; p = 0.001). HCC recurrence alone developed in 10% of patients without HBV recurrence in group B and 0% of patients without HBV recurrence in group D (OR = 5.7). CONCLUSION This study showed that the risk of HBV recurrence alone was reduced by 12.5-fold in the presence of HDV; however, the HCC recurrence occurred in all patients with HDV when HBV recurrence developed.
Collapse
Affiliation(s)
- Adil Baskiran
- Department of Surgery, Faculty of Medicine, Liver Transplant Institute, Inonu University, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| | - Sami Akbulut
- Department of Surgery, Faculty of Medicine, Liver Transplant Institute, Inonu University, Elazig Yolu 10. Km, 44280, Malatya, Turkey.
| | - Tevfik Tolga Sahin
- Department of Surgery, Faculty of Medicine, Liver Transplant Institute, Inonu University, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| | - Cemalettin Koc
- Department of Surgery, Faculty of Medicine, Liver Transplant Institute, Inonu University, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| | - Serdar Karakas
- Department of Surgery, Faculty of Medicine, Liver Transplant Institute, Inonu University, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| | - Volkan Ince
- Department of Surgery, Faculty of Medicine, Liver Transplant Institute, Inonu University, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| | - Cihan Yurdaydin
- Department of Gastroenterology, Faculty of Medicine, Koc University, 34450, Istanbul, Turkey
| | - Sezai Yilmaz
- Department of Surgery, Faculty of Medicine, Liver Transplant Institute, Inonu University, Elazig Yolu 10. Km, 44280, Malatya, Turkey
| |
Collapse
|
16
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
17
|
Lin GY, Wu YL, Wang CS, Ko CY, Chen CH, Chen PJ, Peng PH, Hsu CW. Performance of commercially available anti-HDV enzyme-linked immunosorbent assays in Taiwan. Virol J 2020; 17:76. [PMID: 32546164 PMCID: PMC7298757 DOI: 10.1186/s12985-020-01355-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Hepatitis D virus (HDV) infection is a major global health issue around the world. There are approximately 15–20 million individuals infected with HDV worldwide. HDV infection usually causes increased mortality compared with infection with hepatitis B virus (HBV) alone. However, testing for the detection of HDV is not widely available in Taiwan. Therefore, the General Biologicals Corporation (GB) HDV Ab kit was developed for detecting anti-HDV antibodies. Methods A total of 913 serum and 462 EDTA-treated plasma samples were obtained from HBsAg-positive individuals in three hospitals in Taiwan from June 2014 to November 2017. We used three commercially available ELISA kits, DiaPro HDV Ab, DiaSorin ETI-AB-DELTAK-2 and GB HDV Ab, which were utilized strictly according to the instructions of the manufacturers. Results A comparative study of the results from the GB HDV Ab kit and the other commercial ELISA kits (DiaPro and DiaSorin) was performed to determine their efficacy for anti-HDV detection. The results indicated that the sensitivity of the GB HDV Ab kit for serum and EDTA samples was 100% compared to that of the DiaPro and DiaSorin kits, whereas the specificity for serum and EDTA samples was 99.3 and 98.1%, respectively. In addition, the overall agreement of the results of the GB HDV Ab kit for the serum and EDTA samples was 99.3 and 98.3%, respectively. It is worth noting that the performance of the GB HDV Ab kit was not affected by interference from triglyceride, bilirubin, hemoglobin, or human anti-mouse antibody. The limit of detection of the GB HDV Ab kit is approximately 100-fold lower than that of the other two commercial kits. Conclusions The GB HDV Ab kit, which presented equivalent sensitivity and specificity compared to both certified anti-HDV kits, would be a suitable kit for HDV diagnosis in Taiwan.
Collapse
Affiliation(s)
- Guan-Yu Lin
- General Biologicals Corporation, Hsinchu, 30076, Taiwan
| | - Yi-Le Wu
- General Biologicals Corporation, Hsinchu, 30076, Taiwan
| | - Cheng-Si Wang
- General Biologicals Corporation, Hsinchu, 30076, Taiwan
| | - Chia-Yun Ko
- General Biologicals Corporation, Hsinchu, 30076, Taiwan
| | - Chien-Hung Chen
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Jer Chen
- Hepatitis Research Center, National Taiwan University, Taipei, 10002, Taiwan
| | - Po-Hsin Peng
- General Biologicals Corporation, Hsinchu, 30076, Taiwan.
| | - Chao-Wei Hsu
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, 33305, Taiwan.
| |
Collapse
|
18
|
The Prevalence of Hepatitis B and D Viruses and Evaluating YMDD Mutation in HBV-Suspected Patients in Qom Province, Iran. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Dessordi R, Santana RDC, Navarro AM. Influence of antiretroviral therapy on bone metabolism of patients with chronic hepatitis B: a review. Rev Soc Bras Med Trop 2019; 52:e20180441. [PMID: 31596347 DOI: 10.1590/0037-8682-0441-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/21/2019] [Indexed: 11/21/2022] Open
Abstract
Hepatitis B is a major public health problem worldwide and associated with significant mortality. To prevent or delay the deleterious effects of chronic infection by the hepatitis B virus, patients should be carefully followed, and antiviral therapy indicated according to specific recommendations. Currently, available drugs inhibit viral replication and slow or stop the progression of inflammation and fibrosis of the liver. However, the drugs for oral use in the treatment of hepatitis B, jointly referred to as nucleoside/nucleotide analogs, are indicated for prolonged use and have potential side effects. The reduction in bone mineral density was associated with the use of tenofovir, already evaluated in patients infected with HIV because the drug is also part of the therapeutic arsenal for this viral infection. There are few studies on the effects of tenofovir in patients with mono hepatitis B. Therefore, this literature review proposes to examine how hepatitis B acts in the body and the mechanisms by which antiretroviral drugs (especially tenofovir) can affect bone metabolism.
Collapse
Affiliation(s)
- Renata Dessordi
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Programa de Pós-Graduação Stricto Sensu em Alimentos e Nutrição, São Paulo, SP, Brasil.,Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas do Estado de São Paulo, Departamento de Alimentos e Nutrição, São Paulo, SP, Brasil
| | - Rodrigo de Carvalho Santana
- Universidade de São Paulo, Escola de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, SP, Brasil
| | - Anderson Marliere Navarro
- Universidade Estadual Paulista, Faculdade de Ciências Farmacêuticas do Estado de São Paulo, Departamento de Alimentos e Nutrição, São Paulo, SP, Brasil.,Universidade de São Paulo, Escola de Medicina de Ribeirão Preto, Departamento de Clínica Médica, Ribeirão Preto, SP, Brasil
| |
Collapse
|
20
|
Pleśniak R, Wawrzynowicz-Syczewska M. Prevalence of hepatitis delta infections among HBs-antigen-positive inhabitants of southeastern and northwestern parts of Poland. Clin Exp Hepatol 2019; 5:232-236. [PMID: 31598560 PMCID: PMC6781819 DOI: 10.5114/ceh.2019.87636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatitis delta (HDV) virus still poses a serious health problem worldwide. Being a satellite particle, it may complete its life cycle only in the presence of HBs antigen produced by hepatitis B virus (HBV). According to epidemiological data, about 5% of HBs antigen carriers are infected with this virus, which equates to approximately 15-20 million individuals worldwide. Although the infection with both HBV and HDV viruses is considered to be the worst form of viral hepatitis, the only approved treatment, with pegylated interferon α, is not satisfactory. Thus effective and safe therapy is still lacking, which stands in contrast to the latest development in therapeutic areas of HBV and hepatitis C virus (HCV) infections. As the exact data on prevalence of this infection in some countries as well as natural history of this disease are still incomplete, further studies are warranted. Polish investigations on this field are very scarce and at most dating from the 1990s. This publication makes another attempt to broaden our knowledge of this temporarily forgotten but still ongoing and complex problem.
Collapse
Affiliation(s)
- Robert Pleśniak
- University of Rzeszów, Clinical Department of Infectious Diseases, Medical Center in Lancut, Poland
| | - Marta Wawrzynowicz-Syczewska
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University in Szczecin, Poland
| |
Collapse
|
21
|
Coppola N, Alessio L, Onorato L, Sagnelli C, Sagnelli E, Pisaturo M. HDV infection in immigrant populations. J Med Virol 2019; 91:2049-2058. [PMID: 31429940 DOI: 10.1002/jmv.25570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022]
Abstract
AIMS Little data have been published so far on the epidemiological aspects of hepatitis D virus (HDV) infection in immigrant populations and even poorer is the information on the virological, phylogenetic, and clinical aspects of this infection in these populations. This review article, aimed primarily at physicians caring for immigrants, summarizes the information available on HDV infection and analyzes data on this topic concerning the immigrant populations. METHODS AND RESULTS The prevalence of HDV infection in HBsAg-positive immigrants varies according to the country of origin. For example, in immigrants from sub-Saharan Africa, this prevalence is higher in those born in Equatorial Guinea (24.4%) than those from other African countries (10.3%). The epidemiological impact of HDV infection linked to migratory flows is a function of the different endemicity between countries of origin and countries in which a new existence has been established. This impact is high when immigrants from areas endemic to HDV infection (eg, Equatorial Guinea) settle in areas of low endemicity (eg, Germany or England, with a prevalence of around 4%), while the impact is lesser or nonexistent if the migratory flows are directed toward countries with intermediate endemicity (eg, Italy and Greece, with a prevalence of around 10%). CONCLUSION This impact of immigration on HDV epidemiology can be strong when HDV endemicity is high in the country of origin and low in the host country and slight when immigrants move to high or medium endemic countries.
Collapse
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy.,Infectious Disease Unit, AORN Caserta, Caserta, Italy
| | | | - Lorenzo Onorato
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy.,Infectious Disease Unit, AORN Caserta, Caserta, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
22
|
Puigvehí M, Moctezuma-Velázquez C, Villanueva A, Llovet JM. The oncogenic role of hepatitis delta virus in hepatocellular carcinoma. JHEP Rep 2019; 1:120-130. [PMID: 32039360 PMCID: PMC7001537 DOI: 10.1016/j.jhepr.2019.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/18/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) is a small defective virus that needs hepatitis B virus (HBV) to replicate and propagate. HDV infection affects 20-40 million people worldwide and pegylated interferon (PegIFN) is the only recommended therapy. There is limited data on the contribution of HDV infection to HBV-related liver disease or liver cancer. Evidence from retrospective and cohort studies suggests that HBV/HDV coinfection accelerates progression to cirrhosis and is associated with an increased risk of hepatocellular carcinoma (HCC) development compared to HBV monoinfection. Although the life cycle of HDV is relatively well known, there is only ancillary information on the molecular mechanisms that can drive specific HDV-related oncogenesis. No thorough reports on the specific landscape of mutations or molecular classes of HDV-related HCC have been published. This information could be critical to better understand the uniqueness, if any, of HDV-related HCC and help identify novel targetable mutations. Herein, we review the evidence supporting an oncogenic role of HDV, the main reported mechanisms of HDV involvement and their impact on HCC development.
Collapse
Affiliation(s)
- Marc Puigvehí
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Hepatology Section, Gastroenterology Department, Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Carlos Moctezuma-Velázquez
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA.,Denotes co-senior authorship
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, CIBERehd, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.,Denotes co-senior authorship
| |
Collapse
|
23
|
Down-regulation of hepatitis delta virus super-infection in the woodchuck model. Virology 2019; 531:100-113. [PMID: 30856482 DOI: 10.1016/j.virol.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms mediating clearance of hepatitis delta virus (HDV) are poorly understood. This study analyzed in detail profound down-regulation of HDV infection in the woodchuck model. Super-infection with HDV of woodchucks chronically infected with HBV-related woodchuck hepatitis virus produced two patterns. In the first, HDV viremia had a sharp peak followed by a considerable decline, and initial rise of HDV virions' infectivity followed by abrupt infectivity loss. In the second, HDV titer rose and later displayed plateau-like profile with high HDV levels; and HDV infectivity became persistently high when HDV titer reached the plateau. The infectivity loss was not due to defects in the virions' envelope, binding to anti-envelope antibodies, or mutations in HDV genome, but it correlated with profound reduction of the replication capacity of virion-associated HDV genomes. Subsequent finding that in virions with reduced infectivity most HDV RNAs were not full-length genomes suggests possible HDV clearance via RNA fragmentation.
Collapse
|
24
|
Bergner LM, Orton RJ, da Silva Filipe A, Shaw AE, Becker DJ, Tello C, Biek R, Streicker DG. Using noninvasive metagenomics to characterize viral communities from wildlife. Mol Ecol Resour 2018; 19:128-143. [PMID: 30240114 PMCID: PMC6378809 DOI: 10.1111/1755-0998.12946] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022]
Abstract
Microbial communities play an important role in organismal and ecosystem health. While high-throughput metabarcoding has revolutionized the study of bacterial communities, generating comparable viral communities has proven elusive, particularly in wildlife samples where the diversity of viruses and limited quantities of viral nucleic acid present distinctive challenges. Metagenomic sequencing is a promising solution for studying viral communities, but the lack of standardized methods currently precludes comparisons across host taxa or localities. Here, we developed an untargeted shotgun metagenomic sequencing protocol to generate comparable viral communities from noninvasively collected faecal and oropharyngeal swabs. Using samples from common vampire bats (Desmodus rotundus), a key species for virus transmission to humans and domestic animals, we tested how different storage media, nucleic acid extraction procedures and enrichment steps affect viral community detection. Based on finding viral contamination in foetal bovine serum, we recommend storing swabs in RNAlater or another nonbiological medium. We recommend extracting nucleic acid directly from swabs rather than from supernatant or pelleted material, which had undetectable levels of viral RNA. Results from a low-input RNA library preparation protocol suggest that ribosomal RNA depletion and light DNase treatment reduce host and bacterial nucleic acid, and improve virus detection. Finally, applying our approach to twelve pooled samples from seven localities in Peru, we showed that detected viral communities saturated at the attained sequencing depth, allowing unbiased comparisons of viral community composition. Future studies using the methods outlined here will elucidate the determinants of viral communities across host species, environments and time.
Collapse
Affiliation(s)
- Laura M Bergner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Richard J Orton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Andrew E Shaw
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Daniel J Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Carlos Tello
- Association for the Conservation, Development of Natural Resources, Lima, Peru.,Yunkawasi, Lima, Peru
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
25
|
Abstract
Hepatitis delta virus (HDV) is a defective RNA virus that depends on the presence of hepatitis B virus (HBV) for the creation of new virions and propagation of the infection to hepatocytes. Chronic infection with HDV is usually associated with a worsening of HBV infection, leading more frequently to cirrhosis, increased risk of liver decompensation and hepatocellular carcinoma (HCC) occurrence. In spite of a progressive declining prevalence of both acute and chronic HDV infection observed over several years, mainly due to increased global health policies and mass vaccination against HBV, several European countries have more recently observed stable HDV prevalence mainly due to migrants from non-European countries. Persistent HDV replication has been widely demonstrated as associated with cirrhosis development and, as a consequence, development of liver decompensation and occurrence of HCC. Several treatment options have been attempted with poor results in terms of HDV eradication and improvement of long-term prognosis. A global effort is deemed urgent to enhance the models already existing as well as to learn more about HDV infection and correlated tumourigenesis mechanisms.
Collapse
|
26
|
Winer BY, Shirvani-Dastgerdi E, Bram Y, Sellau J, Low BE, Johnson H, Huang T, Hrebikova G, Heller B, Sharon Y, Giersch K, Gerges S, Seneca K, Pais MA, Frankel AS, Chiriboga L, Cullen J, Nahass RG, Lutgehetmann M, Toettcher JE, Wiles MV, Schwartz RE, Ploss A. Preclinical assessment of antiviral combination therapy in a genetically humanized mouse model for hepatitis delta virus infection. Sci Transl Med 2018; 10:eaap9328. [PMID: 29950446 PMCID: PMC6337727 DOI: 10.1126/scitranslmed.aap9328] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Chronic delta hepatitis, caused by hepatitis delta virus (HDV), is the most severe form of viral hepatitis, affecting at least 20 million hepatitis B virus (HBV)-infected patients worldwide. HDV/HBV co- or superinfections are major drivers for hepatocarcinogenesis. Antiviral treatments exist only for HBV and can only suppress but not cure infection. Development of more effective therapies has been impeded by the scarcity of suitable small-animal models. We created a transgenic (tg) mouse model for HDV expressing the functional receptor for HBV and HDV, the human sodium taurocholate cotransporting peptide NTCP. Both HBV and HDV entered hepatocytes in these mice in a glycoprotein-dependent manner, but one or more postentry blocks prevented HBV replication. In contrast, HDV persistently infected hNTCP tg mice coexpressing the HBV envelope, consistent with HDV dependency on the HBV surface antigen (HBsAg) for packaging and spread. In immunocompromised mice lacking functional B, T, and natural killer cells, viremia lasted at least 80 days but resolved within 14 days in immunocompetent animals, demonstrating that lymphocytes are critical for controlling HDV infection. Although acute HDV infection did not cause overt liver damage in this model, cell-intrinsic and cellular innate immune responses were induced. We further demonstrated that single and dual treatment with myrcludex B and lonafarnib efficiently suppressed viremia but failed to cure HDV infection at the doses tested. This small-animal model with inheritable susceptibility to HDV opens opportunities for studying viral pathogenesis and immune responses and for testing novel HDV therapeutics.
Collapse
Affiliation(s)
- Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Elham Shirvani-Dastgerdi
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Julie Sellau
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Benjamin E Low
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Heath Johnson
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Tiffany Huang
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Brigitte Heller
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yael Sharon
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Katja Giersch
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sherif Gerges
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Kathleen Seneca
- Infectious Disease Care, 105 Raider Boulevard, Hillsborough, NJ 08844, USA
| | - Mihai-Alexandru Pais
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Angela S Frankel
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Luis Chiriboga
- Department of Pathology, New York University Medical Center, New York, NY 10016, USA
| | - John Cullen
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Ronald G Nahass
- Infectious Disease Care, 105 Raider Boulevard, Hillsborough, NJ 08844, USA
| | - Marc Lutgehetmann
- Institute of Microbiology, Virology and Hygiene, University Medical Hospital, Hamburg-Eppendorf, Hamburg, Germany
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Michael V Wiles
- Department of Technology Evaluation and Development, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500 USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
27
|
Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr Opin Virol 2018; 30:68-79. [DOI: 10.1016/j.coviro.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
|
28
|
Freitas N, Lukash T, Gunewardena S, Chappell B, Slagle BL, Gudima SO. Relative Abundance of Integrant-Derived Viral RNAs in Infected Tissues Harvested from Chronic Hepatitis B Virus Carriers. J Virol 2018; 92:e02221-17. [PMID: 29491161 PMCID: PMC5923063 DOI: 10.1128/jvi.02221-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/17/2018] [Indexed: 02/07/2023] Open
Abstract
Five matching sets of nonmalignant liver tissues and hepatocellular carcinoma (HCC) samples from individuals chronically infected with hepatitis B virus (HBV) were examined. The HBV genomic sequences were determined by using overlapping PCR amplicons covering the entire viral genome. Four pairs of tissues were infected with HBV genotype C, while one pair was infected with HBV genotype B. HBV replication markers were found in all tissues. In the majority of HCC samples, the levels of pregenomic/precore RNA (pgRNA) and covalently closed circular DNA (cccDNA) were lower than those in liver tissue counterparts. Regardless of the presence of HBV replication markers, (i) integrant-derived HBV RNAs (id-RNAs) were found in all tissues by reverse transcription-PCR (RT-PCR) analysis and were considerably abundant or predominant in 6/10 tissue samples (2 liver and 4 HCC samples), (ii) RNAs that were polyadenylated using the cryptic HBV polyadenylation signal and therefore could be produced by HBV replication or derived from integrated HBV DNA were found in 5/10 samples (3 liver and 2 HCC samples) and were considerably abundant species in 3/10 tissues (2 livers and 1 HCC), and (iii) cccDNA-transcribed RNAs polyadenylated near position 1931 were not abundant in 7/10 tissues (2 liver and 5 HCC samples) and were predominant in only two liver samples. Subsequent RNA sequencing analysis of selected liver/HCC samples also showed relative abundance of id-RNAs in most of the examined tissues. Our findings suggesting that id-RNAs could represent a significant source of HBV envelope proteins, which is independent of viral replication, are discussed in the context of the possible contribution of id-RNAs to the HBV life cycle.IMPORTANCE The relative abundance of integrant-derived HBV RNAs (id-RNAs) in chronically infected tissues suggest that id-RNAs coding for the envelope proteins may facilitate the production of a considerable fraction of surface antigens (HBsAg) in infected cells bearing HBV integrants. If the same cells support HBV replication, then a significant fraction of assembled HBV virions could bear id-RNA-derived HBsAg as a major component of their envelopes. Therefore, the infectivity of these HBV virions and their ability to facilitate virus cell-to-cell spread could be determined mainly by the properties of id-RNA-derived envelope proteins and not by the properties of replication-derived HBsAg. These interpretations suggest that id-RNAs may play a role in the maintenance of chronic HBV infection and therefore contribute to the HBV life cycle. Furthermore, the production of HBsAg from id-RNAs independently of viral replication may explain at least in part why treatment with interferon or nucleos(t)ides in most cases fails to achieve a loss of serum HBsAg.
Collapse
Affiliation(s)
- Natalia Freitas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tetyana Lukash
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Benjamin Chappell
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Severin O Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
29
|
Sopena S, Godoy C, Tabernero D, Homs M, Gregori J, Riveiro-Barciela M, Ruiz A, Esteban R, Buti M, Rodríguez-Frías F. Quantitative characterization of hepatitis delta virus genome edition by next-generation sequencing. Virus Res 2018; 243:52-59. [PMID: 28988126 DOI: 10.1016/j.virusres.2017.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
AIM To determine the capacity of next-generation sequencing (NGS) for quantifying edited and unedited HDV populations, and to confirm if edition is a general phenomenon taking place along the entire HDV region analyzed, as we previously reported (Homs M et al. PLoS One 2016, 11, e0158557). METHODS Four serum samples from 4 patients with chronic HDV/HBV infection were included in the study. The region selected for analysis covered 360 nucleotides (nt), positions 910-1270 of the HDV genome, which included the HDAg ORF editing site (nt 1014 within codon 196). Quantification of edited and unedited genomes was performed by molecular cloning and Sanger sequencing and by NGS. To evaluate the reliability of the NGS values obtained, we combined a clone with an edited codon and one with an unedited codon in known percentages in a series of artificial mixtures, which were then analyzed by NGS. In addition, we determined the nt changes occurring over the complete amplified region after excluding the editing codon (196) to evaluate edition along it. RESULTS In total, 11,208 quality-filtered sequences were obtained in the 4 samples. The 95% confidence intervals for the proportions of unedited populations by molecular cloning and NGS were overlapping, and those of cloning were wider, indicating that they are comparable and that NGS is more precise than cloning. Unedited genomes predominated over edited ones in all 4 samples analyzed by NGS and in 3 of the 4 samples analyzed by molecular cloning. In total, 83,276 quality-filtered sequences were obtained from the artificial mixtures. Percentages of the two viral populations detected by NGS in these mixtures were comparable to the expected percentages. Evaluation of edition along the HDV coding region showed that transitions were more frequent than transversions, accounting for 63.09% and 36.91%, respectively. Interestingly, among the 4 possible transition-type changes, G:A and A:G accounted for 73.86% of the total. CONCLUSION Next-generation sequencing proved useful to quantify edited and unedited HDV genomes, and provided relevant information on the HDV quasispecies.
Collapse
Affiliation(s)
- Sara Sopena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Cristina Godoy
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Maria Homs
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Josep Gregori
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Roche Diagnostics SL, 08174 Sant Cugat del Vallès, Spain.
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Alicia Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Rafael Esteban
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| |
Collapse
|
30
|
Lin CC, Lee CC, Lin SH, Huang PJ, Li HP, Chang YS, Tang P, Chao M. RNA recombination in Hepatitis delta virus: Identification of a novel naturally occurring recombinant. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:771-780. [DOI: 10.1016/j.jmii.2015.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022]
|
31
|
Botelho-Souza LF, Vasconcelos MPA, Dos Santos ADO, Salcedo JMV, Vieira DS. Hepatitis delta: virological and clinical aspects. Virol J 2017; 14:177. [PMID: 28903779 PMCID: PMC5597996 DOI: 10.1186/s12985-017-0845-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
There are an estimated 400 million chronic carriers of HBV worldwide; between 15 and 20 million have serological evidence of exposure to HDV. Traditionally, regions with high rates of endemicity are central and northern Africa, the Amazon Basin, eastern Europe and the Mediterranean, the Middle East and parts of Asia. There are two types of HDV/HBV infection which are differentiated by the previous status infection by HBV for the individual. Individuals with acute HBV infection contaminated by HDV is an HDV/HBV co-infection, while individuals with chronic HBV infection contaminated by HDV represent an HDV/HBV super-infection. The appropriate treatment for chronic hepatitis delta is still widely discussed since it does not have an effective drug. Alpha interferon is currently the only licensed therapy for the treatment of chronic hepatitis D. The most widely used drug is pegylated interferon but only approximately 25% of patients maintain a sustained viral response after 1 year of treatment. The best marker of therapeutic success would be the clearance of HBsAg, but this data is rare in clinical practice. Therefore, the best way to predict a sustained virologic response is the maintenance of undetectable HDV RNA levels.
Collapse
Affiliation(s)
- Luan Felipo Botelho-Souza
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil.
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil.
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil.
| | | | - Alcione de Oliveira Dos Santos
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Deusilene Souza Vieira
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| |
Collapse
|
32
|
Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, Ma ZF, Lee YY, Horbańczuk JO, Atanasov AG. Ethnopharmacological Approaches for Therapy of Jaundice: Part I. Front Pharmacol 2017; 8:518. [PMID: 28860989 PMCID: PMC5559545 DOI: 10.3389/fphar.2017.00518 10.3389/2ffphar.2017.00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/24/2017] [Indexed: 09/02/2023] Open
Abstract
Jaundice is a very common symptom especially in the developing countries. It is associated with several hepatic diseases which are still major causes of death. There are many different approaches to jaundice treatment and the growing number of ethnomedicinal studies shows the plant pharmacology as very promising direction. Many medicinal plants are used for the treatment of jaundice, however a comprehensive review on this subject has not been published. The use of medicinal plants in drug discovery is highly emphasized (based on their traditional and safe uses in different folk medicine systems from ancient times). Many sophisticated analytical techniques are emerging in the pharmaceutical field to validate and discover new biologically active chemical entities derived from plants. Here, we aim to classify and categorize medicinal plants relevant for the treatment of jaundice according to their origin, geographical location, and usage. Our search included various databases like Pubmed, ScienceDirect, Google Scholar. Keywords and phrases used for these searches included: "jaundice," "hyperbilirubinemia," "serum glutamate," "bilirubin," "Ayurveda." The first part of the review focuses on the variety of medicinal plant used for the treatment of jaundice (a total of 207 medicinal plants). In the second part, possible mechanisms of action of biologically active secondary metabolites of plants from five families for jaundice treatment are discussed.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun UniversityNainital, India
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and PharmacyCluj-Napoca, Romania
- ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-NapocaCluj-Napoca, Romania
| | - Emil D. Parvanov
- Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czechia
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun UniversityNainital, India
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| | - Zheng Feei Ma
- School of Medical Sciences, Universiti Sains MalaysiaKota Bharu, Malaysia
- Department of Public Health, Xi'an Jiaotong-Liverpool UniversitySuzhou, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains MalaysiaKota Bharu, Malaysia
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
33
|
Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, Ma ZF, Lee YY, Horbańczuk JO, Atanasov AG. Ethnopharmacological Approaches for Therapy of Jaundice: Part I. Front Pharmacol 2017; 8:518. [PMID: 28860989 PMCID: PMC5559545 DOI: 10.3389/fphar.2017.00518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Jaundice is a very common symptom especially in the developing countries. It is associated with several hepatic diseases which are still major causes of death. There are many different approaches to jaundice treatment and the growing number of ethnomedicinal studies shows the plant pharmacology as very promising direction. Many medicinal plants are used for the treatment of jaundice, however a comprehensive review on this subject has not been published. The use of medicinal plants in drug discovery is highly emphasized (based on their traditional and safe uses in different folk medicine systems from ancient times). Many sophisticated analytical techniques are emerging in the pharmaceutical field to validate and discover new biologically active chemical entities derived from plants. Here, we aim to classify and categorize medicinal plants relevant for the treatment of jaundice according to their origin, geographical location, and usage. Our search included various databases like Pubmed, ScienceDirect, Google Scholar. Keywords and phrases used for these searches included: “jaundice,” “hyperbilirubinemia,” “serum glutamate,” “bilirubin,” “Ayurveda.” The first part of the review focuses on the variety of medicinal plant used for the treatment of jaundice (a total of 207 medicinal plants). In the second part, possible mechanisms of action of biologically active secondary metabolites of plants from five families for jaundice treatment are discussed.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun UniversityNainital, India
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hatieganu" University of Medicine and PharmacyCluj-Napoca, Romania.,ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-NapocaCluj-Napoca, Romania
| | - Emil D Parvanov
- Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czechia
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun UniversityNainital, India
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| | - Zheng Feei Ma
- School of Medical Sciences, Universiti Sains MalaysiaKota Bharu, Malaysia.,Department of Public Health, Xi'an Jiaotong-Liverpool UniversitySuzhou, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains MalaysiaKota Bharu, Malaysia
| | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland.,Department of Pharmacognosy, University of ViennaVienna, Austria.,Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
34
|
Rehman SU, Rauf M, Abbas Z, Hamed MH, Qadri I. Role of Some Predominant Host Immunomodulators' Single Nucleotide Polymorphisms in Severity of Hepatitis B Virus and Hepatitis C Virus Infection. Viral Immunol 2016; 29:536-545. [PMID: 27676210 DOI: 10.1089/vim.2016.0062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B and C infections can be either acute or chronic. The chronic infection can culminate in liver cirrhosis and hepatocellular carcinoma. Influence of the host genetic makeup on conversion of acute to chronic infection, development of cirrhosis, and hepatocellular carcinoma is an interesting area of research. Variability in different immune system genes may account for such differences in the outcome of infection. This article discusses single nucleotide polymorphisms in different host immunomodulator genes that have been frequently reported to influence the outcome of infection and severity of disease. The genetic variability could be utilized for the prediction of disease outcome and treatment responses.
Collapse
Affiliation(s)
- Shafiq Ur Rehman
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Mahd Rauf
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Zaigham Abbas
- 1 Department of Microbiology and Molecular Genetics, University of the Punjab , Lahore, Pakistan
| | - Muhammed Haroon Hamed
- 2 Department of Biological Sciences, King Abdul Aziz University , Jeddah, Kingdom of Saudi Arabia
| | - Ishtiaq Qadri
- 2 Department of Biological Sciences, King Abdul Aziz University , Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Modification of Three Amino Acids in Sodium Taurocholate Cotransporting Polypeptide Renders Mice Susceptible to Infection with Hepatitis D Virus In Vivo. J Virol 2016; 90:8866-74. [PMID: 27466423 DOI: 10.1128/jvi.00901-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Sodium taurocholate cotransporting polypeptide (NTCP) was identified as a functional receptor for hepatitis D virus (HDV) and its helper hepatitis B virus (HBV). In cultured cell lines, HDV infection through mouse NTCP is restricted by residues 84 to 87 of the receptor. This study shows that mice with these three amino acids altered their corresponding human residues (H84R, T86K, and S87N) in endogenous mouse NTCP support de novo HDV infection in vivo HDV infection was documented by the presence of replicative forms of HDV RNA and HDV proteins in liver cells at day 6 after viral inoculation. Monoclonal antibody specifically binding to the motif centered on K86 in NTCP partially inhibited HDV infection. These studies demonstrated specific interaction between the receptor and the viral envelopes in vivo and established a novel mouse model with minimal genetic manipulation for studying HDV infection. The model will also be useful for evaluating entry inhibitors against HDV and its helper HBV. IMPORTANCE NTCP was identified as a functional receptor for both HDV and HBV in cell cultures. We recently showed that neonatal C57BL/6 transgenic (Tg) mice exogenously expressing human NTCP (hNTCP-Tg) in liver support transient HDV infection. In this study, we introduced alterations of three amino acids in the endogenous NTCP of FVB mice through genome editing. The mice with the humanized NTCP residues (H84R, T86K, and S87N) are susceptible to HDV infection, and the infection can be established in both neonatal and adult mice with this editing. We also developed a monoclonal antibody specifically targeting the region of NTCP centered on lysine residue 86, and it can differentiate the modified mouse NTCP from that of the wild type and partially inhibited HDV infection. These studies shed new light on NTCP-mediated HDV infection in vivo, and the NTCP-modified mice provide a useful animal model for studying HDV infection and evaluating antivirals against the infection.
Collapse
|
36
|
Hepatocarcinogenesis associated with hepatitis B, delta and C viruses. Curr Opin Virol 2016; 20:1-10. [PMID: 27504999 DOI: 10.1016/j.coviro.2016.07.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Globally, over half a billion people are persistently infected with hepatitis B (HBV) and/or hepatitis C viruses. Chronic HBV and HCV infection frequently lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Co-infections with hepatitis delta virus (HDV), a subviral satellite requiring HBV for its propagation, accelerates the progression of liver disease toward HCC. The mechanisms by which these viruses cause malignant transformation, culminating in HCC, remain incompletely understood, partially due to the lack of adequate experimental models for dissecting these complex disease processes in vivo.
Collapse
|
37
|
Zhang Z, Zehnder B, Damrau C, Urban S. Visualization of hepatitis B virus entry - novel tools and approaches to directly follow virus entry into hepatocytes. FEBS Lett 2016; 590:1915-26. [PMID: 27149321 DOI: 10.1002/1873-3468.12202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is a widespread human pathogen, responsible for chronic infections of ca. 240 million people worldwide. Until recently, the entry pathway of HBV into hepatocytes was only partially understood. The identification of human sodium taurocholate cotransporting polypeptide (NTCP) as a bona fide receptor of HBV has provided us with new tools to investigate this pathway in more details. Combined with advances in virus visualization techniques, approaches to directly visualize HBV cell attachment, NTCP interaction, virion internalization and intracellular transport are now becoming feasible. This review summarizes our current understanding of how HBV specifically enters hepatocytes, and describes possible visualization strategies applicable for a deeper understanding of the underlying cell biological processes.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Christine Damrau
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany.,German Center of Infectious Diseases (DZIF), Heidelberg, Germany
| |
Collapse
|
38
|
Mohmed Khair OM, Enan KAA, Hussien MO, Mohammed AAA, Bozdayi MA, Karatayli E, Elhussein AAM, Elkhider IM, Yurdaydin C. Seroprevalence and Molecular Detection of Hepatitis Delta Virus (HDV) Among Hemodialysis Patients and Blood Donors in a Cross-Sectional Study in Khartoum State, Sudan. INTERNATIONAL JOURNAL OF INFECTION 2016; 3. [DOI: 10.17795/iji-35391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
39
|
Opaleye OO, Japhet OM, Adewumi OM, Omoruyi EC, Akanbi OA, Oluremi AS, Wang B, Tong HV, Velavan TP, Bock CT. Molecular epidemiology of hepatitis D virus circulating in Southwestern Nigeria. Virol J 2016; 13:61. [PMID: 27044424 PMCID: PMC4820959 DOI: 10.1186/s12985-016-0514-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/24/2016] [Indexed: 02/06/2023] Open
Abstract
Background Hepatitis B virus (HBV) and hepatitis D virus (HDV) infections are major public health problems in sub-Saharan Africa. Whereas it is known that HBV infection is endemic in Nigeria, there is only little data about HDV prevalence available. Here, we assessed the HDV seroprevalence and determined the HDV and HBV genotypes distribution among HBsAg positive individuals in Southwestern Nigeria. Methods This cross-sectional study involved 188 serum samples from HBsAg positive outpatients recruited at four tertiary hospitals in Southwestern Nigeria. Anti-HDV antibodies were detected by ELISA while HDV-RNA was detected by RT-PCR. Sequencing followed by phylogenetic analyses and HBV genotype-specific PCR were used to characterize HDV and HBV genotypes, respectively. Results Out of 188 HBsAg positive serum samples, 17 (9 %) showed detectable HDV-RNA. Anti-HDV antibodies test was possible from 103 samples and were observed in 4.9 % (5/103) patients. There was no significant difference in HDV prevalence between four main cities across the country. 64.7 % of HDV-RNA positive samples were from males and 35.3 % from females (P < 0.05). No significant associations were observed with regard to HDV seroprevalence and available demographic factors. Phylogenetic analyses demonstrated a predominance of HDV genotype 1 and HBV genotype E among the HDV-RNA/HBsAg positive patients. Conclusions In conclusion, our study showed a high prevalence of HDV infection in HBsAg carriers and the predominance of HDV genotype 1 infection in Nigerian HBV endemic region. The findings contribute to a better understanding of the relevance of HDV/HBV co-infection and circulating genotypes.
Collapse
Affiliation(s)
- Oluyinka Oladele Opaleye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | | | | | - Olusola Anuoluwapo Akanbi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Adeolu Sunday Oluremi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Bo Wang
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Seestr. 10, D-13353, Berlin, Germany
| | - Hoang van Tong
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | | | - C-Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, Seestr. 10, D-13353, Berlin, Germany.
| |
Collapse
|
40
|
Manka P, Verheyen J, Gerken G, Canbay A. Liver Failure due to Acute Viral Hepatitis (A-E). Visc Med 2016; 32:80-5. [PMID: 27413724 PMCID: PMC4926881 DOI: 10.1159/000444915] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral hepatitis is still one of the key causes of acute liver failure (ALF) in the world. METHODS A selective literature search of the PubMed database was conducted, including current studies, reviews, meta-analyses, and guidelines. We obtained an overview of ALF due to viral hepatitis in terms of epidemiology, course, and treatment options. RESULTS Most fulminant viral courses are reported after infection with hepatitis A, B, and B/D, but not with hepatitis C. Hepatitis E is also known to cause ALF but has not gained much attention in recent years. However, more and more autochthonous hepatitis E virus infections have been recently observed in Europe. Reactivation of hepatitis B virus (HBV) under immunosuppressive conditions, such as after intensive chemotherapy, is also an increasing problem. For most viral-induced cases of ALF, liver transplantation represented the only therapeutic option in the past. Today, immediate treatment of HBV-induced ALF with nucleotide or nucleoside analogs is well tolerated and beneficially affects the course of the disease. CONCLUSION Although numbers in Western European countries are decreasing rapidly, reliable diagnostic screening for hepatitis A-E is necessary to identify the etiology and to determine those most at risk of developing ALF.
Collapse
Affiliation(s)
- Paul Manka
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
- Regeneration and Repair Group, The Institute of Hepatology, Foundation for Liver Research, London, UK
- Division of Transplantation Immunology and Mucosal Biology, King's College, London, UK
| | - Jens Verheyen
- Institute of Virology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| |
Collapse
|
41
|
Madejón A, Romero M, Hernández &A, García-Sánchez A, Sánchez-Carrillo M, Olveira A, García-Samaniego J. Hepatitis B and D viruses replication interference: Influence of hepatitis B genotype. World J Gastroenterol 2016; 22:3165-3174. [PMID: 27003993 PMCID: PMC4789991 DOI: 10.3748/wjg.v22.i11.3165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/04/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the hepatitis B virus (HBV) and hepatitis D virus (HDV) replication interferences in patients with chronic hepatitis delta infected with different HBV genotypes.
METHODS: We conducted a transversal study including 68 chronic hepatitis delta (CHD) (37 HIV-positive) patients and a control group of 49 chronic hepatitis B (CHB) (22 HIV-positive) patients. In addition, a dynamic follow-up was performed in 16 CHD patients. In all the samples, the surface antigen of hepatitis B (HBsAg) serum titers were analyzed with the Monolisa HBsAg Ultra system (Bio-Rad), using as quantification standard a serial dilution curve of an international HBsAg standard. Serum HBV-DNA titers were analyzed using the Roche Cobas TaqMan (Roche, Barcelona, Spain), and the serum HDV-RNA using an in-house real-time qRT-PCR method, with TaqMan probes. HBV genotype was determined with the line immunoassay LiPA HBV genotyping system (Innogenetics, Ghent, Belgium). In those patients negative for LiPA assay, a nested PCR method of complete HBsAg coding region, followed by sequence analysis was applied.
RESULTS: No differences in the HBV-DNA levels were found in CHB patients infected with different HBV genotypes. However, in CHD patients the HBV-DNA levels were lower in those infected with HBV-A than in those with HBV-D, both in HIV negative [median (IQR): 1.25 (1.00-1.35) vs 2.95 (2.07-3.93) log10 (copies/mL), P = 0.013] and HIV positive patients [2.63 (1.24-2.69) vs 7.25 (4.61-7.55) log10 (copies/mL), P < 0.001]. This was confirmed in the dynamic study of the HBV/HDV patients. These differences induce an under-estimation of HBV-A incidence in patients with CHD analyzed with LiPA assay. Finally, the HBsAg titers reflected no significant differences in CHD patients infected with HBV-A or D.
CONCLUSION: Viral replication interference between HBV and HDV is HBV-genotype dependent, and more evident in patients infected with HBV-genotype A, than with HBV-D or E.
Collapse
|
42
|
Fu J, Guo D, Gao D, Huang W, Li Z, Jia B. Clinical analysis of patients suffering from chronic hepatitis B superinfected with other hepadnaviruses. J Med Virol 2015; 88:1003-9. [PMID: 26509653 DOI: 10.1002/jmv.24417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 12/14/2022]
Abstract
To compare the clinical manifestations, laboratory examinations, and prognoses of patients with chronic hepatitis B (CHB) who were superinfected with hepatitis A virus (HAV), hepatitis C virus (HCV), hepatitis D virus (HDV), or hepatitis E virus (HEV). Two hundred and eleven patients with confirmed CHB in our hospital, a tertiary teaching hospital in China, between 2005 and 2014 were analyzed retrospectively. Among 211 patients with CHB, 35 were superinfected with HAV, 31 were superinfected with HCV, 22 were superinfected with HDV, and 53 were superinfected with HEV. We analyzed and compared the clinical features of the five groups. The tested biochemical indices and markers of liver function included serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBil), prothrombin activity (PTA), serum albumin (Alb), and the serum levels of HBV DNA. The peak values of ALT, AST, and TBil were significantly higher in all of the superinfected groups. Lower peak Alb concentration and PTA were also observed in the superinfected patients, with the exception of patients in the CHB + HAV group. The CHB + HCV, and CHB + HEV groups had higher death rates than the CHB monoinfected group, and the difference was statistically significant. Further analysis of the liver failure groups showed that the level of HBV DNA was not correlated with prognosis. The comparison of clinical outcomes revealed that CHB patients superinfected with HCV, HDV, and HEV compared with CHB monoinfection had statistically greater incidences of exacerbation of the condition and poor prognosis, whereas the patients superinfected with HAV generally had better outcomes.
Collapse
Affiliation(s)
- Jia Fu
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Guo
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Gao
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziqiong Li
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Jia
- Key Laboratory of Infectious and Parasitic Diseases in Chongqing, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Cunha C, Tavanez JP, Gudima S. Hepatitis delta virus: A fascinating and neglected pathogen. World J Virol 2015; 4:313-322. [PMID: 26568914 PMCID: PMC4641224 DOI: 10.5501/wjv.v4.i4.313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/21/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis delta virus (HDV) is the etiologic agent of the most severe form of virus hepatitis in humans. Sharing some structural and functional properties with plant viroids, the HDV RNA contains a single open reading frame coding for the only virus protein, the Delta antigen. A number of unique features, including ribozyme activity, RNA editing, rolling-circle RNA replication, and redirection for a RNA template of host DNA-dependent RNA polymerase II, make this small pathogen an excellent model to study virus-cell interactions and RNA biology. Treatment options for chronic hepatitis Delta are scarce and ineffective. The disease burden is perhaps largely underestimated making the search for new, specific drugs, targets, and treatment strategies an important public health challenge. In this review we address the main features of virus structure, replication, and interaction with the host. Virus pathogenicity and current treatment options are discussed in the light of recent developments.
Collapse
|
44
|
Mondragón E, Maher LJ. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics. Nucleic Acid Ther 2015; 26:29-43. [PMID: 26509637 PMCID: PMC4753637 DOI: 10.1089/nat.2015.0566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3' untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise.
Collapse
Affiliation(s)
- Estefanía Mondragón
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Louis James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
45
|
Abstract
Hepatitis B virus (HBV) infection affects 240 million people worldwide. A liver-specific bile acid transporter named the sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the cellular receptor for HBV and its satellite, the hepatitis D virus (HDV). NTCP likely acts as a major determinant for the liver tropism and species specificity of HBV and HDV at the entry level. NTCP-mediated HBV entry interferes with bile acid transport in cell cultures and has been linked with alterations in bile acid and cholesterol metabolism in vivo. The human liver carcinoma cell line HepG2, complemented with NTCP, now provides a valuable platform for studying the basic biology of the viruses and developing treatments for HBV infection. This review summarizes critical findings regarding NTCP's role as a viral receptor for HBV and HDV and discusses important questions that remain unanswered.
Collapse
Affiliation(s)
- Wenhui Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China;
| |
Collapse
|
46
|
NTCP opens the door for hepatitis B virus infection. Antiviral Res 2015; 121:24-30. [DOI: 10.1016/j.antiviral.2015.06.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/03/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
|
47
|
Motamedifar M, Taheri M, Lankarani KB, Gholami M, Lari MA, Faramarzi H, Sarvari J. The Prevalence and Risk Factors of Hepatitis Delta Virus in HIV/HBV Co-Infected Patients in Shiraz, Iran, 2012. IRANIAN JOURNAL OF MEDICAL SCIENCES 2015; 40:448-53. [PMID: 26379352 PMCID: PMC4567605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/23/2014] [Accepted: 07/13/2014] [Indexed: 11/13/2022]
Abstract
Evidence has shown that liver disease caused by hepatitis viruses can be more aggressive and severe in HIV infected subjects. Therefore, the present cross-sectional study aimed to evaluate the seroprevalence of HDV infection among HIV/HBV co-infected clients in Shiraz, southwest Iran. In this study, 178 patients co-infected with HBV and HIV individuals were enrolled. The diagnosis of HIV infection was documented based on serological assays. The demographic and complementary data were collected by a questionnaire. HBsAg and HDV Ab were detected by commercial quantitative enzyme linked immunosorbent assay kits according to the manufacturer's instructions. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were also measured. The mean age of the participants was 37.4±7.4 years (range 22-63). 175 (98.4 %) patients were male and 3 (1.6 %) were female. Among 178 patients co-infected with HIV/HBV, 35 cases (19.7%, 95% CI: 14%-25%) were anti-HDV positive and 143 (80.3%) were negative for anti-HDV. HDV exposure in HIV/HBV co-infected patients was associated with blood transfusion (P=0.002, OR: 14.3) and prison history (P=0.01, OR: 2.31) but not with age, marital status, unsafe sex contact, and injection drug abuse. Our data showed a relatively high prevalence of HDV infection in HIV infected population in Shiraz, Iran. The high frequency of HDV Ab in patients with blood transfusion and prison history reveals that HDV transmission occurs more frequently in the parental route than sexual contacts; therefore, blood screening for HDV diagnosis in the high-risk group is recommended.
Collapse
Affiliation(s)
- Mohammad Motamedifar
- Shiraz HIV/AIDS Research Center (SHARC), Shiraz University of Medical Sciences, Shiraz, Iran,Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taheri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center (HPRC), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Gholami
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Amini Lari
- Shiraz HIV/AIDS Research Center (SHARC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Faramarzi
- Shiraz HIV/AIDS Research Center (SHARC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Jamal Sarvari, PhD; Assistant Professor of Virology, Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71348- 45794, Shiraz, Iran Tel/Fax: +98 71 32304356
| |
Collapse
|
48
|
Guo Z, King T. Therapeutic Strategies and New Intervention Points in Chronic Hepatitis Delta Virus Infection. Int J Mol Sci 2015; 16:19537-52. [PMID: 26295228 PMCID: PMC4581312 DOI: 10.3390/ijms160819537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic hepatitis delta virus infection (CHD) is a condition arising from super-infection of hepatitis B virus (HBV)-infected patients, resulting in a more rapid advance in liver pathology and hepatocellular carcinoma than is observed for HBV mono-infection. Although hepatitis delta virus (HDV) is structurally simple, its life cycle involves the complex participation of host enzymes, HBV-derived surface antigen (HBsAg), and HDV-auto-ribozyme and hepatitis delta antigen (HDAg) activities. Unsatisfactory clinical trial results with interferon-based therapies are motivating researchers to adjust and redirect the approach to CHD drug development. This new effort will likely require additional structural and functional studies of the viral and cellular/host components involved in the HDV replication cycle. This review highlights recent work aimed at new drug interventions for CHD, with interpretation of key pre-clinical- and clinical trial outcomes and a discussion of promising new technological approaches to antiviral drug design.
Collapse
Affiliation(s)
- Zhimin Guo
- Huron Peak Ave., Superior, CO 80027, USA.
| | - Thomas King
- Allevagen, LLC, 4105 Perry St., Denver, CO 80212, USA.
| |
Collapse
|
49
|
Pazienza V, Panebianco C, Andriulli A. Hepatitis viruses exploitation of host DNA methyltransferases functions. Clin Exp Med 2015; 16:265-72. [PMID: 26148656 DOI: 10.1007/s10238-015-0372-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV), hepatitis C virus (HCV) and Delta (HDV) infections are a global health burden. With different routes of infection and biology, HBV, HCV and HDV are capable to induce liver cirrhosis and cancer by impinging on epigenetic mechanisms altering host cell's pathways. In the present manuscript, we reviewed the published studies taking into account the relationship between the hepatitis viruses and the DNA methyltransferases proteins.
Collapse
Affiliation(s)
- Valerio Pazienza
- Gastroenterology Unit, Fondazione "Casa Sollievo della Sofferenza" IRCCS Hospital, San Giovanni Rotondo, FG, Italy.
| | - Concetta Panebianco
- Gastroenterology Unit, Fondazione "Casa Sollievo della Sofferenza" IRCCS Hospital, San Giovanni Rotondo, FG, Italy
| | - Angelo Andriulli
- Gastroenterology Unit, Fondazione "Casa Sollievo della Sofferenza" IRCCS Hospital, San Giovanni Rotondo, FG, Italy
| |
Collapse
|
50
|
He W, Ren B, Mao F, Jing Z, Li Y, Liu Y, Peng B, Yan H, Qi Y, Sun Y, Guo JT, Sui J, Wang F, Li W. Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide. PLoS Pathog 2015; 11:e1004840. [PMID: 25902143 PMCID: PMC4406467 DOI: 10.1371/journal.ppat.1004840] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Hepatitis D virus (HDV) is the smallest virus known to infect human. About 15 million people worldwide are infected by HDV among those 240 million infected by its helper hepatitis B virus (HBV). Viral hepatitis D is considered as one of the most severe forms of human viral hepatitis. No specific antivirals are currently available to treat HDV infection and antivirals against HBV do not ameliorate hepatitis D. Liver sodium taurocholate co-transporting polypeptide (NTCP) was recently identified as a common entry receptor for HDV and HBV in cell cultures. Here we show HDV can infect mice expressing human NTCP (hNTCP-Tg). Antibodies against critical regions of HBV envelope proteins blocked HDV infection in the hNTCP-Tg mice. The infection was acute yet HDV genome replication occurred efficiently, evident by the presence of antigenome RNA and edited RNA species specifying large delta antigen in the livers of infected mice. The resolution of HDV infection appears not dependent on adaptive immune response, but might be facilitated by innate immunity. Liver RNA-seq analyses of HDV infected hNTCP-Tg and type I interferon receptor 1 (IFNα/βR1) null hNTCP-Tg mice indicated that in addition to induction of type I IFN response, HDV infection was also associated with up-regulation of novel cellular genes that may modulate HDV infection. Our work has thus proved the concept that NTCP is a functional receptor for HDV infection in vivo and established a convenient small animal model for investigation of HDV pathogenesis and evaluation of antiviral therapeutics against the early steps of infection for this important human pathogen. Currently 15 million people worldwide are infected by hepatitis D virus (HDV). HDV is the smallest virus known to infect human. With co-infection of its helper hepatitis B virus (HBV), viral hepatitis D is considered as the most severe form of viral hepatitis. No specific anti-HDV drugs are available; antivirals against HBV do not ameliorate hepatitis D. We report mice expressing a human bile acids transporter sodium taurocholate co-transporting polypeptide (NTCP) in the liver support HDV infection, providing a useful model for studying antivirals against HDV and understanding how the simplest virus interacts with a host in vivo. Our transcriptome analyses of livers of infected mice have unveiled interaction landscape of HDV and the hosts, laying a foundation for further studies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Viral/pharmacology
- Cells, Cultured
- Crosses, Genetic
- Female
- Hepatitis D/drug therapy
- Hepatitis D/metabolism
- Hepatitis D/pathology
- Hepatitis D/virology
- Hepatitis Delta Virus/drug effects
- Hepatitis Delta Virus/immunology
- Hepatitis Delta Virus/physiology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Hepatocytes/virology
- Host-Pathogen Interactions/drug effects
- Humans
- Immunity, Innate/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organic Anion Transporters, Sodium-Dependent/genetics
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Recombinant Fusion Proteins/metabolism
- Specific Pathogen-Free Organisms
- Symporters/genetics
- Symporters/metabolism
- Viral Envelope Proteins/antagonists & inhibitors
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Wenhui He
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Bijie Ren
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Fengfeng Mao
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Zhiyi Jing
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Yunfei Li
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Yang Liu
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Bo Peng
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Huan Yan
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Yonghe Qi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
- Graduate School of Beijing Normal University, Beijing, China
| | - Yinyan Sun
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Ju-Tao Guo
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Doylestown, Pennsylvania, United States of America
| | - Jianhua Sui
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
| | - Wenhui Li
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Changping, Beijing, China
- * E-mail:
| |
Collapse
|