1
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Heeregrave EJ, Thomas J, van Capel TM, de Jong EC, Pollakis G, Paxton WA. Glycan dependent phenotype differences of HIV-1 generated from macrophage versus CD4 + T helper cell populations. Front Immunol 2023; 14:1107349. [PMID: 37415979 PMCID: PMC10320205 DOI: 10.3389/fimmu.2023.1107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is able to infect a variety of cell types with differences in entry efficiency and replication kinetics determined by the host cell type or the viral phenotype. The phenotype of the virus produced from these various cell types, including infectivity, co-receptor usage and neutralisation sensitivity, may also be affected by the characteristics of the producing cell. This can be due to incorporation of variant cell-specific molecules or differences in post-translational modifications of the gp41/120 envelope. In this study we produced genetically identical virus strains from macrophages, CD4-enriched lymphocytes as well as Th1 and Th2 CD4+ cell lines and compared each different virus stock for their infectivity in various cell types and sensitivity to neutralisation. In order to study the effect of the producer host cell on the virus phenotype, virus stocks were normalised on infectivity and were sequenced to confirm env gene homogeneity. Virus production by Th1 or Th2 cells did not compromise infectivity of the variant cell types tested. We observed no difference in sensitivity to co-receptor blocking agents upon viral passage through Th1 and Th2 CD4+ cell lineages nor did this affect DC-SIGN-mediated viral capture as measured in a transfer assay to CD4+ lymphocytes. Virus produced by macrophages was comparably sensitive to CC-chemokine inhibition as was virus generated from the array of CD4+ lymphocytes. We identified that virus produced from macrophages was fourteen times more resistant to 2G12 neutralisation than virus produced from CD4+ lymphocytes. Macrophage-produced dual-tropic (R5/X4) virus was six times more efficiently transmitted to CD4+ cells than lymphocyte-derived HIV-1 (p<0.0001) after DCSIGN capture. These results provide further insights to what extent the host cell influences viral phenotype and thereby various aspects of HIV-1 pathogenesis but suggest that viruses generated from Th1 versus Th2 cells are consistent in phenotype.
Collapse
Affiliation(s)
- Edwin J. Heeregrave
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Toni M. van Capel
- Department of Experimental Immunology, University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Georgios Pollakis
- Department of Experimental Immunology, University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Cheng CC, Ke GM, Chu PY, Ke LY. Elucidating the Implications of Norovirus N- and O-Glycosylation, O-GlcNAcylation, and Phosphorylation. Viruses 2023; 15:v15030798. [PMID: 36992506 PMCID: PMC10054809 DOI: 10.3390/v15030798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Norovirus is the most common cause of foodborne gastroenteritis, affecting millions of people worldwide annually. Among the ten genotypes (GI-GX) of norovirus, only GI, GII, GIV, GVIII, and GIX infect humans. Some genotypes reportedly exhibit post-translational modifications (PTMs), including N- and O-glycosylation, O-GlcNAcylation, and phosphorylation, in their viral antigens. PTMs have been linked to increased viral genome replication, viral particle release, and virulence. Owing to breakthroughs in mass spectrometry (MS) technologies, more PTMs have been discovered in recent years and have contributed significantly to preventing and treating infectious diseases. However, the mechanisms by which PTMs act on noroviruses remain poorly understood. In this section, we outline the current knowledge of the three common types of PTM and investigate their impact on norovirus pathogenesis. Moreover, we summarize the strategies and techniques for the identification of PTMs.
Collapse
Affiliation(s)
- Chia-Chi Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
4
|
Liu CC, Huo CX, Zhai C, Zheng XJ, Xiong DC, Ye XS. Synthesis and Immunological Evaluation of Pentamannose-Based HIV-1 Vaccine Candidates. Bioconjug Chem 2022; 33:807-820. [PMID: 35470665 DOI: 10.1021/acs.bioconjchem.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dense glycosylation and the trimeric conformation of the human immunodeficiency virus-1 (HIV-1) envelope protein limit the accessibility of some cellular glycan processing enzymes and end up with high-mannose-type N-linked glycans on the envelope spike, among which the Man5GlcNAc2 structure occupies a certain proportion. The Man5GlcNAc2 glycan composes the binding sites of some potent broadly neutralizing antibodies, and some lectins that can bind Man5GlcNAc2 show HIV-neutralizing activity. Therefore, Man5GlcNAc2 is a potential target for HIV-1 vaccine development. Herein, a highly convergent and effective strategy was developed for the synthesis of Man5 and its monofluoro-modified, trifluoro-modified, and S-linked analogues. We coupled these haptens to carrier protein CRM197 and evaluated the immunogenicity of the glycoconjugates in mice. The serological assays showed that the native Man5 conjugates failed to induce Man5-specific antibodies in vivo, while the modified analogue conjugates induced stronger antibody responses. However, these antibodies could not bind the native gp120 antigen. These results demonstrated that the immune tolerance mechanism suppressed the immune responses to Man5-related structures and the conformation of glycan epitopes on the synthesized glycoconjugates was distinct from that of native glycan epitopes on gp120.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Chang-Xin Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Canjia Zhai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
5
|
Spillings BL, Day CJ, Garcia-Minambres A, Aggarwal A, Condon ND, Haselhorst T, Purcell DFJ, Turville SG, Stow JL, Jennings MP, Mak J. Host glycocalyx captures HIV proximal to the cell surface via oligomannose-GlcNAc glycan-glycan interactions to support viral entry. Cell Rep 2022; 38:110296. [PMID: 35108536 DOI: 10.1016/j.celrep.2022.110296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/18/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Here, we present ultrastructural analyses showing that incoming HIV are captured near the lymphocyte surface in a virion-glycan-dependent manner. Biophysical analyses show that removal of either virion- or cell-associated N-glycans impairs virus-cell binding, and a similar glycan-dependent relationship is observed between purified HIV envelope (Env) and primary T cells. Trimming of N-glycans from either HIV or Env does not inhibit protein-protein interactions. Glycan arrays reveal HIV preferentially binds to N-acetylglucosamine and mannose. Interfering with these glycan-based interactions reduces HIV infectivity. These glycan interactions are distinct from previously reported glycan-lectin and non-specific electrostatic charge-based interactions. Specific glycan-glycan-mediated attachment occurs prior to virus entry and enhances efficiency of infection. Binding and fluorescent imaging data support glycan-glycan interactions as being responsible, at least in part, for initiating contact between HIV and the host cell, prior to viral Env-cellular CD4 engagement.
Collapse
Affiliation(s)
- Belinda L Spillings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas D Condon
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Damian F J Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; School of Medicine, Deakin University, Geelong, VIC 3216, Australia.
| |
Collapse
|
6
|
Sliepen K, Schermer E, Bontjer I, Burger JA, Lévai RF, Mundsperger P, Brouwer PJM, Tolazzi M, Farsang A, Katinger D, Moore JP, Scarlatti G, Shattock RJ, Sattentau QJ, Sanders RW. Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers. NPJ Vaccines 2021; 6:103. [PMID: 34404812 PMCID: PMC8371121 DOI: 10.1038/s41541-021-00364-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
The immunogenicity of HIV-1 envelope (Env) trimers is generally poor. We used the clinically relevant ConM SOSIP trimer to compare the ability of different adjuvants (squalene emulsion, ISCOMATRIX, GLA-LSQ, and MPLA liposomes) to support neutralizing antibody (NAb) responses in rabbits. The trimers were administered as free proteins or on nanoparticles. The rank order for the adjuvants was ISCOMATRIX > SE > GLA-LSQ ~ MPLA liposomes > no adjuvant. Stronger NAb responses were elicited when the ConM SOSIP trimers were presented on ferritin nanoparticles. We also found that the GLA-LSQ adjuvant induced an unexpectedly strong antibody response to the ferritin core of the nanoparticles. This "off-target" effect may have compromised its ability to induce the more desired antitrimer antibodies. In summary, both adjuvants and nanoparticle display can improve the magnitude of the antibody response to SOSIP trimers but the best combination of trimer presentation and adjuvant can only be identified experimentally.
Collapse
Affiliation(s)
- Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Edith Schermer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Réka Felfödiné Lévai
- Control Laboratory of Veterinary Medicinal Products and Animal Facility, Directorate of Veterinary Medicinal Products, National Food Chain Safety Office, Budapest, Hungary
| | | | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Monica Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Attila Farsang
- Control Laboratory of Veterinary Medicinal Products and Animal Facility, Directorate of Veterinary Medicinal Products, National Food Chain Safety Office, Budapest, Hungary
| | - Dietmar Katinger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Robin J Shattock
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Section of Virology, Norfolk Place, London, W21PG, UK
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX13RE, UK
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
7
|
Li SW, Wright M, Healey JF, Hutchinson JM, O’Rourke S, Mesa KA, Lollar P, Berman PW. Gene editing in CHO cells to prevent proteolysis and enhance glycosylation: Production of HIV envelope proteins as vaccine immunogens. PLoS One 2020; 15:e0233866. [PMID: 32470085 PMCID: PMC7259603 DOI: 10.1371/journal.pone.0233866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/13/2020] [Indexed: 01/12/2023] Open
Abstract
Several candidate HIV subunit vaccines based on recombinant envelope (Env) glycoproteins have been advanced into human clinical trials. To facilitate biopharmaceutical production, it is necessary to produce these in CHO (Chinese Hamster Ovary) cells, the cellular substrate used for the manufacturing of most recombinant protein therapeutics. However, previous studies have shown that when recombinant Env proteins from clade B viruses, the major subtype represented in North America, Europe, and other parts of the world, are expressed in CHO cells, they are proteolyzed and lack important glycan-dependent epitopes present on virions. Previously, we identified C1s, a serine protease in the complement pathway, as the endogenous CHO protease responsible for the cleavage of clade B laboratory isolates of -recombinant gp120s (rgp120s) expressed in stable CHO-S cell lines. In this paper, we describe the development of two novel CHOK1 cell lines with the C1s gene inactivated by gene editing, that are suitable for the production of any protein susceptible to C1s proteolysis. One cell line, C1s-/- CHOK1 2.E7, contains a deletion in the C1s gene. The other cell line, C1s-/- MGAT1- CHOK1 1.A1, contains a deletion in both the C1s gene and the MGAT1 gene, which limits glycosylation to mannose-5 or earlier intermediates in the N-linked glycosylation pathway. In addition, we compare the substrate specificity of C1s with thrombin on the cleavage of both rgp120 and human Factor VIII, two recombinant proteins known to undergo unintended proteolysis (clipping) when expressed in CHO cells. Finally, we demonstrate the utility and practicality of the C1s-/- MGAT1- CHOK1 1.A1 cell line for the expression of clinical isolates of clade B Envs from rare individuals that possess broadly neutralizing antibodies and are able to control virus replication without anti-retroviral drugs (elite neutralizer/controller phenotypes). The Envs represent unique HIV vaccine immunogens suitable for further immunogenicity and efficacy studies.
Collapse
Affiliation(s)
- Sophia W. Li
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Meredith Wright
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John F. Healey
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Jennie M. Hutchinson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara O’Rourke
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Kathryn A. Mesa
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Pete Lollar
- Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
8
|
Glycopeptide epitope facilitates HIV-1 envelope specific humoral immune responses by eliciting T cell help. Nat Commun 2020; 11:2550. [PMID: 32439962 PMCID: PMC7242320 DOI: 10.1038/s41467-020-16319-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
The inherent molecular complexity of human pathogens requires that mammals evolved an adaptive immune system equipped to handle presentation of non-conventional MHC ligands derived from disease-causing agents, such as HIV-1 envelope (Env) glycoprotein. Here, we report that a CD4+ T cell repertoire recognizes a glycopeptide epitope on gp120 presented by MHCII pathway. This glycopeptide is strongly immunogenic in eliciting glycan-dependent cellular and humoral immune responses. The glycopeptide specific CD4+ T cells display a prominent feature of Th2 and Th17 differentiation and exert high efficacy and potency to help Env trimer humoral immune responses. Glycopeptide-induced CD4+ T cell response prior to Env trimer immunization elicits neutralizing antibody development and production of antibodies facilitating uptake of immunogens by antigen-presenting cells. Our identification of gp120 glycopeptide–induced, T cell–specific immune responses offers a foundation for developing future knowledge-based vaccines that elicit strong and long-lasting protective immune responses against HIV-1 infection. T cells recognize peptide antigens presented in the context of MHC but can additionally recognize non-conventional ligands. Here the authors show T cells specific for a HIV-1 associated glycopeptide antigen presented by MHC class II help envelope (Env) trimer induced humoral immune responses.
Collapse
|
9
|
Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathog 2019; 15:e1008026. [PMID: 31527908 PMCID: PMC6764681 DOI: 10.1371/journal.ppat.1008026] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/27/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
The CD4 binding site (CD4bs) of the HIV-1 envelope glycoprotein is susceptible to multiple lineages of broadly neutralizing antibodies (bnAbs) that are attractive to elicit with vaccines. The CH235 lineage (VH1-46) of CD4bs bnAbs is particularly attractive because the most mature members neutralize 90% of circulating strains, do not possess long HCDR3 regions, and do not contain insertions and deletions that may be difficult to induce. We used virus neutralization to measure the interaction of CH235 unmutated common ancestor (CH235 UCA) with functional Env trimers on infectious virions to guide immunogen design for this bnAb lineage. Two Env mutations were identified, one in loop D (N279K) and another in V5 (G458Y), that acted synergistically to render autologous CH505 transmitted/founder virus susceptible to neutralization by CH235 UCA. Man5-enriched N-glycans provided additional synergy for neutralization. CH235 UCA bound with nanomolar affinity to corresponding soluble native-like Env trimers as candidate immunogens. A cryo-EM structure of CH235 UCA bound to Man5-enriched CH505.N279K.G458Y.SOSIP.664 revealed interactions of the antibody light chain complementarity determining region 3 (CDR L3) with the engineered Env loops D and V5. These results demonstrate that virus neutralization can directly inform vaccine design and suggest a germline targeting and reverse engineering strategy to initiate and mature the CH235 bnAb lineage. Despite a wealth of information on the epitopes, ontogeny, structure and maturation pathways of multiple epitope classes of HIV-1 broadly neutralizing antibodies (bnAbs), there has been little progress eliciting similar antibodies by vaccination. One major contributing factor is the failure of many candidate immunogens to engage germline reverted forms of bnAbs, making it unlikely that they will provide adequate stimulation of appropriate naïve B cells to initiate bnAb lineages. Here we used virus neutralization to identify two point mutations and a modified glycan profile that together render HIV-1 CH505 Env-pseudotyped virus highly susceptible to neutralization by a germline-reverted form of the CH235 lineage of CD4 binding site (CD4bs) bnAbs. These same modifications permit strong binding of corresponding soluble native-like CH505 Env trimers to germline-reverted CH235. These observations provide a conceptual framework for the design and testing of novel immunogens that aim to elicit the CH235 bnAb lineage.
Collapse
|
10
|
Mouser EEIM, Pollakis G, Smits HH, Thomas J, Yazdanbakhsh M, de Jong EC, Paxton WA. Schistosoma mansoni soluble egg antigen (SEA) and recombinant Omega-1 modulate induced CD4+ T-lymphocyte responses and HIV-1 infection in vitro. PLoS Pathog 2019; 15:e1007924. [PMID: 31487324 PMCID: PMC6728022 DOI: 10.1371/journal.ppat.1007924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/19/2019] [Indexed: 01/17/2023] Open
Abstract
Parasitic helminths evade, skew and dampen human immune responses through numerous mechanisms. Such effects will likely have consequences for HIV-1 transmission and disease progression. Here we analyzed the effects that soluble egg antigen (SEA) from Schistosoma mansoni had on modulating HIV-1 infection and cytokine/chemokine production in vitro. We determined that SEA, specifically through kappa-5, can potently bind to DC-SIGN and thereby blocks DC-SIGN mediated HIV-1 trans-infection (p<0.05) whilst not interfering with cis-infection. DCs exposed to SEA whilst maturing under Th2 promoting conditions, will upon co-culture with naïve T-cells induce a T-cell population that was less susceptible to HIV-1 R5 infection (p<0.05) compared to DCs unexposed to SEA, whereas HIV-1 X4 virus infection was unaffected. This was not observed for DCs exposed to SEA while maturing under Th1 or Th1/Th2 (Tmix) promoting conditions. All T-cell populations induced by SEA exposed DCs demonstrate a reduced capacity to produce IFN-γ and MIP-1β. The infection profile of T-cells infected with HIV-1 R5 was not associated with down-modulation of CCR5 cell surface expression. We further show that DCs maturing under Tmix conditions exposed to plant recombinant omega-1 protein (rω-1), which demonstrates similar functions to natural ω-1, induced T-cell populations that were less sensitive for HIV-1 R5 infection (p<0.05), but not for X4 virus infection. This inhibition associated again with a reduction in IFN-γ and MIP-1β expression, but additionally correlated with reduced CCR5 expression. We have shown that SEA parasite antigens and more specifically rω-1 can modulate HIV-1 infectivity with the potential to influence disease course in co-infected individuals. Parasitic helminths have developed a number of strategies to evade, skew and dampen human immune responses. Such effects will likely have consequences for HIV-1 transmission and disease progression. Here we analyzed the effect that soluble egg antigen (SEA) from Schistosoma mansoni had on HIV-1 infection in vitro. We determined that SEA, through kappa-5, can potently block DC-SIGN mediated HIV-1 trans-infection of CD4+ T-lymphocytes, but not block cis-infection. Dendritic cells (DC) exposed to SEA during maturation under Th2 skewing conditions, induce T-cell populations that are less susceptible to HIV-1 R5 infection compared to cells induced by unexposed DCs. HIV-1 X4 infection was unaffected. This restricted infection profile was not associated with down-modulation of CCR5 surface expression or observed differences in cytokine/chemokine production. Using recombinant omega-1, an abundant component of SEA, HIV-1 R5 infection was similarly inhibited with no effect on HIV-1 X4 infection levels. Hence SEA possesses antigens, namely omega-1, that can modulate HIV-1 infection and potentially influence disease course in co-infected individuals.
Collapse
Affiliation(s)
- Emily EIM Mouser
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Esther C. de Jong
- Department of Cell Biology and Histology, Amsterdam UMC, Location Academic Medical Center, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Location Academic Medical Center, Amsterdam, the Netherlands
- * E-mail: (ECdJ); (WAP)
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (ECdJ); (WAP)
| |
Collapse
|
11
|
Ananthaswamy N, Fang Q, AlSalmi W, Jain S, Chen Z, Klose T, Sun Y, Liu Y, Mahalingam M, Chand S, Tovanabutra S, Robb ML, Rossmann MG, Rao VB. A sequestered fusion peptide in the structure of an HIV-1 transmitted founder envelope trimer. Nat Commun 2019; 10:873. [PMID: 30787293 PMCID: PMC6382815 DOI: 10.1038/s41467-019-08825-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
The envelope protein of human immunodeficiency virus-1 (HIV-1) and its fusion peptide are essential for cell entry and vaccine design. Here, we describe the 3.9-Å resolution structure of an envelope protein trimer from a very early transmitted founder virus (CRF01_AE T/F100) complexed with Fab from the broadly neutralizing antibody (bNAb) 8ANC195. The overall T/F100 trimer structure is similar to other reported "closed" state prefusion trimer structures. In contrast, the fusion peptide, which is exposed to solvent in reported closed structures, is sequestered (buried) in the hydrophobic core of the T/F100 trimer. A buried conformation has previously been observed in "open" state structures formed after CD4 receptor binding. The T/F100 trimer binds poorly to bNAbs including the fusion peptide-specific bNAbs PGT151 and VRC34.01. The T/F100 structure might represent a prefusion state, intermediate between the closed and open states. These observations are relevant to mechanisms of HIV-1 transmission and vaccine design.
Collapse
Affiliation(s)
- Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Qianglin Fang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Wadad AlSalmi
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Swati Jain
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Zhenguo Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.,The Fifth People's Hospital of Shanghai & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yingyuan Sun
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yue Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Subhash Chand
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD, 20910, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
12
|
Heß R, Storcksdieck Genannt Bonsmann M, Lapuente D, Maaske A, Kirschning C, Ruland J, Lepenies B, Hannaman D, Tenbusch M, Überla K. Glycosylation of HIV Env Impacts IgG Subtype Responses to Vaccination. Viruses 2019; 11:v11020153. [PMID: 30781796 PMCID: PMC6410111 DOI: 10.3390/v11020153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/22/2022] Open
Abstract
The envelope protein (Env) is the only surface protein of the human immunodeficiency virus (HIV) and as such the exclusive target for protective antibody responses. Experimental evidences from mouse models suggest a modulating property of Env to steer antibody class switching towards the less effective antibody subclass IgG1 accompanied with strong TH2 helper responses. By simple physical linkage we were able to imprint this bias, exemplified by a low IgG2a/IgG1 ratio of antigen-specific antibodies, onto an unrelated antigen, namely the HIV capsid protein p24. Here, our results indicate the glycan moiety of Env as the responsible immune modulating activity. Firstly, in Card9−/− mice lacking specific C-Type lectin responsiveness, DNA immunization significantly increased the IgG2a/IgG1 ratio for the Env-specific antibodies while the antibody response against the F-protein of the respiratory syncytial virus (RSV) serving as control antigen remained unchanged. Secondly, sequential shortening of the Env encoding sequence revealed the C2V3 domain as responsible for the strong IgG1 responses and TH2 cytokine production. Removing all potential N-glycosylation sites from the C2V3 domain by site-specific mutagenesis reversed the vaccine-induced immune response towards a Th1-dominated T-cell response and a balanced IgG2a/IgG1 ratio. Accordingly, the stretch of oligomannose glycans in the C2V3 domain of Env might mediate a specific uptake and/or signaling modus in antigen presenting cells by involving interaction with an as yet unknown C-type lectin receptor. Our results contribute to a deeper understanding of the impact of Env glycosylation on HIV antigen-specific immune responses, which will further support HIV vaccine development.
Collapse
Affiliation(s)
- Rebecca Heß
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | | | - Dennis Lapuente
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany; Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Andre Maaske
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Carsten Kirschning
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany.
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo) Hannover, 30559 Hannover, Germany.
| | - Drew Hannaman
- Ichor Medical Systems, Inc., San Diego, CA 92121, USA.
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany; Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany; Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
LaBranche CC, McGuire AT, Gray MD, Behrens S, Zhou T, Sattentau QJ, Peacock J, Eaton A, Greene K, Gao H, Tang H, Perez LG, Saunders KO, Mascola JR, Haynes BF, Stamatatos L, Montefiori DC. HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathog 2018; 14:e1007431. [PMID: 30395637 PMCID: PMC6237427 DOI: 10.1371/journal.ppat.1007431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/15/2018] [Accepted: 10/24/2018] [Indexed: 01/11/2023] Open
Abstract
Broadly neutralizing antibody (bnAb) induction is a high priority for effective HIV-1 vaccination. VRC01-class bnAbs that target the CD4 binding site (CD4bs) of trimeric HIV-1 envelope (Env) glycoprotein spikes are particularly attractive to elicit because of their extraordinary breadth and potency of neutralization in vitro and their ability to protect against infection in animal models. Glycans bordering the CD4bs impede the binding of germline-reverted forms of VRC01-class bnAbs and therefore constitute a barrier to early events in initiating the correct antibody lineages. Deleting a subset of these glycans permits Env antigen binding but not virus neutralization, suggesting that additional barriers impede germline-reverted VRC01-class antibody binding to functional Env trimers. We investigated the requirements for functional Env trimer engagement of VRC01-class naïve B cell receptors by using virus neutralization and germline-reverted antibodies as surrogates for the interaction. Targeted deletion of a subset of N-glycans bordering the CD4bs, combined with Man5 enrichment of remaining N-linked glycans that are otherwise processed into larger complex-type glycans, rendered HIV-1 426c Env-pseudotyped virus (subtype C, transmitted/founder) highly susceptible to neutralization by near germline forms of VRC01-class bnAbs. Neither glycan modification alone rendered the virus susceptible to neutralization. The potency of neutralization in some cases rivaled the potency of mature VRC01 against wildtype viruses. Neutralization by the germline-reverted antibodies was abrogated by the known VRC01 resistance mutation, D279K. These findings improve our understanding of the restrictions imposed by glycans in eliciting VRC01-class bnAbs and enable a neutralization-based strategy to monitor vaccine-elicited early precursors of this class of bnAbs. Activation of appropriate naïve B cells is a critical initial step in the elicitation of broadly neutralizing antibodies (bnAbs) by HIV-1 vaccines. Germline-reverted forms of bnAbs partially mimic naïve B cell receptors, making them useful for designing and identifying immunogens that can initiate early stages of bnAb development. Here we identify a combination of glycan-modifications on the HIV-1 envelope glycoproteins that preserve native structure and facilitate interactions with germline-reverted forms of the VRC01-class of bnAbs. These modifications included the complete removal of certain N-glycans, combined with Man5-enrichment of remaining N-glycans that otherwise are processed into larger complex-type glycans. HIV-1 Env-pseudotyped viruses modified in this way were highly susceptible to neutralization by germline-reverted forms of several VRC01-class bnAbs, and this neutralization could be blocked by a known VRC01 resistance mutation. These findings provide new insights for the design and testing of novel immunogens that aim to elicit VRC01-like bnAbs.
Collapse
Affiliation(s)
- Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Andrew T. McGuire
- Fred Hutchinson Cancer Research Center, Department of Global Health, Seattle, WA, United States of America
| | - Matthew D. Gray
- Fred Hutchinson Cancer Research Center, Department of Global Health, Seattle, WA, United States of America
| | - Shay Behrens
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Quentin J. Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - James Peacock
- Duke University School of Medicine, Departments of Medicine and Immunology, Duke Human Vaccine Institute, Durham, NC, United States of America
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Haili Tang
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Lautaro G. Perez
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Kevin O. Saunders
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barton F. Haynes
- Duke University School of Medicine, Departments of Medicine and Immunology, Duke Human Vaccine Institute, Durham, NC, United States of America
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Department of Global Health, Seattle, WA, United States of America
- University of Washington, Department of Global Health, Seattle, Washington, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sun L, Ishihara M, Middleton DR, Tiemeyer M, Avci FY. Metabolic labeling of HIV-1 envelope glycoprotein gp120 to elucidate the effect of gp120 glycosylation on antigen uptake. J Biol Chem 2018; 293:15178-15194. [PMID: 30115684 DOI: 10.1074/jbc.ra118.004798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/12/2018] [Indexed: 12/21/2022] Open
Abstract
The glycan shield on the envelope glycoprotein gp120 of HIV-1 has drawn immense attention as a vulnerable site for broadly neutralizing antibodies and for its significant impact on host adaptive immune response to HIV-1. Glycosylation sites and glycan composition/structure at each site on gp120 along with the interactions of gp120 glycan shield with broadly neutralizing antibodies have been extensively studied. However, a method for directly and selectively tracking gp120 glycans has been lacking. Here, we integrate metabolic labeling and click chemistry technology with recombinant gp120 expression to demonstrate that gp120 glycans could be specifically labeled and directly detected. Selective labeling of gp120 by N-azidoacetylmannosamine (ManNAz) and N-azidoacetylgalactosamine (GalNAz) incorporation into the gp120 glycan shield was characterized by MS of tryptic glycopeptides. By using metabolically labeled gp120, we investigated the impact of gp120 glycosylation on its interaction with host cells and demonstrated that oligomannose enrichment and sialic acid deficiency drastically enhanced gp120 uptake by bone marrow-derived dendritic cells. Collectively, our data reveal an effective labeling and detection method for gp120, serving as a tool for functional characterization of the gp120 glycans and potentially other glycosylated proteins.
Collapse
Affiliation(s)
- Lina Sun
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Dustin R Middleton
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Fikri Y Avci
- From the Department of Biochemistry and Molecular Biology, Center for Molecular Medicine and .,Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
15
|
Affiliation(s)
- David J. Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Biological Sciences and the Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
16
|
Jan M, Upadhyay C, Alcami Pertejo J, Hioe CE, Arora SK. Heterogeneity in glycan composition on the surface of HIV-1 envelope determines virus sensitivity to lectins. PLoS One 2018; 13:e0194498. [PMID: 29579062 PMCID: PMC5868795 DOI: 10.1371/journal.pone.0194498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 01/08/2023] Open
Abstract
Lectins that target N-glycans on the surface of HIV-1 envelope (Env) glycoprotein have the potential for use as antiviral agents. Although progress has been made in deciphering the molecular details of lectin and Env glycan interaction, further studies are needed to better understand Env glycan heterogeneity among HIV-1 isolates and its influence on virus-neutralization sensitivity to lectins. This study evaluated a panel of lectins with fine specificity for distinct oligosaccharides and assessed their ability to inhibit infection of HIV-1 viruses known to have differing sensitivity to anti-HIV Env antibodies. The results showed that HIV-1 isolates have different sensitivity to lectins specific for α1-3Man, α1-6Man, and α1-2Man binding lectins. Considering that lectins exclusively recognize the oligosaccharide components of virus Env, these data suggest that glycan heterogeneity among HIV-1 isolates may explain this differential sensitivity. To evaluate this further, chronic and acute viruses were produced in the presence of different glycosidase inhibitors to express more homogenous glycans. Viruses enriched for α1-2Man terminating Man5-9GlcNAc2 glycans became similarly sensitive to α1-2Man-binding lectins. The α1-3Man- and α1-6Man-binding lectins also were more potent against viruses expressing predominantly Man5GlcNAc2 and hybrid type glycans with terminal α1-3Man and α1-6Man. Furthermore, lectin-mediated inhibition was competitively alleviated by mannan and this effect was augmented by enrichment of mannose-type glycans on the virus. In addition, while Env of viruses enriched with mannose-type glycans were sensitive to Endo-H deglycosylation, Env of untreated viruses were partially resistant, indicating that HIV-1 Env glycans are heterogeneously comprised of complex, hybrid, and mannose types. Overall, our data demonstrate that HIV-1 isolates display differential sensitivity to lectins, in part due to the microheterogeneity of N-linked glycans expressed on the surface of the virus Env glycoprotein.
Collapse
Affiliation(s)
- Muzafar Jan
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Chitra Upadhyay
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - José Alcami Pertejo
- Imunopatologia Del SIDA, Centro Nacional De Microbiologia, Instituo De Salud Carlos III, Madrid, Spain
| | - Catarina E. Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- James J. Peters VA Medical Center, Bronx, New York, United States of America
| | - Sunil K. Arora
- Department of Immunopathology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
17
|
Abstract
Glycosylation is an important post-translational modification that is required for structural and stability purposes and functional roles such as signalling, attachment and shielding. Many human pathogens such as bacteria display an array of carbohydrates on their surface that are non-self to the host; others such as viruses highjack the host-cell machinery and present self-carbohydrates sometimes arranged in a non-self more immunogenic manner. In combination with carrier proteins, these glycan structures can be highly immunogenic. During natural infection, glycan-binding antibodies are often elicited that correlate with long-lasting protection. A great amount of research has been invested in carbohydrate vaccine design to elicit such an immune response, which has led to the development of vaccines against the bacterial pathogens Haemophilus influenzae type b, Streptococcus pneumonia and Neisseria meningitidis. Other vaccines, e.g. against HIV-1, are still in development, but promising progress has been made with the isolation of broadly neutralizing glycan-binding antibodies and the engineering of stable trimeric envelope glycoproteins. Carbohydrate vaccines against other pathogens such as viruses (Dengue, Hepatitis C), parasites (Plasmodium) and fungi (Candida) are at different stages of development. This chapter will discuss the challenges in inducing cross-reactive carbohydrate-targeting antibodies and progress towards carbohydrate vaccines.
Collapse
|
18
|
Roychowdhury S, Oh YJ, Kajiura H, Hamorsky KT, Fujiyama K, Matoba N. Hydroponic Treatment of Nicotiana benthamiana with Kifunensine Modifies the N-glycans of Recombinant Glycoprotein Antigens to Predominantly Man9 High-Mannose Type upon Transient Overexpression. FRONTIERS IN PLANT SCIENCE 2018; 9:62. [PMID: 29441088 PMCID: PMC5797603 DOI: 10.3389/fpls.2018.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Nicotiana benthamiana transient overexpression systems offer unique advantages for rapid and scalable biopharmaceuticals production, including high scalability and eukaryotic post-translational modifications such as N-glycosylation. High-mannose-type glycans (HMGs) of glycoprotein antigens have been implicated in the effectiveness of some subunit vaccines. In particular, Man9GlcNAc2 (Man9) has high binding affinity to mannose-specific C-type lectin receptors such as the mannose receptor and dendritic cell-specific intracellular adhesion molecule 3-grabbing non-integrin (DC-SIGN). Here, we investigated the effect of kifunensine, an α-mannosidase I inhibitor, supplemented in a hydroponic culture of N. benthamiana for the production of Man9-rich HMG glycoproteins, using N-glycosylated cholera toxin B subunit (gCTB) and human immunodeficiency virus gp120 that are tagged with a H/KDEL endoplasmic reticulum retention signal as model vaccine antigens. Biochemical analysis using anti-fucose and anti-xylose antibodies as well as Endo H and PNGase F digestion showed that kifunensine treatment effectively reduced plant-specific glycoforms while increasing HMGs in the N-glycan compositions of gCTB. Detailed glycan profiling revealed that plant-produced gp120 had a glycan profile bearing mostly HMGs regardless of kifunensine treatment. However, the gp120 produced under kifunensine-treatment conditions showed Man9 being the most prominent glycoform (64.5%), while the protein produced without kifunensine had a substantially lower Man9 composition (20.3%). Our results open up possibilities for efficient production of highly mannosylated recombinant vaccine antigens in plants.
Collapse
Affiliation(s)
- Sugata Roychowdhury
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Young J. Oh
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Hiroyuki Kajiura
- The International Center for Biotechnology, Osaka University, Suita, Japan
| | - Krystal T. Hamorsky
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Kazuhito Fujiyama
- The International Center for Biotechnology, Osaka University, Suita, Japan
| | - Nobuyuki Matoba
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- *Correspondence: Nobuyuki Matoba
| |
Collapse
|
19
|
Saunders KO, Nicely NI, Wiehe K, Bonsignori M, Meyerhoff RR, Parks R, Walkowicz WE, Aussedat B, Wu NR, Cai F, Vohra Y, Park PK, Eaton A, Go EP, Sutherland LL, Scearce RM, Barouch DH, Zhang R, Von Holle T, Overman RG, Anasti K, Sanders RW, Moody MA, Kepler TB, Korber B, Desaire H, Santra S, Letvin NL, Nabel GJ, Montefiori DC, Tomaras GD, Liao HX, Alam SM, Danishefsky SJ, Haynes BF. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Rep 2017; 18:2175-2188. [PMID: 28249163 DOI: 10.1016/j.celrep.2017.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/19/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Induction of broadly neutralizing antibodies (bnAbs) that target HIV-1 envelope (Env) is a goal of HIV-1 vaccine development. A bnAb target is the Env third variable loop (V3)-glycan site. To determine whether immunization could induce antibodies to the V3-glycan bnAb binding site, we repetitively immunized macaques over a 4-year period with an Env expressing V3-high mannose glycans. Env immunizations elicited plasma antibodies that neutralized HIV-1 expressing only high-mannose glycans-a characteristic shared by early bnAb B cell lineage members. A rhesus recombinant monoclonal antibody from a vaccinated macaque bound to the V3-glycan site at the same amino acids as broadly neutralizing antibodies. A structure of the antibody bound to glycan revealed that the three variable heavy-chain complementarity-determining regions formed a cavity into which glycan could insert and neutralized multiple HIV-1 isolates with high-mannose glycans. Thus, HIV-1 Env vaccination induced mannose-dependent antibodies with characteristics of V3-glycan bnAb precursors.
Collapse
Affiliation(s)
- Kevin O Saunders
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nathan I Nicely
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Ryan Meyerhoff
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Baptiste Aussedat
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Nelson R Wu
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fangping Cai
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yusuf Vohra
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Peter K Park
- Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eden P Go
- University of Kansas, Lawrence, KS 66045, USA
| | - Laura L Sutherland
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Richard M Scearce
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Ruijun Zhang
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tarra Von Holle
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - R Glenn Overman
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kara Anasti
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - M Anthony Moody
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Termini JM, Church ES, Silver ZA, Haslam SM, Dell A, Desrosiers RC. Human Immunodeficiency Virus and Simian Immunodeficiency Virus Maintain High Levels of Infectivity in the Complete Absence of Mucin-Type O-Glycosylation. J Virol 2017; 91:e01228-17. [PMID: 28747495 PMCID: PMC5599749 DOI: 10.1128/jvi.01228-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
A highly conserved threonine near the C terminus of gp120 of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) was investigated for its contributions to envelope protein function and virion infectivity. When this highly conserved Thr residue was substituted with anything other than serine (the other amino acid that can accept O-glycosylation), the resulting virus was noninfectious. We found that this Thr was critical for the association of gp120 with the virion and that amino acid substitution increased the amount of dissociated gp120 in the cell culture supernatant. When HIV virions were generated in cells overexpressing polypeptide N-acetylgalactosaminyltransferase 1 (GalNAcT1), viral infectivity was increased 2.5-fold compared to that of virus produced in wild-type HEK293T cells; infectivity was increased 8-fold when the Thr499Ser mutant was used. These infectivity enhancements were not observed when GalNAcT3 was used. Using HEK293T knockout cell lines totally devoid of the ability to perform O-linked glycosylation, we demonstrated production of normal levels of virions and normal levels of infectivity in the complete absence of O-linked carbohydrate. Our data indicate that O-glycosylation is not necessary for the natural replication cycle of HIV and SIV. Nonetheless, it remains theoretically possible that the repertoire of GalNAc transferase isoforms in natural target cells for HIV and SIV in vivo could result in O-glycosylation of the threonine residue in question and that this could boost the infectivity of virions beyond the levels seen in the absence of such O-glycosylation.IMPORTANCE Approximately 50% of the mass of the gp120 envelope glycoprotein of both HIV and SIV is N-linked carbohydrate. One of the contributions of this N-linked carbohydrate is to shield conserved peptide sequences from recognition by humoral immunity. This N-linked glycosylation is one of the reasons that primary isolates of HIV and SIV are so heavily resistant to antibody-mediated neutralization. Much less studied is any potential contribution from O-linked glycosylation. The literature on this topic to date is somewhat confusing and ambiguous. Our studies described in this report demonstrate unambiguously that O-linked glycosylation is not necessary for the natural replication cycle of HIV and SIV. However, the door is not totally closed because of the diversity of numerous GalNAc transferase enzymes that initiate O-linked carbohydrate attachment and the theoretical possibility that natural target cells for HIV and SIV in vivo could potentially complete such O-linked carbohydrate attachment to further increase infectivity.
Collapse
Affiliation(s)
- James M Termini
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Elizabeth S Church
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zachary A Silver
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ronald C Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
21
|
Behrens AJ, Seabright GE, Crispin M. Targeting Glycans of HIV Envelope Glycoproteins for Vaccine Design. CHEMICAL BIOLOGY OF GLYCOPROTEINS 2017. [DOI: 10.1039/9781782623823-00300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of the envelope spike of the human immunodeficiency virus (HIV) is covered with a dense array of glycans, which is sufficient to impede the host antibody response while maintaining a window for receptor recognition. The glycan density significantly exceeds that typically observed on self glycoproteins and is sufficiently high to disrupt the maturation process of glycans, from oligomannose- to complex-type glycosylation, that normally occurs during glycoprotein transit through the secretory system. It is notable that this generates a degree of homogeneity not seen in the highly mutated protein moiety. The conserved, close glycan packing and divergences from default glycan processing give a window for immune recognition. Encouragingly, in a subset of individuals, broadly neutralizing antibodies (bNAbs) have been isolated that recognize these features and are protective in passive-transfer models. Here, we review the recent advances in our understanding of the glycan shield of HIV and outline the strategies that are being pursued to elicit glycan-binding bNAbs by vaccination.
Collapse
Affiliation(s)
- Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Gemma E. Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK
| |
Collapse
|
22
|
Shivatare SS, Chang SH, Tsai TI, Tseng SY, Shivatare VS, Lin YS, Cheng YY, Ren CT, Lee CCD, Pawar S, Tsai CS, Shih HW, Zeng YF, Liang CH, Kwong PD, Burton DR, Wu CY, Wong CH. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies. Nat Chem 2016; 8:338-46. [PMID: 27001729 DOI: 10.1038/nchem.2463] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023]
Abstract
A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120--a glycoprotein found on the surface of the virus envelope--thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 106, Taiwan.,CHO Pharma Inc., Park Street, Nangang District, Taipei 11503, Taiwan
| | - Shih-Huang Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei, 106, Taiwan
| | - Tsung-I Tsai
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Susan Yu Tseng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Vidya S Shivatare
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yih-Shyan Lin
- CHO Pharma Inc., Park Street, Nangang District, Taipei 11503, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chang-Chun David Lee
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Sujeet Pawar
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taiwan
| | - Charng-Sheng Tsai
- CHO Pharma Inc., Park Street, Nangang District, Taipei 11503, Taiwan
| | - Hao-Wei Shih
- CHO Pharma Inc., Park Street, Nangang District, Taipei 11503, Taiwan
| | - Yi-Fang Zeng
- CHO Pharma Inc., Park Street, Nangang District, Taipei 11503, Taiwan
| | - Chi-Hui Liang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.,The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dennis R Burton
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan.,The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
23
|
Brugia malayi Antigen (BmA) Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells. PLoS One 2016; 11:e0146527. [PMID: 26808476 PMCID: PMC4726616 DOI: 10.1371/journal.pone.0146527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022] Open
Abstract
One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs.
Collapse
|
24
|
Exclusive Decoration of Simian Immunodeficiency Virus Env with High-Mannose Type N-Glycans Is Not Compatible with Mucosal Transmission in Rhesus Macaques. J Virol 2015; 89:11727-33. [PMID: 26355090 PMCID: PMC4645679 DOI: 10.1128/jvi.01358-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelope (Env) proteins are extensively decorated with N-glycans, predominantly of the high-mannose type. However, it is unclear how high-mannose N-glycans on Env impact viral spread. We show that exclusive modification of SIV Env with these N-glycans reduces viral infectivity and abrogates mucosal transmission, despite increasing viral capture by immune cell lectins. Thus, high-mannose N-glycans have opposed effects on SIV infectivity and lectin reactivity, and a balance might be required for efficient mucosal transmission.
Collapse
|
25
|
Sanders RW, van Gils MJ, Derking R, Sok D, Ketas TJ, Burger JA, Ozorowski G, Cupo A, Simonich C, Goo L, Arendt H, Kim HJ, Lee JH, Pugach P, Williams M, Debnath G, Moldt B, van Breemen MJ, Isik G, Medina-Ramírez M, Back JW, Koff WC, Julien JP, Rakasz EG, Seaman MS, Guttman M, Lee KK, Klasse PJ, LaBranche C, Schief WR, Wilson IA, Overbaugh J, Burton DR, Ward AB, Montefiori DC, Dean H, Moore JP. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 2015; 349:aac4223. [PMID: 26089353 PMCID: PMC4498988 DOI: 10.1126/science.aac4223] [Citation(s) in RCA: 417] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/05/2015] [Indexed: 12/22/2022]
Abstract
A challenge for HIV-1 immunogen design is the difficulty of inducing neutralizing antibodies (NAbs) against neutralization-resistant (tier 2) viruses that dominate human transmissions. We show that a soluble recombinant HIV-1 envelope glycoprotein trimer that adopts a native conformation, BG505 SOSIP.664, induced NAbs potently against the sequence-matched tier 2 virus in rabbits and similar but weaker responses in macaques. The trimer also consistently induced cross-reactive NAbs against more sensitive (tier 1) viruses. Tier 2 NAbs recognized conformational epitopes that differed between animals and in some cases overlapped with those recognized by broadly neutralizing antibodies (bNAbs), whereas tier 1 responses targeted linear V3 epitopes. A second trimer, B41 SOSIP.664, also induced a strong autologous tier 2 NAb response in rabbits. Thus, native-like trimers represent a promising starting point for the development of HIV-1 vaccines aimed at inducing bNAbs.
Collapse
Affiliation(s)
- Rogier W Sanders
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA. Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands.
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Devin Sok
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Judith A Burger
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Gabriel Ozorowski
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Cassandra Simonich
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Leslie Goo
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Heather Arendt
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Helen J Kim
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeong Hyun Lee
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pavel Pugach
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Melissa Williams
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Gargi Debnath
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Brian Moldt
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mariëlle J van Breemen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Gözde Isik
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Max Medina-Ramírez
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | | | - Wayne C Koff
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Jean-Philippe Julien
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - William R Schief
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10004, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center, and Collaboration for AIDS Vaccine Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Hansi Dean
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
26
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
27
|
Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes. PLoS One 2015; 10:e0122020. [PMID: 25793526 PMCID: PMC4368515 DOI: 10.1371/journal.pone.0122020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1–3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.
Collapse
|
28
|
Crispin M, Doores KJ. Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design. Curr Opin Virol 2015; 11:63-9. [PMID: 25747313 DOI: 10.1016/j.coviro.2015.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
The surface of enveloped viruses can be extensively glycosylated. Unlike the glycans coating pathogens such as bacteria and fungi, glycans on viruses are added and processed by the host-cell during biosynthesis. Glycoproteins are typically subjected to α-mannosidase processing and Golgi-mediated glycosyltransferase extension to form complex-type glycans. In envelope viruses, exceptions to this default pathway are common and lead to the presence of oligomannose-type glycan structures on the virion surface. In one extreme example, HIV-1 utilises a high density of glycans to limit host antibody recognition of protein. However, the high density limits glycan processing and the resulting oligomannose structures can be recognised by broadly neutralising antibodies isolated from HIV-1 infected patients. Here we discuss how divergence from host-cell glycosylation can be targeted for vaccine design.
Collapse
Affiliation(s)
- Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Faculty of Life Sciences and Medicine, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom.
| |
Collapse
|
29
|
Bailey JJ, Bundle DR. Synthesis of high-mannose 1-thio glycans and their conjugation to protein. Org Biomol Chem 2014; 12:2193-213. [PMID: 24549150 DOI: 10.1039/c3ob42194e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oligosaccharides Man4 and Man5, substructures of the high-mannose glycans of HIV glycoprotein gp120, were synthesized with a terminal 1-thiomannopyranose residue. The anomeric thiol can be readily converted to an azidomethyl aglycone through reaction with dichloromethane and displacement with sodium azide. The resulting oligomannans were then conjugated to ubiquitin utilizing thiol alkylation or azide/alkyne reactive tethers of minimal length. By combining high efficiency conjugation reactions and a short tether, we sought to establish conjugation conditions that would permit high density clustering of oligomannans in conjugate vaccines that could produce antibodies able to bind gp120 and potentially neutralize virus. LC-UV-MS was used to separate, identify and quantify the ubiquitin glycoconjugates with differing degrees of oligomannan incorporation. Binding of the HIV protective monoclonal antibody 2G12 and concanavalin A to microtitre plates coated with glycoconjugates was measured by ELISA.
Collapse
Affiliation(s)
- Justin J Bailey
- Alberta Glycomics Centre and the Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | | |
Collapse
|
30
|
Synthesis of unsymmetrical 3,6-branched Man5 oligosaccharide: a comparison between one-pot sequential glycosylation and stepwise synthesis. Carbohydr Res 2014; 401:109-14. [PMID: 25481531 DOI: 10.1016/j.carres.2014.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023]
Abstract
An expeditious three-component, one-pot sequential glycosylation protocol has been developed for the preparation of 3,6-branched unsymmetrical mannopentaose (Man5), employing a mannose trisaccharide donor, a mannose monosaccharide donor and a mannose monosaccharide acceptor. The high efficiency of this one-pot procedure was demonstrated by comparison study with a stepwise synthesis using the same three building blocks.
Collapse
|
31
|
Abstract
UNLABELLED The HIV-1 envelope protein (Env) is heavily glycosylated, with approximately 50% of the Env molecular mass being contributed by N-glycans. HIV-1 Env N-glycans shield the protein backbone and have been shown to play key roles in determining Env structure, surface exposure, and, consequently, antigenicity, infectivity, antibody neutralization, and carbohydrate and receptor binding. Studies of HIV-1 glycosylation have focused mainly on the position of glycosylation, rather than the types of glycans. Also, the role of Env glycan moieties on HIV-1 transmission has not been systematically defined. Using viruses with modified Env glycan content and heterogeneity, we examined the effects of Env glycan moieties on the major events of HIV-1 transmission. Compared to viruses with less oligomannose and more complex Env glycans, viruses with more oligomannose and less complex glycans more efficiently (i) transcytosed across an epithelial cell monolayer, (ii) attached to monocyte-derived macrophages (MDMs), (iii) bound monocyte-derived dendritic cells (MoDCs), and (iv) trans-infected primary lymphocytes via MoDCs. However, viruses with more oligomannose and less complex glycans displayed impaired infectivity in TZMbl cells, MDMs, primary lymphocytes, and fresh human intestinal tissue. Thus, N-linked Env glycans display discordant effects on the major events of HIV-1 transmission, with mature oligosaccharide structures on Env playing a crucial role in HIV-1 infection. Env glycosylation should be taken into consideration in the development of vaccine strategies to interdict HIV-1 transmission. IMPORTANCE HIV-1 Env N-glycans shield the protein backbone and play key roles in determining Env structure and surface exposure, thereby impacting Env antigenicity, infectivity, antibody neutralization, and carbohydrate and receptor binding. Studies of HIV-1 glycosylation have focused mainly on the position of glycosylation, rather than the types of glycans. In the study described in this report, we investigated systematically the role of Env glycan moieties on HIV-1 transmission. We show that N-linked Env glycans display discordant effects on the major events of HIV-1 transmission. These data indicate that Env glycan moieties impact HIV-1 transmission and that modulation of Env glycan moieties offers a potential strategy for the development of therapeutic or prophylactic vaccines against HIV-1.
Collapse
|
32
|
Isik G, Sliepen K, van Montfort T, Sanders RW. Enhanced immunogenicity of HIV-1 envelope gp140 proteins fused to APRIL. PLoS One 2014; 9:e107683. [PMID: 25247707 PMCID: PMC4172553 DOI: 10.1371/journal.pone.0107683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/17/2014] [Indexed: 11/24/2022] Open
Abstract
Current HIV-1 vaccines based on the HIV-1 envelope glycoprotein spike (Env), the only relevant target for broadly neutralizing antibodies, are unable to induce protective immunity. Env immunogenicity can be enhanced by fusion to costimulatory molecules involved in B cell activation, such as APRIL and CD40L. Here, we found that Env-APRIL signaled through the two receptors, BCMA and TACI. In rabbits, Env-APRIL induced significantly higher antibody responses against Env compared to unconjugated Env, while the antibody responses against the APRIL component were negligible. To extend this finding, we tested Env-APRIL in mice and found minimal antibody responses against APRIL. Furthermore, Env-CD40L did not induce significant anti-CD40L responses. Thus, in contrast to the 4-helix cytokines IL-21 and GM-CSF, the TNF-superfamily members CD40L and APRIL induced negligible autoantibodies. This study confirms and extends previous work and shows that fusion of Env-based immunogens to APRIL can improve Env immunogenicity and might help in designing HIV vaccines that induce protective humoral immunity.
Collapse
Affiliation(s)
- Gözde Isik
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Raska M, Czernekova L, Moldoveanu Z, Zachova K, Elliott MC, Novak Z, Hall S, Hoelscher M, Maboko L, Brown R, Smith PD, Mestecky J, Novak J. Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection. AIDS Res Ther 2014; 11:23. [PMID: 25120578 PMCID: PMC4130436 DOI: 10.1186/1742-6405-11-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/26/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND HIV-1 entry into host cells is mediated by interactions between the virus envelope glycoprotein (gp120/gp41) and host-cell receptors. N-glycans represent approximately 50% of the molecular mass of gp120 and serve as potential antigenic determinants and/or as a shield against immune recognition. We previously reported that N-glycosylation of recombinant gp120 varied, depending on the producer cells, and the glycosylation variability affected gp120 recognition by serum antibodies from persons infected with HIV-1 subtype B. However, the impact of gp120 differential glycosylation on recognition by broadly neutralizing monoclonal antibodies or by polyclonal antibodies of individuals infected with other HIV-1 subtypes is unknown. METHODS Recombinant multimerizing gp120 antigens were expressed in different cells, HEK 293T, T-cell, rhabdomyosarcoma, hepatocellular carcinoma, and Chinese hamster ovary cell lines. Binding of broadly neutralizing monoclonal antibodies and polyclonal antibodies from sera of subtype A/C HIV-1-infected subjects with individual gp120 glycoforms was assessed by ELISA. In addition, immunodetection was performed using Western and dot blot assays. Recombinant gp120 glycoforms were tested for inhibition of infection of reporter cells by SF162 and YU.2 Env-pseudotyped R5 viruses. RESULTS We demonstrated, using ELISA, that gp120 glycans sterically adjacent to the V3 loop only moderately contribute to differential recognition of a short apex motif GPGRA and GPGR by monoclonal antibodies F425 B4e8 and 447-52D, respectively. The binding of antibodies recognizing longer peptide motifs overlapping with GPGR epitope (268 D4, 257 D4, 19b) was significantly altered. Recognition of gp120 glycoforms by monoclonal antibodies specific for other than V3-loop epitopes was significantly affected by cell types used for gp120 expression. These epitopes included CD4-binding site (VRC03, VRC01, b12), discontinuous epitope involving V1/V2 loop with the associated glycans (PG9, PG16), and an epitope including V3-base-, N332 oligomannose-, and surrounding glycans-containing epitope (PGT 121). Moreover, the different gp120 glycoforms variably inhibited HIV-1 infection of reporter cells. CONCLUSION Our data support the hypothesis that the glycosylation machinery of different cells shapes gp120 glycosylation and, consequently, impacts envelope recognition by specific antibodies as well as the interaction of HIV-1 gp120 with cellular receptors. These findings underscore the importance of selection of appropriately glycosylated HIV-1 envelope as a vaccine antigen.
Collapse
|
34
|
Morales JF, Morin TJ, Yu B, Tatsuno GP, O'Rourke SM, Theolis R, Mesa KA, Berman PW. HIV-1 envelope proteins and V1/V2 domain scaffolds with mannose-5 to improve the magnitude and quality of protective antibody responses to HIV-1. J Biol Chem 2014; 289:20526-42. [PMID: 24872420 PMCID: PMC4110267 DOI: 10.1074/jbc.m114.554089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/07/2014] [Indexed: 01/15/2023] Open
Abstract
Two lines of investigation have highlighted the importance of antibodies to the V1/V2 domain of gp120 in providing protection from HIV-1 infection. First, the recent RV144 HIV-1 vaccine trial documented a correlation between non-neutralizing antibodies to the V2 domain and protection. Second, multiple broadly neutralizing monoclonal antibodies to the V1/V2 domain (e.g. PG9) have been isolated from rare infected individuals, termed elite neutralizers. Interestingly, the binding of both types of antibodies appears to depend on the same cluster of amino acids (positions 167–171) adjacent to the junction of the B and C strands of the four-stranded V1/V2 domain β-sheet structure. However, the broadly neutralizing mAb, PG9, additionally depends on mannose-5 glycans at positions 156 and 160 for binding. Because the gp120 vaccine immunogens used in previous HIV-1 vaccine trials were enriched for complex sialic acid-containing glycans, and lacked the high mannose structures required for the binding of PG9-like mAbs, we wondered if these immunogens could be improved by limiting glycosylation to mannose-5 glycans. Here, we describe the PG9 binding activity of monomeric gp120s from multiple strains of HIV-1 produced with mannose-5 glycans. We also describe the properties of glycopeptide scaffolds from the V1/V2 domain also expressed with mannose-5 glycans. The V1/V2 scaffold from the A244 isolate was able to bind the PG9, CH01, and CH03 mAbs with high affinity provided that the proper glycans were present. We further show that immunization with A244 V1/V2 fragments alone, or in a prime/boost regimen with gp120, enhanced the antibody response to sequences in the V1/V2 domain associated with protection in the RV144 trial.
Collapse
Affiliation(s)
- Javier F. Morales
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Trevor J. Morin
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Bin Yu
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Gwen P. Tatsuno
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Sara M. O'Rourke
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Richard Theolis
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Kathryn A. Mesa
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Phillip W. Berman
- From the Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
35
|
Van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ. Bitter-sweet symphony: glycan-lectin interactions in virus biology. FEMS Microbiol Rev 2014; 38:598-632. [PMID: 24188132 PMCID: PMC7190080 DOI: 10.1111/1574-6976.12052] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 01/01/2023] Open
Abstract
Glycans are carbohydrate modifications typically found on proteins or lipids, and can act as ligands for glycan-binding proteins called lectins. Glycans and lectins play crucial roles in the function of cells and organs, and in the immune system of animals and humans. Viral pathogens use glycans and lectins that are encoded by their own or the host genome for their replication and spread. Recent advances in glycobiological research indicate that glycans and lectins mediate key interactions at the virus-host interface, controlling viral spread and/or activation of the immune system. This review reflects on glycan-lectin interactions in the context of viral infection and antiviral immunity. A short introduction illustrates the nature of glycans and lectins, and conveys the basic principles of their interactions. Subsequently, examples are discussed highlighting specific glycan-lectin interactions and how they affect the progress of viral infections, either benefiting the host or the virus. Moreover, glycan and lectin variability and their potential biological consequences are discussed. Finally, the review outlines how recent advances in the glycan-lectin field might be transformed into promising new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Wander Van Breedam
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Herman W. Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Raoul J. de Groot
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hans J. Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
36
|
Jin W, Li C, Du T, Hu K, Huang X, Hu Q. DC-SIGN plays a stronger role than DCIR in mediating HIV-1 capture and transfer. Virology 2014; 458-459:83-92. [PMID: 24928041 DOI: 10.1016/j.virol.2014.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/11/2014] [Accepted: 04/12/2014] [Indexed: 10/25/2022]
Abstract
The C-type lectin receptors (CLRs) expressed on dendritic cells (DCs), in particular DC-SIGN and DCIR, likely play an important role in HIV-1 early infection. Here, we systematically compared the capture and transfer capability of DC-SIGN and DCIR using a wide range of HIV-1 isolates. Our results indicated that DC-SIGN plays a stronger role than DCIR in DC-mediated HIV-1 capture and transfer. This was further strengthened by the data from transient and stable transfectants, showing that DC-SIGN had better capability, compared with DCIR in HIV-1 capture and transfer. Following constructing and analyzing a series of soluble DC-SIGN and DCIR truncates and chimeras, we demonstrated that the neck domain, but not the CRD, renders DC-SIGN higher binding affinity to gp120 likely via the formation of tetramerization. Our findings provide insights into CLR-mediated HIV-1 capture and transfer, highlighting potential targets for intervention strategies against gp120-CLR interactions.
Collapse
Affiliation(s)
- Wei Jin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Du
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China
| | - Xin Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan Zhongqu, Wuhan 430071, China; Center for Infection and Immunity, St George׳s University of London, London SW17 0RE, UK.
| |
Collapse
|
37
|
Isik G, van Montfort T, Chung NPY, Moore JP, Sanders RW. Autoantibodies induced by chimeric cytokine-HIV envelope glycoprotein immunogens. THE JOURNAL OF IMMUNOLOGY 2014; 192:4628-35. [PMID: 24729614 DOI: 10.4049/jimmunol.1303401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cytokines are often used as adjuvants to increase the immunogenicity of vaccines because they can improve the immune response and/or direct it into a desired direction. As an alternative to codelivering Ags and cytokines separately, they can be fused into a composite protein, with the advantage that both moieties act on the same immune cells. The HIV-1 envelope glycoprotein (Env) spike, located on the outside of virus particles and the only relevant protein for the induction of neutralizing Abs, is poorly immunogenic. The induction of anti-Env Abs can be improved by coupling Env proteins to costimulatory molecules such as a proliferation inducing ligand (APRIL). In this study, we evaluated the immunogenicity of chimeric molecules containing uncleaved Env gp140 fused to the species-matched cytokines IL-21 or GM-CSF in rabbits and mice. Each cytokine was either fused to the C terminus of Env or embedded within Env at the position of the variable loops 1 and 2. The cytokine components of the chimeric Env-GM-CSF and Env-IL-21 molecules were functional in vitro, but none of the Env-cytokine fusion proteins resulted in improved Ab responses in vivo. Both the Env-GM-CSF and the Env-IL-21 molecules induced strong anticytokine Ab responses in both test species. These autoimmune responses were independent of the location of the cytokine in the chimeric Env molecules in that they were induced by cytokines inserted within the variable loops 1 and 2 of Env or fused to its C terminus. The induction of undesired autoimmune responses should be considered when using cytokines as costimulatory molecules in fusion proteins.
Collapse
Affiliation(s)
- Gözde Isik
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Bloem K, Vuist IM, van den Berk M, Klaver EJ, van Die I, Knippels LMJ, Garssen J, García-Vallejo JJ, van Vliet SJ, van Kooyk Y. DCIR interacts with ligands from both endogenous and pathogenic origin. Immunol Lett 2013; 158:33-41. [PMID: 24239607 DOI: 10.1016/j.imlet.2013.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/13/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
C-type lectins on dendritic cells function as antigen uptake and signaling receptors, thereby influencing cellular immune responses. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is one of the best-studied C-type lectin receptors expressed on DCs and its glycan specificity and functional requirements for ligand binding have been intensively investigated. The carbohydrate specificity of dendritic cell immunoreceptor (DCIR), another DC-expressed lectin, was still debated, but we have recently confirmed DCIR as mannose/fucose-binding lectin. Since DC-SIGN and DCIR may potentially share ligands, we set out to elucidate the interaction of DCIR with established DC-SIGN-binding ligands, by comparing the carbohydrate specificity of DCIR and DC-SIGN in more detail. Our results clearly demonstrate that DC-SIGN has a broader glycan specificity compared to DCIR, which interacts only with mannotriose, sulfo-Lewis(a), Lewis(b) and Lewis(a). While most of the tested DC-SIGN ligands bound DCIR as well, Candida albicans and some glycoproteins on some cancer cell lines were identified as DC-SIGN-specific ligands. Interestingly, DCIR strongly bound human immunodeficiency virus type 1 (HIV-1) gp140 glycoproteins, while its interaction with the well-studied DC-SIGN-binding HIV-1 ligand gp120 was much weaker. Furthermore, DCIR-specific ligands were detected on keratinocytes. Furthermore, the interaction of DCIR with its ligands was strongly influenced by the glycosylation of DCIR. In conclusion, we show that sulfo-Lewis(a) is a high affinity ligand for DCIR and that DCIR interacts with ligands from both pathogenic and endogenous origin of which most are shared by DC-SIGN.
Collapse
Affiliation(s)
- Karien Bloem
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Danone Research, Centre for Specialized Nutrition, Wageningen, The Netherlands
| | - Ilona M Vuist
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Meike van den Berk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elsenoor J Klaver
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Léon M J Knippels
- Danone Research, Centre for Specialized Nutrition, Wageningen, The Netherlands; Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands
| | - Johan Garssen
- Danone Research, Centre for Specialized Nutrition, Wageningen, The Netherlands; Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog 2013; 9:e1003618. [PMID: 24068931 PMCID: PMC3777863 DOI: 10.1371/journal.ppat.1003618] [Citation(s) in RCA: 773] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 01/17/2023] Open
Abstract
A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.
Collapse
|
40
|
HIV-1 autologous antibody neutralization associates with mother to child transmission. PLoS One 2013; 8:e69274. [PMID: 23874931 PMCID: PMC3714266 DOI: 10.1371/journal.pone.0069274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 01/07/2023] Open
Abstract
The HIV-1 characteristics associated with mother to child transmission (MTCT) are still poorly understood and if known would indicate where intervention strategies should be targeted. In contrast to horizontally infected individuals, exposed infants possess inherited antibodies (Abs) from their mother with the potential to protect against infection. We investigated the HIV-1 gp160 envelope proteins from seven transmitting mothers (TM) whose children were infected either during gestation or soon after delivery and from four non-transmitting mothers (NTM) with similar viral loads and CD4 counts. Using pseudo-typed viruses we tested gp160 envelope glycoproteins for TZM-bl infectivity, CD4 and CCR5 interactions, DC-SIGN capture and transfer and neutralization with an array of common neutralizing Abs (NAbs) (2F5, 2G12, 4E10 and b12) as well as mother and infant plasma. We found no viral correlates associated with HIV-1 MTCT nor did we find differences in neutralization with the panel of NAbs. We did, however, find that TM possessed significantly higher plasma neutralization capacities than NTM (P = 0.002). Furthermore, we found that in utero (IU) TM had a higher neutralization capacity than mothers transmitting either peri-partum (PP) or via breastfeeding (BF) (P = 0.002). Plasma from children infected IU neutralized viruses carrying autologous gp160 viral envelopes as well as those from their corresponding mothers whilst plasma from children infected PP and/or BF demonstrated poor neutralizing capacity. Our results demonstrate heightened autologous NAb responses against gp120/gp41 can associate with a greater risk of HIV-1 MTCT and more specifically in those infants infected IU. Although the number of HIV-1 transmitting pairs is low our results indicate that autologous NAb responses in mothers and infants do not protect against MTCT and may in fact be detrimental when considering IU HIV-1 transmissions.
Collapse
|
41
|
Pancera M, Shahzad-Ul-Hussan S, Doria-Rose NA, McLellan JS, Bailer RT, Dai K, Loesgen S, Louder MK, Staupe RP, Yang Y, Zhang B, Parks R, Eudailey J, Lloyd KE, Blinn J, Alam SM, Haynes BF, Amin MN, Wang LX, Burton DR, Koff WC, Nabel GJ, Mascola JR, Bewley CA, Kwong PD. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Nat Struct Mol Biol 2013; 20:804-13. [PMID: 23708607 PMCID: PMC4046252 DOI: 10.1038/nsmb.2600] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/02/2013] [Indexed: 11/08/2022]
Abstract
HIV-1 uses a diverse N-linked-glycan shield to evade recognition by antibody. Select human antibodies, such as the clonally related PG9 and PG16, recognize glycopeptide epitopes in the HIV-1 V1-V2 region and penetrate this shield, but their ability to accommodate diverse glycans is unclear. Here we report the structure of antibody PG16 bound to a scaffolded V1-V2, showing an epitope comprising both high mannose-type and complex-type N-linked glycans. We combined structure, NMR and mutagenesis analyses to characterize glycan recognition by PG9 and PG16. Three PG16-specific residues, arginine, serine and histidine (RSH), were critical for binding sialic acid on complex-type glycans, and introduction of these residues into PG9 produced a chimeric antibody with enhanced HIV-1 neutralization. Although HIV-1-glycan diversity facilitates evasion, antibody somatic diversity can overcome this and can provide clues to guide the design of modified antibodies with enhanced neutralization.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bontjer I, Melchers M, Tong T, van Montfort T, Eggink D, Montefiori D, Olson WC, Moore JP, Binley JM, Berkhout B, Sanders RW. Comparative Immunogenicity of Evolved V1V2-Deleted HIV-1 Envelope Glycoprotein Trimers. PLoS One 2013; 8:e67484. [PMID: 23840716 PMCID: PMC3694020 DOI: 10.1371/journal.pone.0067484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/16/2013] [Indexed: 12/16/2022] Open
Abstract
Despite almost 30 years of research, no effective vaccine has yet been developed against HIV-1. Probably such a vaccine would need to induce both an effective T cell and antibody response. Any vaccine component focused on inducing humoral immunity requires the HIV-1 envelope (Env) glycoprotein complex as it is the only viral protein exposed on the virion surface. HIV-1 has evolved several mechanisms to evade broadly reactive neutralizing antibodies. One such a mechanism involves variable loop domains, which are highly flexible structures that shield the underlying conserved epitopes. We hypothesized that removal of such loops would increase the exposure and immunogenicity of these conserved regions. Env variable loop deletion however often leads to protein misfolding and aggregation because hydrophobic patches becoming solvent accessible. We have therefore previously used virus evolution to acquire functional Env proteins lacking the V1V2 loop. We then expressed them in soluble (uncleaved) gp140 forms. Three mutants were found to perform optimally in terms of protein expression, stability, trimerization and folding. In this study, we characterized the immune responses to these antigens in rabbits. The V1V2 deletion mutant ΔV1V2.9.VK induced a prominent response directed to epitopes that are not fully available on the other Env proteins tested but that effectively bound and neutralized the ΔV1V2 Env virus. This Env variant also induced more efficient neutralization of the tier 1 virus SF162. The immune refocusing effect was lost after booster immunization with a full-length gp140 protein with intact V1V2 loops. Collectively, this result suggests that deletion of variable domains could alter the specificity of the humoral immune response, but did not result in broad neutralization of neutralization-resistant virus isolates.
Collapse
Affiliation(s)
- Ilja Bontjer
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Mark Melchers
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Tommy Tong
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William C. Olson
- Progenics Pharmaceuticals, Tarrytown, New York, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - James M. Binley
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Isik G, Chung NPY, van Montfort T, Menis S, Matthews K, Schief WR, Moore JP, Sanders RW. An HIV-1 envelope glycoprotein trimer with an embedded IL-21 domain activates human B cells. PLoS One 2013; 8:e67309. [PMID: 23826263 PMCID: PMC3691133 DOI: 10.1371/journal.pone.0067309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) that target the HIV-1 envelope glycoproteins (Env) can prevent virus acquisition, but several Env properties limit its ability to induce an antibody response that is of sufficient quantity and quality. The immunogenicity of Env can be increased by fusion to co-stimulatory molecules and here we describe novel soluble Env trimers with embedded interleukin-4 (IL-4) or interleukin-21 (IL-21) domains, designed to activate B cells that recognize Env. In particular, the chimeric EnvIL-21 molecule activated B cells efficiently and induced the differentiation of antibody secreting plasmablast-like cells. We studied whether we could increase the activity of the embedded IL-21 by designing a chimeric IL-21/IL-4 (ChimIL-21/4) molecule and by introducing amino acid substitutions in the receptor binding domain of IL-21 that were predicted to enhance its binding. In addition, we incorporated IL-21 into a cleavable Env trimer and found that insertion of IL-21 did not impair Env cleavage, while Env cleavage did not impair IL-21 activity. These studies should guide the further design of chimeric proteins and EnvIL-21 may prove useful in improving antibody responses against HIV-1.
Collapse
Affiliation(s)
- Gözde Isik
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nancy P. Y. Chung
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sergey Menis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Sciences, The Scripps Research Institute, San Diego, California, United States of America
| | - Katie Matthews
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - William R. Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, San Diego, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, San Diego, California, United States of America
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, San Diego, California, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Rogier W. Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Isik G, van Montfort T, Boot M, Cobos Jiménez V, Kootstra NA, Sanders RW. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity. PLoS One 2013; 8:e60126. [PMID: 23565193 PMCID: PMC3615126 DOI: 10.1371/journal.pone.0060126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF) chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF) proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF) should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.
Collapse
Affiliation(s)
- Gözde Isik
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs van Montfort
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maikel Boot
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Viviana Cobos Jiménez
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, United States of America
| |
Collapse
|
45
|
Dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin mediates HIV-1 infection of and transmission by M2a-polarized macrophages in vitro. AIDS 2013; 27:707-16. [PMID: 23211775 DOI: 10.1097/qad.0b013e32835cfc82] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To assess in-vitro effects of monocyte-derived macrophage (MDM) polarization into M1 and M2a cells on HIV-1 replication and transmission and obtain new insights into the potential importance of macrophage polarization in vivo. DESIGN Human peripheral blood monocytes were differentiated into MDM for 7 days. Control and MDM polarized into M1 or M2a cells were exposed to different strains of HIV-1 and assessed for their ability to bind and transmit virus to CD4 T lymphocytes. METHODS MDM were incubated with either tumour necrosis factor-alpha (TNF-α) along with interferon-gamma (IFN-γ) or with interleukin-4 (IL-4) for 18 h to obtain M1 or M2a cells, respectively. Expression of cell surface antigens, including CD4 and dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN), was evaluated by flow cytometry. C-C chemokine receptor type 5 (CCR5)-dependent (R5) HIV-1 binding, DNA synthesis and viral replication were assessed in the presence or absence of anti-DC-SIGN blocking mAbs. Transmission of C-X-C chemokine receptor type 4 (CXCR4)-dependent (X4) and R5 HIV-1 from MDM to IL-2 activated CD4 T cells was also investigated. RESULTS DC-SIGN was strongly upregulated on M2a-MDM and downregulated on M1-MDM compared with control MDM. DC-SIGN facilitated HIV-1 entry and DNA synthesis in M2a-MDM, compensating for their low levels of CD4 cell expression. M2a-MDM efficiently transmitted both R5 and X4 HIV-1 to CD4 T cells in a DC-SIGN-dependent manner. CONCLUSION DC-SIGN facilitates HIV-1 infection of M2a-MDM, and HIV-1 transfer from M2a-MDM to CD4 T cells. M2a-polarized tissue macrophages may play an important role in the capture and spread of HIV-1 in mucosal tissues and placenta.
Collapse
|
46
|
Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, Kaufmann DE, McElrath MJ, Nussenzweig MC, Pulendran B, Scanlan CN, Schief WR, Silvestri G, Streeck H, Walker BD, Walker LM, Ward AB, Wilson IA, Wyatt R. A Blueprint for HIV Vaccine Discovery. Cell Host Microbe 2013; 12:396-407. [PMID: 23084910 DOI: 10.1016/j.chom.2012.09.008] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite numerous attempts over many years to develop an HIV vaccine based on classical strategies, none has convincingly succeeded to date. A number of approaches are being pursued in the field, including building upon possible efficacy indicated by the recent RV144 clinical trial, which combined two HIV vaccines. Here, we argue for an approach based, in part, on understanding the HIV envelope spike and its interaction with broadly neutralizing antibodies (bnAbs) at the molecular level and using this understanding to design immunogens as possible vaccines. BnAbs can protect against virus challenge in animal models, and many such antibodies have been isolated recently. We further propose that studies focused on how best to provide T cell help to B cells that produce bnAbs are crucial for optimal immunization strategies. The synthesis of rational immunogen design and immunization strategies, together with iterative improvements, offers great promise for advancing toward an HIV vaccine.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Julien JP, Lee JH, Cupo A, Murin CD, Derking R, Hoffenberg S, Caulfield MJ, King CR, Marozsan AJ, Klasse PJ, Sanders RW, Moore JP, Wilson IA, Ward AB. Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc Natl Acad Sci U S A 2013; 110:4351-6. [PMID: 23426631 PMCID: PMC3600498 DOI: 10.1073/pnas.1217537110] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PG9 is the founder member of an expanding family of glycan-dependent human antibodies that preferentially bind the HIV (HIV-1) envelope (Env) glycoprotein (gp) trimer and broadly neutralize the virus. Here, we show that a soluble SOSIP.664 gp140 trimer constructed from the Clade A BG505 sequence binds PG9 with high affinity (∼11 nM), enabling structural and biophysical characterizations of the PG9:Env trimer complex. The BG505 SOSIP.664 gp140 trimer is remarkably stable as assessed by electron microscopy (EM) and differential scanning calorimetry. EM, small angle X-ray scattering, size exclusion chromatography with inline multiangle light scattering and isothermal titration calorimetry all indicate that only a single PG9 fragment antigen-binding (Fab) binds to the Env trimer. An ∼18 Å EM reconstruction demonstrates that PG9 recognizes the trimer asymmetrically at its apex via contact with two of the three gp120 protomers, possibly contributing to its reported preference for a quaternary epitope. Molecular modeling and isothermal titration calorimetry binding experiments with an engineered PG9 mutant suggest that, in addition to the N156 and N160 glycan interactions observed in crystal structures of PG9 with a scaffolded V1/V2 domain, PG9 makes secondary interactions with an N160 glycan from an adjacent gp120 protomer in the antibody-trimer complex. Together, these structural and biophysical findings should facilitate the design of HIV-1 immunogens that possess all elements of the quaternary PG9 epitope required to induce broadly neutralizing antibodies against this region.
Collapse
Affiliation(s)
- Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
| | - Jeong Hyun Lee
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
| | - Albert Cupo
- Weill Medical College of Cornell University, New York, NY 10021
| | - Charles D. Murin
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
| | - Ronald Derking
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands; and
| | - Simon Hoffenberg
- International AIDS Vaccine Initiative, Design and Development Laboratory, New York, NY 10038
| | - Michael J. Caulfield
- International AIDS Vaccine Initiative, Design and Development Laboratory, New York, NY 10038
| | - C. Richter King
- International AIDS Vaccine Initiative, Design and Development Laboratory, New York, NY 10038
| | | | | | - Rogier W. Sanders
- Weill Medical College of Cornell University, New York, NY 10021
- Department of Medical Microbiology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands; and
| | - John P. Moore
- Weill Medical College of Cornell University, New York, NY 10021
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and
| |
Collapse
|
48
|
Hoorelbeke B, van Montfort T, Xue J, LiWang PJ, Tanaka H, Igarashi Y, Van Damme EJ, Sanders RW, Balzarini J. HIV-1 envelope trimer has similar binding characteristics for carbohydrate-binding agents as monomeric gp120. FEBS Lett 2013; 587:860-6. [DOI: 10.1016/j.febslet.2013.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/13/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
|
49
|
Julien JP, Lee PS, Wilson IA. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol Rev 2013; 250:180-98. [PMID: 23046130 DOI: 10.1111/imr.12005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) envelope protein (Env) and influenza hemagglutinin (HA) are the surface glycoproteins responsible for viral entry into host cells, the first step in the virus life cycle necessary to initiate infection. These glycoproteins exhibit a high degree of sequence variability and glycosylation, which are used as strategies to escape host immune responses. Nonetheless, antibodies with broadly neutralizing activity against these viruses have been isolated that have managed to overcome these barriers. Here, we review recent advances in the structural characterization of these antibodies with their viral antigens that defines a few sites of vulnerability on these viral spikes. These broadly neutralizing antibodies tend to focus their recognition on the sites of similar function between the two viruses: the receptor-binding site and membrane fusion machinery. However, some sites of recognition are unique to the virus neutralized, such as the dense shield of oligomannose carbohydrates on HIV-1 Env. These observations are discussed in the context of structure-based design strategies to aid in vaccine design or development of antivirals.
Collapse
Affiliation(s)
- Jean-Philippe Julien
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
50
|
Yu B, Morales JF, O'Rourke SM, Tatsuno GP, Berman PW. Glycoform and net charge heterogeneity in gp120 immunogens used in HIV vaccine trials. PLoS One 2012; 7:e43903. [PMID: 22928048 PMCID: PMC3425498 DOI: 10.1371/journal.pone.0043903] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/27/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The RV144 clinical trial showed for the first time that vaccination could provide modest but significant protection from HIV-1 infection. To understand the protective response, and to improve upon the vaccine's efficacy, it is important to define the structure of the immunogens used in the prime/boost regimen. Here we examined the heterogeneity in net charge, attributable to glycoform variation, of the gp120 immunogens contained in the AIDSVAX B/E vaccine. METHODOLOGY/PRINCIPAL FINDINGS Isoelectric focusing and glycosidase digestion were used to assess variation in net charge of the gp120s contained in the AIDSVAX B/E vaccine used in the RV144 trial. We observed 16 variants of MN-rgp120 and 24 variants of A244-rgp120. Glycoform variation in gp120 produced in Chinese hamster ovary cells was compared to glycoform variation in gp120 produced in the 293F human embryonic kidney cell line, often used for neutralization assays. We found that gp120 variants produced in CHO cells were distinctly more acidic than gp120 variants produced in 293 cells. The effect of glycoform heterogeneity on antigenicity was assessed using monoclonal antibodies. The broadly neutralizing PG9 MAb bound to A244-rgp120, but not to MN-rgp120, whether produced in CHO or in 293. However, PG9 was able to bind with high affinity to MN-rgp120 and A244-rgp120 produced in 293 cells deficient in N-acetylglucosaminyltransferase I. CONCLUSIONS/SIGNIFICANCE MN- and A244-rgp120 used in the RV144 trial exhibited extensive heterogeneity in net charge due to variation in sialic acid-containing glycoforms. These differences were cell line-dependent, affected the antigenicity of recombinant envelope proteins, and may affect assays used to measure neutralization. These studies, together with recent reports documenting broadly neutralizing antibodies directed against carbohydrate epitopes of gp120, suggest that glycoform variation is a key variable to be considered in the production and evaluation of subunit vaccines designed to prevent HIV infection.
Collapse
Affiliation(s)
- Bin Yu
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Javier F. Morales
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sara M. O'Rourke
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Gwen P. Tatsuno
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Phillip W. Berman
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|