1
|
Shapiro JR, Corrado M, Perry J, Watts TH, Bolotin S. The contributions of T cell-mediated immunity to protection from vaccine-preventable diseases: A primer. Hum Vaccin Immunother 2024; 20:2395679. [PMID: 39205626 PMCID: PMC11364080 DOI: 10.1080/21645515.2024.2395679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
In the face of the ever-present burden of emerging and reemerging infectious diseases, there is a growing need to comprehensively assess individual- and population-level immunity to vaccine-preventable diseases (VPDs). Many of these efforts, however, focus exclusively on antibody-mediated immunity, ignoring the role of T cells. Aimed at clinicians, public health practioners, and others who play central roles in human vaccine research but do not have formal training in immunology, we review how vaccines against infectious diseases elicit T cell responses, what types of vaccines elicit T cell responses, and how T cell responses are measured. We then use examples to demonstrate six ways that T cells contribute to protection from VPD, including directly mediating protection, enabling antibody responses, reducing disease severity, increasing cross-reactivity, improving durability, and protecting special populations. We conclude with a discussion of challenges and solutions to more widespread consideration of T cell responses in clinical vaccinology.
Collapse
Affiliation(s)
- Janna R. Shapiro
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Mario Corrado
- Division of General Internal Medicine, University of Toronto, Toronto, ON, Canada
| | - Julie Perry
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Tania H. Watts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Shelly Bolotin
- Center for Vaccine Preventable Diseases, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Health Protection, Public Health Ontario, Toronto, ON, Canada
| |
Collapse
|
2
|
Naorem RS, Pangabam BD, Bora SS, Fekete C, Teli AB. Immunoinformatics Design of a Multiepitope Vaccine (MEV) Targeting Streptococcus mutans: A Novel Computational Approach. Pathogens 2024; 13:916. [PMID: 39452787 PMCID: PMC11509883 DOI: 10.3390/pathogens13100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Dental caries, a persistent oral health challenge primarily linked to Streptococcus mutans, extends its implications beyond dental decay, affecting over 4 billion individuals globally. Despite its historical association with childhood, dental caries often persists into adulthood with prevalence rates ranging from 60 to 90% in children and 26 to 85% in adults. Currently, there is a dearth of multiepitope vaccines (MEVs) specifically designed to combat S. mutans. To address this gap, we employed an immunoinformatics approach for MEV design, identifying five promising vaccine candidates (PBP2X, PBP2b, MurG, ATP-F, and AGPAT) based on antigenicity and conservation using several tools including CELLO v.2.5, Vaxign, v2.0, ANTIGENpro, and AllerTop v2.0 tools. Subsequent identification of linear B-cell and T-cell epitopes by SVMTrip and NetCTL/NetMHC II tools, respectively, guided the construction of a MEV comprising 10 Cytotoxic T Lymphocyte (CTL) epitopes, 5 Helper T Lymphocyte (HTL) epitopes, and 5 linear B-cell epitopes, interconnected by suitable linkers. The resultant MEV demonstrated high antigenicity, solubility, and structural stability. In silico immune simulations showcased the MEV's potential to elicit robust humoral and cell-mediated immune responses. Molecular docking studies revealed strong interactions between the MEV construct and Toll-Like Receptors (TLRs) and Major Histocompatibility Complex (MHC) molecules. Remarkably, the MEV-TLR-4 complexes exhibited a low energy score, high binding affinity, and a low dissociation constant. The Molecular Dynamic (MD) simulation analysis suggested that MEV-TLR-4 complexes had the highest stability and minimal conformational changes indicating equilibrium within 40 nanosecond time frames. Comprehensive computational analyses strongly support the potential of the proposed MEV to combat dental caries and associated infections. The study's computational assays yielded promising results, but further validation through in vitro and in vivo experiments is needed to assess its efficacy and safety.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
| | - Bandana Devi Pangabam
- Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary;
| | - Sudipta Sankar Bora
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
| | - Csaba Fekete
- Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary;
| | - Anju Barhai Teli
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
- Department of Biochemistry, Jorhat Medical College and Hospital, Jorhat 785001, India
| |
Collapse
|
3
|
He J, Deng X, Ma X, Yao L, Li Y, Chen C, He Y. Evaluation of BVDV E2 proteins based on recombinant baculovirus expression system production as diagnostic antigens and immunogens. Protein Expr Purif 2024; 226:106611. [PMID: 39317297 DOI: 10.1016/j.pep.2024.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Bovine viral diarrhea virus (BVDV) is a significant immunosuppressive pathogen that has a major impact on the global cattle industry. Research efforts are currently focused on the envelope glycoprotein E2 of BVDV to improve immune responses. However, the full-length E2 protein is not ideal as an immune antigen and diagnostic tool, leading to the exploration of alternative strategies. In this study, we optimized the E2 gene using IDEB and ExpOptimizer software, then expressed the E2 gene using both baculovirus and E. coli expression systems. Subsequently, we assessed the immunogenicity of the purified E2 protein in mice and its application in indirect ELISA assays. Our findings showed that the Bac-E2 protein produced by the baculovirus system induced higher levels of antibody production and splenic lymphocyte proliferation in mice compared to the E. coli system. Moreover, the indirect ELISA assay developed using Bac-E2 protein exhibited superior specificity, sensitivity, and accuracy in comparison to the E. coli-expressed E2 ELISA. Overall, our study demonstrates that the optimized E2 protein generated through a baculovirus expression system elicits robust humoral and cellular immune responses in mice, making it a promising candidate for vaccine development. Furthermore, the optimized E2 protein ELISA assay shows enhanced sensitivity and accuracy, suggesting its potential as a valuable diagnostic antigen.
Collapse
Affiliation(s)
- Jinke He
- Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi, 834000, Xinjiang, China; Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, 832003, Shihezi, China
| | - Xiaoyu Deng
- Department of Basic Medicine, Hunan University of Medicine, Huaihua, 418000, Hunan, China
| | - Xusheng Ma
- Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi, 834000, Xinjiang, China
| | - Liangjia Yao
- Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi, 834000, Xinjiang, China
| | - Yiguo Li
- Department of Basic Medicine, Xinjiang Second Medical College, Kelamayi, 834000, Xinjiang, China
| | - Chuangfu Chen
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, 832003, Shihezi, China.
| | - Yanhua He
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553000, Guizhou, China.
| |
Collapse
|
4
|
Rodrigues KA, Zhang YJ, Aung A, Morgan DM, Maiorino L, Yousefpour P, Gibson G, Ozorowski G, Gregory JR, Amlashi P, Buckley M, Ward AB, Schief WR, Love JC, Irvine DJ. Vaccines combining slow delivery and follicle targeting of antigens increase germinal center B cell clonal diversity and clonal expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608655. [PMID: 39229011 PMCID: PMC11370361 DOI: 10.1101/2024.08.19.608655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Vaccines incorporating slow delivery, multivalent antigen display, or immunomodulation through adjuvants have an important role to play in shaping the humoral immune response. Here we analyzed mechanisms of action of a clinically relevant combination adjuvant strategy, where phosphoserine (pSer)-tagged immunogens bound to aluminum hydroxide (alum) adjuvant (promoting prolonged antigen delivery to draining lymph nodes) are combined with a potent saponin nanoparticle adjuvant termed SMNP (which alters lymph flow and antigen entry into lymph nodes). When employed with a stabilized HIV Env trimer antigen in mice, this combined adjuvant approach promoted substantial enhancements in germinal center (GC) and antibody responses relative to either adjuvant alone. Using scRNA-seq and scBCR-seq, we found that the alum-pSer/SMNP combination both increased the diversity of GC B cell clones and increased GC B cell clonal expansion, coincident with increases in the expression of Myc and the proportion of S-phase GC B cells. To gain insight into the source of these changes in the GC response, we analyzed antigen biodistribution and structural integrity in draining lymph nodes and found that the combination adjuvant approach, but not alum-pSer delivery or SMNP alone, promoted accumulation of highly intact antigen on follicular dendritic cells, reflecting an integration of the slow antigen delivery and altered lymph node uptake effects of these two adjuvants. These results demonstrate how adjuvants with complementary mechanisms of action impacting vaccine biodistribution and kinetics can synergize to enhance humoral immunity.
Collapse
Affiliation(s)
- Kristen A. Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science; Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Yiming J. Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Grace Gibson
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Gabriel Ozorowski
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Justin R. Gregory
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - Maureen Buckley
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Andrew B. Ward
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037 USA
| | - William R. Schief
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University; Cambridge, MA 02139 USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute; La Jolla, CA 92037 USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139 USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815 USA
| |
Collapse
|
5
|
Kalantari H, Habibi M, Ferdousi A, Asadi Karam MR, Mohammadian T. Development of a multi-epitope vaccine candidate against Pseudomonas aeruginosa causing urinary tract infection and evaluation of its immunoreactivity in a rabbit model. J Biomol Struct Dyn 2024; 42:6212-6227. [PMID: 37489041 DOI: 10.1080/07391102.2023.2239915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Pseudomonas aeruginosa is associated with different infections such as urinary tract infections (UTIs). The increased antibiotic resistance reaches the need to develop vaccine against the infections. In the present study, bioinformatics approaches were applied to design a novel multi-epitope of PcrV and OmpE from P. aeruginosa. The raised antibody against the multi-epitope was evaluated and challenge experiment was done to evaluate the efficacy of the multi-epitope. The results of epitope mapping of B-cells indicated 8 regions for PcrV and OmpE. The predicted 3D structure showed C-score = -1 and Z-score = -8.12. Molecular docking indicated high interaction between residues of Toll-like receptor 2 (TLR2) and TLR4 with the multi-epitope. The results of in silico simulation of the immune responses showed elevated levels of B-cell, T-cell, and memory cells. PcrV, OmpE, and the multi-epitope were expressed in pET28a-E. coli BL21 (DE3) and purified by Nickel columns. Our findings indicated that the sera collected from immunized rabbits with the multi-epitope reacted with the multi-epitope, PcrV, and OmpE in western blot. According to the ELISA results, the antibody developed against the multi-epitope showed cross-reactivity with individual proteins PcrV and OmpE. The level of antibody raised against the multi-epitope was significantly higher than the antibody reacted with PcrV or OmpE alone in ELISA. The challenge results confirmed that the load of bacteria was decreased in immunized rabbits as compared to the control. The results present the multi-epitope composed of PcrV and OmpE as a promising candidate against P. aeruginosa. Further evaluations are under investigation in animal model.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamidreza Kalantari
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Atosa Ferdousi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | | | - Taher Mohammadian
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Liang Z, Bao H, Yao Z, Li M, Chen C, Zhang L, Wang H, Guo Y, Ma Y, Yang X, Yu G, Zhang J, Xue C, Sun B, Mao C. The orientation of CpG conjugation on aluminum oxyhydroxide nanoparticles determines the immunostimulatory effects of combination adjuvants. Biomaterials 2024; 308:122569. [PMID: 38626556 DOI: 10.1016/j.biomaterials.2024.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Zhihui Liang
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China; Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China
| | - Hang Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhiying Yao
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Min Li
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Lei Zhang
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Huiyang Wang
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yiyang Guo
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yubin Ma
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Xuecheng Yang
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Ge Yu
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiancheng Zhang
- AIM Honesty Biopharmaceutical Co., Ltd, Dalian, 116100, PR China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China.
| | - Bingbing Sun
- Frontiers Science Center for Smart Materials Oriented Chemical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China.
| |
Collapse
|
7
|
Wang W, O'Driscoll M, Wang Q, Zhao S, Salje H, Yu H. Dynamics of measles immunity from birth and following vaccination. Nat Microbiol 2024; 9:1676-1685. [PMID: 38740931 DOI: 10.1038/s41564-024-01694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Measles remains a major threat to human health despite widespread vaccination. While we know that maternal antibodies can impair vaccine-induced immunity, the relative contributions of pre-existing immunity levels, maternal and infant characteristics on vaccine responses remain unclear, hampering evidence-based vaccination policy development. Here we combine serological data from 1,505 individuals (aged 0-12 years) in a mother-infant cohort and in a child cohort with empirical models to reconstruct antibody trajectories from birth. We show that while highly heterogeneous across a population, measles antibody evolution is strongly predictive from birth at the individual level, including following vaccination. Further, we find that caesarean section births were linked with 2.56 (95% confidence interval: 1.06-6.37) increased odds of primary vaccine failure, highlighting the long-term immunological consequences of birth route. Finally, we use our new understanding of antibody evolution to critically assess the population-level consequences of different vaccination schedules, the results of which will allow country-level evaluations of vaccine policy.
Collapse
Affiliation(s)
- Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | | | - Qianli Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Sihong Zhao
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Heidarnejad F, Namvar A, Sadat SM, Pordanjani PM, Rezaei F, Namdari H, Arjmand S, Bolhassani A. In silico designing of novel epitope-based peptide vaccines against HIV-1. Biotechnol Lett 2024; 46:315-354. [PMID: 38403788 DOI: 10.1007/s10529-023-03464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/16/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection. In this study, we explored the impacts of CD40L and IFN-γ as immunostimulatory adjuvants for our candidate HIV-1 Nef vaccine in human and mouse using immunoinformatics analyses. Overall, 18 IFN-γ-based vaccine constructs (9 constructs in human and 9 constructs in mouse), and 18 CD40L-based vaccine constructs (9 constructs in human and 9 constructs in mouse) were designed. To find immunogenic epitopes, important characteristics of each component (e.g., MHC-I and MHC-II binding, and peptide-MHC-I/MHC-II molecular docking) were determined. Then, the selected epitopes were applied to create multiepitope constructs. Finally, the physicochemical properties, linear and discontinuous B cell epitopes, and molecular interaction between the 3D structure of each construct and CD40, IFN-γ receptor or toll-like receptors (TLRs) were predicted. Our data showed that the full-length CD40L and IFN-γ linked to the N-terminal region of Nef were capable of inducing more effective immune response than multiepitope vaccine constructs. Moreover, molecular docking of the non-allergenic full-length- and epitope-based CD40L and IFN-γ constructs to their cognate receptors, CD40 and IFN-γ receptors, and TLRs 4 and 5 in mouse were more potent than in human. Generally, these findings suggest that the full forms of these adjuvants could be more efficient for improvement of HIV-1 Nef vaccine candidate compared to the designed multiepitope-based constructs.
Collapse
Affiliation(s)
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rezaei
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Arjmand
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Wan J, Wang Z, Wang L, Wu L, Zhang C, Zhou M, Fu ZF, Zhao L. Circular RNA vaccines with long-term lymph node-targeting delivery stability after lyophilization induce potent and persistent immune responses. mBio 2024; 15:e0177523. [PMID: 38078742 PMCID: PMC10790773 DOI: 10.1128/mbio.01775-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, the inherent instability of mRNA and the nonspecificity of lipid nanoparticle-encapsulated (LNP) delivery systems result in the need for cold storage and a relatively short-duration immune response to mRNA vaccines. Herein, we develop a novel vaccine in the form of circRNAs encapsulated in LNPs, and the circular structure of the circRNAs enhances their stability. Lyophilization is considered the most effective method for the long-term preservation of RNA vaccines. However, this process may result in irreversible damage to the nanoparticles, particularly the potential disruption of targeting modifications on LNPs. During the selection of lymph node-targeting ligands, we found that LNPs modified with mannose maintained their physical properties almost unchanged after lyophilization. Additionally, the targeting specificity and immunogenicity remained unaffected. In contrast, even with the addition of cryoprotectants such as sucrose, the physical properties of LNPs were impaired, leading to an obvious decrease in immunogenicity. This may be attributed to the protective role of mannose on the surface of LNPs during lyophilization. Freshly prepared and lyophilized mLNP-circRNA vaccines elicited comparable immune responses in both the rabies virus model and the SARS-CoV-2 model. Our data demonstrated that mLNP-circRNA vaccines elicit robust immune responses while improving stability after lyophilization, with no compromise in tissue targeting specificity. Therefore, mannose-modified LNP-circRNA vaccines represent a promising vaccine design strategy.
Collapse
Affiliation(s)
- Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
11
|
Ke Y, Zhang E, Guo J, Zhang X, Wang L, Chen D, Fang X, Zhu J, Li F, Sun T, Zhang B. Immunogenicity of mucosal COVID-19 vaccine candidates based on the highly attenuated vesicular stomatitis virus vector (VSV MT) in golden syrian hamster. Acta Pharm Sin B 2023; 13:4856-4874. [PMID: 38045049 PMCID: PMC10692390 DOI: 10.1016/j.apsb.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
COVID-19 is caused by coronavirus SARS-CoV-2. Current systemic vaccines generally provide limited protection against viral replication and shedding within the airway. Recombinant VSV (rVSV) is an effective vector which inducing potent and comprehensive immunities. Currently, there are two clinical trials investigating COVID-19 vaccines based on VSV vectors. These vaccines were developed with spike protein of WA1 which administrated intramuscularly. Although intranasal route is ideal for activating mucosal immunity with VSV vector, safety is of concern. Thus, a highly attenuated rVSV with three amino acids mutations in matrix protein (VSVMT) was developed to construct safe mucosal vaccines against multiple SARS-CoV-2 variants of concern. It demonstrated that spike protein mutant lacking 21 amino acids in its cytoplasmic domain could rescue rVSV efficiently. VSVMT indicated improved safeness compared with wild-type VSV as the vector encoding SARS-CoV-2 spike protein. With a single-dosed intranasal inoculation of rVSVΔGMT-SΔ21, potent SARS-CoV-2 specific neutralization antibodies could be stimulated in animals, particularly in term of mucosal and cellular immunity. Strikingly, the chimeric VSV encoding SΔ21 of Delta-variant can induce more potent immune responses compared with those encoding SΔ21 of Omicron- or WA1-strain. VSVMT is a promising platform to develop a mucosal vaccine for countering COVID-19.
Collapse
Affiliation(s)
- Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - En Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Jianming Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Xiaoxiao Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Duo Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Xinkui Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Li
- Shanghai Public Health Clinical Center, Fudan Univeristy, Shanghai 201508, China
| | - Tao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Municipal Veterinary Key Laboratory, Shanghai 200240, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Kupani M, Pandey RK, Vashisht S, Singh S, Prajapati VK, Mehrotra S. Prediction of an immunogenic peptide ensemble and multi-subunit vaccine for Visceral leishmaniasis using bioinformatics approaches. Heliyon 2023; 9:e22121. [PMID: 38196838 PMCID: PMC10775901 DOI: 10.1016/j.heliyon.2023.e22121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 01/11/2024] Open
Abstract
Visceral Leishmaniasis (VL) is a neglected tropical disease of public health importance in the Indian subcontinent. Despite consistent elimination initiatives, the disease has not yet been eliminated and there is an increased risk of resurgence from active VL reservoirs including asymptomatic, post kala azar dermatitis leishmaniasis (PKDL) and HIV-VL co-infected individuals. To achieve complete elimination and sustain it in the long term, a prophylactic vaccine, which can elicit long lasting immunity, is desirable. In this study, we employed immunoinformatic tools to design a multi-subunit epitope vaccine for the Indian population by targeting antigenic secretory proteins screened from the Leishmania donovani proteome. Out of 8014 proteins, 277 secretory proteins were screened for their cellular location and proteomic evidence. Through NCBI BlastP, unique fragments of the proteins were cropped, and their antigenicity was evaluated. B-cell, HTL and CTL epitopes as well as IFN-ɣ, IL-17, and IL-10 inducers were predicted, manually mapped to the fragments and common regions were tabulated forming a peptide ensemble. The ensemble was evaluated for Class I MHC immunogenicity and toxicity. Further, immunogenic peptides were randomly selected and used to design vaccine constructs. Eight vaccine constructs were generated by linking random peptides with GS linkers. Synthetic TLR-4 agonist, RS09 was used as an adjuvant and linked with the constructs using EAAK linkers. The predicted population coverage of the constructs was ∼99.8 % in the Indian as well as South Asian populations. The most antigenic, nontoxic, non-allergic construct was chosen for the prediction of secondary and tertiary structures. The 3D structures were refined and analyzed using Ramachandran plot and Z-scores. The construct was docked with TLR-4 receptor. Molecular dynamic simulation was performed to check for the stability of the docked complex. Comparative in silico immune simulation studies showed that the predicted construct elicited humoral and cell-mediated immunity in human host comparable to that elicited by Leish-F3, which is a promising vaccine candidate for human VL.
Collapse
Affiliation(s)
- Manu Kupani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajeev Kumar Pandey
- Research & Development, Thermo Fisher Scientific, Bangalore, 560066, Karnataka, India
| | - Sharad Vashisht
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Harayana, India
| | - Satyendra Singh
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| |
Collapse
|
13
|
Jyotisha, Qureshi R, Qureshi IA. Development of a multi-epitope vaccine candidate for leishmanial parasites applying immunoinformatics and in vitro approaches. Front Immunol 2023; 14:1269774. [PMID: 38035118 PMCID: PMC10684680 DOI: 10.3389/fimmu.2023.1269774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease, and its severity necessitates the development of a potent and efficient vaccine for the disease; however, no human vaccine has yet been approved for clinical use. This study aims to design and evaluate a multi-epitope vaccine against the leishmanial parasite by utilizing helper T-lymphocyte (HTL), cytotoxic T-lymphocyte (CTL), and linear B-lymphocyte (LBL) epitopes from membrane-bound acid phosphatase of Leishmania donovani (LdMAcP). The designed multi-epitope vaccine (LdMAPV) was highly antigenic, non-allergenic, and non-toxic, with suitable physicochemical properties. The three-dimensional structure of LdMAPV was modeled and validated, succeeded by molecular docking and molecular dynamics simulation (MDS) studies that confirmed the high binding affinity and stable interactions between human toll-like receptors and LdMAPV. In silico disulfide engineering provided improved stability to LdMAPV, whereas immune simulation displayed the induction of both immune responses, i.e., antibody and cell-mediated immune responses, with a rise in cytokines. Furthermore, LdMAPV sequence was codon optimized and cloned into the pET-28a vector, followed by its expression in a bacterial host. The recombinant protein was purified using affinity chromatography and subjected to determine its effect on cytotoxicity, cytokines, and nitric oxide generation by mammalian macrophages. Altogether, this report provides a multi-epitope vaccine candidate from a leishmanial protein participating in parasitic virulence that has shown its potency to be a promising vaccine candidate against leishmanial parasites.
Collapse
Affiliation(s)
- Jyotisha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rahila Qureshi
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Wang Z, Guo Y, Shen M, Wang Y, Shi X. Hyperbranched Polymer-Based Vaccines for Cancer Immunotherapy. Macromol Biosci 2023; 23:e2300188. [PMID: 37300444 DOI: 10.1002/mabi.202300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Recently, several immunotherapeutic strategies are extensively studied and entered clinical investigation, suggesting their potential to lead a new generation of cancer therapy. Particularly, a cancer vaccine that combines tumor-associated antigens and immune adjuvants with a nanocarrier holds huge promise for inducing specific antitumor immune responses. Hyperbranched polymers, such as dendrimers and branched polyethylenimine (PEI) possessing abundant positively charged amine groups and inherent proton sponge effect are ideal carriers of antigens. Much effort is devoted to design dendrimer/branched PEI-based cancer vaccines. Herein, the recent advances in the design of dendrimer/branched PEI-based cancer vaccines for immunotherapy are reviewed. The future perspectives with regard to the development of dendrimer/branched PEI-based cancer vaccines are also briefly discussed.
Collapse
Affiliation(s)
- Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
15
|
Elalouf A, Yaniv-Rosenfeld A. Immunoinformatic-guided designing and evaluating protein and mRNA-based vaccines against Cryptococcus neoformans for immunocompromised patients. J Genet Eng Biotechnol 2023; 21:108. [PMID: 37882985 PMCID: PMC10603020 DOI: 10.1186/s43141-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Cryptococcus neoformans is a fungal pathogen that can cause serious meningoencephalitis in individuals with compromised immune systems due to HIV/AIDS (human immunodeficiency virus/acquired immunodeficiency syndrome), liver cirrhosis, and transplantation. Mannoproteins (MPs), glycoproteins in the C. neoformans capsule, crucially impact virulence by mediating adhesion to lung cells and modulating immune response via cytokine induction and phagocytosis influence. Therefore, creating a vaccine that can generate targeted antibodies to fight infection and prevent fungal illnesses is essential. RESULTS This research aims to create a unique, stable, and safe vaccine through bioinformatics methodologies, aiming at epitopes of T and B cells found in the MP of C. neoformans. Based on toxicity, immunogenicity, and antigenicity, this research predicted novel T cells (GNPVGGNVT, NPVGGNVTT, QTSYARLLS, TSVGNGIAS, WVMPGDYTN, AAATGSSSSGSTGSG, GSTGSGSGSAAAGST, SGSTGSGSGSAAAGS, SSGSTGSGSGSAAAG, and SSSGSTGSGSGSAAA) and B cell (ANGSTSTFQQRYTGTYTNGDGSLGTWTQGETVTPQTAYSTPATSNCKTYTSVGNGIASLALSNAGSNSTAAATNSSSGGASAAATGSSSSGSTGSGSGSAAAGSTAAASSSGDSSSSTSAAMSNGI, HGATGLGNPVGGNVTT, TMGPTNPSEPTLGTAI, GNPVGGNVTTNATGSD, and NSTAAATNSSSGGASA) epitopes for a multiple-epitope vaccine and constructed a vaccine subunit with potential immunogenic properties. The present study used four linkers (AAY, GPGPG, KK, and EAAAK linkers) to connect the epitopes and adjuvant. After constructing the vaccine, it was confronted with receptor docking and simulation analysis. Subsequently, the vaccine was cloned into the vector of Escherichia coli pET-28a ( +) by ligation process for the expression using the SnapGene tool, which confirmed a significant immune response. To assess the constructed vaccine's properties, multiple computational tools were employed. Based on the MP sequence, the tools evaluated the antigenicity, immunogenicity, cytokine-inducing capacity, allergenicity, toxicity, population coverage, and solubility. CONCLUSION Eventually, the results revealed a promising multi-epitope vaccine as a potential candidate for addressing global C. neoformans infection, particularly in immunocompromised patients. Yet, additional in vitro and in vivo investigations are necessary to validate its safety and effectiveness.
Collapse
Affiliation(s)
- Amir Elalouf
- Department of Management, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | | |
Collapse
|
16
|
Ishaq Z, Zaheer T, Waseem M, Shahwar Awan H, Ullah N, AlAsmari AF, AlAsmari F, Ali A. Immunoinformatics aided designing of a next generation poly-epitope vaccine against uropathogenic Escherichia coli to combat urinary tract infections. J Biomol Struct Dyn 2023:1-21. [PMID: 37811774 DOI: 10.1080/07391102.2023.2266018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Urinary tract infections (UTIs) are the second most prevalent bacterial infections and uropathogenic Escherichia coli (UPEC) stands among the primary causative agents of UTIs. The usage of antibiotics is the routine therapy being used in various countries to treat UTIs but becoming ineffective because of increasing antibiotic resistance among UPEC strains. Thus, there must be the development of some alternative treatment strategies such as vaccine development against UPEC. In the following study, pan-genomics along with reverse vaccinology approaches is used under the framework of bioinformatics for the identification of core putative vaccine candidates, employing 307 UPEC genomes (complete and draft), available publicly. A total of nine T-cell epitopes (derived from B-cells) of both MHC classes (I and II), were prioritized among three potential protein candidates. These epitopes were then docked together by using linkers (GPGPG and AAY) and an adjuvant (Cholera Toxin B) to form a poly-valent vaccine construct. The chimeric vaccine construct was undergone by molecular modelling, further refinement and energy minimization. We predicted positive results of the vaccine construct in immune simulations with significantly high levels of immune cells. The protein-protein docking analysis of vaccine construct with toll-like receptors predicted efficient binding, which was further validated by molecular dynamics simulation of vaccine construct with TLR-2 and TLR-4 at 120 ns, resulting in stable complexes' conformation throughout the simulation run. Overall, the vaccine construct demonstrated positive antigenic response. In future, this chimeric vaccine construct or the identified epitopes could be experimentally validated for the development of UPEC vaccines against UTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zaara Ishaq
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tahreem Zaheer
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Maaz Waseem
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Hayeqa Shahwar Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Shifa International Hospitals Ltd, Islamabad, Pakistan
| | - Nimat Ullah
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- NYU Langone Health, New York, United States
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
17
|
Maddaloni L, Santinelli L, Bugani G, Cacciola EG, Lazzaro A, Lofaro CM, Caiazzo S, Frasca F, Fracella M, Ajassa C, Leanza C, Napoli A, Cinti L, Gaeta A, Antonelli G, Ceccarelli G, Mastroianni CM, Scagnolari C, d'Ettorre G. Differential expression of Type I interferon and inflammatory genes in SARS-CoV-2-infected patients treated with monoclonal antibodies. Immun Inflamm Dis 2023; 11:e968. [PMID: 37904704 PMCID: PMC10571496 DOI: 10.1002/iid3.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Considering the reported efficacy of monoclonal antibodies (mAbs) directed against the Spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in reducing disease severity, the aim of this study was to investigate the innate immune response before and after mAbs treatment in 72 vaccinated and 31 unvaccinated SARS-CoV-2 patients. METHODS The mRNA levels of IFN-I, IFN-related genes and cytokines were evaluated using RT/real-time quantitative PCR. RESULTS Vaccinated patients showed increased rate of negative SARS-CoV-2 PCR tests on nasopharyngeal swab compared with unvaccinated ones after mAbs treatment (p = .002). Unvaccinated patients had lower IFN-α/ω and higher IFN-related genes (IFNAR1, IFNAR2, IRF9, ISG15, ISG56 and IFI27) and cytokines (IL-6, IL-10 and TGF-β) mRNA levels compared to vaccinated individuals before mAbs (p < .05 for all genes). Increased IFN-α/ω, IFNAR1, IFNAR2 and IRF9 levels were observed in unvaccinated patients after mAbs treatment, while the mRNA expression ISGs and IL-10 were reduced in all patients. CONCLUSION These data suggest that anti-S vaccinated patients have increased levels of innate immune genes compared to unvaccinated ones. Also, gene expression changes in IFN genes after mAbs administration are different according to the vaccination status of patients.
Collapse
Affiliation(s)
- Luca Maddaloni
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Letizia Santinelli
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Ginevra Bugani
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Elio G. Cacciola
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Alessandro Lazzaro
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Chiara M. Lofaro
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Sara Caiazzo
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Federica Frasca
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Matteo Fracella
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Camilla Ajassa
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Cristiana Leanza
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Anna Napoli
- Laboratory of Microbiology and Virology, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Aurelia Gaeta
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Guido Antonelli
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
- Azienda Ospedaliero‐Universitaria Policlinico Umberto IRomeItaly
| | | | - Carolina Scagnolari
- Virology Laboratory, Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| |
Collapse
|
18
|
Halder P, Maiti S, Banerjee S, Das S, Dutta M, Dutta S, Koley H. Bacterial ghost cell based bivalent candidate vaccine against Salmonella Typhi and Salmonella Paratyphi A: A prophylactic study in BALB/c mice. Vaccine 2023; 41:5994-6007. [PMID: 37625993 DOI: 10.1016/j.vaccine.2023.08.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Typhoid and emerging paratyphoid fever are a severe enteric disease worldwide with high morbidity and mortality. Licensed typhoid vaccines are in the market, but no paratyphoid vaccine is currently available. In the present study we developed a bivalent vaccine against Salmonella Typhi and Paratyphi A using a bacterial ghost platform. Bacterial ghost cells (BGs) are bacteria-derived cell membranes without cytoplasmic contents that retain their cellular morphology, including all cell surface features. Furthermore, BGs have inherent adjuvant properties that promote an enhanced humoral and cellular immune reaction to the target antigen. Sodium hydroxide was used to prepare ghost cells of Salmonella Typhi and Paratyphi A. The bacterial ghost cells were characterised using electron microscopy. Then BALB/c mice were immunized three times (0th, 14th and 28th day) with the bivalent typhoidal bacterial ghost cells. Haematological study of adult mice throughout immunization period reflected that the immunogen was safe to administer and does not affect the animals' health. After complete immunization, we found significant serum antibody titter against whole cell lysate, outer membrane protein and lipopolysaccharide of both bacteria, and cell-mediated immunity was observed in an ex-vivo experiment. CD4+, CD8a+ and CD19+ splenic cell populations were increased in immunized animals. Bivalent Typhoidal ghost cell immunized mice showed better survival, less bacterial colonization in systemic organs, and less inflammation and/or destruction of tissue in histopathological analysis than non-immunized control mice.Serum antibodies of immunized animals can significantly inhibit bacterial motility and mucin penetration ability with better killing properties against Salmonella Typhi and Paratyphi A. Furthermore, significant passive protection was observed through the adoptive transfer of serum antibody and lymphocytes of immunized animals to naïve animals after bacterial infection. In summary, Bivalent Typhoidal Bacterial Ghost cells (BTBGs) enhances immunogenic properties and serves as a safe and effective prevention strategy against Salmonella Typhi and Paratyphi A.
Collapse
Affiliation(s)
- Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata 700010, India.
| |
Collapse
|
19
|
Chen M, Wang J, Yuan M, Long M, Sun Y, Wang S, Luo W, Zhou Y, Zhang W, Jiang W, Chao J. AT2 cell-derived IgA trapped by the extracellular matrix in silica-induced pulmonary fibrosis. Int Immunopharmacol 2023; 122:110545. [PMID: 37390644 DOI: 10.1016/j.intimp.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/02/2023]
Abstract
Pulmonary fibrosis is an interstitial lung disease caused by various factors such as exposure to workplace environmental contaminants, drugs, or X-rays. Epithelial cells are among the driving factors of pulmonary fibrosis. Immunoglobulin A (IgA), traditionally thought to be secreted by B cells, is an important immune factor involved in respiratory mucosal immunity. In the current study, we found that lung epithelial cells are involved in IgA secretion, which, in turn, promotes pulmonary fibrosis. Spatial transcriptomics and single-cell sequencing suggest that Igha transcripts were highly expressed in the fibrotic lesion areas of lungs from silica-treated mice. Reconstruction of B-cell receptor (BCR) sequences revealed a new cluster of AT2-like epithelial cells with a shared BCR and high expression of genes related to IgA production. Furthermore, the secretion of IgA by AT2-like cells was trapped by the extracellular matrix and aggravated pulmonary fibrosis by activating fibroblasts. Targeted blockade of IgA secretion by pulmonary epithelial cells may be a potential strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Mengling Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jing Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Yuheng Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Sha Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Luo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yun Zhou
- Department of Health Management, School of Health Science, West Yunnan University of Applied Sciences, Dali, Yunnan, China
| | - Wei Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China.
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China; School of Medicine, Xizang Minzu University, Xianyang, Shanxi, China.
| |
Collapse
|
20
|
Alnaimat F, Sweis JJG, Jansz J, Modi Z, Prasad S, AbuHelal A, Vagts C, Hanson HA, Ascoli C, Novak RM, Papanikolaou IC, Rubinstein I, Sweiss N. Vaccination in the Era of Immunosuppression. Vaccines (Basel) 2023; 11:1446. [PMID: 37766123 PMCID: PMC10537746 DOI: 10.3390/vaccines11091446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Patients with autoimmune inflammatory rheumatic diseases (AIIRDs) are at increased risk for severe infections. Vaccine responses and safety profiles may differ between AIIRD patients and the general population. While patients with autoimmune inflammatory rheumatic diseases (AIIRDs) often experience diminished humoral responses and reduced vaccine efficacy, factors such as the type of immunosuppressant medications used and the specific vaccine employed contribute to these outcomes. Notably, individuals undergoing B cell depletion therapy tend to have poor vaccine immunogenicity. However, despite these considerations, vaccine responses are generally considered clinically sufficient. Ideally, immunosuppressed AIIRD patients should receive vaccinations at least two weeks before commencing immunosuppressive treatment. However, it is common for many patients to already be on immunosuppressants during the immunization process. Vaccination rarely triggers flares in AIIRDs; if flares occur, they are typically mild. Despite the heightened infection risk, including COVID-19, among AIIRD patients with rheumatoid arthritis, systemic lupus erythematosus, sarcoidosis, and other diseases on immunosuppressants, the vaccination rates remain suboptimal. The future directions of vaccination in the era of immunosuppression will likely involve customized vaccines with enhanced adjuvants and alternative delivery methods. By addressing the unique challenges faced by immunosuppressed individuals, we may improve vaccine efficacy, reduce the risk of infections, and ultimately enhance the health outcomes. Additionally, clinical trials to evaluate the safety and efficacy of temporarily discontinuing immunosuppressants during vaccination in various AIIRDs are crucial.
Collapse
Affiliation(s)
- Fatima Alnaimat
- Department of Internal Medicine, Division of Rheumatology, School of Medicine, University of Jordan, Amman 11942, Jordan
| | | | - Jacqueline Jansz
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.J.); (Z.M.); (S.P.)
| | - Zeel Modi
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.J.); (Z.M.); (S.P.)
| | - Supritha Prasad
- Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (J.J.); (Z.M.); (S.P.)
| | | | - Christen Vagts
- Department of Medicine, Division of Pulmonary Critical Care Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (C.V.); (C.A.); (I.R.)
| | - Hali A. Hanson
- College of Pharmacy, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA;
| | - Christian Ascoli
- Department of Medicine, Division of Pulmonary Critical Care Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (C.V.); (C.A.); (I.R.)
| | - Richard M. Novak
- Division of Infectious Diseases, University of Illinois, Chicago, IL 60612, USA;
| | - Ilias C. Papanikolaou
- Department of Respiratory Medicine, Sarcoidosis Clinic, Corfu General Hospital, 49100 Corfu, Greece;
| | - Israel Rubinstein
- Department of Medicine, Division of Pulmonary Critical Care Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (C.V.); (C.A.); (I.R.)
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
21
|
La Civita E, Zannella C, Brusa S, Romano P, Schettino E, Salemi F, Carrano R, Gentile L, Punziano A, Lagnese G, Spadaro G, Franci G, Galdiero M, Terracciano D, Portella G, Loffredo S. BNT162b2 Elicited an Efficient Cell-Mediated Response against SARS-CoV-2 in Kidney Transplant Recipients and Common Variable Immunodeficiency Patients. Viruses 2023; 15:1659. [PMID: 37632002 PMCID: PMC10459971 DOI: 10.3390/v15081659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
SARS-CoV-2 vaccination is the standard of care for the prevention of COVID-19 disease. Although vaccination triggers both humoral and cellular immune response, COVID-19 vaccination efficacy is currently evaluated by measuring antibodies only, whereas adaptative cellular immunity is unexplored. Our aim is to test humoral and cell-mediated response after three doses of BNT162b vaccine in two cohorts of fragile patients: Common Variable Immunodeficiency (CVID) patients and Kidney Transplant Recipients (KTR) patients compared to healthy donors. We enrolled 10 healthy controls (HCs), 19 CVID patients and 17 KTR patients. HC BNT162b third dose had successfully mounted humoral immune response. A positive correlation between Anti-Spike Trimeric IgG concentration and neutralizing antibody titer was also observed. CVID and KTR groups showed a lower humoral immune response compared to HCs. IFN-γ release induced by epitopes of the Spike protein in stimulated CD4+ and CD8+ T cells was similar among vaccinated HC, CVID and KTR. Patients vaccinated and infected showed a more efficient humoral and cell-mediated response compared to only vaccinated patients. In conclusion, CVID and KTR patients had an efficient cell-mediated but not humoral response to SARS-CoV-2 vaccine, suggesting that the evaluation of T cell responses could be a more sensitive marker of immunization in these subjects.
Collapse
Affiliation(s)
- Evelina La Civita
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (M.G.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Stefano Brusa
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Paolo Romano
- Department of Public Health, Section of Nephrology, University of Naples “Federico II”, 80131 Naples, Italy; (P.R.); (E.S.); (F.S.); (R.C.)
| | - Elisa Schettino
- Department of Public Health, Section of Nephrology, University of Naples “Federico II”, 80131 Naples, Italy; (P.R.); (E.S.); (F.S.); (R.C.)
| | - Fabrizio Salemi
- Department of Public Health, Section of Nephrology, University of Naples “Federico II”, 80131 Naples, Italy; (P.R.); (E.S.); (F.S.); (R.C.)
| | - Rosa Carrano
- Department of Public Health, Section of Nephrology, University of Naples “Federico II”, 80131 Naples, Italy; (P.R.); (E.S.); (F.S.); (R.C.)
| | - Luca Gentile
- Integrated Department of Laboratory and Trasfusion Medicine, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples “Federico II”, 80131 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “ScholaMedicaSalernitana”, University of Salerno, 84081 Baronissi, Italy;
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84125 Salerno, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (M.G.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (E.L.C.); (S.B.); (A.P.); (G.L.); (G.S.); (D.T.); (S.L.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| |
Collapse
|
22
|
Lautem A, Boedecker-Lips SC, Schneider E, Runkel S, Feist C, Lang H, Weinmann-Menke J, Koch M. The Cellular and Humoral Immune Response to SARS-CoV-2 Messenger RNA Vaccines Is Significantly Better in Liver Transplant Patients Compared with Kidney Transplant Patients. Pathogens 2023; 12:910. [PMID: 37513757 PMCID: PMC10383075 DOI: 10.3390/pathogens12070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Patients after organ transplantation have impaired immune response after vaccination against the SARS-CoV-2 virus. So far, published studies have reported quite different response rates to SARS-CoV-2 vaccination, ranging from 15-79% in liver and kidney transplant recipients. Up to one year after the first vaccine dose, we analyzed the humoral and cellular immune response of 21 liver transplant (LTX) patients after vaccination with mRNA vaccines compared with 28 kidney transplant (KTX) patients. We evaluated IgG against the SARS-CoV-2 spike protein as well as SARS-CoV-2 specific T cells using an ELISpot assay that detected IFN-γ- and/or IL-2-expressing T cells. We found a cellular and/or humoral immune response in 100% of the LTX patients compared with 68% of the KTX patients. Antibody titers against the spike protein of SARS-CoV-2 were significantly higher in the LTX group, and significantly more LTX patients had detectable specific IL-2-producing T cells. The immunosuppression applied in our LTX cohort was lower compared with the KTX cohort (14% triple therapy in LTX patients vs. 79% in KTX patients). One year after the first vaccination, breakthrough infections could be detected in 41% of all organ transplant patients. None of those patients suffered from a severe course of COVID-19 disease, indicating that a partial vaccination response seemed to offer protection to immunosuppressed patients. The better immune response of LTX patients after SARS-CoV-2 vaccination might be due to less intense immunosuppressive therapy compared with KTX patients.
Collapse
Affiliation(s)
- Anja Lautem
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Simone Cosima Boedecker-Lips
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Elisa Schneider
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Stefan Runkel
- Blood Transfusion Center, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Christina Feist
- Department of Internal Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Julia Weinmann-Menke
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Martina Koch
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| |
Collapse
|
23
|
Arora P, Jain A, Kumar A. Phage design and directed evolution to evolve phage for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:103-126. [PMID: 37739551 DOI: 10.1016/bs.pmbts.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage therapy or Phage treatment is the use of bacteriolysing phage in treating bacterial infections by using the viruses that infects and kills bacteria. This technique has been studied and practiced very long ago, but with the advent of antibiotics, it has been neglected. This foregone technique is now witnessing a revival due to development of bacterial resistance. Nowadays, with the awareness of genetic sequence of organisms, it is required that informed choices of phages have to be made for the most efficacious results. Furthermore, phages with the evolving genes are taken into consideration for the subsequent improvement in treating the patients for bacterial diseases. In addition, direct evolution methods are increasingly developing, since these are capable of creating new biological molecules having changed or unique activities, such as, improved target specificity, evolution of novel proteins with new catalytic properties or creation of nucleic acids that are capable of recognizing required pathogenic bacteria. This system is incorporates continuous evolution such as protein or genes are put under continuous evolution by providing continuous mutagenesis with least human intervention. Although, this system providing continuous directed evolution is very effective, it imposes some challenges due to requirement of heavy investment of time and resources. This chapter focuses on development of phage as a therapeutic agent against various bacteria causing diseases and it improvement using direct evolution of proteins and nucleic acids such that they target specific organisms.
Collapse
Affiliation(s)
- Priyancka Arora
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Avni Jain
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
24
|
Sher H, Sharif H, Zaheer T, Khan SA, Ali A, Javed H, Javed A. Employing computational tools to design a multi-epitope vaccine targeting human immunodeficiency virus-1 (HIV-1). BMC Genomics 2023; 24:276. [PMID: 37226084 DOI: 10.1186/s12864-023-09330-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Despite being in the 21st century, the world has still not been able to vanquish the global AIDS epidemic, and the only foreseeable solution seems to be a safe and effective vaccine. Unfortunately, vaccine trials so far have returned unfruitful results, possibly due to their inability to induce effective cellular, humoral and innate immune responses. The current study aims to tackle these limitations and propose the desired vaccine utilizing immunoinformatic approaches that have returned promising results in designing vaccines against various rapidly mutating organisms. For this, all polyprotein and protein sequences of HIV-1 were retrieved from the LANL (Los Alamos National Laboratory) database. The consensus sequence was generated after alignment and used to predict epitopes. Conserved, antigenic, non-allergenic, T-cell inducing, B-cell inducing, IFN-ɣ inducing, non-human homologous epitopes were selected and combined to propose two vaccine constructs i.e., HIV-1a (without adjuvant) and HIV-1b (with adjuvant). RESULTS HIV-1a and HIV-1b were subjected to antigenicity, allergenicity, structural quality analysis, immune simulations, and MD (molecular dynamics) simulations. Both proposed multi-epitope vaccines were found to be antigenic, non-allergenic, stable, and induce cellular, humoral, and innate immune responses. TLR-3 docking and in-silico cloning of both constructs were also performed. CONCLUSION Our results indicate HIV-1b to be more promising than HIV-1a; experimental validations can confirm the efficacy and safety of both constructs and in-vivo efficacy in animal models.
Collapse
Affiliation(s)
- Hamza Sher
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hafsa Sharif
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tahreem Zaheer
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sarmad Ahmad Khan
- German Cancer Research Center (DFKZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Amjad Ali
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hasnain Javed
- Advanced Diagnostic Lab BSL-3, Punjab AIDS Control Program, Primary and Secondary Healthcare Department, Government of the Punjab, Lahore, Pakistan
| | - Aneela Javed
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
25
|
Shen CF, Fu YC, Ho TS, Chen PL, Lee NY, Tsai BY, Tsai PJ, Ko WC, Liu CC, Cheng CM, Shieh CC. Pre-existing humoral immunity and CD4 + T cell response correlate with cross-reactivity against SARS-CoV-2 Omicron subvariants after heterologous prime-boost vaccination. Clin Immunol 2023; 251:109342. [PMID: 37100338 PMCID: PMC10124102 DOI: 10.1016/j.clim.2023.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Information regarding the heterologous prime-boost COVID vaccination has been fully elucidated. The study aimed to evaluate both humoral, cellular immunity and cross-reactivity against variants after heterologous vaccination. METHODS We recruited healthcare workers previously primed with Oxford/AstraZeneca ChAdOx1-S vaccines and boosted with Moderna mRNA-1273 vaccine boost to evaluate the immunological response. Assay used: anti-spike RBD antibody, surrogate virus neutralizing antibody and interferon-γ release assay. RESULTS All participants exhibited higher humoral and cellular immune response after the booster regardless of prior antibody level, but those with higher antibody level demonstrated stronger booster response, especially against omicron BA.1 and BA.2 variants. The pre-booster IFN-γ release by CD4+ T cells correlates with post-booster neutralizing antibody against BA.1 and BA.2 variant after adjustment with age and gender. CONCLUSIONS A heterologous mRNA boost is highly immunogenic. The pre-existing neutralizing antibody level and CD4+ T cells response correlates with post-booster neutralization reactivity against the Omicron variant.
Collapse
Affiliation(s)
- Ching-Fen Shen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Yi-Chen Fu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Department of Pediatrics, Tainan Hospital, Ministry of Health and Welfare, Tainan 700007, Taiwan, ROC
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Bo-Yang Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| |
Collapse
|
26
|
Tao A, Shi L, Wang Y, Duo Z, Zhao X, Mao H, Guo J, Lei J, Bao Y, Chen G, Cao X, Zhang J. Olfactory impairment in COVID-19: Two methods for the assessment of olfactory function. Heliyon 2023; 9:e14104. [PMID: 36890807 PMCID: PMC9979703 DOI: 10.1016/j.heliyon.2023.e14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Background Olfactory impairment is a major symptom of COVID-19. Is it necessary for COVID-19 patients to perform the detection of olfactory function, even how to select the olfactory psychophysical assessment tool. Methods Patients infected with SARS-CoV-2 Delta variant were firstly taken into three categories (mild, moderate, and severe) according to the clinical classification. The Odor Stick Identification Test for the Japanese (OSIT-J) and the Simple Olfactory Test were used to assess olfactory function. Moreover, these patients were divided into three groups based on the results of the olfactory degree (euosmia, hyposmia, and dysosmia), too. The statistical analysis of the correlations between olfaction and clinical characteristics of patients were performed. Results Our study demonstrated that the elderly men of Han were more susceptible to infected SARS-CoV-2, the clinical symptoms of the COVID-19 patients showed a clear correspondence with the disease type and the degree of olfactory disturbance. Whether or not to vaccinate and whether to complete the whole course of vaccination was closely related to the patient's condition. OSIT-J Test and Simple Test were consistent in our work, indicating that olfactory grading would worsen with the aggravation of symptoms. Furthermore, the OSIT-J method maybe better than Simple Olfactory Test. Conclusion The vaccination has an important protective effect on the general population, and vaccination should be vigorously promoted. Moreover, it is necessary for COVID-19 patients to perform the detection of olfactory function, and the easier, faster and less expensive method for determination of olfactory function should be utilized to COVID-19 patients as the vital physical examination.
Collapse
Affiliation(s)
- Anzhou Tao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
- Corresponding author. Department of Otolaryngology Head and Neck Surgery, The affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China.
| | - Leyang Shi
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Yuan Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Zefen Duo
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Xianglian Zhao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Haiting Mao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Jingxin Guo
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Jia Lei
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Yingsheng Bao
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Geng Chen
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Dehong Hospital of Kunming Medical University (Dehong People's Hospital), Mangshi 678400, Yunnan Province, China
- Ruili Traditional Chinese and Dai Medicine Hospital (A Designated Hospital for COVID-19 Patients), Ruili 678600, Yunnan Province, China
| | - Xianbao Cao
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Corresponding author.
| | - Jinqian Zhang
- Department of Otolaryngology Head and Neck Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Corresponding author.
| |
Collapse
|
27
|
Pandya N, Kumar A. Immunoinformatics analysis for design of multi-epitope subunit vaccine by using heat shock proteins against Schistosoma mansoni. J Biomol Struct Dyn 2023; 41:1859-1878. [PMID: 35040367 DOI: 10.1080/07391102.2021.2025430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of T cell and B cell that able provide long-term immune response against the schistosomiasisis to the people belongs to the epidemic area. Heat Shock Proteins (HSPs) are up-regulated in schistosomes as their environment changes owing to the developmental cycle, assisting the parasite in living with the adverse circumstances related with its life cycle. Schistosomiasis is still a severe health problem in the people of many countries in worldwide. In this work, to develop a chimeric antigen, we used an advanced and powerful immunoinformatics technique that targeted Schistosoma mansoni (S. mansoni) Heat shock protein (HSPs). Antigenicity, immunogenicity, allergenicity, and physicochemical characteristics were all assessed in silico for the developed subunit vaccine. The 3D structure of the vaccine was constructed and the stability of the vaccine construct was increased by using disulphide engineering. The protein-protein docking and simulation were performed between the vaccine construct and Toll-like receptor-4. The antigenicity probability value obtained for the vaccine construct was 0.93, which indicates that vaccine is non-allergenic and safe for human consumption. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
28
|
Waqas M, Aziz S, Bushra A, Halim SA, Ali A, Ullah S, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. Employing an immunoinformatics approach revealed potent multi-epitope based subunit vaccine for lymphocytic choriomeningitis virus. J Infect Public Health 2023; 16:214-232. [PMID: 36603375 DOI: 10.1016/j.jiph.2022.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Lymphocytic choriomeningitis virus (LCMV) infects many individuals worldwide and causes severe infection in the immunosuppressant recipient, spontaneous abortion, and congenital disabilities in infants. OBJECTIVES There is no specific vaccine or therapeutics available to protect against LCMV infection; thus, there is a need to design a potential vaccine to combat the virus by developing immunity in the population. Herein, we attempted to design a potent multi-epitope vaccine for LCMV using immunoinformatics methods. METHODS The whole proteome of the virus was screened and mapped to extract immunodominant B-cell and T-cell epitopes which were fused with appropriate linkers (EAAAK, GGGS, AAY, GPGPG, and AAY), PADRE sequence (13aa) and an adjuvant (50 S ribosomal protein L7/L12) to formulate a multi-epitope vaccine ensemble. Codon adaptation and in silico cloning of the constructed vaccine were carried out using bioinformatics tools. The secondary and tertiary structure of the vaccine construct was predicted and refined. The physicochemical profile of the designed vaccine was analyzed, and the multi-epitope vaccine's potential to bind Toll-like receptors (TLR2 and TLR4) was evaluated through molecular docking and molecular dynamics simulations. Computational immune simulation of the designed vaccine antigen was performed using the C-ImmSim server. RESULTS The designed multi-epitope-based vaccine (613 aa) comprised 26 immunodominant (six B-cell, nine cytotoxic T lymphocytes, and 11 helper T lymphocytes) epitopes and is predicted antigenic, non-toxic, non-allergen, soluble, and topographically accessible with a suitable physicochemical profile. The designed vaccine is expected to cover a broad worldwide population (96.35 %) and stimulate a robust adaptive immune response against the virus upon administration. In silico cloning of the constructed vaccine in PET28a (+) vector ensured its optimal expression in the Escherichia coli system. Molecular docking, molecular dynamics simulation, and binding free energy estimation collectively support the stability and energetically favourable interaction of the modeled vaccine-TLR2/4 complexes. CONCLUSION The designed multi-epitope vaccine in the present study could serve as a potential vaccine candidate to protect against LMCV infection; however, the experimental validation and safety testing of the vaccine is warranted to validate the study's outcomes.
Collapse
Affiliation(s)
- Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman; Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, 2100, Pakistan
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, the University of Agriculture Peshawar, Peshawar 25000, Pakistan
| | - Aiman Bushra
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, 2100, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
29
|
Margaroni M, Agallou M, Tsanaktsidou E, Kammona O, Kiparissides C, Karagouni E. Immunoinformatics Approach to Design a Multi-Epitope Nanovaccine against Leishmania Parasite: Elicitation of Cellular Immune Responses. Vaccines (Basel) 2023; 11:304. [PMID: 36851182 PMCID: PMC9960668 DOI: 10.3390/vaccines11020304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis is a vector-borne disease caused by an intracellular parasite of the genus Leishmania with different clinical manifestations that affect millions of people worldwide, while the visceral form may be fatal if left untreated. Since the available chemotherapeutic agents are not satisfactory, vaccination emerges as the most promising strategy for confronting leishmaniasis. In the present study, a reverse vaccinology approach was adopted to design a pipeline starting from proteome analysis of three different Leishmania species and ending with the selection of a pool of MHCI- and MHCII-binding epitopes. Epitopes from five parasite proteins were retrieved and fused to construct a multi-epitope chimeric protein, named LeishChim. Immunoinformatics analyses indicated that LeishChim was a stable, non-allergenic and immunogenic protein that could bind strongly onto MHCI and MHCII molecules, suggesting it as a potentially safe and effective vaccine candidate. Preclinical evaluation validated the in silico prediction, since the LeishChim protein, encapsulated simultaneously with monophosphoryl lipid A (MPLA) into poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles, elicited specific cellular immune responses when administered to BALB/c mice. These were characterized by the development of memory CD4+ T cells, as well as IFNγ- and TNFα-producing CD4+ and CD8+ T cells, supporting the potential of LeishChim as a vaccine candidate.
Collapse
Affiliation(s)
- Maritsa Margaroni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| | - Maria Agallou
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, 57 001 Thessaloniki, Greece
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, 125 21 Athens, Greece
| |
Collapse
|
30
|
Waqas M, Aziz S, Liò P, Khan Y, Ali A, Iqbal A, Khan F, Almajhdi FN. Immunoinformatics design of multivalent epitope vaccine against monkeypox virus and its variants using membrane-bound, enveloped, and extracellular proteins as targets. Front Immunol 2023; 14:1091941. [PMID: 36776835 PMCID: PMC9908764 DOI: 10.3389/fimmu.2023.1091941] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The current monkeypox (MPX) outbreak, caused by the monkeypox virus (MPXV), has turned into a global concern, with over 59,000 infection cases and 23 deaths worldwide. Objectives Herein, we aimed to exploit robust immunoinformatics approach, targeting membrane-bound, enveloped, and extracellular proteins of MPXV to formulate a chimeric antigen. Such a strategy could similarly be applied for identifying immunodominant epitopes and designing multi-epitope vaccine ensembles in other pathogens responsible for chronic pathologies that are difficult to intervene against. Methods A reverse vaccinology pipeline was used to select 11 potential vaccine candidates, which were screened and mapped to predict immunodominant B-cell and T-cell epitopes. The finalized epitopes were merged with the aid of suitable linkers, an adjuvant (Resuscitation-promoting factor), a PADRE sequence (13 aa), and an HIV TAT sequence (11 aa) to formulate a multivalent epitope vaccine. Bioinformatics tools were employed to carry out codon adaptation and computational cloning. The tertiary structure of the chimeric vaccine construct was modeled via I-TASSER, and its interaction with Toll-like receptor 4 (TLR4) was evaluated using molecular docking and molecular dynamics simulation. C-ImmSim server was implemented to examine the immune response against the designed multi-epitope antigen. Results and discussion The designed chimeric vaccine construct included 21 immunodominant epitopes (six B-cell, eight cytotoxic T lymphocyte, and seven helper T-lymphocyte) and is predicted non-allergen, antigenic, soluble, with suitable physicochemical features, that can promote cross-protection among the MPXV strains. The selected epitopes indicated a wide global population coverage (93.62%). Most finalized epitopes have 70%-100% sequence similarity with the experimentally validated immune epitopes of the vaccinia virus, which can be helpful in the speedy progression of vaccine design. Lastly, molecular docking and molecular dynamics simulation computed stable and energetically favourable interaction between the putative antigen and TLR4. Conclusion Our results show that the multi-epitope vaccine might elicit cellular and humoral immune responses and could be a potential vaccine candidate against the MPXV infection. Further experimental testing of the proposed vaccine is warranted to validate its safety and efficacy profile.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Fahad Nasser Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Shah SZ, Jabbar B, Mirza MU, Waqas M, Aziz S, Halim SA, Ali A, Rafique S, Idrees M, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. An Immunoinformatics Approach to Design a Potent Multi-Epitope Vaccine against Asia-1 Genotype of Crimean-Congo Haemorrhagic Fever Virus Using the Structural Glycoproteins as a Target. Vaccines (Basel) 2022; 11:61. [PMID: 36679906 PMCID: PMC9867508 DOI: 10.3390/vaccines11010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Crimean-Congo haemorrhagic fever (CCHF), caused by Crimean-Congo haemorrhagic fever virus (CCHFV), is a disease of worldwide importance (endemic yet not limited to Asia, Middle East, and Africa) and has triggered several outbreaks amounting to a case fatality rate of 10-40% as per the World Health Organization. Genetic diversity and phylogenetic data revealed that the Asia-1 genotype of CCHFV remained dominant in Pakistan, where 688 confirmed cases were reported between the 2012-2022 period. Currently, no approved vaccine is available to tackle the viral infection. Epitope-based vaccine design has gained significant attention in recent years due to its safety, timeliness, and cost efficiency compared to conventional vaccines. In the present study, we employed a robust immunoinformatics-based approach targeting the structural glycoproteins G1 and G2 of CCHFV (Asia-1 genotype) to design a multi-epitope vaccine construct. Five B-cells and six cytotoxic T-lymphocytes (CTL) epitopes were mapped and finalized from G1 and G2 and were fused with suitable linkers (EAAAK, GGGS, AAY, and GPGPG), a PADRE sequence (13 aa), and an adjuvant (50S ribosomal protein L7/L12) to formulate a chimeric vaccine construct. The selected CTL epitopes showed high affinity and stable binding with the binding groove of common human HLA class I molecules (HLA-A*02:01 and HLA-B*44:02) and mouse major histocompatibility complex class I molecules. The chimeric vaccine was predicted to be an antigenic, non-allergenic, and soluble molecule with a suitable physicochemical profile. Molecular docking and molecular dynamics simulation indicated a stable and energetically favourable interaction between the constructed antigen and Toll-like receptors (TLR2, TLR3, and TLR4). Our results demonstrated that innate, adaptive, and humoral immune responses could be elicited upon administration of such a potent muti-epitope vaccine construct. These results could be helpful for an experimental vaccinologist to develop an effective vaccine against the Asia-1 genotype of CCHFV.
Collapse
Affiliation(s)
- Syed Zawar Shah
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 21120, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Oman
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Oman
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 21120, Pakistan
| | - Shazia Rafique
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Muhammad Idrees
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum 11111, Sudan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Oman
| |
Collapse
|
32
|
Recent Advances in Cancer Vaccines: Challenges, Achievements, and Futuristic Prospects. Vaccines (Basel) 2022; 10:vaccines10122011. [PMID: 36560420 PMCID: PMC9788126 DOI: 10.3390/vaccines10122011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a chronic disease, and it can be lethal due to limited therapeutic options. The conventional treatment options for cancer have numerous challenges, such as a low blood circulation time as well as poor solubility of anticancer drugs. Therapeutic cancer vaccines emerged to try to improve anticancer drugs' efficiency and to deliver them to the target site. Cancer vaccines are considered a viable therapeutic technique for most solid tumors. Vaccines boost antitumor immunity by delivering tumor antigens, nucleic acids, entire cells, and peptides. Cancer vaccines are designed to induce long-term antitumor memory, causing tumor regression, eradicate minimal residual illness, and prevent non-specific or unpleasant effects. These vaccines can assist in the elimination of cancer cells from various organs or organ systems in the body, with minimal risk of tumor recurrence or metastasis. Vaccines and antigens for anticancer therapy are discussed in this review, including current vaccine adjuvants and mechanisms of action for various types of vaccines, such as DNA- or mRNA-based cancer vaccines. Potential applications of these vaccines focusing on their clinical use for better therapeutic efficacy are also discussed along with the latest research available in this field.
Collapse
|
33
|
Ghasemi A, Wang S, Sahay B, Abbott JR, Curtiss R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front Immunol 2022; 13:1034683. [PMID: 36466847 PMCID: PMC9716130 DOI: 10.3389/fimmu.2022.1034683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Jeffrey R. Abbott
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| |
Collapse
|
34
|
Aziz S, Almajhdi FN, Waqas M, Ullah I, Salim MA, Khan NA, Ali A. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Front Immunol 2022; 13:1004804. [PMID: 36311762 PMCID: PMC9606759 DOI: 10.3389/fimmu.2022.1004804] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The current global outbreak of monkeypox (MPX) disease, caused by Monkeypox virus (MPXV), has resulted in 16 thousand infection cases, five deaths, and has been declared a global health emergency of international concern by the World Health Organization. Given current challenges in the safety of existing vaccines, a vaccine to prevent MPX infection and/or onset of symptoms would significantly advance disease management. In this context, a multi-epitope-based vaccine could be a well-suited approach. Herein, we searched a publicly accessible database (Virus Pathogen Database and Analysis Resource) for MPXV immune epitopes from various antigens. We prioritized a group of epitopes (10 CD8+ T cells and four B-cell epitopes) using a computer-aided technique based on desirable immunological and physicochemical properties, sequence conservation criteria, and non-human homology. Three multi-epitope vaccines were constructed (MPXV-1–3) by fusing finalized epitopes with the aid of appropriate linkers and adjuvant (beta-defensin 3, 50S ribosomal protein L7/L12, and Heparin-binding hemagglutinin). Codon optimization and in silico cloning in the pET28a (+) expression vector ensure the optimal expression of each construct in the Escherichia Coli system. Two and three-dimensional structures of the constructed vaccines were predicted and refined. The optimal binding mode of the construct with immune receptors [Toll-like receptors (TLR2, TLR3, and TLR4)] was explored by molecular docking, which revealed high docking energies of MPXV-1–TLR3 (–99.09 kcal/mol), MPXV-2–TLR3 (–98.68 kcal/mol), and MPXV-3–TLR2 (–85.22 kcal/mol). Conformational stability and energetically favourable binding of the vaccine-TLR2/3 complexes were assessed by performing molecular dynamics simulations and free energy calculations (Molecular Mechanics/Generalized Born Surface Area method). In silico immune simulation suggested that innate, adaptive, and humoral responses will be elicited upon administration of such potent multi-epitope vaccine constructs. The vaccine constructs are antigenic, non-allergen, non-toxic, soluble, topographically exposed, and possess favourable physicochemical characteristics. These results may help experimental vaccinologists design a potent MPX vaccine.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Fahad Nasser Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Waqas
- Department of Biotechnology and genetic Engineering, Hazara University, Mansehra, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- *Correspondence: Muhammad Waqas, ; Amjad Ali,
| | - Inam Ullah
- Department of Biotechnology and genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Muhammad Adil Salim
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Nasir Ali Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Amjad Ali
- Department of Biotechnology and genetic Engineering, Hazara University, Mansehra, Pakistan
- *Correspondence: Muhammad Waqas, ; Amjad Ali,
| |
Collapse
|
35
|
Sato-Kaneko F, Yao S, Lao FS, Sako Y, Jin J, Shukla NM, Cottam HB, Chan M, Belsuzarri MM, Carson DA, Hayashi T. A Dual Adjuvant System for Intranasal Boosting of Local and Systemic Immunity for Influenza Vaccination. Vaccines (Basel) 2022; 10:1694. [PMID: 36298559 PMCID: PMC9611830 DOI: 10.3390/vaccines10101694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Systemically vaccinated individuals against COVID-19 and influenza may continue to support viral replication and shedding in the upper airways, contributing to the spread of infections. Thus, a vaccine regimen that enhances mucosal immunity in the respiratory mucosa is needed to prevent a pandemic. Intranasal/pulmonary (IN) vaccines can promote mucosal immunity by promoting IgA secretion at the infection site. Here, we demonstrate that an intramuscular (IM) priming-IN boosting regimen with an inactivated influenza A virus adjuvanted with the liposomal dual TLR4/7 adjuvant (Fos47) enhances systemic and local/mucosal immunity. The IN boosting with Fos47 (IN-Fos47) enhanced antigen-specific IgA secretion in the upper and lower respiratory tracts compared to the IM boosting with Fos47 (IM-Fos47). The secreted IgA induced by IN-Fos47 was also cross-reactive to multiple influenza virus strains. Antigen-specific tissue-resident memory T cells in the lung were increased after IN boosting with Fos47, indicating that IN-Fos47 established tissue-resident T cells. Furthermore, IN-Fos47 induced systemic cross-reactive IgG antibody titers comparable to those of IM-Fos47. Neither local nor systemic reactogenicity or adverse effects were observed after IN delivery of Fos47. Collectively, these results indicate that the IM/IN regimen with Fos47 is safe and provides both local and systemic anti-influenza immune responses.
Collapse
|
36
|
Mia MM, Hasan M, Ahmed S, Rahman MN. Insight into the first multi-epitope-based peptide subunit vaccine against avian influenza A virus (H5N6): An immunoinformatics approach. INFECTION, GENETICS AND EVOLUTION 2022; 104:105355. [PMID: 36007760 PMCID: PMC9394107 DOI: 10.1016/j.meegid.2022.105355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
The rampant spread of highly pathogenic avian influenza A (H5N6) virus has drawn additional concerns along with ongoing Covid-19 pandemic. Due to its migration-related diffusion, the situation is deteriorating. Without an existing effective therapy and vaccines, it will be baffling to take control measures. In this regard, we propose a revers vaccinology approach for prediction and design of a multi-epitope peptide based vaccine. The induction of humoral and cell-mediated immunity seems to be the paramount concern for a peptide vaccine candidate; thus, antigenic B and T cell epitopes were screened from the surface, membrane and envelope proteins of the avian influenza A (H5N6) virus, and passed through several immunological filters to determine the best possible one. Following that, the selected antigenic with immunogenic epitopes and adjuvant were linked to finalize the multi-epitope-based peptide vaccine by appropriate linkers. For the prediction of an effective binding, molecular docking was carried out between the vaccine and immunological receptors (TLR8). Strong binding affinity and good docking scores clarified the stringency of the vaccines. Furthermore, molecular dynamics simulation was performed within the highest binding affinity complex to observe the stability, and minimize the designed vaccine's high mobility region to order to increase its stability. Then, Codon optimization and other physicochemical properties were performed to reveal that the vaccine would be suitable for a higher expression at cloning level and satisfactory thermostability condition. In conclusion, predicting the overall in silico assessment, we anticipated that our designed vaccine would be a plausible prevention against avian influenza A (H5N6) virus.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Nahian Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
37
|
Arwansyah A, Arif AR, Kade A, Taiyeb M, Ramli I, Santoso T, Ningsih P, Natsir H, Tahril T, Uday Kumar K. Molecular modelling on multiepitope-based vaccine against SARS-CoV-2 using immunoinformatics, molecular docking, and molecular dynamics simulation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:649-675. [PMID: 36083166 DOI: 10.1080/1062936x.2022.2117846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 has made a worldwide health emergency. Despite the fact that current vaccines are readily available, several SARSCoV-2 variants affecting the existing vaccine are to be less effective due to the mutations in the structural proteins. Furthermore, the appearance of the new variants cannot be easily predicted in the future. Therefore, the attempts to construct new vaccines or to modify the current vaccines are still pivotal works for preventing the spread of the virus. In the present investigation, the computational analysis through immunoinformatics, molecular docking, and molecular dynamics (MD) simulation is employed to construct an effective vaccine against SARS-CoV2. The structural proteins of SARS-CoV2 are utilized to create a multiepitope-based vaccine (MEV). According to our findings presented by systematic procedures in the current investigation, the MEV construct may be able to trigger a strong immunological response against the virus. Therefore, the designed MEV could be a potential vaccine candidate against SARS-CoV-2, and also it is expected to be effective for other variants.
Collapse
Affiliation(s)
- A Arwansyah
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - A R Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - A Kade
- Department of Physics Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - M Taiyeb
- Department of Biology, Faculty of Mathematics and Natural Sciences, Makassar State University, Makassar, Indonesia
| | - I Ramli
- Department of Physics, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - T Santoso
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - P Ningsih
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - H Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - T Tahril
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - K Uday Kumar
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia Cesk´e Budˇejovice, Czech Republic
| |
Collapse
|
38
|
Saha S, Vashishtha S, Kundu B, Ghosh M. In-silico design of an immunoinformatics based multi-epitope vaccine against Leishmania donovani. BMC Bioinformatics 2022; 23:319. [PMID: 35931960 PMCID: PMC9354309 DOI: 10.1186/s12859-022-04816-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visceral Leishmaniasis (VL) is a fatal vector-borne parasitic disorder occurring mainly in tropical and subtropical regions. VL falls under the category of neglected tropical diseases with growing drug resistance and lacking a licensed vaccine. Conventional vaccine synthesis techniques are often very laborious and challenging. With the advancement of bioinformatics and its application in immunology, it is now more convenient to design multi-epitope vaccines comprising predicted immuno-dominant epitopes of multiple antigenic proteins. We have chosen four antigenic proteins of Leishmania donovani and identified their T-cell and B-cell epitopes, utilizing those for in-silico chimeric vaccine designing. The various physicochemical characteristics of the vaccine have been explored and the tertiary structure of the chimeric construct is predicted to perform docking studies and molecular dynamics simulations. RESULTS The vaccine construct is generated by joining the epitopes with specific linkers. The predicted tertiary structure of the vaccine has been found to be valid and docking studies reveal the construct shows a high affinity towards the TLR-4 receptor. Population coverage analysis shows the vaccine can be effective on the majority of the world population. In-silico immune simulation studies confirms the vaccine to raise a pro-inflammatory response with the proliferation of activated T and B cells. In-silico codon optimization and cloning of the vaccine nucleic acid sequence have also been achieved in the pET28a vector. CONCLUSION The above bioinformatics data support that the construct may act as a potential vaccine. Further wet lab synthesis of the vaccine and in vivo works has to be undertaken in animal model to confirm vaccine potency.
Collapse
Affiliation(s)
- Subhadip Saha
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Monidipa Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
39
|
Hasan M, Mia M. Exploratory Algorithm of a Multi-epitope-based Subunit Vaccine Candidate Against Cryptosporidium hominis: Reverse Vaccinology-Based Immunoinformatic Approach. Int J Pept Res Ther 2022; 28:134. [PMID: 35911179 PMCID: PMC9315849 DOI: 10.1007/s10989-022-10438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 12/03/2022]
Abstract
Cryptosporidiosis is the leading protozoan-induced cause of diarrheal illness in children, and it has been linked to childhood mortality, malnutrition, cognitive development, with retardation of growth. Cryptosporidium hominis, the anthroponotically transmitted species within the Cryptosporidium genus, contributes significantly to the global burden of infection, accounting for the majority of clinical cases in numerous nations, as well as its emergence in the last decade is largely due to detections obtained through noteworthy epidemiologic research. Nevertheless, there is no vaccine available, and the only licensed medication, nitazoxanide, has been demonstrated to have efficacy limitations in a number of patient groups recognized to be at high risk of complications. Therefore, current study delineates the computational vaccine design for Cryptosporidium hominis, the notable pathogen for enteric diarrhea. Firstly, a comprehensive literature search was conducted to identify six proteins based on their toxigenicity, allergenicity, antigenicity, and prediction of transmembrane helices to make up a multi-epitope-based subunit vaccine. Following that, antigenic non-toxic HTL epitope, CTL epitope with B cell epitope were predicted from the selected proteins and construct a vaccine candidate with adding an adjuvant and some linkers with immunologically superior epitopes. Afterwards, the constructed vaccine candidates and TLR2 receptor were put into the ClusPro server for molecular dynamic simulation to know the binding stability of the vaccine-TLR2 complex. Following that, Escherichia coli strain K12 was used as a cloning host for the chosen vaccine construct via the JCat server. As a result of the findings, it was resolute that the proposed chimeric peptide vaccine could improve the immune response to Cryptosporidium hominis.
Collapse
Affiliation(s)
- Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| | - Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100 Bangladesh
| |
Collapse
|
40
|
Si Y, Covello L, Wang S, Covello T, Gelman A. Beyond Vaccination Rates: A Synthetic Random Proxy Metric of Total SARS-CoV-2 Immunity Seroprevalence in the Community. Epidemiology 2022; 33:457-464. [PMID: 35394966 PMCID: PMC9148633 DOI: 10.1097/ede.0000000000001488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Explicit knowledge of total community-level immune seroprevalence is critical to developing policies to mitigate the social and clinical impact of SARS-CoV-2. Publicly available vaccination data are frequently cited as a proxy for population immunity, but this metric ignores the effects of naturally acquired immunity, which varies broadly throughout the country and world. Without broad or random sampling of the population, accurate measurement of persistent immunity post-natural infection is generally unavailable. METHODS To enable tracking of both naturally acquired and vaccine-induced immunity, we set up a synthetic random proxy based on routine hospital testing for estimating total immunoglobulin G (IgG) prevalence in the sampled community. Our approach analyzed viral IgG testing data of asymptomatic patients who presented for elective procedures within a hospital system. We applied multilevel regression and poststratification to adjust for demographic and geographic discrepancies between the sample and the community population. We then applied state-based vaccination data to categorize immune status as driven by natural infection or by vaccine. RESULTS We validated the model using verified clinical metrics of viral and symptomatic disease incidence to show the expected biologic correlation of these entities with the timing, rate, and magnitude of seroprevalence. In mid-July 2021, the estimated immunity level was 74% with the administered vaccination rate of 45% in the two counties. CONCLUSIONS Our metric improves real-time understanding of immunity to COVID-19 as it evolves and the coordination of policy responses to the disease, toward an inexpensive and easily operational surveillance system that transcends the limits of vaccination datasets alone.
Collapse
Affiliation(s)
- Yajuan Si
- From the Institute for Social Research, University of Michigan, Ann Arbor, MI
| | | | - Siquan Wang
- Department of Biostatistics, Columbia University, New York, NY
| | | | - Andrew Gelman
- Department of Statistics, Columbia University, New York, NY
- Department of Political Science, Columbia University, New York, NY
| |
Collapse
|
41
|
The role of microbiota in colorectal cancer. Folia Microbiol (Praha) 2022; 67:683-691. [PMID: 35534716 DOI: 10.1007/s12223-022-00978-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Abstract
Cancer is one of the most important causes of death throughout the world, and the mortality rate is increasing significantly due to the aging of the population. One of the most common types of cancer is colorectal cancer (CRC). Human microbial ecosystems use metabolism to make important impacts on the body physiology. An intensive literature review was made to investigate the correlations between human gut microbiota and the incidence of CRC. The results of these studies show that there are differences in the composition of microbiota between CRC patients and normal people and the microorganisms in CRC patients are very different from healthy individuals. Therefore, changes in the microbiome can be used as a biomarker for the early detection of CRC. On the other hand, the intestinal flora is may be act as a powerful weapon against CRC in the future.
Collapse
|
42
|
Xiao K, Gillissie ES, Lui LMW, Ceban F, Teopiz KM, Gill H, Cao B, Ho R, Rosenblat JD, McIntyre RS. Immune response to vaccination in adults with mental disorders: A systematic review. J Affect Disord 2022; 304:66-77. [PMID: 35167926 PMCID: PMC8837484 DOI: 10.1016/j.jad.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mental disorders are associated with immune dysregulation as measured by serum levels of biological markers of immunity. Adults with mental disorders have also been reported to have attenuated post vaccine immune response. The COVID-19 pandemic has invited the need to determine whether individuals with mental disorders exhibit differential immune response following the administration of vaccines for other infections. METHODS A systematic search of MEDLINE, Embase, Cochrane, and PsycInfo was conducted from inception to May 2021 investigating vaccine response in persons with mental disorders, as measured by biological markers of immunity (i.e., antibodies, cytokines). RESULTS Thirteen articles were identified which evaluated vaccine efficacy in persons with mental disorders. Individuals with major depressive disorder (MDD) or schizophrenia revealed attenuated immune response to vaccination, or no statistical difference compared to control subjects. Individuals with anorexia nervosa or post-traumatic stress disorder (PTSD) displayed no attenuated post-vaccination antibody level. Individuals with insomnia displayed lower levels of antibodies after vaccination, whereas individuals with obstructive sleep apnea (OSA) displayed no difference in vaccine response compared to control subjects. LIMITATIONS The limitations of this review include the relatively few articles included (n = 13) and small sample sizes (less than thirty subjects) in the majority of articles. CONCLUSION Vaccine response in adults with a mental disorder remains inconclusive. Notwithstanding the heterogeneity and relatively small number of studies, available evidence does suggest attenuated immune response across disparate vaccinations. Future research is required to confirm vaccine efficacy in persons with mental disorders, especially regarding immune responses to COVID-19 vaccination.
Collapse
Affiliation(s)
- Karren Xiao
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325,Toronto, ON M5T 2S8, Canada
| | - Emily S Gillissie
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325,Toronto, ON M5T 2S8, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325,Toronto, ON M5T 2S8, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Felicia Ceban
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325,Toronto, ON M5T 2S8, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Kayla M Teopiz
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325,Toronto, ON M5T 2S8, Canada
| | - Hartej Gill
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325,Toronto, ON M5T 2S8, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, PR China
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325,Toronto, ON M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325,Toronto, ON M5T 2S8, Canada; Department of Psychiatry, University of Toronto, Canada; Department of Pharmacology, University of Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| |
Collapse
|
43
|
Liu J, Mao Q, Wu X, He Q, Bian L, Bai Y, Wang Z, Wang Q, Zhang J, Liang Z, Xu M. Considerations for the Feasibility of Neutralizing Antibodies as a Surrogate Endpoint for COVID-19 Vaccines. Front Immunol 2022; 13:814365. [PMID: 35572565 PMCID: PMC9092276 DOI: 10.3389/fimmu.2022.814365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/31/2022] [Indexed: 01/02/2023] Open
Abstract
To effectively control and prevent the pandemic of coronavirus disease 2019 (COVID-19), suitable vaccines have been researched and developed rapidly. Currently, 31 COVID-19 vaccines have been approved for emergency use or authorized for conditional marketing, with more than 9.3 billion doses of vaccines being administered globally. However, the continuous emergence of variants with high transmissibility and an ability to escape the immune responses elicited by vaccines poses severe challenges to the effectiveness of approved vaccines. Hundreds of new COVID-19 vaccines based on different technology platforms are in need of a quick evaluation for their efficiencies. Selection and enrollment of a suitable sample of population for conducting these clinical trials is often challenging because the pandemic so widespread and also due to large scale vaccination. To overcome these hurdles, methods of evaluation of vaccine efficiency based on establishment of surrogate endpoints could expedite the further research and development of vaccines. In this review, we have summarized the studies on neutralizing antibody responses and effectiveness of the various COVID-19 vaccines. Using this data we have analyzed the feasibility of establishing surrogate endpoints for evaluating the efficacy of vaccines based on neutralizing antibody titers. The considerations discussed here open up new avenues for devising novel approaches and strategies for the research and develop as well as application of COVID-19 vaccines.
Collapse
Affiliation(s)
- Jianyang Liu
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Qunying Mao
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Xing Wu
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Qian He
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Lianlian Bian
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Yu Bai
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | | | - Qian Wang
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Jialu Zhang
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, China
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, Beijing, China
- NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing, China
| |
Collapse
|
44
|
Badaras S, Ruzauskas M, Gruzauskas R, Zokaityte E, Starkute V, Mockus E, Klementaviciute J, Bartkevics V, Vadopalas L, Klupsaite D, Dauksiene A, Zokaityte G, Mickiene R, Bartkiene E. Strategy for Local Plant-Based Material Valorisation to Higher-Value Feed Stock for Piglets. Animals (Basel) 2022; 12:1092. [PMID: 35565519 PMCID: PMC9100104 DOI: 10.3390/ani12091092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, a 41-day experiment was conducted using 300 (21-day-old) Large White/Norwegian Landrace piglets (100 piglets in each group). Three dietary treatments were compared: (i) a basal diet (C-I), (ii) a basal diet with the addition of extruded-fermented wheat bran (Wex130/screwspeed25Lpa) (TG-II), and (iii) a basal diet with the addition of dried sugar beet pulp (TG-III). Analyses of piglets' blood parameters, faecal microbial and physico-chemical characteristics, and piglets' growth performance were performed. It was found that the extrusion and fermentation combination led to an additional functional value of Wex130/screwspeed25Lpa, which showed desirable antimicrobial and antifungal properties in vitro (inhibited 5 out of 10 tested pathogenic strains and 3 out of 11 tested fungi). Both treatments reduced total enterobacteria and increased lactic acid bacteria counts in piglets' faeces. The consistency of the piglets' faeces (in all three groups) was within a physiological range throughout the whole experiment. Strong positive correlations were found between the LAB count in piglets' faeces and butanoic acid; butanoic acid, 3-methyl-; butyric acid (2-methyl-); pentanoic acid. The treatment groups obtained a significantly higher body weight gain and average daily gain. Finally, substituting the piglets' diet with Wex130/screwspeed25Lpa and sugar beet pulp led to favourable changes in micro-organism populations in the piglets' faeces as well as better growth performance.
Collapse
Affiliation(s)
- Sarunas Badaras
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Modestas Ruzauskas
- Institute of Microbiology and Virology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania;
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Romas Gruzauskas
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania;
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Jolita Klementaviciute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment BIOR, Lejupes ilea 3, LV-1076 Riga, Latvia;
| | - Laurynas Vadopalas
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Agila Dauksiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
- Department of Anatomy and Physiology, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
| | - Ruta Mickiene
- Instrumental Analysis Open Access Centre, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania;
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania; (S.B.); (E.Z.); (V.S.); (E.M.); (J.K.) (L.V.); (D.K.); (A.D.); (G.Z.)
- Department of Food Safety and Quality, Faculty of Veterinary Medicine, Lithuanian University of Health Sciences, Mickeviciaus Str. 9, LT-44307 Kaunas, Lithuania
| |
Collapse
|
45
|
Tian X, Zhang Y, He Z, Li S, Yan D, Zhu Z, Wan Y, Wang W. Successive Site Translocating Inoculation Improved T Cell Responses Elicited by a DNA Vaccine Encoding SARS-CoV-2 S Protein. Front Immunol 2022; 13:875236. [PMID: 35514964 PMCID: PMC9062103 DOI: 10.3389/fimmu.2022.875236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
A variety of methods have been explored to increase delivery efficiencies for DNA vaccine. However, the immunogenicity of DNA vaccines has not been satisfactorily improved. Unlike most of the previous attempts, we provided evidence suggesting that changing the injection site successively (successively site-translocated inoculation, SSTI) could significantly enhance the immunogenicity of DNA vaccines in a previous study. To simplify the strategy and to evaluate its impact on candidate SARS-CoV-2 vaccines, we immunized mice with either a SARS-CoV-2 spike-based DNA vaccine or a spike protein subunit vaccine via three different inoculation strategies. Our data demonstrated that S protein specific antibody responses elicited by the DNA vaccine or the protein subunit vaccine showed no significant difference among different inoculation strategies. Of interest, compared with the conventional site fixed inoculation (SFI), both successive site-translocating inoculation (SSTI) and the simplified translocating inoculation (STI) strategy improved specific T cell responses elicited by the DNA vaccine. More specifically, the SSTI strategy significantly improved both the monofunctional (IFN-γ+IL-2-TNF-α-CD8+) and the multifunctional (IFN-γ+IL-2-TNF-α+CD8+, IFN-γ+IL-2-TNF-α+CD4+, IFN-γ+IL-2+TNF-α+CD4+) T cell responses, while the simplified translocating inoculation (STI) strategy significantly improved the multifunctional CD8+ (IFN-γ+IL-2-TNF-α+CD8+, IFN-γ+IL-2+TNF-α+CD8+) and CD4+ (IFN-γ+IL-2-TNF-α+CD4+, IFN-γ+IL-2+TNF-α+CD4+) T cell responses. The current study confirmed that changing the site of intra muscular injection can significantly improve the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- Xiangxiang Tian
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Disease, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yifan Zhang
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Disease, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Zhangyufan He
- Department of Infectious Disease, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaoshuai Li
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Dongmei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yanmin Wan
- Department of Infectious Disease, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Department of Radiology, Shanghai Public Health Clinical Center, Shanghai, China
| | - Wanhai Wang
- Department of Medical Laboratory, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Abas AH, Marfuah S, Idroes R, Kusumawaty D, Fatimawali, Park MN, Siyadatpanah A, Alhumaydhi FA, Mahmud S, Tallei TE, Emran TB, Kim B. Can the SARS-CoV-2 Omicron Variant Confer Natural Immunity against COVID-19? Molecules 2022; 27:2221. [PMID: 35408618 PMCID: PMC9000495 DOI: 10.3390/molecules27072221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is still ongoing, with no signs of abatement in sight. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of this pandemic and has claimed over 5 million lives, is still mutating, resulting in numerous variants. One of the newest variants is Omicron, which shows an increase in its transmissibility, but also reportedly reduces hospitalization rates and shows milder symptoms, such as in those who have been vaccinated. As a result, many believe that Omicron provides a natural vaccination, which is the first step toward ending the COVID-19 pandemic. Based on published research and scientific evidence, we review and discuss how the end of this pandemic is predicted to occur as a result of Omicron variants being surpassed in the community. In light of the findings of our research, we believe that it is most likely true that the Omicron variant is a natural way of vaccinating the masses and slowing the spread of this deadly pandemic. While the mutation that causes the Omicron variant is encouraging, subsequent mutations do not guarantee that the disease it causes will be less severe. As the virus continues to evolve, humans must constantly adapt by increasing their immunity through vaccination.
Collapse
Affiliation(s)
- Abdul Hawil Abas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Siti Marfuah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Kopelma Darussalam, Banda Aceh 23111, Aceh, Indonesia;
| | - Diah Kusumawaty
- Department of Biology, Faculty of Mathematics and Natural Sciences Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia;
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shafi Mahmud
- Department of Genome Science, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia;
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; (A.H.A.); (S.M.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea;
| |
Collapse
|
47
|
Soltan MA, Behairy MY, Abdelkader MS, Albogami S, Fayad E, Eid RA, Darwish KM, Elhady SS, Lotfy AM, Alaa Eldeen M. In silico Designing of an Epitope-Based Vaccine Against Common E. coli Pathotypes. Front Med (Lausanne) 2022; 9:829467. [PMID: 35308494 PMCID: PMC8931290 DOI: 10.3389/fmed.2022.829467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli (E. coli) is a Gram-negative bacterium that belongs to the family Enterobacteriaceae. While E. coli can stay as an innocuous resident in the digestive tract, it can cause a group of symptoms ranging from diarrhea to live threatening complications. Due to the increased rate of antibiotic resistance worldwide, the development of an effective vaccine against E. coli pathotypes is a major health priority. In this study, a reverse vaccinology approach along with immunoinformatics has been applied for the detection of potential antigens to develop an effective vaccine. Based on our screening of 5,155 proteins, we identified lipopolysaccharide assembly protein (LptD) and outer membrane protein assembly factor (BamA) as vaccine candidates for the current study. The conservancy of these proteins in the main E. coli pathotypes was assessed through BLASTp to make sure that the designed vaccine will be protective against major E. coli pathotypes. The multitope vaccine was constructed using cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL), and B cell lymphocyte (BCL) epitopes with suitable linkers and adjuvant. Following that, it was analyzed computationally where it was found to be antigenic, soluble, stable, and non-allergen. Additionally, the adopted docking study, as well as all-atom molecular dynamics simulation, illustrated the promising predicted affinity and free binding energy of this constructed vaccine against the human Toll-like receptor-4 (hTLR-4) dimeric state. In this regard, wet lab studies are required to prove the efficacy of the potential vaccine construct that demonstrated promising results through computational validation.
Collapse
Affiliation(s)
- Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mennatallah S. Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Refaat A. Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Lotfy
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammad Alaa Eldeen
- Division of Cell Biology, Histology and Genetics, Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
48
|
Anand S, Montez-Rath ME, Han J, Garcia P, Cadden L, Hunsader P, Morgan C, Kerschmann R, Beyer P, Dittrich M, Block GA, Chertow GM, Parsonnet J. SARS-CoV-2 Vaccine Antibody Response and Breakthrough Infection in Patients Receiving Dialysis. Ann Intern Med 2022; 175:371-378. [PMID: 34904856 PMCID: PMC8722718 DOI: 10.7326/m21-4176] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Whether breakthrough SARS-CoV-2 infections after vaccination are related to the level of postvaccine circulating antibody is unclear. OBJECTIVE To determine longitudinal antibody-based response and risk for breakthrough infection after SARS-CoV-2 vaccination. DESIGN Prospective study. SETTING Nationwide sample from dialysis facilities. PATIENTS 4791 patients receiving dialysis. MEASUREMENTS Remainder plasma from a laboratory processing routine monthly tests was used to measure qualitative and semiquantitative antibodies to the receptor-binding domain (RBD) of SARS-CoV-2. To evaluate whether peak or prebreakthrough RBD values were associated with breakthrough infection, a nested case-control analysis matched each breakthrough case patient to 5 control patients by age, sex, and vaccination month and adjusted for diabetes status and region of residence. RESULTS Of the 4791 patients followed with monthly RBD assays, 2563 were vaccinated as of 14 September 2021. Among the vaccinated patients, the estimated proportion with an undetectable RBD response increased from 6.6% (95% CI, 5.5% to 7.8%) 14 to 30 days after vaccination to 20.2% (CI, 17.0% to 23.3%) 5 to 6 months after vaccination. Estimated median index values decreased from 91.9 (CI, 78.6 to 105.2) 14 to 30 days after vaccination to 8.4 (CI, 7.6 to 9.3) 5 to 6 months after vaccination. Breakthrough infections occurred in 56 patients, with samples collected a median of 21 days before breakthrough infection. Compared with prebreakthrough index RBD values of 23 or higher (equivalent to ≥506 binding antibody units per milliliter), prebreakthrough RBD values less than 10 and values from 10 to less than 23 were associated with higher odds for breakthrough infection (rate ratios, 11.6 [CI, 3.4 to 39.5] and 6.0 [CI, 1.5 to 23.6], respectively). LIMITATIONS Single measure of vaccine response; ascertainment of COVID-19 diagnosis from electronic health records. CONCLUSION The antibody response to SARS-CoV-2 vaccination wanes rapidly in persons receiving dialysis. In this population, the circulating antibody response is associated with risk for breakthrough infection. PRIMARY FUNDING SOURCE Ascend Clinical Laboratory.
Collapse
Affiliation(s)
- Shuchi Anand
- Department of Medicine (Nephrology), Stanford University, Palo Alto, California (S.A., M.E.M., J.H., P.G.)
| | - Maria E Montez-Rath
- Department of Medicine (Nephrology), Stanford University, Palo Alto, California (S.A., M.E.M., J.H., P.G.)
| | - Jialin Han
- Department of Medicine (Nephrology), Stanford University, Palo Alto, California (S.A., M.E.M., J.H., P.G.)
| | - Pablo Garcia
- Department of Medicine (Nephrology), Stanford University, Palo Alto, California (S.A., M.E.M., J.H., P.G.)
| | - LinaCel Cadden
- Ascend Clinical Laboratory, Redwood City, California (L.C., P.H., C.M., R.K., P.B.)
| | - Patti Hunsader
- Ascend Clinical Laboratory, Redwood City, California (L.C., P.H., C.M., R.K., P.B.)
| | - Curt Morgan
- Ascend Clinical Laboratory, Redwood City, California (L.C., P.H., C.M., R.K., P.B.)
| | - Russell Kerschmann
- Ascend Clinical Laboratory, Redwood City, California (L.C., P.H., C.M., R.K., P.B.)
| | - Paul Beyer
- Ascend Clinical Laboratory, Redwood City, California (L.C., P.H., C.M., R.K., P.B.)
| | | | | | - Glenn M Chertow
- Departments of Medicine (Nephrology) and Epidemiology and Population Health, Stanford University, Stanford, California (G.M.C.)
| | - Julie Parsonnet
- Departments of Medicine (Infectious Diseases and Geographic Medicine) and Epidemiology and Population Health, Stanford University, Stanford, California (J.P.)
| |
Collapse
|
49
|
Sherman AC, Desjardins M, Baden LR. Vaccine-Induced Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Response and the Path to Accelerating Development (Determining a Correlate of Protection). Clin Lab Med 2022; 42:111-128. [PMID: 35153045 PMCID: PMC8563351 DOI: 10.1016/j.cll.2021.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As new public health challenges relating to COVID-19 emerge, such as variant strains, waning vaccine efficacy over time, and decreased vaccine efficacy for special populations (immunocompromised hosts), it is important to determine a correlate of protection (CoP) to allow accurate bridging studies for special populations and against variants of concern. Large-scale phase 3 clinical trials are inefficient to rapidly assess novel vaccine candidates for variant strains or special populations, because these trials are slow and costly. Defining a practical CoP will aid in efficiently conducting future assessments to further describe protection for individuals and on a population level for surveillance.
Collapse
Affiliation(s)
- Amy C. Sherman
- Division of Infectious Diseases, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA,Corresponding author. Division of Infectious Diseases, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Michaël Desjardins
- Division of Infectious Diseases, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA,Division of Infectious Diseases, Centre Hospitalier de l’Université de Montréal, 1000 Rue Saint-Denis, Bureau F06.1102b, Montreal, Quebec H2X 0C1, Canada
| | - Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
50
|
Teni Nurlatifah HR, Barlianto W, Wiyasa WA, Kusuma C, Sari TL, Bachtiar NS. Determination Factors Associated with Immune Responses Towards First Dose Edmonston-Zagreb (EZ) Measles Vaccine in Indonesian Infants. Med Arch 2022; 75:335-339. [PMID: 35169353 PMCID: PMC8740659 DOI: 10.5455/medarh.2021.75.335-339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 11/06/2022] Open
Abstract
Background: Measles outbreaks under high coverage of measles vaccination in Indonesia is gaining a necessary evaluation of factors associated with measles-vaccine immune responses. Objctive: The purposes of recent study were to evaluate the association of sociodemographic and anthropometric parameters and specific immune responses towards first dose Edmonston-Zagreb (EZ) measles vaccine in Indonesian infants. Methods: A total of 35 infants were enrolled in this cohort study. Measles immune responses were followed up at one and six months after vaccination then analyzed for its association with sociodemographic, anthropometric, and nutritional parameters. The plaque-reduction microneutralization assay was conducted to measure the titer of measles specific IgG antibody. The level of CD4+ and CD8+ T-cells that exhibiting gamma interferon (IFN-γ) secretion were analyzed by flow cytometry. The association between variable was analyzed by linear regression. The difference immune response among variable were analyzed with Mann-Whitney test. Results: Vitamin A supplementation and breastfeeding were predicted as associated factor for humoral and cellular immune response after one month and six months measles vaccination among Indonesia Infants. Conclusion: Nutritional factor is associated with measles vaccination immune response in Indonesian infants.
Collapse
Affiliation(s)
- H R Teni Nurlatifah
- Applied Midwifery, Master's Study Program of STIKes Dharma Husada, Bandung, West Java, Indonesia.,Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Wisnu Barlianto
- Department of Pediatric, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Wayan Arsana Wiyasa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Brawijaya, Malang, East java, Indonesia
| | - Chandra Kusuma
- Bio Farma, Pasteur Street No.28, Bandung 40161, West Java, Indonesia
| | - Tita Luthfia Sari
- Department of Pediatric, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Novilia Sjafri Bachtiar
- Applied Midwifery, Master's Study Program of STIKes Dharma Husada, Bandung, West Java, Indonesia.,Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.,Department of Pediatric, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia.,Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Brawijaya, Malang, East java, Indonesia.,Bio Farma, Pasteur Street No.28, Bandung 40161, West Java, Indonesia
| |
Collapse
|