1
|
Saddoris SM, Schang LM. The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Expert Rev Anti Infect Ther 2024; 22:1123-1142. [PMID: 39466139 PMCID: PMC11634640 DOI: 10.1080/14787210.2024.2420329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Despite the existence of antivirals that potently and efficiently inhibit the replication of herpes simplex virus 1 and 2 (HSV-1, -2), their ability to establish and maintain, and reactivate from, latency has precluded the development of curative therapies. Several groups are exploring the opportunities of targeting epigenetic regulation to permanently silence latent HSV genomes or induce their simultaneous reactivation in the presence of antivirals to flush the latent reservoirs, as has been explored for HIV. AREAS COVERED This review covers the basic principles of epigenetic regulation with an emphasis on those mechanisms relevant to the regulation of herpes simplex viruses, as well as the current knowledge on the regulation of lytic infections and the establishment and maintenance of, and reactivation from, latency, with an emphasis on epigenetic regulation. The differences with the epigenetic regulation of viral and cellular gene expression are highlighted as are the effects of known epigenetic regulators on herpes simplex viruses. The major limitations of current models to the development of novel antiviral strategies targeting latency are highlighted. EXPERT OPINION We provide an update on the epigenetic regulation during lytic and latent HSV-1 infection, highlighting the commonalities and differences with cellular gene expression and the potential of epigenetic drugs as antivirals, including the opportunities, challenges, and potential future directions.
Collapse
Affiliation(s)
- Sarah M Saddoris
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| | - Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| |
Collapse
|
2
|
Rashmi P, Urmila A, Likhit A, Subhash B, Shailendra G. Rodent models for diabetes. 3 Biotech 2023; 13:80. [PMID: 36778766 PMCID: PMC9908807 DOI: 10.1007/s13205-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (DM) is associated with many health complications and is potentially a morbid condition. As prevalence increases at an alarming rate around the world, research into new antidiabetic compounds with different mechanisms is the top priority. Therefore, the preclinical experimental induction of DM is imperative for advancing knowledge, understanding pathogenesis, and developing new drugs. Efforts have been made to examine recent literature on the various induction methods of Type I and Type II DM. The review summarizes the different in vivo models of DM induced by chemical, surgical, and genetic (immunological) manipulations and the use of pathogens such as viruses. For good preclinical assessment, the animal model must exhibit face, predictive, and construct validity. Among all reported models, chemically induced DM with streptozotocin was found to be the most preferred model. However, the purpose of the research and the outcomes to be achieved should be taken into account. This review was aimed at bringing together models, benefits, limitations, species, and strains. It will help the researcher to understand the pathophysiology of DM and to choose appropriate animal models.
Collapse
Affiliation(s)
- Patil Rashmi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Aswar Urmila
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Akotkar Likhit
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Bodhankar Subhash
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Gurav Shailendra
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa India
| |
Collapse
|
3
|
Tsai MS, Wang LC, Tsai HY, Lin YJ, Wu HL, Tzeng SF, Hsu SM, Chen SH. Microglia Reduce Herpes Simplex Virus 1 Lethality of Mice with Decreased T Cell and Interferon Responses in Brains. Int J Mol Sci 2021; 22:ijms222212457. [PMID: 34830340 PMCID: PMC8624831 DOI: 10.3390/ijms222212457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the majority of the human population and can induce encephalitis, which is the most common cause of sporadic, fatal encephalitis. An increase of microglia is detected in the brains of encephalitis patients. The issues regarding whether and how microglia protect the host and neurons from HSV-1 infection remain elusive. Using a murine infection model, we showed that HSV-1 infection on corneas increased the number of microglia to outnumber those of infiltrating leukocytes (macrophages, neutrophils, and T cells) and enhanced microglia activation in brains. HSV-1 antigens were detected in brain neurons, which were surrounded by microglia. Microglia depletion increased HSV-1 lethality of mice with elevated brain levels of viral loads, infected neurons, neuron loss, CD4 T cells, CD8 T cells, neutrophils, interferon (IFN)-β, and IFN-γ. In vitro studies demonstrated that microglia from infected mice reduced virus infectivity. Moreover, microglia induced IFN-β and the signaling pathway of signal transducer and activator of transcription (STAT) 1 to inhibit viral replication and damage of neurons. Our study reveals how microglia protect the host and neurons from HSV-1 infection.
Collapse
Affiliation(s)
- Meng-Shan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan;
| | - Hsien-Yang Tsai
- Department of Ophthalmology, Tzu Chi Hospital, Taichung 427, Taiwan;
| | - Yu-Jheng Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hua-Lin Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan;
| | - Sheng-Min Hsu
- Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (S.-M.H.); (S.-H.C.)
| | - Shun-Hua Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (M.-S.T.); (H.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Correspondence: (S.-M.H.); (S.-H.C.)
| |
Collapse
|
4
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
5
|
Renner DW, Parsons L, Shreve JT, Engel EA, Kuny CV, Enquist L, Neumann D, Mangold C, Szpara ML. Genome Sequence of the Virulent Model Herpes Simplex Virus 1 Strain McKrae Demonstrates the Presence of at Least Two Widely Used Variant Strains. Microbiol Resour Announc 2021; 10:e01146-19. [PMID: 33766904 PMCID: PMC7996463 DOI: 10.1128/mra.01146-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) strain McKrae was isolated in 1965 and has been utilized by many laboratories. Three HSV-1 strain McKrae stocks have been sequenced previously, revealing discrepancies in key genes. We sequenced the genome of HSV-1 strain McKrae from the laboratory of James M. Hill to better understand the genetic differences between isolates.
Collapse
Affiliation(s)
- Daniel W Renner
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Jacob T Shreve
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Chad V Kuny
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lynn Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Colleen Mangold
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Yao HW, Wang LC, Tsai HY, Fang YH, Zheng C, Chen SH, Hsu SM. Bortezomib induces HSV-1 lethality in mice with neutrophil deficiency. J Leukoc Biol 2019; 107:105-112. [PMID: 31729784 DOI: 10.1002/jlb.4ab1019-495r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 11/08/2022] Open
Abstract
Bortezomib suppressing NF-κB activity is an effective therapy for patients with myeloma or lymphoma. However, this drug can cause adverse effects, neutropenia, and recurrent infections of herpes viruses. Among herpes viruses, HSV-1 can reactivate to induce mortality. The important issues regarding how bortezomib diminishes neutrophils, whether bortezomib can induce HSV-1 reactivation, and how bortezomib exacerbates HSV-1 infection, need investigation. Using the murine model, we found that bortezomib induced HSV-1 reactivation. Bortezomib diminished neutrophil numbers in organs of uninfected and HSV-1-infected mice and turned a nonlethal infection to lethal with elevated tissue viral loads. In vitro results showed that bortezomib and HSV-1 collaborated to enhance the death and apoptosis of mouse neutrophils. The leukocyte deficiency induced by chemotherapies is generally believed to be the cause for aggravating virus infections. Here we show the potential of pathogen to exacerbate chemotherapy-induced leukocyte deficiency.
Collapse
Affiliation(s)
- Hui-Wen Yao
- Department of Microbiology and Immunology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chiu Wang
- Department of Microbiology and Immunology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsien-Yang Tsai
- Department of Ophthalmology, Tzu Chi Hospital, Taichung, Taiwan
| | - Yi-Hsuan Fang
- Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Shun-Hua Chen
- Department of Microbiology and Immunology and Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Sutherland MR, Simon AY, Shanina I, Horwitz MS, Ruf W, Pryzdial ELG. Virus envelope tissue factor promotes infection in mice. J Thromb Haemost 2019; 17:482-491. [PMID: 30659719 PMCID: PMC6397068 DOI: 10.1111/jth.14389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Essentials The coagulation initiator, tissue factor (TF), is on the herpes simplex virus 1 (HSV1) surface. HSV1 surface TF was examined in mice as an antiviral target since it enhances infection in vitro. HSV1 surface TF facilitated infection of all organs evaluated and anticoagulants were antiviral. Protease activated receptor 2 inhibited infection in vivo and its pre-activation was antiviral. SUMMARY: Background Tissue factor (TF) is the essential cell surface initiator of coagulation, and mediates cell signaling through protease-activated receptor (PAR) 2. Having a diverse cellular distribution, TF is involved in many biological pathways and pathologies. Our earlier work identified host cell-derived TF on the envelope covering several viruses, and showed its involvement in enhanced cell infection in vitro. Objective In the current study, we evaluated the in vivo effects of virus surface TF on infection and on the related modulator of infection PAR2. Methods With the use of herpes simplex virus type 1 (HSV1) as a model enveloped virus, purified HSV1 was generated with or without envelope TF through propagation in a TF-inducible cell line. Infection was studied after intravenous inoculation of BALB/c, C57BL/6J or C57BL/6J PAR2 knockout mice with 5 × 105 plaque-forming units of HSV1, mimicking viremia. Three days after inoculation, organs were processed, and virus was quantified with plaque-forming assays and quantitative real-time PCR. Results Infection of brain, lung, heart, spinal cord and liver by HSV1 required viral TF. Demonstrating promise as a therapeutic target, virus-specific anti-TF mAbs or small-molecule inhibitors of coagulation inhibited infection. PAR2 modulates HSV1 in vivo as demonstrated with PAR2 knockout mice and PAR2 agonist peptide. Conclusion TF is a constituent of many permissive host cell types. Therefore, the results presented here may explain why many viruses are correlated with hemostatic abnormalities, and indicate that TF is a novel pan-specific envelope antiviral target.
Collapse
MESH Headings
- Animals
- Anticoagulants/pharmacology
- Antiviral Agents/pharmacology
- Disease Models, Animal
- Female
- Herpes Simplex/blood
- Herpes Simplex/drug therapy
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Host-Pathogen Interactions
- Injections, Intravenous
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, PAR-2/genetics
- Receptor, PAR-2/metabolism
- Th1 Cells/immunology
- Th1 Cells/virology
- Thromboplastin/administration & dosage
- Thromboplastin/metabolism
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Michael R Sutherland
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ayo Y Simon
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- African Centre of Excellence on Neglected Tropical Diseases and Forensic Biotechnology and Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
- Preclinical Research and Development, Emergent BioSolutions, Winnipeg, Manitoba, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Wolfram Ruf
- Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany
| | - Edward L G Pryzdial
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Royer DJ, Carr MM, Gurung HR, Halford WP, Carr DJJ. The Neonatal Fc Receptor and Complement Fixation Facilitate Prophylactic Vaccine-Mediated Humoral Protection against Viral Infection in the Ocular Mucosa. THE JOURNAL OF IMMUNOLOGY 2017; 199:1898-1911. [PMID: 28760885 DOI: 10.4049/jimmunol.1700316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
The capacity of licensed vaccines to protect the ocular surface against infection is limited. Common ocular pathogens, such as HSV-1, are increasingly recognized as major contributors to visual morbidity worldwide. Humoral immunity is an essential correlate of protection against HSV-1 pathogenesis and ocular pathology, yet the ability of Ab to protect against HSV-1 is deemed limited due to the slow IgG diffusion rate in the healthy cornea. We show that a live-attenuated HSV-1 vaccine elicits humoral immune responses that are unparalleled by a glycoprotein subunit vaccine vis-à-vis Ab persistence and host protection. The live-attenuated vaccine was used to assess the impact of the immunization route on vaccine efficacy. The hierarchical rankings of primary immunization route with respect to efficacy were s.c. ≥ mucosal > i.m. Prime-boost vaccination via sequential s.c. and i.m. administration yielded greater efficacy than any other primary immunization route alone. Moreover, our data support a role for complement in prophylactic protection, as evidenced by intracellular deposition of C3d in the corneal epithelium of vaccinated animals following challenge and delayed viral clearance in C3-deficient mice. We also identify that the neonatal Fc receptor (FcRn) is upregulated in the cornea following infection or injury concomitant with increased Ab perfusion. Lastly, selective small interfering RNA-mediated knockdown of FcRn in the cornea impeded protection against ocular HSV-1 challenge in vaccinated mice. Collectively, these findings establish a novel mechanism of humoral protection in the eye involving FcRn and may facilitate vaccine and therapeutic development for other ocular surface diseases.
Collapse
Affiliation(s)
- Derek J Royer
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Meghan M Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Hem R Gurung
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - William P Halford
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62794
| | - Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| |
Collapse
|
9
|
Warren-Gash C, Forbes H, Breuer J, Hayward AC, Mavrodaris A, Ridha BH, Rossor M, Thomas SL, Smeeth L. Association between human herpesvirus infections and dementia or mild cognitive impairment: a systematic review protocol. BMJ Open 2017; 7:e016522. [PMID: 28645980 PMCID: PMC5726086 DOI: 10.1136/bmjopen-2017-016522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Persisting neurotropic viruses are proposed to increase the risk of dementia, but evidence of association from robust, adequately powered population studies is lacking. This is essential to inform clinical trials of targeted preventive interventions. METHODS AND ANALYSIS We will carry out a comprehensive systematic review of published and grey literature of the association between infection with, reactivation of, vaccination against or treatment of any of the eight human herpesviruses and dementia or mild cognitive impairment. We will search the Cochrane Library, Embase, Global Health, Medline, PsycINFO, Scopus, Web of Science, clinical trials registers, the New York Academy of Medicine Grey Literature Report, Electronic Theses Online Service through the British Library and the ISI Conference Proceedings Citation Index for randomised controlled trials, cohort, caseâ€"control, case crossover or self-controlled case series studies reported in any language up to January 2017. Titles, abstracts and full-text screening will be conducted by two researchers independently. Data will be extracted systematically from eligible studies using a piloted template. We will assess risk of bias of individual studies in line with the Cochrane Collaboration tool. We will conduct a narrative synthesis, grouping studies by exposure and outcome definitions, and will describe any differences by population subgroups and dementia subtypes. We will consider performing meta-analyses if there are adequate numbers of sufficiently homogeneous studies. The overall quality of cumulative evidence will be assessed using selected Grading of Recommendations, Assessment, Development and Evaluations criteria. ETHICS AND DISSEMINATION As this is a review of existing studies, no ethical approval is required. Results will be disseminated through a peer-reviewed publication and at national and international conferences. We anticipate the review will clarify the current extent and quality of evidence for a link between herpesviruses and dementia, identify gaps and inform the direction of future research. PROSPERO REGISTRATION NUMBER CRD42017054684.
Collapse
Affiliation(s)
- Charlotte Warren-Gash
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Harriet Forbes
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Andrew C Hayward
- Institute of Epidemiology and Health Care, University College London, London, UK
| | | | - Basil H Ridha
- NIHR Queen Square Dementia Biomedical ResearchUnit, University College London, London, UK
| | - Martin Rossor
- NIHR Queen Square Dementia Biomedical ResearchUnit, University College London, London, UK
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, UK
| | - Sara L Thomas
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Liam Smeeth
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
10
|
Impact of Type I Interferon on the Safety and Immunogenicity of an Experimental Live-Attenuated Herpes Simplex Virus 1 Vaccine in Mice. J Virol 2017; 91:JVI.02342-16. [PMID: 28122977 DOI: 10.1128/jvi.02342-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-β) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/β) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/β in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/β receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology.IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic "cold sores" to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential.
Collapse
|
11
|
Menendez CM, Carr DJJ. Defining nervous system susceptibility during acute and latent herpes simplex virus-1 infection. J Neuroimmunol 2017; 308:43-49. [PMID: 28302316 DOI: 10.1016/j.jneuroim.2017.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are neurotropic human pathogens that infect and establish latency in peripheral sensory neurons of the host. Herpes Simplex Virus-1 (HSV-1) readily infects the facial mucosa that can result in the establishment of a latent infection in the sensory neurons of the trigeminal ganglia (TG). From latency, HSV-1 can reactivate and cause peripheral pathology following anterograde trafficking from sensory neurons. Under rare circumstances, HSV-1 can migrate into the central nervous system (CNS) and cause Herpes Simplex Encephalitis (HSE), a devastating disease of the CNS. It is unclear whether HSE is the result of viral reactivation within the TG, from direct primary infection of the olfactory mucosa, or from other infected CNS neurons. Areas of the brain that are susceptible to HSV-1 during acute infection are ill-defined. Furthermore, whether the CNS is a true reservoir of viral latency following clearance of virus during acute infection is unknown. In this context, this review will identify sites within the brain that are susceptible to acute infection and harbor latent virus. In addition, we will also address findings of HSV-1 lytic gene expression during latency and comment on the pathophysiological consequences HSV-1 infection may have on long-term neurologic performance in animal models and humans.
Collapse
Affiliation(s)
- Chandra M Menendez
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel J J Carr
- Department of Microbiology, Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. USA.
| |
Collapse
|
12
|
Thymidine Kinase-Negative Herpes Simplex Virus 1 Can Efficiently Establish Persistent Infection in Neural Tissues of Nude Mice. J Virol 2017; 91:JVI.01979-16. [PMID: 27974554 DOI: 10.1128/jvi.01979-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. IMPORTANCE Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK-) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK- HSV-1 remain elusive. Using three genetically engineered HSV-1 TK- mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK- mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK- HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts.
Collapse
|
13
|
In Vivo Examination of Mouse APOBEC3- and Human APOBEC3A- and APOBEC3G-Mediated Restriction of Parvovirus and Herpesvirus Infection in Mouse Models. J Virol 2016; 90:8005-12. [PMID: 27356895 DOI: 10.1128/jvi.00973-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED APOBEC3 knockout and human APOBEC3A and -3G transgenic mice were tested for their ability to be infected by the herpesviruses herpes simplex virus 1 and murine herpesvirus 68 and the parvovirus minute virus of mice (MVM). Knockout, APOBEC3A and APOBEC3G transgenic, and wild-type mice were equally infected by the herpesviruses, while APOBEC3A but not mouse APOBEC3 conferred resistance to MVM. No viruses showed evidence of cytidine deamination by mouse or human APOBEC3s. These data suggest that in vitro studies implicating APOBEC3 proteins in virus resistance may not reflect their role in vivo IMPORTANCE It is well established that APOBEC3 proteins in different species are a critical component of the host antiretroviral defense. Whether these proteins also function to inhibit other viruses is not clear. There have been a number of in vitro studies suggesting that different APOBEC3 proteins restrict herpesviruses and parvoviruses, among others, but whether they also work in vivo has not been demonstrated. Our studies looking at the role of mouse and human APOBEC3 proteins in transgenic and knockout mouse models of viral infection suggest that these restriction factors are not broadly antiviral and demonstrate the importance of testing their activity in vivo.
Collapse
|
14
|
Menendez CM, Jinkins JK, Carr DJJ. Resident T Cells Are Unable To Control Herpes Simplex Virus-1 Activity in the Brain Ependymal Region during Latency. THE JOURNAL OF IMMUNOLOGY 2016; 197:1262-75. [PMID: 27357149 DOI: 10.4049/jimmunol.1600207] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/07/2016] [Indexed: 02/05/2023]
Abstract
HSV type 1 (HSV-1) is one of the leading etiologies of sporadic viral encephalitis. Early antiviral intervention is crucial to the survival of herpes simplex encephalitis patients; however, many survivors suffer from long-term neurologic deficits. It is currently understood that HSV-1 establishes a latent infection within sensory peripheral neurons throughout the life of the host. However, the tissue residence of latent virus, other than in sensory neurons, and the potential pathogenic consequences of latency remain enigmatic. In the current study, we characterized the lytic and latent infection of HSV-1 in the CNS in comparison with the peripheral nervous system following ocular infection in mice. We used RT-PCR to detect latency-associated transcripts and HSV-1 lytic cycle genes within the brain stem, the ependyma (EP), containing the limbic and cortical areas, which also harbor neural progenitor cells, in comparison with the trigeminal ganglia. Unexpectedly, HSV-1 lytic genes, usually identified during acute infection, are uniquely expressed in the EP 60 d postinfection when animals are no longer suffering from encephalitis. An inflammatory response was also mounted in the EP by the maintenance of resident memory T cells. However, EP T cells were incapable of controlling HSV-1 infection ex vivo and secreted less IFN-γ, which correlated with expression of a variety of exhaustion-related inhibitory markers. Collectively, our data suggest that the persistent viral lytic gene expression during latency is the cause of the chronic inflammatory response leading to the exhaustion of the resident T cells in the EP.
Collapse
Affiliation(s)
- Chandra M Menendez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Jeremy K Jinkins
- Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Daniel J J Carr
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
15
|
Marin M, Leunda M, Verna A, Morán P, Odeón A, Pérez S. Distribution of bovine herpesvirus type 1 in the nervous system of experimentally infected calves. Vet J 2016; 209:82-6. [DOI: 10.1016/j.tvjl.2015.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/16/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
16
|
Mefenamic acid in combination with ribavirin shows significant effects in reducing chikungunya virus infection in vitro and in vivo. Antiviral Res 2016; 127:50-6. [PMID: 26794398 DOI: 10.1016/j.antiviral.2016.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 12/02/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022]
Abstract
Chikungunya virus (CHIKV) infection is a persistent problem worldwide due to efficient adaptation of the viral vectors, Aedes aegypti and Aedes albopictus mosquitoes. Therefore, the absence of effective anti-CHIKV drugs to combat chikungunya outbreaks often leads to a significant impact on public health care. In this study, we investigated the antiviral activity of drugs that are used to alleviate infection symptoms, namely, the non-steroidal anti-inflammatory drugs (NSAIDs), on the premise that active compounds with potential antiviral and anti-inflammatory activities could be directly subjected for human use to treat CHIKV infections. Amongst the various NSAID compounds, Mefenamic acid (MEFE) and Meclofenamic acid (MECLO) showed considerable antiviral activity against viral replication individually or in combination with the common antiviral drug, Ribavirin (RIBA). The 50% effective concentration (EC50) was estimated to be 13 μM for MEFE, 18 μM for MECLO and 10 μM for RIBA, while MEFE + RIBA (1:1) exhibited an EC50 of 3 μM, and MECLO + RIBA (1:1) was 5 μM. Because MEFE is commercially available and its synthesis is easier compared with MECLO, MEFE was selected for further in vivo antiviral activity analysis. Treatment with MEFE + RIBA resulted in a significant reduction of hypertrophic effects by CHIKV on the mouse liver and spleen. Viral titre quantification in the blood of CHIKV-infected mice through the plaque formation assay revealed that treatment with MEFE + RIBA exhibited a 6.5-fold reduction compared with untreated controls. In conclusion, our study demonstrated that MEFE in combination with RIBA exhibited significant anti-CHIKV activity by impairing viral replication in vitro and in vivo. Indeed, this finding may lead to an even broader application of these combinatorial treatments against other viral infections.
Collapse
|
17
|
Reactivation of HSV-1 following explant of tree shrew brain. J Neurovirol 2015; 22:293-306. [PMID: 26501779 PMCID: PMC4899501 DOI: 10.1007/s13365-015-0393-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/27/2015] [Accepted: 10/07/2015] [Indexed: 11/23/2022]
Abstract
Herpes Simplex Virus type I (HSV-1) latently infects peripheral nervous system (PNS) sensory neurons, and its reactivation leads to recurring cold sores. The reactivated HSV-1 can travel retrograde from the PNS into the central nervous system (CNS) and is known to be causative of Herpes Simplex viral encephalitis. HSV-1 infection in the PNS is well documented, but little is known on the fate of HSV-1 once it enters the CNS. In the murine model, HSV-1 genome persists in the CNS once infected through an ocular route. To gain more details of HSV-1 infection in the CNS, we characterized HSV-1 infection of the tree shrew (Tupaia belangeri chinensis) brain following ocular inoculation. Here, we report that HSV-1 enters the tree shrew brain following ocular inoculation and HSV-1 transcripts, ICP0, ICP4, and LAT can be detected at 5 days post-infection (p.i.), peaking at 10 days p.i. After 2 weeks, ICP4 and ICP0 transcripts are reduced to a basal level, but the LAT intron region continues to be expressed. Live virus could be recovered from the olfactory bulb and brain stem tissue. Viral proteins could be detected using anti-HSV-1 antibodies and anti-ICP4 antibody, during the acute stage but not beyond. In situ hybridization could detect LAT during acute infection in most brain regions and in olfactory bulb and brain stem tissue well beyond the acute stage. Using a homogenate from these tissues’ post-acute infection, we did not recover live HSV-1 virus, supporting a latent infection, but using a modified explant cocultivation technique, we were able to recover reactivated virus from these tissues, suggesting that the HSV-1 virus latently infects the tree shrew CNS. Compared to mouse, the CNS acute infection of the tree shrew is delayed and the olfactory bulb contains most latent virus. During the acute stage, a portion of the infected tree shrews exhibit symptoms similar to human viral encephalitis. These findings, together with the fact that tree shrews are closely related to primates, provided a valuable alternative model to study HSV-1 infection and pathogenesis in the CNS.
Collapse
|
18
|
Tenser RB. Occurrence of Herpes Simplex Virus Reactivation Suggests a Mechanism of Trigeminal Neuralgia Surgical Efficacy. World Neurosurg 2015; 84:279-82. [PMID: 25818891 DOI: 10.1016/j.wneu.2015.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 12/21/2022]
Abstract
Common to the types of surgery that are effective for the treatment of trigeminal neuralgia (TN) is reactivation of herpes simplex virus (HSV). It is likely that such HSV reactivation following surgery indicates altered trigeminal ganglion neuron function, which was caused by the surgery. It is not thought that HSV infection is related to the cause of TN or that HSV reactivation is important for surgical treatment efficacy. Rather, it is thought that HSV reactivation is a marker of altered trigeminal ganglion neuron function resulting from the TN surgery. It is suggested that HSV reactivation is a surrogate marker of ganglion neuron injury. The correlation between effective types of surgery and evidence that they alter ganglion neuron function suggests that altered trigeminal ganglion neuron function may be the basis of the surgical efficacy.
Collapse
Affiliation(s)
- Richard B Tenser
- Departments of Neurology and Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
19
|
Rothan HA, Bahrani H, Mohamed Z, Teoh TC, Shankar EM, Rahman NA, Yusof R. A combination of doxycycline and ribavirin alleviated chikungunya infection. PLoS One 2015; 10:e0126360. [PMID: 25970853 PMCID: PMC4430285 DOI: 10.1371/journal.pone.0126360] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/01/2015] [Indexed: 01/18/2023] Open
Abstract
Lack of vaccine and effective antiviral drugs against chikungunya virus (CHIKV) outbreaks have led to significant impact on health care in the developing world. Here, we evaluated the antiviral effects of tetracycline (TETRA) derivatives and other common antiviral agents against CHIKV. Our results showed that within the TETRA derivatives group, Doxycycline (DOXY) exhibited the highest inhibitory effect against CHIKV replication in Vero cells. On the other hand, in the antiviral group Ribavirin (RIBA) showed higher inhibitory effects against CHIKV replication compared to Aciclovir (ACIC). Interestingly, RIBA inhibitory effects were also higher than all but DOXY within the TETRA derivatives group. Docking studies of DOXY to viral cysteine protease and E2 envelope protein showed non-competitive interaction with docking energy of -6.6±0.1 and -6.4±0.1 kcal/mol respectively. The 50% effective concentration (EC50) of DOXY and RIBA was determined to be 10.95±2.12 μM and 15.51±1.62 μM respectively, while DOXY+RIBA (1:1 combination) showed an EC50 of 4.52±1.42 μM. When compared, DOXY showed higher inhibition of viral infectivity and entry than RIBA. In contrast however, RIBA showed higher inhibition against viral replication in target cells compared to DOXY. Assays using mice as animal models revealed that DOXY+RIBA effectively inhibited CHIKV replication and attenuated its infectivity in vivo. Further experimental and clinical studies are warranted to investigate their potential application for clinical intervention of CHIKV disease.
Collapse
Affiliation(s)
- Hussin A. Rothan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- * E-mail:
| | - Hirbod Bahrani
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zulqarnain Mohamed
- Institute of biological sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Teow Chong Teoh
- Institute of biological sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Esaki M. Shankar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Noorsaadah A. Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Ramakrishna C, Ferraioli A, Calle A, Nguyen TK, Openshaw H, Lundberg PS, Lomonte P, Cantin EM. Establishment of HSV1 latency in immunodeficient mice facilitates efficient in vivo reactivation. PLoS Pathog 2015; 11:e1004730. [PMID: 25760441 PMCID: PMC4356590 DOI: 10.1371/journal.ppat.1004730] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/05/2015] [Indexed: 12/19/2022] Open
Abstract
The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1) infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR) resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins) to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD), but not low dose (LD), HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS), the majority of HD inoculated mice developed HSV1 encephalitis (HSE) rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg). T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation. Although mouse models have been very useful in studies of HSV1 latency, the inability to efficiently reactivate latent HSV1 in vivo has impeded studies of reactivation. Reasoning that reactivation would be much more efficient in the absence of T cells, we exploited IVIG to promote survival of latently infected Rag mice lacking B and T cells. We established a threshold inoculum dose that was higher for B6- compared to 129-Rag mice, which determined whether HSV1 could be efficiently reactivated in vivo resulting in encephalitis. We showed directly that memory T cells are required to control spontaneous and induced reactivation in mice inoculated at high dose but are dispensable for maintaining latency in low dose inoculated mice. Incorporating different knockout strains into the Rag latency model by adoptive transfer of cells or crossbreeding will facilitate studying the role of various cellular genes involved in regulating neuronal gene expression and innate and adaptive immunity in the control of HSV1 reactivation. The potential of this powerful latency model to unravel the molecular and immune mechanisms regulating latency will be realized only after it is adopted and refined by researchers in the field.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
| | - Adrianna Ferraioli
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Aleth Calle
- Centre de Génétique et Physiologie Moléculaire et Cellulaire CNRS UMR5534, Université de Lyon 1, Lyon, France
- Université de Lyon 1, Lyon, France
- Laboratoire d’excellence, LabEX DEVweCAN, Lyon, France
| | - Thanh K. Nguyen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Harry Openshaw
- Department of Neurology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
| | - Patric S. Lundberg
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Patrick Lomonte
- Centre de Génétique et Physiologie Moléculaire et Cellulaire CNRS UMR5534, Université de Lyon 1, Lyon, France
- Université de Lyon 1, Lyon, France
- Laboratoire d’excellence, LabEX DEVweCAN, Lyon, France
| | - Edouard M. Cantin
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
- Department of Neurology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
- Department of Immunology, Beckman Research Institute of City of Hope; Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives. Genes (Basel) 2014; 5:887-925. [PMID: 25268389 PMCID: PMC4276919 DOI: 10.3390/genes5040887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses.
Collapse
|
22
|
In vivo reactivation of latent herpes simplex virus 1 in mice can occur in the brain before occurring in the trigeminal ganglion. J Virol 2014; 88:11264-70. [PMID: 25031345 DOI: 10.1128/jvi.01616-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) establishes latency in neurons of the brains and sensory ganglia of humans and experimentally infected mice. The latent virus can reactivate to cause recurrent infection. Both primary and recurrent infections can induce diseases, such as encephalitis. In humans, the majority of encephalitis cases occur as a recurrent infection. However, in the past, numerous mouse studies documented that viral reactivation occurs efficiently in the ganglion, but extremely rarely in the brain, when assessed ex vivo by cultivating minced tissue explants. Here, we compare the brains and the trigeminal ganglia of mice latently infected with HSV-1 (strain 294.1 or McKrae) for levels of viral genomes and in vivo reactivation. The numbers of copies of 294.1 and McKrae genomes in the brain stem were significantly greater than those in the trigeminal ganglion. Most importantly, 294.1 and McKrae reactivation was detected in the brain stems earlier than in the trigeminal ganglia of mice treated with hyperthermia to reactivate latent virus in vivo. In addition, the brain stem yielded reactivated virus at a high frequency compared with the trigeminal ganglion, especially in mice latently infected with 294.1 after hyperthermia treatment. These results provide evidence that recurrent brain infection can be induced by the reactivation of latent virus in the brain in situ. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes latency in neurons of the brains and sensory ganglia of humans and experimentally infected mice. The latent virus can reactivate to cause recurrent infection. In the past, studies of viral reactivation focused on the ganglion, because efficient viral reactivation was detected in the ganglion but not in the brain when assessed ex vivo by cultivating mouse tissue explants. In this study, we report that the brain contains more viral genomes than the trigeminal ganglion in latently infected mice. Notably, the brain yields reactivated virus early and efficiently compared with the trigeminal ganglion after mice are stimulated to reactivate latent virus. Our findings raise the potential importance of HSV-1 latent infection and reactivation in the brain.
Collapse
|
23
|
Tranylcypromine reduces herpes simplex virus 1 infection in mice. Antimicrob Agents Chemother 2014; 58:2807-15. [PMID: 24590478 DOI: 10.1128/aac.02617-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the majority of the human population and establishes latency by maintaining viral genomes in neurons of sensory ganglia. Latent virus can undergo reactivation to cause recurrent infection. Both primary and recurrent infections can cause devastating diseases, including encephalitis and corneal blindness. Acyclovir is used to treat patients, but virus resistance to acyclovir is frequently reported. Recent in vitro findings reveal that pretreatment of cells with tranylcypromine (TCP), a drug widely used in the clinic to treat neurological disorders, restrains HSV-1 gene transcription by inhibiting the histone-modifying enzyme lysine-specific demethylase 1. The present study was designed to examine the anti-HSV-1 efficacy of TCP in vivo because of the paucity of reports on this issue. Using the murine model, we found that TCP decreased the severity of wild-type-virus-induced encephalitis and corneal blindness, infection with the acyclovir-resistant (thymidine kinase-negative) HSV-1 mutant, and tissue viral loads. Additionally, TCP blocked in vivo viral reactivation in trigeminal ganglia. These results support the therapeutic potential of TCP for controlling HSV-1 infection.
Collapse
|
24
|
Ramakrishna C, Openshaw H, Cantin EM. The case for immunomodulatory approaches in treating HSV encephalitis. Future Virol 2013; 8:259-272. [PMID: 23956785 DOI: 10.2217/fvl.12.138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HSV encephalitis (HSE) is the most prevalent sporadic viral encephalitis. Although safe and effective antiviral therapies and greatly improved noninvasive diagnostic procedures have significantly improved outcomes, mortality (~20%) and debilitating neurological sequelae in survivors remain unacceptably high. An encouraging new development is that the focus is now shifting away from the virus exclusively, to include consideration of the host immune response to infection in the pathology underlying development of HSE. In this article, the authors discuss results from recent studies in experimental mouse models, as well as clinical reports that demonstrate a role for exaggerated host inflammatory responses in the brain in the development of HSE that is motivating researchers and clinicians to consider new therapeutic approaches for treating HSE. The authors also discuss results from a few studies that have shown that immunomodulatory drugs can be highly protective against HSE, which supports a role for deleterious host inflammatory responses in HSE. The impressive outcomes of some immunomodulatory approaches in mouse models of HSE emphasize the urgent need for clinical trials to rigorously evaluate combination antiviral and immunomodulatory therapy in comparison with standard antiviral therapy for treatment of HSE, and support for such an initiative is gaining momentum.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, CA 91010-3000, USA
| | | | | |
Collapse
|