1
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Gu S, Tang L, Guo L, Zhong C, Fu X, Ye G, Zhong S, Li X, Wen C, Zhou Y, Wei J, Chen H, Novikov N, Fletcher SP, Moody MA, Hou J, Li Y. Circulating HBsAg-specific B cells are partially rescued in chronically HBV-infected patients with functional cure. Emerg Microbes Infect 2024; 13:2409350. [PMID: 39470771 PMCID: PMC11523254 DOI: 10.1080/22221751.2024.2409350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024]
Abstract
It is well established that humoral immunity targeting hepatitis B virus surface antigen (HBsAg) plays a critical role in viral clearance and clinical cure. However, the functional changes in HBsAg-specific B cells before and after achieving functional cure remain poorly understood. In this study, we characterized circulating HBsAg-specific B cells and identified functional shifts and B-cell epitopes directly associated with HBsAg loss. The phenotypes and functions of HBV-specific B cells in patients with chronic HBV infection were investigated using a dual staining method and the ELISpot assay. Epitope mapping was performed to identify B cell epitopes associated with functional cure. Hyperactivated HBsAg-specific B cells in patients who achieved HBsAg loss were composed of enriched resting memory and contracted atypical memory fractions, accompanied by sustained co-expression of multiple inhibitory receptors and increased IL-6 secretion. The frequency of HBsAb-secreting B cells was significantly increased after achieving a functional cure. The rHBsAg displayed a weaker immunomodulatory effect on B cells than rHBeAg and rHBcAg in vitro. Notably, sera from patients with HBsAg loss reacted mainly with peptides S60, S61, and S76, suggesting that these are dominant linear B-cell epitopes relevant for functional cure. Intriguingly, patients reactive with S76 showed a higher frequency of the HLA class II DQB1*05:01 allele. Taken together, HBsAg-specific B cells were partially restored in patients after achieving a functional cure. Functional cure-related epitopes may be promising targets for developing therapeutic vaccines to treat HBV infection and promote functional cure.
Collapse
Affiliation(s)
- Shuqin Gu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Libo Tang
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Ling Guo
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chunxiu Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Xin Fu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Guofu Ye
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Shihong Zhong
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Xiaoyi Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunhua Wen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Department of Hematology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yang Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jinling Wei
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Haitao Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Nikolai Novikov
- Department of Biology, Gilead Sciences, Foster City, CA, USA
| | | | - M. Anthony Moody
- Infectious Diseases Division, Department of Pediatrics, Duke University, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University; State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education; Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Institute of Hepatology, Guangzhoua, China
| |
Collapse
|
3
|
Murugesan G, Paterson RL, Kulkarni R, Ilkow V, Suckling RJ, Connolly MM, Karuppiah V, Pengelly R, Jadhav A, Donoso J, Heunis T, Bunjobpol W, Philips G, Ololade K, Kay D, Sarkar A, Barber C, Raj R, Perot C, Grant T, Treveil A, Walker A, Dembek M, Gibbs-Howe D, Hock M, Carreira RJ, Atkin KE, Dorrell L, Knox A, Leonard S, Salio M, Godinho LF. Viral sequence determines HLA-E-restricted T cell recognition of hepatitis B surface antigen. Nat Commun 2024; 15:10126. [PMID: 39578466 PMCID: PMC11584656 DOI: 10.1038/s41467-024-54378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
The non-polymorphic HLA-E molecule offers opportunities for new universal immunotherapeutic approaches to chronic infectious diseases. Chronic Hepatitis B virus (HBV) infection is driven in part by T cell dysfunction due to elevated levels of the HBV envelope (Env) protein hepatitis B surface antigen (HBsAg). Here we report the characterization of three genotypic variants of an HLA-E-binding HBsAg peptide, Env371-379, identified through bioinformatic predictions and verified by biochemical and cellular assays. Using a soluble affinity-enhanced T cell receptor (TCR) (a09b08)-anti-CD3 bispecific molecule to probe HLA-E presentation of the Env371-379 peptides, we demonstrate that only the most stable Env371-379 variant, L6I, elicits functional responses to a09b08-anti-CD3-redirected polyclonal T cells co-cultured with targets expressing endogenous HBsAg. Furthermore, HLA-E-Env371-379 L6I-specific CD8+ T cells are detectable in HBV-naïve donors and people with chronic HBV after in vitro priming. In conclusion, we provide evidence for HLA-E-mediated HBV Env peptide presentation, and highlight the effect of viral mutations on the stability and targetability of pHLA-E molecules.
Collapse
Affiliation(s)
| | | | - Rakesh Kulkarni
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Veronica Ilkow
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Mary M Connolly
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Robert Pengelly
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Archana Jadhav
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Jose Donoso
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Tiaan Heunis
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Gwilym Philips
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Kafayat Ololade
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Daniel Kay
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Anshuk Sarkar
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Claire Barber
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Ritu Raj
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Carole Perot
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Tressan Grant
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Agatha Treveil
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Andrew Walker
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Marcin Dembek
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Dawn Gibbs-Howe
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Miriam Hock
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Kate E Atkin
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Lucy Dorrell
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Andrew Knox
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Sarah Leonard
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Mariolina Salio
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Luis F Godinho
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK.
| |
Collapse
|
4
|
Zheng J, Zeng H, Zhang Q, Ma Y, Li Y, Lin J, Yang Q. Effects of intranasal administration with a symbiotic strain of Bacillus velezensis NSV2 on nasal cavity mucosal barrier in lambs. Vet Res Commun 2024; 49:21. [PMID: 39565462 DOI: 10.1007/s11259-024-10596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
Abstract
The nasal mucosa is composed of multiple layers of barrier structures and is the first line of defense against infection by respiratory pathogenic microorganisms. A large number of commensal microorganisms are present in the nasal mucosa that mediate and regulate nasal mucosal barrier function. The objective of this research was to investigate the effects of commensal microorganisms on the nasal mucosal barrier. The results revealed that the strain of Bacillus velezensis (B. velezensis) NSV2 from the nasal cavity has good probiotic abilities to resist Pasteurella multocida, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. Lambs were subsequently administered intranasally with B. velezensis NSV2 at 3, 12, 21, and 26 days old, respectively. For the microbial barrier, although B. velezensis NSV2 reduces the diversity of nasal microbiota, it significantly increased the relative abundance of beneficial bacteria in the nasal cavity, and reduced the abundance of potential pathogenic bacteria. For the mucus barrier, the number of goblet cells in the nasal mucosa significantly increased after B. velezensis NSV2 treatment. For the immune barrier, B. velezensis NSV2 also significantly increased the number of IgA+ B cells, CD3+ T cells and dendritic cells in the nasal mucosa, as well as the mRNA expression of interleukin (IL) 6, IL11, CCL2, and CCL20 (P < 0.05). The protein level of CCL20 also significantly raised in nasal washings (P < 0.05). Moreover, the heat-inactivated and culture products of B. velezensis NSV2 also drastically induced the expression of CCL20 in nasal mucosa explants (P < 0.05), but lower than that of the live bacteria. This study demonstrated that a symbiotic strain of B. velezensis NSV2 could improve the nasal mucosal barrier, and emphasized the important role of nasal symbiotic microbiota.
Collapse
Affiliation(s)
- Jian Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Hui Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qi Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yichao Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
5
|
Roca Suarez AA, Plissonnier ML, Grand X, Michelet M, Giraud G, Saez-Palma M, Dubois A, Heintz S, Diederichs A, Van Renne N, Vanwolleghem T, Daffis S, Li L, Kolhatkar N, Hsu YC, Wallin JJ, Lau AH, Fletcher SP, Rivoire M, Levrero M, Testoni B, Zoulim F. TLR8 agonist selgantolimod regulates Kupffer cell differentiation status and impairs HBV entry into hepatocytes via an IL-6-dependent mechanism. Gut 2024; 73:2012-2022. [PMID: 38697771 DOI: 10.1136/gutjnl-2023-331396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE Achieving HBV cure will require novel combination therapies of direct-acting antivirals and immunomodulatory agents. In this context, the toll-like receptor 8 (TLR8) agonist selgantolimod (SLGN) has been investigated in preclinical models and clinical trials for chronic hepatitis B (CHB). However, little is known regarding its action on immune effectors within the liver. Our aim was to characterise the transcriptomic changes and intercellular communication events induced by SLGN in the hepatic microenvironment. DESIGN We identified TLR8-expressing cell types in the human liver using publicly available single-cell RNA-seq data and established a method to isolate Kupffer cells (KCs). We characterised transcriptomic and cytokine KC profiles in response to SLGN. SLGN's indirect effect was evaluated by RNA-seq in hepatocytes treated with SLGN-conditioned media (CM) and quantification of HBV parameters following infection. Pathways mediating SLGN's effect were validated using transcriptomic data from HBV-infected patients. RESULTS Hepatic TLR8 expression takes place in the myeloid compartment. SLGN treatment of KCs upregulated monocyte markers (eg, S100A12) and downregulated genes associated with the KC identity (eg, SPIC). Treatment of hepatocytes with SLGN-CM downregulated NTCP and impaired HBV entry. Cotreatment with an interleukin 6-neutralising antibody reverted the HBV entry inhibition. CONCLUSION Our transcriptomic characterisation of SLGN sheds light into the programmes regulating KC activation. Furthermore, in addition to its previously described effect on established HBV infection and adaptive immunity, we show that SLGN impairs HBV entry. Altogether, SLGN may contribute through KCs to remodelling the intrahepatic immune microenvironment and may thus represent an important component of future combinations to cure HBV infection.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Marie-Laure Plissonnier
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Xavier Grand
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maud Michelet
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Guillaume Giraud
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Maria Saez-Palma
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Anaëlle Dubois
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Sarah Heintz
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Audrey Diederichs
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Nicolaas Van Renne
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
| | - Thomas Vanwolleghem
- Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, Antwerp University, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
| | | | - Li Li
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | - Yao-Chun Hsu
- Center for Liver Diseases, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | | | - Audrey H Lau
- Gilead Sciences Inc, 324 Lakeside Dr, Foster City, CA, USA
| | | | | | - Massimo Levrero
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine - DMISM and the IIT Center for Life Nanoscience (CLNS), Sapienza University, Rome, Italy
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- The Lyon Hepatology Institute EVEREST, Lyon, France
- Department of Hepatology, Croix Rousse hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
Li S, Hao L, Deng J, Zhang J, Yu F, Ye F, Li N, Hu X. The Culprit Behind HBV-Infected Hepatocytes: NTCP. Drug Des Devel Ther 2024; 18:4839-4858. [PMID: 39494152 PMCID: PMC11529284 DOI: 10.2147/dddt.s480151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for over 250 million cases of chronic liver infections, leading to conditions such as liver inflammation, cirrhosis and hepatocellular carcinoma (HCC). Sodium taurocholate co-transporting polypeptide (NTCP) is a transmembrane protein highly expressed in human hepatocytes and functions as a bile acid (BA) transporter. NTCP has been identified as the receptor that HBV and its satellite virus, hepatitis delta virus (HDV), use to enter hepatocytes. HBV entry into hepatocytes is tightly regulated by various signaling pathways, and NTCP plays an important role as the initial stage of HBV infection. NTCP acts as an initiation signal, causing metabolic changes in hepatocytes and facilitating the entry of HBV into hepatocytes. Thus, a comprehensive understanding of NTCP's role is crucial. In this review, we will examine the regulatory mechanisms governing HBV pre-S1 binding to liver membrane NTCP, the role of NTCP in HBV internalization, and the transcriptional and translational regulation of NTCP expression. Additionally, we will discuss clinical drugs targeting NTCP, including combination therapies involving NTCP inhibitors, and consider the safety of NTCP as a therapeutic target.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, People’s Republic of China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
7
|
Segbefia SP, Asandem DA, Pobee A, Asare B, Prah AD, Baba‐Adam R, Amponsah JA, Kyei‐Baafour E, van der Puije W, Osei F, Teye‐Adjei D, Agyemang S, Brenko T, Bentum‐Ennin L, Tetteh JKA, Bonney KJH, Sakyi SA, Amoah LE, Kusi KA. Expression patterns of immune checkpoint proteins and Plasmodium falciparum-induced cytokines in chronic hepatitis B virus-infected and uninfected individuals: A cross-sectional study. Health Sci Rep 2024; 7:e2280. [PMID: 39086506 PMCID: PMC11286663 DOI: 10.1002/hsr2.2280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Background and Aim Chronic hepatitis B virus (CHB) infection remains a major public health problem. The American Association for the Study of Liver Diseases (AASLD) 2018 Hepatitis B Guidelines provide that CHB individuals not requiring antiviral therapy yet are monitored to determine the need for antiviral therapy in the future; however, these tests do not include measurement of cytokines and immune cell characterization. This case-control study compared the cytokine and immune checkpoint protein expression profiles between CHB individuals not yet on antiviral treatment and hepatitis B virus (HBV)-negative individuals. Methods CD4 and CD8 T cells from CHB and HBV-negative individuals were characterized for immune checkpoint proteins programmed cell death-1 (PD1), T cell Immunoglobulin domain and mucin domain-containing protein 3 (TIM-3), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) (CD152), and a memory marker CXCR3 (CD183) using flow cytometry. Malaria-induced cytokine expression levels were determined by stimulating their blood cells with Plasmodium falciparum 3D7 strain antigens (CSP, AMA-1, and TRAP) in whole blood assays, and cytokine levels were measured using a 13-plex Luminex kit. Results HBV-negative and CHB individuals had comparable levels of CD4+ and CD8+ T cells. However, a proportion of the CD4+ and CD8+ populations from both groups, which were CXCR3+, expressed PD-1 and CD152. The ability to produce cytokines in response to malaria antigen stimulation was not significantly different between the groups. Conclusion These findings support excluding CHB individuals from antiviral therapy at this stage of infection. However, CHB individuals require regular monitoring to determine the need for later antiviral treatment.
Collapse
Affiliation(s)
- Selorm P. Segbefia
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Molecular Medicine, School of Medicine and DentistryCollege of Health Sciences, KNUSTKumasiGhana
| | - Diana A. Asandem
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
- Department of Virology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Abigail Pobee
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Bright Asare
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Animal Biology and Conservation Science, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Ahu Diana Prah
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Rawdat Baba‐Adam
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Jones Amo Amponsah
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Eric Kyei‐Baafour
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - William van der Puije
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Frank Osei
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Doreen Teye‐Adjei
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Seth Agyemang
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Theophilus Brenko
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Lutterodt Bentum‐Ennin
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - John K. A. Tetteh
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Kofi J. H. Bonney
- Department of Virology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and DentistryCollege of Health Sciences, KNUSTKumasiGhana
| | - Linda E. Amoah
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Kwadwo A. Kusi
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| |
Collapse
|
8
|
Sattar AA, Qaiser A, Kausar H, Aqil S, Mudassar R, Manzoor S, Ashraf J. The potential of IFN-λ, IL-32γ, IL-6, and IL-22 as safeguards against human viruses: a systematic review and a meta-analysis. Front Immunol 2024; 15:1303115. [PMID: 38420119 PMCID: PMC10899505 DOI: 10.3389/fimmu.2024.1303115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Many studies have investigated the antiviral activity of cytokines, including interleukin-6 (IL-6), interleukin-22 (IL-22), interleukin-32 gamma (IL-32γ), and interferon-lambda (IFN-λ) in diverse populations. This study aims to evaluate the role of these cytokines in inhibition of various human and animal viruses when administered exogenously. A comprehensive meta-analysis and systematic review were conducted on all the relevant studies from three databases. Standard mean differences (SMDs) of overall viral inhibition were used to generate the difference in the antiviral efficacy of these cytokines between control and experimental groups. A total of 4,618 abstracts for IL-6, 3,517 abstracts for IL-22, 2,160 abstracts for IL-32γ, and 1,026 abstracts for IFN-λ were identified, and 7, 4, 8, and 35 studies were included, respectively, for each cytokine. IFN-λ (SMD = 0.9540; 95% CI: 0.69-0.22) and IL-32γ (SMD = 0.459; 95% CI: 0.02-0.90) showed the highest influence followed by IL-6 (SMD = 0.456; CI: -0.04-0.95) and IL-22 (SMD = 0.244; 95% CI: -0.33-0.81). None of the cytokines represented heterogeneity (tau² > 0), but only IFN-λ indicated the funnel plot asymmetry (p = 0.0097). Results also indicated that IFN-λ and IL-32γ are more potent antivirals than IL-6 and IL-22. The collective findings of this study emphasize that exogenously administered pro-inflammatory cytokines, specifically IFN-λ and IL-32, exhibit a significant antiviral activity, thereby underscoring them as potent antiviral agents. Nonetheless, additional research is required to ascertain their clinical utility and potential for integration into combinatorial therapeutic regimens against viral infections.
Collapse
Affiliation(s)
- Areej A Sattar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Hina Kausar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Sarah Aqil
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Rida Mudassar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Javed Ashraf
- Department of Community Dentistry, Islamabad Medical and Dental College (IMDC), Islamabad, Pakistan
- Institute of Dentistry, University of Eastern Finland (UEF), Kuopio, Finland
| |
Collapse
|
9
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
10
|
Liu P, Zhang Q, Yang C, Wang X, Li Y, Li J, Yang Q. Feeding with 4,4'-diaponeurosporene-producing Bacillus subtilis enhances the lactogenic immunity of sow. BMC Vet Res 2023; 19:280. [PMID: 38115003 PMCID: PMC10729370 DOI: 10.1186/s12917-023-03846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Specific antibodies produced sow by oral porcine epidemic diarrhea virus (PEDV) vaccines would transfer to newborn piglets via colostrum, and it is an effective strategy to prevent porcine epidemic diarrhea (PED). However, there is a lag in the development of corresponding vaccines due to the rapid mutation of PEDV, which could increase the difficulty of PED prevention and control in pig farms. Hence, congenital lactogenic immunity was assessed by feeding 4,4'-diaponeurosporene-producing Bacillus subtilis (B.S-Dia) to sow on the 80th day of gestation in order to protect newborn piglets from PEDV infection. Firstly, we found that the quantities of T lymphocytes and monocytes in the blood and colostrum after oral administration of B.S-Dia were significantly increased as observed by flow cytometry, whereas the proliferative activity of T lymphocytes in colostrum was also markedly increased. Furthermore, enzyme-linked immunosorbent assay (ELISA) results revealed that levels of TGF (Transforming growth factor) -β, Interleukin (IL) -6, lysozyme and lactoferrin were significantly increased. Finally, it was found in the piglets' challenge protection test that offspring pigs of the sows feeding B.S-Dia during pregnancy did not develop diarrhea symptoms and intestinal pathological changes at 48 h after infection with PEDV, and PEDV load in the jejunum and ileum was significantly reduced, but offspring pigs of the sows taking orally PBS during pregnancy developed pronounced diarrhea symptoms and extensive PEDV colonization was noted both in the jejunum and ileum. In summary, sow by oral administration of B.S-Dia substantially increased congenital lactogenic immunity, thereby preventing newborn piglets from being infected with PEDV.
Collapse
Affiliation(s)
- Peng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Qi Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Chengjie Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Xiuyu Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Jianda Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, 210095, PR China.
| |
Collapse
|
11
|
Li T, Wang D, Wei H, Xu X. Cytokine storm and translating IL-6 biology into effective treatments for COVID-19. Front Med 2023; 17:1080-1095. [PMID: 38157195 DOI: 10.1007/s11684-023-1044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
As of May 3, 2023, the Coronavirus disease 2019 (COVID-19) pandemic has resulted in more than 760 million confirmed cases and over 6.9 million deaths. Several patients have developed pneumonia, which can deteriorate into acute respiratory distress syndrome. The primary etiology may be attributed to cytokine storm, which is triggered by the excessive release of proinflammatory cytokines and subsequently leads to immune dysregulation. Considering that high levels of interleukin-6 (IL-6) have been detected in several highly pathogenic coronavirus-infected diseases, such as severe acute respiratory syndrome in 2002, the Middle East respiratory syndrome in 2012, and COVID-19, the IL-6 pathway has emerged as a key in the pathogenesis of this hyperinflammatory state. Thus, we review the history of cytokine storm and the process of targeting IL-6 signaling to elucidate the pivotal role played by tocilizumab in combating COVID-19.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Geriatric Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Dongsheng Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230001, China
| | - Xiaoling Xu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
12
|
Katelani S, Fragoulis GE, Bakasis AD, Pouliakis A, Nikiphorou E, Atzeni F, Androutsakos T. HBV reactivation in patients with rheumatoid arthritis treated with anti-interleukin-6: a systematic review and meta-analysis. Rheumatology (Oxford) 2023; 62:SI252-SI259. [PMID: 37871924 DOI: 10.1093/rheumatology/kead243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/23/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVE The objective of this study was to assess the possibility of HBV reactivation (HBVr) in patients with RA under anti-IL-6 treatment. METHODS Using PubMed, Scopus and EMBASE, we performed a systematic literature search for articles related to HBVr in RA patients under anti-IL-6 treatment. The search was performed with no date limits and was last updated 28 January 2023. The results from all the databases were combined and duplicates were excluded, as were non-English articles, case reports, position articles, comments, and paediatric studies. RESULTS Our initial search led to 427 articles; 28 were duplicates, 46 non-English, 169 reviews, 31 books/letters, 25 case reports, and 88 irrelevant to the meta-analysis aim; 21 were excluded due to inadequate information, leaving 19 articles, with a sum of 372 RA patients with chronic HBV (CHB) or resolved HBV infection, for further analysis. The overall risk for HBVr in RA patients with CHB was 6.7%, increasing to 37% when only RA patients with CHB and no antiviral prophylaxis were included. On the contrary, HBVr was close to 0% in RA patients with resolved HBV infection, irrespective of antiviral prophylaxis. All RA patients experiencing HBVr in these studies were successfully managed with antiviral treatment and/or drug withdrawal. CONCLUSION Overall, anti-IL-6 treatment comes with a significant risk of HBVr in RA patients with CHB; risk is diminished when antiviral prophylaxis is used. In contrast, in RA patients with resolved HBV infection, the risk of HBVr seems to be extremely low. Large, well-designed studies (either controlled trials or multicentre/international observational studies) are warranted to further validate these results.
Collapse
Affiliation(s)
- Stamatia Katelani
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George E Fragoulis
- First Department of Internal Medicine, Propedeutic Clinic, "Laiko" Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Scotland, UK
| | | | - Abraham Pouliakis
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Medical School, University General Hospital Attikon, Athens, Greece
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases, King's College London, London, UK
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Qin B, Shen S, Lai J, Yang W, Feng L, Ding J. Inhibition of Hepatitis B Virus (HBV) replication and antigen expression by Brucea javanica (L.) Merr. oil emulsion. Front Cell Infect Microbiol 2023; 13:1193775. [PMID: 37560319 PMCID: PMC10408445 DOI: 10.3389/fcimb.2023.1193775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction The seeds of Brucea javanica (L.) Merr. (BJ) have been traditionally used to treat various types of cancers for many years in China. In this study, we systematically investigated a BJ oil emulsion (BJOE) produced from BJ seeds with the purpose of evaluating its antiviral effect against hepatitis B virus (HBV). Methods HepG2.215 (a wild-type HBV cell line), HepG2, and Huh7, transfected with wildtype (WT) or lamivudine-resistance mutant (LMV-MT) HBV replicon plasmids, were treated with different doses of BJOE and then used for pharmacodynamic evaluation. Cell viability was determined using CCK8 assay. The levels of HBsAg/HBeAg in cell cultured supernatant, HBcAg in cell lysis solution, and HBV DNA in both were evaluated. Results BJOE at ≤5 mg/ml was nontoxic to carcinoma cell lines, but could significantly inhibit WT/LMV-MT HBV replication and HBs/e/c antigen expression in a dose-dependent manner by upregulating interleukin-6 (IL-6), demonstrating that it possesses moderate anti-HBV activity. As one of the major components of BJOE, bruceine B was found to play a dominant role in IL-6 induction and HBV inhibition. Discussion Our results demonstrated that BJOE suppressed HBV replication by stimulating IL-6, indicating that it has promising clinical therapeutic potential for both WT and LMV-MT HBV.
Collapse
Affiliation(s)
- Bo Qin
- Clinical Laboratory, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Shu Shen
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
| | - Juan Lai
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Wei Yang
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Lili Feng
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
- Department of Anesthesiology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
| | - Jiefeng Ding
- Clinical Laboratory, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| |
Collapse
|
14
|
Abdelkareem Abakar MA, Hussein Ali AA, Ahmed Elhassan ED, Hamuda Altaher EA, Abdalbasit Musa NH, Kafi SK, Fawzi Osman AE, Waggiallah HA. Association of TNF-α, IFN-γ, IL-6, and IL-10 with different clinical manifestations of hepatitis B infection. ITALIAN JOURNAL OF MEDICINE 2023; 17. [DOI: 10.4081/itjm.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cytokines have a crucial part in the pathogenesis, persistence of infection, and prognosis of hepatitis B virus (HBV) infection as HBV does not cause direct liver destruction; rather, disease-related complications and prognosis are more associated with immune system action, specifically cytokines such as TNF-α, IFN-γ, IL-6, IL-10, and other cytokines. This study sought to link TNF-, IFN-, IL-6, and IL-10 to various clinical manifestations of HBV infection. Ninety sera were taken from HBV-infected patients, 30 (33.3%) of whom had liver cirrhosis, 30 (33.3%) were HBV carriers, 19 (21.2%) were acute HBV patients, and 11 (12.2%) were recently HBV infected. ELISA was used to determine the serum levels of TNF-α, IFN-γ, IL-6, and IL-10. HBV-infected patients with liver cirrhosis had considerably higher mean serum levels of IFN-γ (P=0.005) and IL-10 (P=0.003), but TNF-α and IL-6 were significantly higher in recent HBV-infected patients (P values 0.034 and 0.004, respectively). There were substantial changes in mean serum levels of TNF-α, IFN-γ, IL-6, and IL-10 at different phases of HBV infection, implying a role for cytokines in HBV etiology, chronicity, and consequences.
Collapse
|
15
|
Guo H, Urban S, Wang W. In vitro cell culture models to study hepatitis B and D virus infection. Front Microbiol 2023; 14:1169770. [PMID: 37089540 PMCID: PMC10113554 DOI: 10.3389/fmicb.2023.1169770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) and hepatitis D virus (HDV) can cause a major global health burden. Current medication regimens can repress viral replication and help to control disease progression, but a complete cure is hardly achieved due to the difficulties to eradicate viral templates (cccDNA and integrates). To develop novel curative antiviral therapies for HBV/HDV infection, it is vital to precisely understand the details of the molecular biology of both viruses and the virus-host interactions. One important prerequisite for gaining this aim is the availability of suitable in vitro models that support HBV/HDV infection, replicate both viruses via their authentic template and allow to adequately study host cell responses. The discovery of sodium taurocholate cotransporting polypeptide (NTCP) receptor as the most crucial host factor promoted HBV/HDV research to a new era. Recently, the structure of human NTCP was solved, gaining a deeper understanding of HBV recognition as the bona fide receptor. After decades of continuous efforts, new progress has been achieved in the development of cell culture models supporting HBV/HDV study. This review summarizes the cell culture models currently available, discusses the advantages and disadvantages of each model, and highlights their future applications in HBV and HDV research.
Collapse
Affiliation(s)
- Hongbo Guo
- Department of Pathogen Biology and Immunology; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- *Correspondence: Wenshi Wang, ; Stephan Urban,
| | - Wenshi Wang
- Department of Pathogen Biology and Immunology; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Wenshi Wang, ; Stephan Urban,
| |
Collapse
|
16
|
Wang J, Zhang X, Han J, Zhou P, Yu X, Shen Z, Mao R, Lu M, Huang Y, Zhang J. MicroRNA-124 expression in Kupffer cells modulates liver injury by targeting IL-6/STAT3 signaling. Antiviral Res 2023; 211:105510. [PMID: 36581048 DOI: 10.1016/j.antiviral.2022.105510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
MicroRNA-124 (miR-124) is related to liver injury due to chronic hepatitis B (CHB) and hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). However, the mechanism whereby miR-124 regulates liver inflammation remains unknown. In this study, we show that serum miR-124 serves as a compensatory predictive factor for organ failure and the 28-day prognosis of patients with HBV-ACLF. Moreover, within a mouse model of concanavalin A-induced acute liver injury, miR-124 is highly expressed in Kupffer cells. Overexpression of miR-124 significantly decreases interleukin-6 (IL-6) secretion, and relieves pathological liver necrosis to a great extent. Mechanistically, miR-124 directly targets the 3'-untranslated region of signal transducer and activator of transcription 3 (STAT3) and inhibits IL-6/STAT3 signaling, which reduces pro-inflammatory Kupffer cell polarization. Collectively, our findings suggest that miR-124 can potentially serve as a predictive biomarker for HBV-ACLF prognosis and may represent a promising therapeutic target for relieving severe liver injury resulting from cytokine storms.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Pu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueping Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Germany
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology of the Ministry of Education and Ministry of Health (MOH&MOE), Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Reviewing the Potential Links between Viral Infections and TDP-43 Proteinopathies. Int J Mol Sci 2023; 24:ijms24021581. [PMID: 36675095 PMCID: PMC9867397 DOI: 10.3390/ijms24021581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.
Collapse
|
18
|
Zahoor MA, Kuipery A, Mosa AI, Gehring AJ, Feld JJ. HepG2-NTCP Subclones Exhibiting High Susceptibility to Hepatitis B Virus Infection. Viruses 2022; 14:v14081800. [PMID: 36016422 PMCID: PMC9412438 DOI: 10.3390/v14081800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022] Open
Abstract
HepG2 cells reconstituted with Hepatitis B virus (HBV) entry receptor sodium taurocholate co-transporting polypeptide (NTCP) are widely used as a convenient in vitro cell culture infection model for HBV replication studies. As such, it is pertinent that HBV infectivity is maintained at steady-state levels for an accurate interpretation of in vitro data. However, variations in the HBV infection efficiency due to imbalanced NTCP expression levels in the HepG2 cell line may affect experimental results. In this study, we performed single cell-cloning of HepG2-NTCP-A3 parental cells via limiting dilution and obtained multiple subclones with increased permissiveness to HBV. Specifically, one subclone (HepG2-NTCP-A3/C2) yielded more than four-fold higher HBV infection compared to the HepG2-NTCP-A3 parental clone. In addition, though HBV infectivity was universally reduced in the absence of polyethylene glycol (PEG), subclone C2 maintained relatively greater permissiveness under PEG-free conditions, suggesting the functional heterogeneity within parental HepG2-NTCP-A3 may be exploitable in developing a PEG-free HBV infection model. The increased viral production correlated with increased intracellular viral antigen expression as evidenced through HBcAg immunofluorescence staining. Further, these subclones were found to express different levels of NTCP, albeit with no remarkable morphology or cell growth differences. In conclusion, we isolated the subclones of HepG2-NTCP-A3 which support efficient HBV production and thus provide an improved in vitro HBV infection model.
Collapse
Affiliation(s)
- Muhammad Atif Zahoor
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Adrian Kuipery
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander I. Mosa
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Adam J. Gehring
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jordan J. Feld
- Toronto Center for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Correspondence:
| |
Collapse
|
19
|
Liu TW, Huang CF, Tsai PC, Yeh ML, Jang TY, Huang JF, Dai CY, Yu ML, Chuang WL. The compound annual growth rate of the fibrosis-4 index in chronic hepatitis B patients. Kaohsiung J Med Sci 2022; 38:686-693. [PMID: 35403363 DOI: 10.1002/kjm2.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 09/11/2023] Open
Abstract
Chronic hepatitis B (CHB) patients with low disease activity are at risk of liver fibrosis. The age-adjusted fibrosis-4 index (FIB4-AA), developed in our previous publication, and was implemented to evaluate the tendency of liver fibrosis in these patients. We aimed to investigate the rate of liver fibrosis in CHB patients with low disease activity. Resuming our previous study, the FIB-4 changes of 244 antiviral treatment-naïve CHB patients, with a total of 1243.48 person-years, were reviewed. Among the cohort, patients were categorized as FIB4-AA positive or negative according to the results of their last FIB4-AA minus their initial FIB-4 during at least 18 months of observation time. The compound annual growth rate (CAGR) of FIB-4 was calculated for the FIB4-AA positive and negative groups. The assumed healthy controls had an FIB-4 CAGR calculated to be 2.34% for both men and women, while the FIB-4 CAGR of the whole study cohort was 2.84% ± 6.01%. FIB4-AA positive effectively identifies CHB patients with higher mean FIB-4 CAGR (7.11% ± 3.88% vs. -2.36% ± 3.52%, p < 0.0001). Overweight CHB patients had 10 times smaller mean FIB-4 CAGR than lean ones (0.38% ± 10.35% vs. 3.83% ± 8.88%, p = 0.009). An increase in FIB4-AA over at least 18 months in CHB patients with relatively low disease activity meant they were at greater risk of liver fibrosis, and these patients had a mean FIB-4 CAGR of 7.11%. The FIB-4 CAGR was compatible with the findings of previous studies on the collagen proportionate area in viral hepatitis patients.
Collapse
Affiliation(s)
- Ta-Wei Liu
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Pei-Chien Tsai
- Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tyng-Yuan Jang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
| | - Jee-Fu Huang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Lung Yu
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Ramírez-Martínez G, Jiménez-Álvarez LA, Cruz-Lagunas A, Ignacio-Cortés S, Gómez-García IA, Rodríguez-Reyna TS, Choreño-Parra JA, Zúñiga J. Possible Role of Matrix Metalloproteinases and TGF-β in COVID-19 Severity and Sequelae. J Interferon Cytokine Res 2022; 42:352-368. [PMID: 35647937 PMCID: PMC9422783 DOI: 10.1089/jir.2021.0222] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The costs of coronavirus disease 2019 (COVID-19) are devastating. With millions of deaths worldwide, specific serological biomarkers, antiviral agents, and novel therapies are urgently required to reduce the disease burden. For these purposes, a profound understanding of the pathobiology of COVID-19 is mandatory. Notably, the study of immunity against other respiratory infections has generated reference knowledge to comprehend the paradox of the COVID-19 pathogenesis. Past studies point to a complex interplay between cytokines and other factors mediating wound healing and extracellular matrix (ECM) remodeling that results in exacerbated inflammation, tissue injury, severe manifestations, and a sequela of respiratory infections. This review provides an overview of the immunological process elicited after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Also, we analyzed available data about the participation of matrix metalloproteinases (MMPs) and transforming growth factor-beta (TGF-β) in immune responses of the lungs. Furthermore, we discuss their possible implications in severe COVID-19 and sequela, including pulmonary fibrosis, and remark on the potential of these molecules as biomarkers for diagnosis, prognosis, and treatment of convalescent COVID-19 patients. Our review provides a theoretical framework for future research aimed to discover molecular hallmarks that, combined with clinical features, could serve as therapeutic targets and reliable biomarkers of the different clinical forms of COVID-19, including convalescence.
Collapse
Affiliation(s)
- Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Tatiana Sofia Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City, Mexico
| |
Collapse
|
21
|
Sasikumar S, Boden A, Chameettachal S, Cipolla L, Cromer B, Kingshott P, Pati F. Galactose Tethered Decellularized Liver Matrix: Toward a Biomimetic and Biofunctional Matrix for Liver Tissue Engineering. ACS APPLIED BIO MATERIALS 2022; 5:3023-3037. [PMID: 35548974 DOI: 10.1021/acsabm.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major challenge in liver tissue engineering is the replication of the microenvironment and microarchitecture of the liver tissue at the nanoscale. Decellularized liver matrix (DLM) provides an ideal material for scaffold preparation, as it retains the relevant structural and biochemical composition. However, the loss of bioactive factors during decellularization needs to be taken into account when using DLM and should be supplemented accordingly for an expected outcome. This study reports on the modification of DLM by the addition of galactose residues using a two-step thiol-ene-mediated photoclick chemistry for the coupling of galactose moieties to the DLM. Modification with galactose enhanced the function of hepatocytes and provides many advantages over currently used DLM and DLM-based materials. The galactose modified DLM enhanced the initial HepG2 cell adhesion to the substrate with changes in dynamics over time such as spheroid formation and further migration on the matrix. Our observation is that the galactose ligand decoration can also enhance the liver-specific metabolism of HepG2 compared to unmodified DLM. Galactosylated DLM also showed a better establishment of cellular polarity which also contributes to the function of HepG2 cells. Together our results demonstrate the advantages of adding galactose residues to currently available biomaterials, which makes this approach an attractive method for ECM-based liver tissue engineering.
Collapse
Affiliation(s)
- Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India.,Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Andrew Boden
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Shibu Chameettachal
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Brett Cromer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284 Telangana, India
| |
Collapse
|
22
|
Li Y, Zhou J, Li T. Regulation of the HBV Entry Receptor NTCP and its Potential in Hepatitis B Treatment. Front Mol Biosci 2022; 9:879817. [PMID: 35495620 PMCID: PMC9039015 DOI: 10.3389/fmolb.2022.879817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) is a globally prevalent human DNA virus responsible for more than 250 million cases of chronic liver infection, a condition that can lead to liver inflammation, cirrhosis, and hepatocellular carcinoma. Sodium taurocholate co-transporting polypeptide (NTCP), a transmembrane protein highly expressed in human hepatocytes and a mediator of bile acid transport, has been identified as the receptor responsible for the cellular entry of both HBV and its satellite, hepatitis delta virus (HDV). This has led to significant advances in our understanding of the HBV life cycle, especially the early steps of infection. HepG2-NTCP cells and human NTCP-expressing transgenic mice have been employed as the primary cell culture and animal models, respectively, for the study of HBV, and represent valuable approaches for investigating its basic biology and developing treatments for infection. However, the mechanisms involved in the regulation of NTCP transcription, translation, post-translational modification, and transport are still largely elusive. Improvements in our understanding of NTCP biology would likely facilitate the design of new therapeutic drugs for the prevention of the de novo infection of naïve hepatocytes. In this review, we provide critical findings regarding NTCP biology and discuss important questions that remain unanswered.
Collapse
Affiliation(s)
- Yan Li
- *Correspondence: Yan Li, ; Tianliang Li,
| | | | | |
Collapse
|
23
|
Anti-rheumatic drug-induced hepatitis B virus reactivation and preventive strategies for hepatocellular carcinoma. Pharmacol Res 2022; 178:106181. [PMID: 35301112 DOI: 10.1016/j.phrs.2022.106181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/13/2022]
Abstract
To date, an estimated 3 million people worldwide have been infected with chronic hepatitis B virus (HBV). Although anti-HBV therapies have improved the long-term survival profile of chronic carriers, viral reactivation still poses a significant challenge for preventing HBV-related hepatitis, hepatocellular carcinoma (HCC), and death. Immuno-modulating drugs, which are widely applied in managing rheumatic conditions, are commonly associated with HBV reactivation (HBVr) as a result of drug-induced immune suppression. However, there are few reports on the risk of HBVr and the medication management plan for HBV carriers, especially rheumatic patients. In this review, we summarize immuno-modulating drug-induced HBVr during rheumatoid therapy and its preventive strategies for HBVr-induced liver diseases, especially cirrhosis and HCC. These findings will assist with developing treatments for rheumatic patients, and prevent HBV-related cirrhosis and HCC.
Collapse
|
24
|
Zhao HJ, Hu YF, Han QJ, Zhang J. Innate and adaptive immune escape mechanisms of hepatitis B virus. World J Gastroenterol 2022; 28:881-896. [PMID: 35317051 PMCID: PMC8908287 DOI: 10.3748/wjg.v28.i9.881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/09/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is an international health problem with extremely high mortality and morbidity rates. Although current clinical chronic hepatitis B (CHB) treatment strategies can partly inhibit and eliminate HBV, viral breakthrough may result due to non-adherence to treatment, the emergence of viral resistance, and a long treatment cycle. Persistent CHB infection arises as a consequence of complex interactions between the virus and the host innate and adaptive immune systems. Therefore, understanding the immune escape mechanisms involved in persistent HBV infection is important for designing novel CHB treatment strategies to clear HBV and achieve long-lasting immune control. This review details the immunological and biological characteristics and escape mechanisms of HBV and the novel immune-based therapies that are currently used for treating HBV.
Collapse
Affiliation(s)
- Hua-Jun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yi-Fei Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
25
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
26
|
Immunopathogenesis of Acute Flare of Chronic Hepatitis B: With Emphasis on the Role of Cytokines and Chemokines. Int J Mol Sci 2022; 23:ijms23031407. [PMID: 35163330 PMCID: PMC8835919 DOI: 10.3390/ijms23031407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Acute flares (AFs) of chronic hepatitis B usually occur during the immune-active stage (both immune clearance phase and immune reactivation phase), as the host immune system tries to control the virus. Successful host immune control over viral replication is usually presented as hepatitis B surface antigen seroclearance; however, 20–30% individuals with chronic hepatitis B may encounter repeated AFs with accumulative liver injuries, finally leading to the development of cirrhosis and hepatocellular carcinoma. AF can also develop in other clinical situations such as organ transplantation, cancer chemotherapy, and under treatment for chronic hepatitis B or treatment for chronic hepatitis C in patients with co-infected hepatitis B/hepatitis C. Understanding the natural history and immunopathogenesis of AF would help develop effective strategies to eradicate the virus and improve the clinical outcomes of patients with chronic hepatitis B. In this review article, the immunopathogenesis of AF, and the involvement of innate and adaptive immune responses on the development of hepatitis B flare will be briefly reviewed, with the emphasis on the role of cytokines and chemokines.
Collapse
|
27
|
Jin X, Yan ZH, Lu L, Lu S, Zhang G, Lin W. Peripheral Immune Cells Exhaustion and Functional Impairment in Patients With Chronic Hepatitis B. Front Med (Lausanne) 2021; 8:759292. [PMID: 34782855 PMCID: PMC8589627 DOI: 10.3389/fmed.2021.759292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022] Open
Abstract
After infection of hepatitis B virus (HBV), the virus induces a variety of immune disorders in the host, leading to immune escape and, finally, the chronicity of the disease. This study investigated immune cell defects and functional impairment in patients with chronic hepatitis B (CHB). We analyzed the percentage, function, and phenotypes of various immune cell subpopulations in the peripheral blood along with the concentrations of cytokines in the plasma. We compared the results between patients with CHB and healthy individuals. It was found that in patients with CHB, the cell function was impaired and, there was increased expression of inhibitory receptors, such as NKG2A and PD-1 in both NK and T cells. The impairment of function was mainly in cytokine secretion, and the cytotoxicity was not significantly diminished. We also found that the proportion of dendritic cells (DC) decreased and regulatory B cells (Breg) increased in CHB. In addition, the Breg cells were negatively correlated with T cell cytokine and positively correlated with ALT and HBV viral load. Taken together, various disorders and functional impairments were found in the immune cells of peripheral blood in CHB patients, especially NK and T cells. These cells showed exhaustion and the increase of regulatory B cells may be one of the reasons for this phenomenon.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhi-Han Yan
- Department of Hepatology, Wuxi Fifth People's Hospital, Wuxi, China
| | - Lingna Lu
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shengjia Lu
- Department of Infectious Diseases, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Guoping Zhang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Lin
- Department of Otolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
28
|
Na+-Taurocholate Co-Transporting Polypeptide (NTCP) in Livers, Function, Expression Regulation, and Potential in Hepatitis B Treatment. LIVERS 2021. [DOI: 10.3390/livers1040019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection has become one of the leading causes of liver cirrhosis and hepatocellular carcinoma globally. The discovery of sodium taurocholate co-transporting polypeptide (NTCP), a solute carrier, as a key receptor for HBV and hepatitis D virus (HDV) has opened new avenues for HBV treatment. Additionally, it has led researchers to generate hepatoma cell lines (including HepG2-NTCP and Huh-7-NTCP) susceptible to HBV infection in vitro, hence, paving the way to develop and efficiently screen new and novel anti-HBV drugs. This review summarizes the history, function and critical findings regarding NTCP as a viral receptor for HBV/HDV, and it also discusses recently developed drugs targeting NTCP.
Collapse
|
29
|
Ribeiro CRDA, Beghini DG, Lemos AS, Martinelli KG, de Mello VDM, de Almeida NAA, Lewis-Ximenez LL, de Paula VS. Cytokines profile in patients with acute and chronic hepatitis B infection. Microbiol Immunol 2021; 66:31-39. [PMID: 34647645 DOI: 10.1111/1348-0421.12947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/13/2021] [Accepted: 10/03/2021] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) is one of the leading causes of acute and chronic hepatitis and represents a serious public health threat. Cytokines are important chemical mediators that regulate the differentiation, proliferation, and function of immune cells, with accumulating evidence indicating that the inadequate immune responses are responsible for the elimination or persistence of HBV. This study aimed to determine the cytokine profiles (IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, and IL-17A) during HBV infection and investigate their association with genotypes. A total of 66 plasma samples, 19 from patients with acute and 47 with chronic hepatitis B infection, were subjected to biochemical tests, nested-PCR, and real-time PCR, with cytokines evaluated using a commercial BD Cytometric Bead Array Human Th1/Th2/Th17 Cytokine Kit. Healthy controls (10 individuals) were selected from blood donors with no history of liver diseases. No correlation was found between genotypes, viral load, and cytokines analyzed. All cytokines showed higher levels of production among infected individuals when compared with the control group. A positive correlation classified as moderate to strong was found between cytokines IFN-γ, TNF, IL-10, IL-6, IL-4, and IL-2 through the Spearman correlation coefficient. TNF (P = 0.009), IL-10 (P < 0.001), and IL-6 (P < 0.001) levels were higher in acute individuals compared with chronic and control groups. Theses cytokines could be involved in the elimination of virus and protection against chronicity.
Collapse
Affiliation(s)
| | - Daniela Gois Beghini
- Laboratory of Innovations in Therapies, Teaching and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andreza Salvio Lemos
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | - Lia Laura Lewis-Ximenez
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Sodeifian F, Seyedalhosseini ZS, Kian N, Eftekhari M, Najari S, Mirsaeidi M, Farsi Y, Nasiri MJ. Drug-Induced Liver Injury in COVID-19 Patients: A Systematic Review. Front Med (Lausanne) 2021; 8:731436. [PMID: 34616757 PMCID: PMC8488138 DOI: 10.3389/fmed.2021.731436] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: The severity of COVID-19 may be correlated with the risk of liver injury development. An increasing number of studies indicate that degrees of hepatotoxicity has been associated with using some medications in the management of COVID-19 patients. However, limited studies had systematically investigated the evidence of drug-induced liver injury (DILI) in COVID-19 patients. Thus, this study aimed to examine DILI in COVID-19 patients. Methods: A systematic search was carried out in PubMed/Medline, EMBASE, and Web of Science up to December 30, 2020. Search items included "SARS-CoV-2", "Coronavirus," COVID-19, and liver injury. Results: We included 22 related articles. Among included studies, there was five case report, five case series, four randomizes control trial (RCT), seven cohort studies, and one cross-sectional study. The drugs included in this systematic review were remdesivir, favipiravir, tocilizumab, hydroxychloroquine, and lopinavir/ritonavir. Among included studies, some studies revealed a direct role of drugs, while others couldn't certainly confirm that the liver injury was due to SARS-CoV-2 itself or administration of medications. However, a significant number of studies reported that liver injury could be attributable to drug administration. Discussion: Liver injury in COVID-19 patients could be caused by the virus itself or the administration of some types of drug. Intensive liver function monitoring should be considered for patients, especially patients who are treated with drugs such as remdesivir, lopinavir/ritonavir, and tocilizumab.
Collapse
Affiliation(s)
- Fatemeh Sodeifian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Seyedalhosseini
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghmeh Kian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Eftekhari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Najari
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Pulmonary and Critical Care, Miami VA Medical Center, Miami, FL, United States
| | - Yeganeh Farsi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Li Y, Li J, Wang X, Wu Q, Yang Q. Role of intestinal extracellular matrix-related signaling in porcine epidemic diarrhea virus infection. Virulence 2021; 12:2352-2365. [PMID: 34515624 PMCID: PMC8451458 DOI: 10.1080/21505594.2021.1972202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is emerging as a major threat to the global swine industry. Clinical PEDV infection is associated with severe intestinal lesions, resulting in absorptive dysfunction and high mortality rates in suckling piglets. The extracellular matrix (ECM) is an important component of intestinal tissue, providing a structural framework and conveying tissue-specific signals to nearby enterocytes. In this study, we investigated the extensive ECM remodeling observed in intestinal epithelial cells infected with PEDV and elucidated the associated activated ECM receptor-related pathways. Protein-protein interaction network analysis revealed two significantly differentially expressed genes (cluster of differentiation 44 [CD44] and serpin family E member 1 [SERPINE1]) associated with the ECM. At the transcriptional level, both genes exhibited significant positive correlation with the extent of PEDV replication. Similarly, the expression of CD44 and PAI-1 (encoded by SERPINE1) was also increased in the intestines of piglets during viral infection. Furthermore, CD44 exhibited antiviral activity by enhancing the expression of antiviral cytokines (e.g., interleukin [IL]-6, IL-18, IL-11, and antimicrobial peptide beta-defensin 1) by activating nuclear factor-κB signaling. Conversely, PAI-1 was found to promote the release of progeny virions during PEDV infection, despite a decreased intracellular viral load. Nevertheless, the underlying mechanisms are still unclear. Taken together, our results highlighted the biological roles of specific ECM-regulated genes, i.e., CD44 and SERPINE1 in suppressing and promoting PEDV infection, thereby providing a theoretical foundation for the role of the ECM in intestinal infections and identifying potential therapeutic targets for PEDV.
Collapse
Affiliation(s)
- Yuchen Li
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Jianda Li
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Xiuyu Wang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Qingxin Wu
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| | - Qian Yang
- Moe Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, PR China
| |
Collapse
|
32
|
Campbell C, Andersson MI, Ansari MA, Moswela O, Misbah SA, Klenerman P, Matthews PC. Risk of Reactivation of Hepatitis B Virus (HBV) and Tuberculosis (TB) and Complications of Hepatitis C Virus (HCV) Following Tocilizumab Therapy: A Systematic Review to Inform Risk Assessment in the COVID-19 Era. Front Med (Lausanne) 2021; 8:706482. [PMID: 34490299 PMCID: PMC8417527 DOI: 10.3389/fmed.2021.706482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Objectives: Tocilizumab (TCZ), an IL-6 receptor antagonist, is used in the treatment of severe COVID-19 caused by infection with SARS-CoV-2. However, unintended consequences of TCZ therapy include reactivation of tuberculosis (TB) or hepatitis B virus (HBV), and worsening of hepatitis C virus (HCV). We set out to assimilate existing data for these complications, in order to help inform evidence-based risk assessments for the use of TCZ, and thus to reduce the risk of serious but preventable complications. Methods: We searched the global WHO database of Individual Case Safety Reports (ICSRs) and adverse drug reactions (ADRs) ("VigiBase") and undertook a systematic literature review, in accordance with PRISMA guidelines. We generated mean cumulative incidence estimates for infection complications. Results: Mean cumulative incidence of HBV and TB were 3.3 and 4.3%, respectively, in patients receiving TCZ. Insufficient data were available to generate estimates for HCV. These estimates derive from heterogeneous studies pre-dating SARS-CoV-2, with differing epidemiology and varied approaches to screening and prophylaxis, so formal meta-analysis was not possible. Conclusions: We underline the need for careful individual risk assessment prior to TCZ prescription, and present an algorithm to guide clinical stratification. There is an urgent need for ongoing collation of safety data as TCZ therapy is used in COVID.
Collapse
Affiliation(s)
- Cori Campbell
- Nuffield Department of Medicine, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Monique I. Andersson
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Olivia Moswela
- Pharmacy Department, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Siraj A. Misbah
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
33
|
Heuschkel MJ, Baumert TF, Verrier ER. Cell Culture Models for the Study of Hepatitis D Virus Entry and Infection. Viruses 2021; 13:v13081532. [PMID: 34452397 PMCID: PMC8402901 DOI: 10.3390/v13081532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis D is one of the most severe and aggressive forms of chronic viral hepatitis with a high risk of developing hepatocellular carcinoma (HCC). It results from the co-infection of the liver with the hepatitis B virus (HBV) and its satellite, the hepatitis D virus (HDV). Although current therapies can control HBV infection, no treatment that efficiently eliminates HDV is available and novel therapeutic strategies are needed. Although the HDV cycle is well described, the lack of simple experimental models has restricted the study of host–virus interactions, even if they represent relevant therapeutic targets. In the last few years, the discovery of the sodium taurocholate co-transporting polypeptide (NTCP) as a key cellular entry factor for HBV and HDV has allowed the development of new cell culture models susceptible to HBV and HDV infection. In this review, we summarize the main in vitro model systems used for the study of HDV entry and infection, discuss their benefits and limitations and highlight perspectives for future developments.
Collapse
Affiliation(s)
- Margaux J. Heuschkel
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
- Institut Hospitalo-Universitaire, Pôle Hépato-Digestif, Nouvel Hôpital Civil, 1 Place de L’Hôpital, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France; (M.J.H.); (T.F.B.)
- Correspondence: ; Tel.: +33-3-68-85-37-06
| |
Collapse
|
34
|
Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression. Int J Mol Sci 2021; 22:ijms22115497. [PMID: 34071064 PMCID: PMC8197097 DOI: 10.3390/ijms22115497] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
More than 250 million people are living with chronic hepatitis B despite the availability of highly effective vaccines and oral antivirals. Although innate and adaptive immune cells play crucial roles in controlling hepatitis B virus (HBV) infection, they are also accountable for inflammation and subsequently cause liver pathologies. During the initial phase of HBV infection, innate immunity is triggered leading to antiviral cytokines production, followed by activation and intrahepatic recruitment of the adaptive immune system resulting in successful virus elimination. In chronic HBV infection, significant alterations in both innate and adaptive immunity including expansion of regulatory cells, overexpression of co-inhibitory receptors, presence of abundant inflammatory mediators, and modifications in immune cell derived exosome release and function occurs, which overpower antiviral response leading to persistent viral infection and subsequent immune pathologies associated with disease progression towards fibrosis, cirrhosis, and hepatocellular carcinoma. In this review, we discuss the current knowledge of innate and adaptive immune cells transformations that are associated with immunopathogenesis and disease outcome in CHB patients.
Collapse
|
35
|
Venuti A, Donzelli S, Nisticò P, Blandino G, Ciliberto G. Does Interleukin-6 Bridge SARS-CoV-2 With Virus-Associated Cancers? JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:79-85. [PMID: 35663529 PMCID: PMC9153257 DOI: 10.36401/jipo-20-27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 09/10/2021] [Indexed: 06/15/2023]
Abstract
To date SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a member of the Coronaviridae family, has infected more than 40 million people worldwide. A second wave of SARS-CoV-2 infection is aggressively surging. The clinical worsening of SARS-CoV-2 infection appears to be strictly associated with comorbidities, which can be used to establish an intrinsic patient network whose molecular profile is pivotal for identifying and successfully treating populations at risk. Herein, we focus on the direct interaction between SARS-CoV-2 and virus-associated cancers, exploring the critical role of interleukin-6 (IL-6) as a mediator of this complex cross talk. IL-6 production is enhanced in diverse viral infections ranging from human papilloma virus (HPV) to hepatitis B virus (HBV), human immunodeficiency virus (HIV), and SARS-CoV-2 infection. High systemic levels of IL-6 are associated with viral persistence and poor clinical outcomes in SARS-CoV-2-infected patients. Blockade of IL-6/IL-6R, using specific molecules, is under investigation in active clinical trials for the treatment of patients with SARS-CoV-2. Although the data are as yet inconclusive, they pave the way for selective targeting of crucial cytokine-activated aberrant signaling in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Aldo Venuti
- HPV-Unit, UOSD (Simple Departmental Operational Unit) Tumor Immunology and Immunotherapy, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Regina Elena National Cancer Institute, Rome, Italy
- UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- UOSD Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCSS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
36
|
Biehl A, Harinstein L, Brinker A, Glaser R, Muñoz M, Avigan M. A case series analysis of serious exacerbations of viral hepatitis and non-viral hepatic injuries in tocilizumab-treated patients. Liver Int 2021; 41:515-528. [PMID: 33320444 DOI: 10.1111/liv.14766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Reports of moderate to severe liver injury associated with tocilizumab, an interleukin-6 (IL-6) receptor antagonist, have been reported in the post-marketing setting. This case series aims to characterize cases of tocilizumab-associated clinically significant hepatic injury. METHODS We analysed cases of severe acute liver injury associated with tocilizumab reported in the FDA Adverse Event Reporting System and the medical literature. RESULTS We identified 12 cases in which tocilizumab was a suspected primary cause of liver injury and eight cases in which serious sequelae of underlying or coincident viral hepatitis were temporally associated with its use. Using the Drug-Induced Liver Injury Network (DILIN) severity scale, five of 12 cases were Grade 5 (two liver transplants, three deaths), one was Grade 4 (liver failure) and six were Grade 3 (serious events with elevated bilirubin). Two cases reported liver atrophy with low hepatocellular expression of Ki-67, a marker of cellular proliferation. Among the eight cases of tocilizumab-associated viral hepatitis exacerbation, three were scored as DILIN severity Grade 5 (one liver transplant, two deaths), one was Grade 4 (liver failure), and four were Grade 3. The reported viral hepatitis events were hepatitis B virus (HBV) reactivation (n = 3), hepatitis C virus (HCV) flare (n = 1), cytomegalovirus (CMV)-induced liver failure (n = 1), Epstein-Barr virus hepatitis (n = 1), acute hepatitis E (HEV, n = 1) and HEV-induced macrophage activation syndrome (n = 1). CONCLUSION Tocilizumab may be a primary cause of severe liver injury, as well as exacerbate underlying viral hepatitis. The disruption by tocilizumab of IL-6-mediated immune protection and hepatocyte regeneration may aggravate clinical outcomes in some cases.
Collapse
Affiliation(s)
- Ann Biehl
- Office of Pharmacovigilance and Epidemiology, US FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Lisa Harinstein
- Office of Pharmacovigilance and Epidemiology, US FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Allen Brinker
- Office of Pharmacovigilance and Epidemiology, US FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Rachel Glaser
- Division of Rheumatology and Transplant Medicine, Office of New Drugs, US FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Monica Muñoz
- Office of Pharmacovigilance and Epidemiology, US FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - Mark Avigan
- Office of Pharmacovigilance and Epidemiology, US FDA Center for Drug Evaluation and Research, Silver Spring, MD, USA
| |
Collapse
|
37
|
Ribeiro CRDA, de Almeida NAA, Martinelli KG, Pires MA, Mello CEB, Barros JJ, de Paula VS. Cytokine profile during occult hepatitis B virus infection in chronic hepatitis C patients. Virol J 2021; 18:15. [PMID: 33435966 PMCID: PMC7802259 DOI: 10.1186/s12985-021-01487-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/02/2021] [Indexed: 12/19/2022] Open
Abstract
Background The hepatitis B virus (HBV) is one of the leading causes of acute, chronic and occult hepatitis (OBI) representing a serious public health threat. Cytokines are known to be important chemical mediators that regulate the differentiation, proliferation and function of immune cells. Accumulating evidence indicate that the inadequate immune responses are responsible for HBV persistency. The aim of this study were to investigate the cytokines IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10 and IL-17A in patients with OBI and verify if there is an association between the levels of these cytokines with the determination of clinical courses during HBV occult infection. Methods 114 patients with chronic hepatitis C were investigated through serological and molecular tests, the OBI coinfected patients were subjected to the test for cytokines using the commercial human CBA kit. As controls, ten healthy donors with no history of liver disease and 10 chronic HBV monoinfected patients of similar age to OBI patients were selected. Results Among 114 HCV patients investigated, 11 individuals had occult hepatitis B. The levels of cytokines were heterogeneous between the groups, most of the cytokines showed higher levels of production detection among OBI/HCV individuals when compared to control group and HBV monoinfected pacients. We found a high level of IL-17A in the HBV monoinfected group, high levels of TNF-α, IL-10, IL-6, IL-4 and IL-2 in OBI/HCV patients. Conclusion These cytokines could be involved in the persistence of HBV DNA in hepatocytes triggers a constant immune response, inducing continuous liver inflammation, which can accelerate liver damage and favor the development of liver cirrhosis in other chronic liver diseases.
Collapse
Affiliation(s)
- Camilla Rodrigues de Almeida Ribeiro
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365, Brasil Av., Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Nathalia Alves Araújo de Almeida
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365, Brasil Av., Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | | | - Marcia Amendola Pires
- Gaffrée and Guinle Universitary Hospital, Ambulatory of Liver Disease, Rio de Janeiro State Federal University/UniRio, Rio de Janeiro, Brazil
| | - Carlos Eduardo Brandao Mello
- Gaffrée and Guinle Universitary Hospital, Ambulatory of Liver Disease, Rio de Janeiro State Federal University/UniRio, Rio de Janeiro, Brazil
| | - José J Barros
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365, Brasil Av., Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 4365, Brasil Av., Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
38
|
Lowjaga KAAT, Kirstgen M, Müller SF, Goldmann N, Lehmann F, Glebe D, Geyer J. Long-term trans-inhibition of the hepatitis B and D virus receptor NTCP by taurolithocholic acid. Am J Physiol Gastrointest Liver Physiol 2021; 320:G66-G80. [PMID: 33174454 DOI: 10.1152/ajpgi.00263.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human hepatic bile acid transporter Na+/taurocholate cotransporting polypeptide (NTCP) represents the liver-specific entry receptor for the hepatitis B and D viruses (HBV/HDV). Chronic hepatitis B and D affect several million people worldwide, but treatment options are limited. Recently, HBV/HDV entry inhibitors targeting NTCP have emerged as promising novel drug candidates. Nevertheless, the exact molecular mechanism that NTCP uses to mediate virus binding and entry into hepatocytes is still not completely understood. It is already known that human NTCP mRNA expression is downregulated under cholestasis. Furthermore, incubation of rat hepatocytes with the secondary bile acid taurolithocholic acid (TLC) triggers internalization of the rat Ntcp protein from the plasma membrane. In the present study, the long-term inhibitory effect of TLC on transport function, HBV/HDV receptor function, and membrane expression of human NTCP were analyzed in HepG2 and human embryonic kidney (HEK293) cells stably overexpressing NTCP. Even after short-pulse preincubation, TLC had a significant long-lasting inhibitory effect on the transport function of NTCP, but the NTCP protein was still present at the plasma membrane. Furthermore, binding of the HBV/HDV myr-preS1 peptide and susceptibility for in vitro HDV infection were significantly reduced by TLC preincubation. We hypothesize that TLC rapidly accumulates in hepatocytes and mediates long-lasting trans-inhibition of the transport and receptor function of NTCP via a particular TLC-binding site at an intracellularly accessible domain of NTCP. Physiologically, this trans-inhibition might protect hepatocytes from toxic overload of bile acids. Pharmacologically, it provides an interesting novel NTCP target site for potential long-acting HBV/HDV entry inhibitors.NEW & NOTEWORTHY The hepatic bile acid transporter NTCP is a high-affinity receptor for hepatitis B and D viruses. This study shows that TLC rapidly accumulates in NTCP-expressing hepatoma cells and mediates long-lasting trans-inhibition of NTCP's transporter and receptor function via an intracellularly accessible domain, without substantially affecting its membrane expression. This domain is a promising novel NTCP target site for pharmacological long-acting HBV/HDV entry inhibitors.
Collapse
Affiliation(s)
- Kira A A T Lowjaga
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Michael Kirstgen
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Simon F Müller
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Felix Lehmann
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Joachim Geyer
- Faculty of Veterinary Medicine, Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
39
|
Cai Y, Yin W. The Multiple Functions of B Cells in Chronic HBV Infection. Front Immunol 2020; 11:582292. [PMID: 33381113 PMCID: PMC7767983 DOI: 10.3389/fimmu.2020.582292] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is one of the main causes of liver diseases, of which the natural history and clinical outcomes are associated with the role of B cells. As humoral immune cells, B cells play a critical role in the process of anti-HBV antibody production. In addition, some studies have also characterized other B cell subsets involved in antigen presentation and regulating the immune response beyond antibody secretion. However, not all B cell subsets play a positive role in the immune response to chronic HBV infection, and various B cell subsets jointly mediate persistent HBV infection, tolerance, and liver damage. Thus, we further sought to elucidate the multiple functions of B cells to gain novel insight into the understanding of chronic hepatitis B (CHB) pathogenesis. We also reviewed the current immunotherapies targeting B cells to explore novel therapeutic interventions for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Ying Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wenwei Yin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Xu J, Zhan Q, Fan Y, Yu Y, Zeng Z. Human genetic susceptibility to hepatitis B virus infection. INFECTION GENETICS AND EVOLUTION 2020; 87:104663. [PMID: 33278635 DOI: 10.1016/j.meegid.2020.104663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection is still a serious health threat worldwide. The outcomes of HBV infection consist of spontaneous HBV clearance and chronic HBV infection. Multiple factors contribute to the disparity of HBV infection outcomes, including host factors, viral factors and environmental factors. The present review comprehends the current researches mainly focusing on the relationships between genetic determinants, including single nucleotide polymorphisms (SNPs) and haplotypes, and susceptibility of HBV infection, namely chronic (persistent) HBV infection and HBV clearance. A number of determinants in the chromosomes, including mutations in human leukocyte antigens (HLAs), cytokines genes, toll-like receptors (TLRs), and other genes are related to the human susceptibility to HBV infection. Among the above variants, some of those in HLAs have been studied and replicated in multiple-ethnic populations and came to consistent conclusions, while some others are novel and need to be evaluated further.
Collapse
Affiliation(s)
- Jinghang Xu
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Qiao Zhan
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Yanan Fan
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China.
| | - Zheng Zeng
- Department of Infectious Diseases, Peking University First Hospital, Peking University Health Science Center, Beijing 100034, China.
| |
Collapse
|
41
|
Fergusson JR, Wallace Z, Connolly MM, Woon AP, Suckling RJ, Hine DW, Barber C, Bunjobpol W, Choi B, Crespillo S, Dembek M, Dieckmann N, Donoso J, Godinho LF, Grant T, Howe D, McCully ML, Perot C, Sarkar A, Seifert FU, Singh PK, Stegmann KA, Turner B, Verma A, Walker A, Leonard S, Maini MK, Wiederhold K, Dorrell L, Simmons R, Knox A. Immune-Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B-Infected Cells. Hepatology 2020; 72:1528-1540. [PMID: 32770836 PMCID: PMC7702151 DOI: 10.1002/hep.31503] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV-specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity-enhanced T Cell receptor with an anti-CD3 T Cell-activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus-derived peptides presented by human leukocyte antigen (HLA). APPROACH AND RESULTS ImmTAV molecules specific for HLA-A*02:01-restricted epitopes from HBV envelope, polymerase, and core antigens were engineered. The ability of ImmTAV-Env to activate and redirect polyclonal T cells toward cells containing integrated HBV and cells infected with HBV was assessed using cytokine secretion assays and imaging-based killing assays. Elimination of infected cells was further quantified using a modified fluorescent hybridization of viral RNA assay. Here, we demonstrate that picomolar concentrations of ImmTAV-Env can redirect T cells from healthy and HBV-infected donors toward hepatocellular carcinoma (HCC) cells containing integrated HBV DNA resulting in cytokine release, which could be suppressed by the addition of a corticosteroid in vitro. Importantly, ImmTAV-Env redirection of T cells induced cytolysis of antigen-positive HCC cells and cells infected with HBV in vitro, causing a reduction of hepatitis B e antigen and specific loss of cells expressing viral RNA. CONCLUSIONS The ImmTAV platform has the potential to enable the elimination of infected cells by redirecting endogenous non-HBV-specific T cells, bypassing exhausted HBV-specific T cells. This represents a promising therapeutic option in the treatment of chronic hepatitis B, with our lead candidate now entering trials.
Collapse
MESH Headings
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- CD3 Complex/antagonists & inhibitors
- Cell Line, Tumor
- Epitopes/immunology
- HLA-A2 Antigen/immunology
- Hepatitis B Surface Antigens/immunology
- Hepatitis B virus/immunology
- Hepatitis B virus/isolation & purification
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Hepatocytes
- Humans
- Immunoconjugates/genetics
- Immunoconjugates/immunology
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Lymphocyte Activation/drug effects
- Primary Cell Culture
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dawn Howe
- Immunocore LtdAbingdonUnited Kingdom
| | | | | | | | | | | | - Kerstin A. Stegmann
- Division of Infection and ImmunityInstitute of Immunity and TransplantationUniversity College LondonLondonUnited Kingdom
| | | | | | | | | | - Mala K. Maini
- Division of Infection and ImmunityInstitute of Immunity and TransplantationUniversity College LondonLondonUnited Kingdom
| | | | - Lucy Dorrell
- Immunocore LtdAbingdonUnited Kingdom
- Nuffield Department of MedicineUniversity of OxfordOxfordUnited Kingdom
- Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUnited Kingdom
| | | | | |
Collapse
|
42
|
Ribeiro CRDA, Martinelli KG, de Mello VDM, Baptista BDS, Dias NST, Paiva IA, Lewis-Ximenez LL, Pinto LMDO, de Paula VS. Cytokine, Genotype, and Viral Load Profile in the Acute and Chronic Hepatitis B. Viral Immunol 2020; 33:620-627. [PMID: 33090087 DOI: 10.1089/vim.2020.0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Several hepatitis B virus (HBV) factors, including viral load, genotype, genome mutations, and cytokine production, have been reported to be associated with different risks of progression of liver disease. The aim of this study was to verify if there is an association among the levels of cytokines (interleukin [IL]-35, IL-6, IL-17A, interferon [IFN]-γ) in the plasma, viral load, and the different genotypes of HBV in patients with acute or chronic hepatitis B. Methods: 49 serum samples, 20 from acute and 29 from chronic cases, were submitted to a real-time and nested-polymerase chain reaction to quantify, detect, and genotype HBV DNA. The cytokines IL-35, IL-6, IL-17A, and IFN-γ were detected by an enzyme-linked immunosorbent assay (ELISA). The median viral load was 3.15 log10 IU DNA/mL and 2.90 log10 IU DNA/mL for acute and chronic patients, respectively. Genotype A, D, E, and F were identified in chronic carriers of HBV infection, while only genotype A and F were identified in individuals with acute infection. IFN-γ (p = 0.024) and IL-17A (p = 0.046) levels were significantly increased in chronic patients and IL-6 and IL-35 were higher in patients with acute infection, however, without statistical difference. IL-17A and IFN-γ can be modulating proinflammatory effects and inducing hepatocellular damage, in chronic patients, and IL-6 and IL-35 may be involved in viral elimination and protection against chronicity during the acute phase of infection. These results can contribute to understanding of the complex regulatory mechanisms of the host antiviral response related to cytokine production during acute and chronic HBV infection.
Collapse
Affiliation(s)
| | | | | | - Bruna da Silva Baptista
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natália Spitz Toledo Dias
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Iury Amancio Paiva
- Laboratory of Viral Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Lia Laura Lewis-Ximenez
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
B lymphocyte-mediated humoral immunity in the pathogenesis of chronic hepatitis B infection. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Hepatitis B surface antigen seroclearance: Immune mechanisms, clinical impact, importance for drug development. J Hepatol 2020; 73:409-422. [PMID: 32333923 DOI: 10.1016/j.jhep.2020.04.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
HBsAg seroclearance occurs rarely in the natural history of chronic hepatitis B (CHB) infection and is associated with improved clinical outcomes. Many factors are associated with HBsAg seroconversion, including immune and viral factors. However, the immune mechanisms associated with HBsAg seroclearance are still difficult to elucidate. HBsAg seroclearance is the ideal aim of HBV treatment. Unfortunately, this goal is rarely achieved with current treatments. Understanding the mechanisms of HBsAg loss appears to be important for the development of curative HBV treatments. While studies from animal models give insights into the potential immune mechanisms and interactions occurring between the immune system and HBsAg, they do not recapitulate all features of CHB in humans and are subject to variability due to their complexity. In this article, we review recent studies on these immune factors, focusing on their influence on CHB progression and HBsAg seroconversion. These data provide new insights for the development of therapeutic approaches to partially restore the anti-HBV immune response. Targeting HBsAg will ideally relieve the immunosuppressive effects on the immune system and help to restore anti-HBV immune responses.
Collapse
|
45
|
Zhao X, Sun L, Mu T, Yi J, Ma C, Xie H, Liu M, Tang H. An HBV-encoded miRNA activates innate immunity to restrict HBV replication. J Mol Cell Biol 2020; 12:263-276. [PMID: 31865380 PMCID: PMC7232129 DOI: 10.1093/jmcb/mjz104] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/28/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
We previously identified that hepatitis B virus (HBV) encodes a microRNA (HBV-miR-3) that restrains HBV replication by targeting the HBV transcript. However, whether HBV-miR-3 affects host innate immunity to modulate HBV replication remains unclear. Here, we examined the vital functions of HBV-miR-3 in the innate immune response after HBV infection. We found that HBV-miR-3 expression gradually increased in a dose- and time-dependent manner in HBV-infected HepG2-NTCP cells. HBV-miR-3 activated the JAK/STAT signaling pathway by downregulating SOCS5 in hepatocytes, thereby enhancing the IFN-induced anti-HBV effect. In addition, HBV-miR-3 in exosomes facilitated the M1 polarization of macrophages. Furthermore, exosomes containing HBV-miR-3 enhanced the secretion of IL-6 via inhibiting the SOCS5-mediated ubiquitination of EGFR. In short, these results demonstrate that HBV-miR-3 activates the innate immune response to restrain HBV replication by multiple pathways, which may suppress HBV-induced acute liver cell injury and affect the progression of persistent HBV infection.
Collapse
Affiliation(s)
- Xiaoqing Zhao
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lu Sun
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Mu
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jianying Yi
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chaoqun Ma
- Department of Laboratory Medicine, General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hong Xie
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Min Liu
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center, Tianjin Key Laboratory of Inflammation Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
46
|
In Vitro Systems for Studying Different Genotypes/Sub-Genotypes of Hepatitis B Virus: Strengths and Limitations. Viruses 2020; 12:v12030353. [PMID: 32210021 PMCID: PMC7150782 DOI: 10.3390/v12030353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infects the liver resulting in end stage liver disease, cirrhosis, and hepatocellular carcinoma. Despite an effective vaccine, HBV poses a serious health problem globally, accounting for 257 million chronic carriers. Unique features of HBV, including its narrow virus-host range and its hepatocyte tropism, have led to major challenges in the development of suitable in vivo and in vitro model systems to recapitulate the HBV replication cycle and to test various antiviral strategies. Moreover, HBV is classified into at least nine genotypes and 35 sub-genotypes with distinct geographical distributions and prevalence, which have different natural histories of infection, clinical manifestation, and response to current antiviral agents. Here, we review various in vitro systems used to study the molecular biology of the different (sub)genotypes of HBV and their response to antiviral agents, and we discuss their strengths and limitations. Despite the advances made, no system is ideal for pan-genotypic HBV research or drug development and therefore further improvement is required. It is necessary to establish a centralized repository of HBV-related generated materials, which are readily accessible to HBV researchers, with international collaboration toward advancement and development of in vitro model systems for testing new HBV antivirals to ensure their pan-genotypic and/or customized activity.
Collapse
|
47
|
Ganesan M, Eikenberry A, Poluektova LY, Kharbanda KK, Osna NA. Role of alcohol in pathogenesis of hepatitis B virus infection. World J Gastroenterol 2020; 26:883-903. [PMID: 32206001 PMCID: PMC7081008 DOI: 10.3748/wjg.v26.i9.883] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) and alcohol abuse often contribute to the development of end-stage liver disease. Alcohol abuse not only causes rapid progression of liver disease in HBV infected patients but also allows HBV to persist chronically. Importantly, the mechanism by which alcohol promotes the progression of HBV-associated liver disease are not completely understood. Potential mechanisms include a suppressed immune response, oxidative stress, endoplasmic reticulum and Golgi apparatus stresses, and increased HBV replication. Certainly, more research is necessary to gain a better understanding of these mechanisms such that treatment(s) to prevent rapid liver disease progression in alcohol-abusing HBV patients could be developed. In this review, we discuss the aforementioned factors for the higher risk of liver diseases in alcohol-induced HBV pathogenies and suggest the areas for future studies in this field.
Collapse
Affiliation(s)
- Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Allison Eikenberry
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68105, United States
| |
Collapse
|
48
|
Ou Q, Guo J, Zeng Y, Chen H. Insights for clinical diagnostic indicators of virus and host in chronic hepatitis B infection. J Viral Hepat 2020; 27:224-232. [PMID: 31954089 DOI: 10.1111/jvh.13260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 10/19/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Covalently closed circular DNA (cccDNA), which is stably present in the nucleus of hepatocytes, is an important indicator for evaluating antiviral efficacy. Since cccDNA quantification requires an invasive procedure, serum biological markers that can effectively reflect the transcriptional activity of intrahepatic virus and the efficacy of treatment are required. Here, from the aspects of virus and host, we outline the focus of clinical research of HBV in recent years, including HBV RNA, empty virus, hepatitis B core-related antigen and changes in the immune response. We briefly discuss their significance in predicting disease activity and monitoring treatment response in chronic hepatitis B. On this basis, some issues worthy of attention in laboratory diagnosis are proposed.
Collapse
Affiliation(s)
- Qishui Ou
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,The Genetic Diagnostic Laboratory, Fujian Medical University, Fuzhou, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Jianhui Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,The Genetic Diagnostic Laboratory, Fujian Medical University, Fuzhou, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,The Genetic Diagnostic Laboratory, Fujian Medical University, Fuzhou, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| | - Huijuan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,The Genetic Diagnostic Laboratory, Fujian Medical University, Fuzhou, China.,First Clinical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
49
|
Yang X, Cai W, Sun X, Bi Y, Zeng C, Zhao X, Zhou Q, Xu T, Xie Q, Sun P, Zhou X. Defined host factors support HBV infection in non-hepatic 293T cells. J Cell Mol Med 2020; 24:2507-2518. [PMID: 31930674 PMCID: PMC7028854 DOI: 10.1111/jcmm.14944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) is a human hepatotropic virus. However, HBV infection also occurs at extrahepatic sites, but the relevant host factors required for HBV infection in non-hepatic cells are only partially understood. In this article, a non-hepatic cell culture model is constructed by exogenous expression of four host genes (NTCP, HNF4α, RXRα and PPARα) in human non-hepatic 293T cells. This cell culture model supports HBV entry, transcription and replication, as evidenced by the detection of HBV pgRNA, HBV cccDNA, HBsAg, HBeAg, HBcAg and HBVDNA. Our results suggest that the above cellular factors may play a key role in HBV infection of non-hepatic cells. This model will facilitate the identification of host genes that support extrahepatic HBV infection.
Collapse
Affiliation(s)
- Xiaoqiang Yang
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Weiwen Cai
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Xiaoyue Sun
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Yanwei Bi
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Chui Zeng
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - XiaoYu Zhao
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Qi Zhou
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Tian Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Qingdong Xie
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Pingnan Sun
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Xiaoling Zhou
- Stem Cell Research CenterShantou University Medical CollegeShantouChina
- The Center for Reproductive MedicineShantou University Medical CollegeShantouChina
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| |
Collapse
|
50
|
Fulminant Liver Failure due to Hepatitis B Reactivation During Treatment With Tocilizumab. ACG Case Rep J 2019; 6:e00243. [PMID: 32042838 PMCID: PMC6946203 DOI: 10.14309/crj.0000000000000243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Tocilizumab is a humanized monoclonal antibody targeting the interleukin-6 receptor that is frequently used for the treatment of refractory rheumatoid arthritis. Since patients with hepatitis B virus (HBV) infection were excluded from pivotal trials, the risk of HBV reactivation with this novel drug class remains uncertain. We present the first case of tocilizumab-associated HBV reactivation resulting in fulminant hepatic failure and a need for liver transplant. Our findings underscore the need for prophylactic antiviral therapy in patients being treated with novel immunosuppressive agents.
Collapse
|